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Abstract

In recent years, neural networks that incorporate physical symmetry into their archi-
tecture have become indispensable tools for overcoming the scarcity of molecular
and material data. However, despite its importance in deep learning, the design
and selection of the normalization layer has often been treated as a side issue. In
this study, we shed light on normalization and discuss how the naive application of
batch normalization (BatchNorm) to materials science may face unique geometric
challenges. By conducting case studies of the existing literature, we observe that
the normalization layer can not only break desired symmetries in the architecture,
but may also introduce undesired symmetries that remove task-relevant information
from the representation. To address these issues, we review alternative normaliza-
tion layers under a consistent framework and lay out the conditions for making a
proper choice, geometric-match. Overall, our survey provides a useful summary
and guidelines of normalization layers for practitioners and highlights open issues
for further research and development of deep learning architectures for materials
design.

1 Introduction

Although deep neural networks have been demonstrated to be highly capable and useful tools, they
are often very difficult to optimize, costing as many as millions of dollars and several weeks to train.
The technique of batch normalization has proven to be a critically important method for stabilizing
optimization techniques, allowing for the efficient training of very deep neural networks [1] [2].

BatchNorm was motivated by the need to train deeper spatial convolutional neural networks, which
have since become a relatively mature tool. More recently, practitioners have developed novel
architectures, such as graph and group-equivariant networks, which are effective at processing
molecular and materials data for a variety of prediction tasks. However, in the course of attempting
to solve these tasks, it has been empirically shown that naive applications of BatchNorm-based
techniques are often insufficient for the training of these models [3] [4] [5] [6].

Moreover, when a practitioner develops a novel normalization technique to enable the training of
their network, it is typically the case that this technique is designed specifically for the corresponding
task and without consideration of similar problems in other fields of study. This has led to many
similarities and redundancies in the literature, where two or more groups have developed similar or
even identical techniques, presumably without any knowledge of each other.

To facilitate the development of novel neural networks for geometric and graph-based tasks, it is
imperative to create a broader understanding of normalization techniques that will allow for less
complicated and expensive optimization of such networks. Additionally, providing a more unified
characterization of existing normalization techniques will reduce the burden of the practitioner in
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finding and selecting an appropriate technique for their task, as well as prevent redundant techniques
from being rediscovered for the same class of problems.

In this context, our work aims to:

1. Summarize existing normalization techniques, with a particular focus on those used in the
training of recent state-of-the-art group equivariant neural networks

2. Identify similarities and redundancies in the mechanics of such techniques
3. Explain the existence of these similarities from the perspective of satisfying geometric

constraints
4. Demonstrate that it is a necessary (but not sufficient) condition that normalization techniques

must obey the same geometric constraints as the task

2 When is BatchNorm Insufficient?

To demonstrate the insufficiency of BatchNorm as a normalization technique for graph and group-
equivariant networks, we first examine four specific cases in which BatchNorm is insufficient for the
training of a particular network. Subsequently, we create a generalization of the conditions in each
example, which captures a necessary (but not sufficient) condition for a normalization technique to
succeed on these architectures.

Case 1. BatchNorm introduces undesired molecular correlations. The authors of GemNet, a
geometric message passing neural network intended for molecular simulations, state that in their
network, applying “batch normalization introduces correlations between separate molecules and
atoms”, and further demonstrate that applying traditional normalization methods from spatial con-
volutional network literature reduces network performance [3]. In other words, when applied to
GemNet, BatchNorm would result in the network learning correlations between the behaviors of
separate molecules and atoms, even though in reality their behaviors are disjoint.
Case 2. BatchNorm breaks rotational equivariance. In “3D-Rotation-Equivariant Quaternion

Neural Networks”, an architecture intended for the processing of geometric data, the authors create a
revised version of BatchNorm which is explicitly intended to be rotationally equivariant, respecting
the symmetries of their task [4].
Case 3. BatchNorm is not compatible with polar coordinates. In “Rotation equivariant vector

field networks”, also an architecture intended for processing geometric data, the authors state that,
“BN should only normalize magnitudes of the vectors to unit standard deviation. It would not make
sense to normalize the angles, since their values are already bounded and changing their distribution
would alter important information about relative and global orientations.” Instead, they use an altered
form of BatchNorm that satisfies these conditions [5].
Case 4. Mean-subtraction can remove task-relevant information. The authors of SetNorm, a

work that develops an architecture intended for making predictions on set data, note that normalization
layers for architectures that operate on sets should (a) maintain permutation equivariance and (b) not
deteriorate performance due to removal of information that is useful for prediction [6]. They further
note that batch norm is unsuited to their task as it can violate this second condition, and additionally
may introduce dependence between inputs. This is another example of a violation of the constraints
supplied by the task.

In each of these cases, there exists a geometric constraint specified by the task, and applying the
vanilla version of BatchNorm violates that constraint, leading to a performance decrease. To formalize
this phenomenon, we must first introduce a few definitions:
Definition 1. (Equivariance and Invariance)

If G is a group that acts on RN , a function ψ : RN → RN is G-equivariant if ψ(Ax) = Aψ(x) for
any A ∈ G and any x ∈ RN . If instead, ψ(Ax) = ψ(x), then the function is is G-invariant.
Definition 2. (Task)

A task is a function ψ⋆(X) = y⋆ that takes as input a representation X of the input data, and returns
a target object y⋆. The target object can be a classification target, i.e. y⋆ ∈ {0, ..., k}, or a regression
target y⋆ ∈ Rdy . The objective of deep learning is to find a function that well-approximates this task.
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Definition 3. (Geometric Match and Mismatch)

If a neural network is trained to approximate a task, and that task is equivariant or invariant with
respect to a group G, then the network is geometrically matched to the task if:

1. All of its layers are also equivariant or invariant with respect to that group.

2. None of its layers introduce invariances which are not respected by the task.

If either condition is violated, then we say that the network is geometrically mismatched to the task.

Geometric matching is a fundamentally important principle in deep learning. For example, the utility
of spatial convolutional neural networks in image classification is enabled by the fact that such
networks are invariant to the translation of objects within an image, which is geometrically matched
to the task of image classification. Thus, instead of having to learn this symmetry, the network is
fundamentally constrained to obey it.

3 Normalization Beyond Language and Vision Models

When confronted with a situation in which BatchNorm (or similar variants borrowed from language
or vision literature, such as InstanceNorm and LayerNorm) do not work, practitioners developing
applications typically create an alternative normalization method for that specific task. Below, in
Table 1, we summarize a representative set of normalization layers developed for applications to
graph and geometric data.

The notation is as follows. A represents the ‘activations’, or the outputs from the activation function
following a convolutional layer, which have shape b × x × v, where b is the batch size, x is the
number of nodes in a graph or pixels in an ‘image’, and v is the number of features per node, or
channels per pixel. µ and σ represent the mean and standard deviation of the activations, respectively,
and the subscript describes which subset of the tensor dimensions these statistics are computed over.
g represents a subset of the feature dimension v (a ‘group’). |X| represents the size of a graph in the
dataset, and N represents the average number of nearest neighbors, where the average is computed
across the tensor dimensions represented in the subscript. RMS represents the root mean square,
MLP is a multilayer perceptron, and m is the ‘hidden message’ computed in the internal layers of a
graph neural network. s is a scaling hyperparameter, and α, β, γ, and Γ are learnable parameters. For
EvNorm and Vector Neuron, the normalization layer is broken into two components - one that acts
on the geometric component of the data, and one that acts on the invariant component of the data.

Language and Vision Graph and Geometric

BN [1] A−µ{b,x}
σ{b,x}

Quaternion [4] A
RMS{x,v}

LayerNorm [7] A−µ{x,v}
σ{x,v}

Vector Perceptron / EGAN [8] [9] A
RMS{x,v}

InstanceNorm [10] A−µ{x}
σ{x}

GraphNorm [11] A−α⊙µ{x}
σ{x}

GroupNorm [12] A−µ{x,v/g}
σ{x,v/g}

PairNorm [13] s ·
(

A−µ{x,v}
σ{x,v}

)
FilterResponseNorm [14] A

RMS{x}
MeanSubtractionNorm [15] A − µ{b,v}

VarianceNorm [2] A
σ{b,x}

MessageNorm [16] MLP
(
A + s · ∥A{x}∥2

m{x}
∥m{x}∥2

)
WeightNorm [17] g W

||W||2
DiffGroupNorm [18] A + s

∑
g BN (softmaxg (AΓ) ⊙ A)

SpectralNorm [19] max
h:h̸=0

∥Wh∥2
∥h∥2

· W SetNorm [6] A−µ{b,v}
σ{b,v}

Scaled Weight [20] g
W−µ{x,v}

σ{x,v}
EvNorm [21]

(
∥APositional∥2−µ{x,v}

σ{x,v}
,

AInvariant
∥AInvariant∥2+ 1

β

)

Vector Neuron [22]
(

APositional
∥APositional∥2

, BN(AInvariant)

)
GraphSizeNorm [23] A

|X|

SchNet [24] A
N{v}

Allegro / MACE [25] [26] A
N{b,x,v}

Table 1: Normalization layers used in graph and group equivariant neural networks
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These techniques can first be divided into two categories - those that follow the approach of the
original BatchNorm, and subtract a mean and divide by a standard deviation computed over some
subset of the tensor dimensions, and those that perform a rescaling of the activations based on other
data-specific quantities.

There are several trends we can observe from the above examples. Many variations on the original
BatchNorm were in fact created to solve a geometric mismatch with a specific task; for instance,
InstanceNorm was created for the task of image style transfer, and is invariant to the contrast of
content images, which is a symmetry respected by the task, while BatchNorm is not. Similarly,
SetNorm computes statistics over different tensor dimensions than BatchNorm, because the latter may
map two samples whose activations differ in only a scale and bias to the same output, introducing an
invariance that the task does not respect - a geometric mismatch that can hurt predictive ability.

3.1 Normalization for Geometric Data

In the particular case of geometric data, such as point clouds or molecules represented by their
atomic coordinates, there are several works which introduce normalization techniques designed to
be rotationally equivariant, so that two data points representing the same input at different rotations
will be mapped to the same output modulo rotation. Among these are the techniques developed in
“Rotation equivariant vector field networks”, “3D-Rotation-Equivariant Quaternion Neural Networks”,
and “Learning From Protein Structure with Geometric Vector Perceptrons” [5] [4] [9]. Computing
either variances or root-mean-squares over the feature dimension and scaling the activations by these
quantities is a rotationally equivariant operation which still provides the benefits of normalization.
The methods introduced in ‘Vector Perceptrons’ and ‘Quaternion Neural Networks’ are identical in
form, although each method was developed independently and apparently without mutual knowledge
of the others’ work, and despite any differences in the task. Similarly, the method introduced in
‘Vector Field Networks’ is practically identical to VarianceNorm [2], modulo differences in the
datatype, as VarianceNorm was developed for image data.

There have additionally been multiple geometric networks that utilize ‘edge-based’ information for
normalization (referring to the implicit or explicit graph structure in the data), which again share
commonalities. For instance, the normalization techniques used in ‘SchNet’ [24] and ‘Allegro’ [25]
both scale activations by a quantity derived from the connectivity of each molecular or material graph;
in the former, the quantity is computed for each atom in a molecule or material, whereas in the latter,
the quantity is computed across all atoms in all molecules in the entire dataset. Both networks involve
the individual node (atom) level prediction of quantities which are explicitly invariant to the number
of neighbors of each node, and this normalization technique aims to preserve this invariance property.

4 Empirical Analysis

To demonstrate the importance of normalization techniques on the performance of equivariant neural
networks, we present a series of graphs that depict training and testing metrics for three popular
models used in chemistry and materials science: Allegro [25], GemNet [3], and SchNet [24]. For
each network, we train a variant with and without the normalization techniques described by the
authors in their respective papers.

Figure 1: Allegro training and test losses blow up without normalization: The train and test losses when
training Allegro on the ‘Uracil’ dataset [27] immediately explode when training without the normalization
methods developed by the authors; they begin at a MSE of 1014 and although they decrease, over 100 epochs
they remain 5 orders of magnitude greater than when training with normalization.
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To test the effects of normalization on Allegro, we utilize the official PyTorch / e3nn implementation
available on Github [28], and train on the ‘Uracil’ data included within the MD17 dataset [27],
using the hyperparameters specified in the tutorial written by the authors. For SchNet, we utilize an
open-source implementation [29] based on the architecture described in [24], with a batch size of 8,
3 hidden layers, which each have 3 interaction layers of sizes 128, 128, and 4 respectively. We train
SchNet on the ‘CHAMPS Scalar Coupling’ dataset [30], using Adam with an initial learning rate
of 0.001 and exponential weight decay with coefficient 0.99. For GemNet, we utilize the official
PyTorch implementation available on Github [31], and train it on the ‘COLL’ dataset [32] included in
the repository, using the default hyperparameters defined by the authors. In each case, we train one
network with the normalization methods implemented in the respective repository, and one without,
using identical hyperparameter settings.

Figure 1, above, depicts the log of the train and test losses for the Allegro network trained with and
without normalization. For the network that has no normalization, we observe ‘gradient explosion’
[33], and losses that are initially 11 orders of magnitude greater than its normalized counterpart.
Though the unnormalized loss decreases, it is unable to achieve a value comparable to the normalized
architecture. Figure 2, below, depicts the train and test losses for the SchNet and GemNet networks,
again trained with and without normalization. Although the effects are not as dramatic, we still
observe that applying normalization techniques yields an order of magnitude decrease in the loss.

Figure 2: Normalization leads to improved performances in SchNet and GemNet: Both the GemNet and
SchNet architectures achieve an order of magnitude better performance when using normalization methods.

5 Conclusion

Normalization techniques have been proven to be a powerful tool for enabling the training of larger
networks, and yet a large proportion of existing deep learning applications to chemistry problems
completely forego using them [34] [35] [36] [37] [38]. As the datasets involved in molecular and
materials prediction tasks grow, so will the networks, and thus the difficulty involved in successfully
training an effective neural network to solve these tasks will increase correspondingly. Although
several techniques have been developed for existing geometric datasets, no general principles of
normalization exists for these new classes of architectures. Here, we initiated the discussion by
providing the above survey, noting the commonalities between these newly developed normalization
techniques that make them effective for their specific tasks, and using the guideline of geometric
matching as a necessary condition for maintaining stability during optimization.

As both the interest and the size of the datasets in molecular and materials deep learning grows, we
end by posing two important open challenges that will be crucial to its practical implementations:
what are the most general conditions under which traditional normalization techniques fail, and what
is the most general formulation of a normalization layer which may be applied to any graph-based or
geometric dataset underlying a molecular or materials prediction task?
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