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Abstract

The rapid expansion of Vision-Language
Models (VLMs) has spurred research into
their applicability across various domains.
While VLMs excel in understanding envi-
ronmental contexts, their effectiveness de-
clines with visually-rich scanned documents.
Although some VLMs use Optical Char-
acter Recognition (OCR) to mitigate this,
OCR alone is insufficient for the complex
textual and visual insights required. Devel-
oping tailored models for Document Al ap-
plications also demands substantial labeled
data and high training costs. To address
these challenges, we conducted experiments
with various models, data types, architec-
tures, and training methodologies. Based
on our findings, we introduce DOLMA, an
OCR-free vision-language model designed
for diverse Document AI applications in a
zero-shot setting. Despite having a moder-
ate parameter count of 7 billion, DOLMA
performs on par with models ten times
larger on numerous Document AI bench-
marks. The complete model, including
weights, training data, and code, is pub-
licly available.

1 Introduction

In recent years, there has been a notable surge
in interest surrounding the understanding of
visually-rich scanned documents (VRD). The
latter encompasses PDFs and document images
such as business forms, receipts, driving licenses
and invoices. The understanding and digitiza-
tion of those document images entails intricate
tasks such as document visual question answer-
ing (DVQA), document classification (CLS),
and key information extraction (KIE).
Traditional approaches address these chal-
lenges by employing Optical Character Recog-
nition (OCR) alongside handcrafted rules or
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Figure 1: The training pipeline of DOLMA.

layout analysis. However, these methods often
necessitate post-processing steps, potentially
limiting the efficacy and use of those models.
In recent years, the Document Al community
has proposed various transformer-based archi-
tectures providing remarkable progress on VRD
understanding (VRDU). Notably, Transformer-
based models like LayoutLM and its variants
have showcased advancements by integrating
OCR, image, and layout information. Never-
theless, recent efforts in OCR-free, end-to-end
document understanding from images indicate



a shift towards more versatile models, mini-
mizing task-specific engineering and reducing
reliance on external components during infer-
ence.

In this study, we aimed to explore various de-
sign choices to identify the optimal combination
of models, data, and architecture based on our
experiments. We also imposed constraints on
model size and resource usage to demonstrate
the most efficient and cost-effective approach
to developing a model that can perform on par
with other state-of-the-art models. To assess
the quality and utility of the model, we evaluate
it based on the following properties:

e Property 1: Multitasking. The model
is expected to perform the main Document
Al tasks such as document classification,
document question answering, and key in-
formation extraction.

e Property 2: OCR-independence. Key
information in documents is many times in-
corporated in non-optical characters such
as logos, images, charts and other visu-
als. OCR-dependent models do not have
the capability to extract this information.
Nonetheless, we consider the models that
do not necessarily rely on OCR yet can
improve the results using OCR informa-
tion. We call them OCR-enhanced models
as they can still perform without relying
on OCR.

e Property 3: Instruction following.
The typical usage of information extraction
from documents is related to structuring
image data into programmatically read-
able formats such as JSON, XML or CSV.
As the use cases of information extraction
can be different, the Document Al foun-
dation model should have the ability to
follow the user’s instruction and generate
extracted output in the required format
(including notation format such as JSON
and its internal structure such as key/value
hierarchy).

e Property 4: Template independence.
The Document AI foundation model
should be able to provide competitive per-
formance on the same documents even if
the templates are different.

We outline the following roadmap of experi-
ments, which will be discussed in subsequent
sections. The modalities we consider include
a Vision encoder, a Language decoder, and a
bridge connector between them. We establish
two stages for training: (1) pretraining and (2)
fine-tuning. Stage (1) is designed to enable
the model to acquire OCR capabilities, while
stage (2) focuses on task-specific supervised
instruction tuning.

During stage (1), we experiment with (a)
the design of the bridge connector and (b) the
choice of language model. For (a), we report
findings using design choices from LLAVA (Liu
et al., 2023) for the linear projection strat-
egy, QwenVL (Bai et al., 2023) for the cross-
attention strategy, and Idefics2 (Laurengon
et al., 2024) for the projection + perceiver-
resampler strategy. For (b), we evaluate Vi-
cuna (Zheng et al., 2023), LLAMA 3 (Team,
2024), and Phi 3 (Abdin et al., 2024). We select
Vicuna as a well-established instruction model,
LLAMA 3 as a state-of-the-art large language
model, and Phi to assess the impact of using
smaller models.

During stage (2), our primary focus is on
training strategies. We discovered that train-
ing all modalities yields the best results. Con-
sequently, the main variable is the strategic
approach to the largest modality, which in our
case is the LLM. We report on three strate-
gies: fine-tuning only the attention layers of
the LLM, full LLM fine-tuning, and applying
LoRA on top of the LLM. In all three scenar-
ios, we fully fine-tune the vision encoder and
the bridge connector. All the aforementioned
experiments are conducted using 8 H100 GPU
spot instances to ensure the fastest possible
training time. Building on our observations, we
propose DOLMA, "Document Optimized Lan-
guage Model for Automation," which adheres
to the four principles outlined above. DOLMA
is a 7-billion-parameter Vision-Language Model
(VLM) that achieves results on various Docu-
ment Al benchmarks on par with state-of-the-
art models, even matching the performance of
models that are ten times larger.

2 Related Work

The advent of ChatGPT represents a significant
advancement in the domain of Large Language



Models (LLMs). LLMs constitute a substan-
tial area of study in natural language process-
ing, specializing in processing and generating
textual content for tasks like language trans-
lation, summarizing, question answering, and
text completion.

2.1 LLMs

Through extensive pre-training on textual
datasets, LLMs acquire proficiency in contex-
tual relationships and linguistic patterns. The
transformative impact of transformers, as in-
troduced in "Attention is All You Need," has
played a pivotal role in the success of LLMs,
leading to the development of pre-trained mod-
els such as BERT, BART, and others. This
success has spurred further exploration into
LLMs like OPT (Zhang et al., 2022), BLOOM
(Workshop et al., 2023), PaLM (Chowdhery
et al., 2022), and LLaMA (Touvron et al.,
2023a). Particularly noteworthy is LLama3
(Team, 2024), an open-source LLM demon-
strating comparable or superior performance
to both open and closed-source models. The
open-source nature of Llama has encouraged
numerous researchers to build models on top
of it, employing diverse training strategies and
architectural modifications, including models
like Vicuna (Zheng et al., 2023) and Alpaca
(Taori et al., 2023).

2.2 Multimodal LLM

In the realm of multimodal AI, Multimodal
Language Models (MLMs) have emerged as a
significant focus. Unlike text-to-text models,
MLMs are designed to comprehend and gen-
erate content across multiple modalities, often
integrating text and images. These models
exhibit proficiency in tasks requiring a fusion
of textual and visual understanding, such as
generating image captions, image-text match-
ing, visual question answering and contextualiz-
ing information in mixed-media environments.
Training MLMs involves leveraging datasets
encompassing both textual and visual informa-
tion, facilitating the capture of intricate rela-
tionships between words and images. Notable
MLMs include GPT-4V, LLaVA (Liu et al.,
2023), Gemini Pro Vision, and others.

2.3 Document Al

Transformer-based architectures have found
success in Visual Document Understanding
(VRDU) and Document Visual Question An-
swering (DVQA) tasks (Wang et al., 2023b;
Ye et al., 2023a,b; Kim et al., 2022; Hong
et al., 2023; Bai et al., 2023). Recent works
like LayoutLM (Huang et al., 2022) focus on
pre-training a language model, such as BERT
(Devlin et al., 2019), alongside an OCR-based
engine to comprehend both textual content and
layout information in document images. This
approach extends traditional language models
by incorporating positional embeddings that
encode the spatial arrangement of words on a
page, enabling the model to capture both struc-
tural relationships and contextual meanings.
Recent works, such as DocLLM (Wang et al.,
2023a), integrate lightweight visual information
by utilizing spatial positions and dimensions
of text tokens obtained through OCR. It em-
ploys separate vectors to represent vision and
image modalities, extending the self-attention
mechanism of the transformer architecture to
compute their interdependencies in a disentan-
gled manner. Alternative methods, exemplified
by DONUT (Kim et al., 2022), leverage trans-
former architectures for document understand-
ing tasks, focusing on extracting information
directly from the document’s content without
relying on OCR. DONUT employs the Swin
transformer (Liu et al., 2021) as the vision en-
coder and BART (Lewis et al., 2019) as the
decoder model. A more general model, Qwen-
VL (Bai et al., 2023), incorporates an adapter
with cross-attention layers to attenuate vision
encoder embeddings with language embeddings.
Qwen-VL, trained on a large corpus of both
regular and document images, demonstrates
proficiency in tasks such as image captioning,
question answering, visual grounding, and text
reading.

As shown in the Table 1, among the models
mentioned above, GPT4-V, Gemini Pro Vision,
LLaVA and Qwen-VL are the only models that
satisfy the 4 properties we seek in a Document
Al foundation model.

In summary, our review highlights the signif-
icant strides in LLMs, the emergence of multi-
modal Al with MLMs, and the successful ap-
plications of transformer architectures in VrDu



Table 1: Comparison of different models across the 4 properties we seek

Property 1

Model Multitasking

Property 2
OCR-free

Property 3
Instruction following

Property 4
Template independent

GPT4-V
Gemini-Pro-Vision
Donut
LayoutLMV3
DocLLM
Qwen-VL
LLaVA
CogAgent
UReader
DocOwl
DOLMA (ours)
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and DVQA tasks. These advancements lay the
groundwork for versatile models like Qwen-VL,
showcasing the evolving landscape of Al and
machine learning.

3 Analysing the design possibilities
for vision-language models

In this section, we will examine the various
design choices for vision-language models in
Document Al as documented in the open-
source literature and present our findings. For
our experiments, we will utilize the IIT-CDIP
dataset and our own PDF-generated dataset
for pretraining. Additionally, we will em-
ploy various benchmarking datasets, including
DocVQA (Mathew et al., 2021b), CORD-V2
(Park et al., 2019), Infographics-VQA (Mathew
et al., 2021a), ICDAR-SROIE (ICDAR, 2019),
Chart-QA (Masry et al., 2022), OCR-VQA
(Mishra et al., 2019), RVL-CDIP (Harley et al.,
2015), and TextVQA (Singh et al., 2019), for

fine-tuning experiments.

3.1 The design of the bridge connector

Vision-language models comprise two modal-
ities: vision and language. While there are
numerous models available for these modalities,
it is essential for them to effectively "communi-
cate" with each other. We explore three types
of connectors: linear projection, cross-attention,
and projection + perceiver-resampler.

For our experiments, we fixed Swin Base
(Liu et al., 2021) as the vision model and Vi-
cuna (Zheng et al., 2023) as the language model
across all three bridge connector designs. Dur-

ing the pretraining stage, we trained both the
vision model and each connector while keeping
the LLM model frozen. Utilizing a total of 3
million image-text pairs from the IIT-CDIP
(Soboroff, 2022) dataset and our in-house PDF-
generated data (details of which will be dis-
cussed in subsequent sections), we pretrained
the model for the text extraction task, thereby
imparting OCR capabilities. We trained each
configuration for a total of one epoch. Among
the three connectors, only the linear projec-
tor connector successfully converged. We hy-
pothesize that extended training might enhance
the performance of the other connectors; how-
ever, given our experimental setup and resource
constraints, the linear projector layer demon-
strated the best results.

Insight 1

The linear projector layer is the fastest and
most straightforward method to connect the
vision and language models, achieving train-
ing convergence with just one epoch on 3

million image-text pairs.
\ J

3.2 The design of the Vision model

For the vision model, we selected the SWIN
Transformer (Liu et al., 2021) (base, large)
and the Vision Transformer (Dosovitskiy et al.,
2020) (CLIP ViT-L/14). Similar to the previ-
ous section, we conducted the pretraining stage
by keeping the LLM frozen and training the vi-
sion model along with the connector. We fixed
the bridge connector to the linear projection
design and experimented with different vision



encoders.

Our findings revealed that 3 million image-
text pairs and one epoch of training were
insufficient for the vision models to acquire
text extraction capabilities. We utilized pre-
trained weights for each model, but none of
the trainings converged except for the Swin
Base model. For Swin Base, we used weights
from the DONUT (Kim et al., 2022) model,
which had been pretrained for the text extrac-
tion task using over 11 million image-text pairs
and trained for 200K steps with a batch size of
196. The DONUT model employed Swin Base,
and similarly, when we integrated Swin Base
into our architecture, the training eventually
converged.

Vision models require tens of millions of text

extraction pretraining data and extended
training sessions to develop OCR capabili-
ties.

3.3 The design of the LLM model

We selected Vicuna 1.5 (Zheng et al., 2023),
LLama3 (Team, 2024), and Phi (Abdin et al.,
2024) for our experiments. Following the suc-
cess of LLaVA, we chose Vicuna as our initial
model. We included LLama3 to evaluate the
impact of a relatively newly released state-of-
the-art model. Additionally, we decided to use
the Phi-3 model to assess the performance of
a model with fewer than seven billion param-
eters. The vision encoder employed was Swin
Base, and the projection design was used as
the bridge connector. During the pretraining
stage, we kept the LLM frozen and only pre-
trained the vision model and bridge connector.
At the conclusion of the experiments, both Phi
and LLama3 failed to converge during train-
ing, whereas only Vicuna was able to achieve
near-zero loss for the text extraction task.
The objective of this experiment is to com-
pare different fine-tuning strategies within the
given setup, based on performance across vari-
ous benchmarks as well as computational com-
plexity. Our experimental configuration in-
cludes Swin Base (pretrained with Donut) as
the vision encoder, a projection as the bridge
connector, and Vicuna as the LLM decoder.
Swin Base and the projection were pretrained

as described in the previous sections. During
the fine-tuning stage, we continue training the
entire model (all three modalities) on bench-
mark datasets. While we fully train the Vision
Encoder and the bridge connector, we apply
three different strategies for training the LLM:
full LLM fine-tuning, fine-tuning only the at-
tention layers of the LLM, and applying LoRA
to the LLM. We focus these strategies on the
LLM because it constitutes 98% of the model’s
weights, making the full training of the Vision
Encoder and bridge connector less computa-
tionally intensive. For LoRA, we set r=128.
Each strategy involves training the model for a
total of four epochs.

We report the results of these three strate-
gies on selected benchmark datasets in Table 2.
For each benchmark dataset, we use the official
train, validation, and test splits. Evaluation
results are presented on the test split, except
for the TextVQA dataset, as the test set labels
are not available. For each dataset, we use
the corresponding evaluation metric commonly
employed in the literature. The experiments
indicate that LoRA training produces the low-
est results across all benchmarks compared to
full and attention-only fine-tuning. We also
experimented with changing the compression
dimension of LoRA to r=256 but obtained sim-
ilar, near-identical scores.

Attention-only and full fine-tuning yield sig-
nificantly better results, with each method out-
performing the other on different benchmarks.
For instance, the attention-only method outper-
forms full fine-tuning by 2 points on DocVQA,
whereas full fine-tuning scores 3 points higher
on SROIE compared to attention-only fine-
tuning. Overall, the average results are very
close, with attention-only fine-tuning being
marginally better than full fine-tuning.

Given our experimental setup, fine-tuning
only the attention layers of the LLM is equiv-

alent to full LLM fine-tuning in terms of per-
formance. And both are better then LORA
in terms of evaluation scores.

In the next section, we will take the best
model from our experiments and compare it
with other Document Language Models (Do-
cLMs).



Model DocVQA CORD V2 Info VQA SROIE Chart QA' OCR VQA RVL-CDIP  TextVQA
[ANLS] [F1] [ANLS] [F1] [Rel. EM] [EM] [Accuracy] [VQA Score]
Attention 0.75 0.76 0.3633 0.76 0.5952 0.722 0.94 0.4644
LORA 0.47 0.463 0.28 0.53 0.442 0.504 0.91 0.2498
Full 0.73 0.76 0.30 0.79 0.5948 0.741 0.94 0.4698
Table 2: Performance of fine-tuning strategy on various benchmarks.
4 DOLMA in the 1990s. Labels are the text extracted

4.1 Architecture

We constructed DOLMA by incorporating the
insights derived from our previous experiments.
The architecture consists of Swin Base as the
visual encoder and Vicuna as the LLM decoder,
connected via a projection layer serving as the
bridge connector. Swin Base is a Swin Trans-
former with a patch size of 4 and a window size
of 10, comprising fewer than 100 million pa-
rameters. This model is pretrained with Donut
and was trained on 11 million image-text pairs.

Following the approach of LLaVA, we employ
a 2-layer MLP as the projection layer, utilizing
the GELU activation function between layers,
resulting in a total of fewer than 30 million
parameters. Vicuna 1.5 serves as the LLM, fea-
turing 7 billion parameters. It is trained by fine-
tuning Llama 2 (Touvron et al., 2023b) on user-
shared conversations collected from ShareGPT.

4.2 Datasets

We utilized two datasets for pretraining and
eight datasets for fine-tuning our model. Specif-
ically, IIT-CDIP (Soboroff, 2022) and our own
PDF-generated datasets were employed for pre-
training the vision encoder and the projection
layer. The other datasets—DocVQA, CORD
V2, Infographics VQA, SROIE, Chart QA,
OCR VQA, RVL-CDIP, and TextVQA—were
used to train the full model, with fine-tuning
applied only to the attention layers of the LLM.
For each dataset, we constructed a unique in-
struction prompt to ensure that the model re-
tains its instruction-following capabilities. The
prompts can be found in the appendix.
IIT-CDIP (Soboroff, 2022). "CDIP" stands
for "Complex Document Information Process-
ing" and "IIT" stands for "Illinois Institute of
Technology" who originally built the dataset.
The dataset consists of documents from the
states’ lawsuit against the tobacco industry

from the dataset using Tesseract. Ovearall, the
datasets consist of around 7 million documents.
As the quality of the dataset is crucial for our
task we applied some pre processing techniques
and removed all the images that had almost no
text and ha low quality OCR. The final short-
listed number is around 2 million image-text
pairs.

PDF-archive. We downloaded an additional
1 million pages of open-source archive PDF
documents and extracted the text from them
using PyPDEF. To obtain these documents, we
utilized the arXiv API to download various sci-
entific papers. To get png images from PDFs
we set the image zoom equal to 1.8. Given
that the archive data is too clean and perfect,
it would not adequately represent the every-
day scanned document types that Document
AT models typically encounter. Therefore, we
employed Augraphy (Project) to augment the
PDF data by adding random marks, paper
folding effects, various colors, and blur effects.
Example of an augmented images can be found
in the appendix.

CORD V2 (Park et al., 2019). Public bench-
mark of 1000 receipts images. We follow the
official split of 800 - train, 100 - validation and
100 - test samples. The text is fully in Latin
characters. Each image may contain different
fields with the total number of unique fields
amounting to 30. Our data generation pro-
cess imposes instruction to extract either all or
a subset of those fields in a predefined struc-
tured format (e.g. JSON) or in unstructured,
question-answering manner.

ICDAR SROIE (ICDAR, 2019). A dataset
of 1000 whole scanned receipt images. The text
is in English characters and each image contains
around 4 main fields. The dataset comes with
JSON structured annotation intended for KIE
task. We separate 347 images for the testing
set and utilize the rest in training.



DocVQA (Mathew et al., 2021b). Document
question answering dataset consisting of 50k
records sourced from the Industry Documents
Library, maintained by the UCSF. The dataset
includes mixture of printed, typewritten and
handwritten documents that are letters, memos,
notes, reports and other types of documents.
We follow the official split with 40k - train, 5k
- validation and 5k - test sets.

RVL-CDIP (Harley et al., 2015). Relatively
larger dataset of 400k images used for docu-
ment classification task. The dataset includes
documents such as letter, memo, email and oth-
ers. Overall, there are 16 unique classes with
25k images per class. We follow the official split
of 320k - training, 40k - validation and 40k -
testing splits.

Infographic VQA (Mathew et al., 2021a).
Similar to typical VQA task, task is to answer
questions asked on a given infographic image.
Similar to extractive QA framework popular in
NLP, and the DocVQA dataset, here question-
answers are primarily extractive type. But
there are a small percentage of questions where
There are 30 K
questions and 5K Images in the dataset. Im-
ages are collected from the Internet. Questions
and answers are manually annotated.

ChartQA (Masry et al., 2022). A Benchmark
for Question Answering about Charts with Vi-
sual and Logical Reasoning. The datasets is
split into 30K train, 2K validation and 2.5K
test image-question-answer pairs.

OCR VQA (Mishra et al., 2019). OCR-VQA
dataset contains 207572 images and associated
question-answer pairs. They provide questions
inquiring about title, author, edition, year and
genre of the book and corresponding ground-
truth answer. This dataset contains approxi-
mately 1 million QA pairs.

Text VQA (Singh et al., 2019). TextVQA re-
quires models to read and reason about text in
images to answer questions about them. Specif-
ically, models need to incorporate a new modal-
ity of text present in the images and reason
over it to answer TextVQA questions.

answers arr not extractive.

4.3 Training Details

The training process consists of multiple steps,
as outlined in Figure 2.

First, we pre-trained the Swin Base and the
MLP projector using the IIT-CDIP and PDF-
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AT

Vision Encoder
Swin Transformer ¢

Projection
2-layer MLP
($)

R

‘_.‘ LLM

Vicuna 1.5 ‘

Step 2: Fine-tuning

Y

‘ Vision Encoder

Projection
Swin Transformer ’)‘

2-layer MLP ')‘

‘

‘

LLM ‘
attentions
{ Vicuna 1.5 )"‘

Figure 2: The training pipeline of DOLMA.

archive data. The objective of this pretraining
stage is to enable the model to acquire OCR ca-
pabilities and learn to project the visual embed-
dings into the LLM embedding space. During
this stage, the language model is kept frozen.
We pre-trained the model for 1 epoch, with a
batch size of 16 per device, a learning rate of
2e—4, and a cosine learning rate scheduler with
3% warmup steps. We used the AdamW opti-
mizer with 81 = 0.9, fo = 0.999, and € = 1le—8.
Given the importance of image resolution in
Document Al, we increased the resolution of
images to 1280x960 pixels and applied padding
when necessary.

Second, we unfroze the entire model and
continued with the fine-tuning process. As
suggested by Insight 3, we fine-tuned only the
attention layers of the LLM. The model was
trained for 10 epochs, with a batch size of 10, a
learning rate of 2e—5, and a cosine learning rate
scheduler with 3% warmup steps. Similarly, we
used the AdamW optimizer with 5, = 0.9, 82 =
0.999, and € = 1le—8. The image resolution was
maintained at 1280x960 pixels.

The training was conducted using 8x H100
80GB GPUs!.

4.4 Qualitative analysis and
benchmark results

We compare DOLMA with models that sat-
isfy the four properties outlined in Table 1.
The evaluation scores are reported in Table 3.
All scores are sourced from their respective
papers. For scores that were not directly avail-
able, we referenced other papers: specifically,
the OCR VQA score of Qwen VL was taken
from the CogAgent paper, and the Infographic-
sQA, ChartQA, and TextVQA scores of Donut

LCloud resources were generously provided by AWS



Model DocVQA CORD V2 Info VQA Chart QA'° OCR VQA RVL-CDIP TextVQA
[ANLS] [F1] [ANLS] [Rel. EM] [EM] [Accuracy] [VQA Score]
DOLMA (ours) 0.75 0.76 0.363 0.595 0.722 0.94 0.464
Donut 0.675 0.841 0.116 0.418 - 0.95 0.435
Qwen-VL 0.651 - 0.354 0.657 0.757 - 0.638
UReader 0.654 - 0.422 0.593 0.411 - 0.576
DocOwl 0.622 - 0.382 0.574 - - 0.526
CogAgent 0.816 - 0.445 0.684 0.75 - 0.761

Table 3: Comparison of document Al models on various Document Al tasks.

were sourced from the UReader paper. For
each benchmark dataset, we used the official
train, validation, and test splits. Evaluation
results are reported on the test split, except for
the TextVQA dataset, where test set labels are
unavailable. We employed the evaluation met-
rics commonly used in the literature for each
dataset.

DOLMA outperforms Donut in all tasks ex-
cept for CORD V2 and RVL-CDIP. The reason
for this discrepancy is the relative simplicity
of these tasks and the fact that the evaluation
used task-specific fine-tuned models, meaning
that the models were fine-tuned on a single
dataset for many epochs, as described in the
Donut paper. Nevertheless, DOLMA managed
to outperform Donut in the DocVQA tasks
under the same training conditions.

Overall, DOLMA demonstrated performance
on par with models such as Qwen VL and Do-
cOWL, even though the vision encoders in these
models are 20x and 5x larger in parameter size,
respectively. For the DocVQA task, DOLMA
outperforms all models except CogAgent. It is
important to note that while the other models
listed have fewer than 10 billion parameters,
CogAgent has 17 billion parameters. As the
scores illustrate, model size has a significant
impact on performance in our case.

5 Conclusion and Future Work

In this paper, we conducted experiments to un-
derstand the requirements for building a Vision-
Language model for Document Al tasks. Our
findings highlight the effectiveness of different
model architectures, model sizes, pretraining,
and fine-tuning strategies. Based on these in-
sights, we introduced DOLMA, an OCR-free,
instruction-following vision-language model
that can be utilized for various Document Al
tasks. We demonstrated that DOLMA can per-

form on par with larger VLM models, despite
being trained on fewer data samples and with
fewer resources.

In future research, we plan to investigate
the possibility of scaling DOLMA to handle
multilingual and multi-page documents.

6 Limitations

While DOLMA demonstrates promising results
in various Document Al tasks, several limita-
tions must be acknowledged:

1. Data Diversity: Although we utilized
a substantial amount of data for pretraining
and fine-tuning, the datasets may not fully
capture the diversity of real-world documents.
This could limit the model’s generalizability to
unseen document types and formats.

2. Model Size: Despite DOLMA’s competi-
tive performance with a moderate parameter
count of 7 billion, it remains computationally
intensive. This may pose challenges for deploy-
ment in resource-constrained environments.

3. OCR Capabilities: While DOLMA is
designed to be OCR-free, its performance in
extracting text from highly complex or de-
graded documents may still lag behind spe-
cialized OCR systems. Further improvements
are needed to enhance its robustness in such
scenarios.

4. Multilingual and Multi-page Documents:
Our current experiments focus primarily on
single-page, monolingual documents. The
model’s effectiveness in handling multilingual
and multi-page documents remains unexplored
and warrants further investigation.

5. Training Costs: Although we aimed to
minimize training costs, the process still re-
quires significant computational resources, par-
ticularly for fine-tuning. This could be a bar-
rier for smaller research groups or organizations



with limited access to high-performance com-
puting resources.

6. Evaluation Metrics: The evaluation met-
rics used in our experiments are standard in
the literature, but they may not fully capture
the nuanced performance of the model in prac-
tical applications. Future work should consider
more comprehensive evaluation frameworks.

7. Ethical Considerations: As with any Al
model, there are ethical considerations related
to data privacy and potential biases in the train-
ing data. These issues need to be addressed to
ensure the responsible deployment of DOLMA.

By acknowledging these limitations, we aim
to provide a balanced view of our work and
highlight areas for future research and improve-
ment.
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A Prompts for the pertaining stage
System

You are a helpful language and vision assistant. You are able to understand the visual content
that the user provides. "

User

Extract all the text from the document.

B Prompts for the fine-tuning stage
Prompt template for CORD |[task: KIE]

Please read the text in this image and return the information in JSON format.
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The nested JSON should have the following keys: menu, void_menu,
subtotal, total. Each key has subkeys as listed below (with descriptions
in brackets):

menu:
- nm (name of menu)
- num (identification # of menu)
- unitprice (unit price of menu)
- menu.cnt (quantity of menu)
- discountprice (discounted price of menu)
- price (total price of menu)
- itemsubtotal (price of each menu after discount applied)
- vatyn (whether the price includes tax or not)
- etc (others)
- sub_nm (name of submenu)
- sub_unitprice (unit price of submenu)
- sub_cnt (quantity of submenu)
- sub_price (total price of submenu)
- sub_etc (others)

void_menu:
- nm (name of menu)
- price (total price of menu)

subtotal:

- subtotal_price (subtotal price)

- discount_price (discounted price in total)

- service_price (service charge)

- othersvc_price (added charge other than service charge)
- tax_price (tax amount)

- etc (others)

total:

- total_price (total price)

- total_etc (others)

- cashprice (amount of price paid in cash)

- changeprice (amount of change in cash)

- creditcardprice (amount of price paid in credit/debit card)
- emoneyprice (amount of price paid in emoney, point)

- menutype_cnt (total count of type of menu)

- menuqty_cnt (total count of quantity)

Prompt template for SROIE [task: KIE]

Please read the text in this image and return the information in JSON format.
The JSON should have the following keys: company, date, address, total.

Prompt template for DocVQA [task: VQA]

"Please read the text in this image and answer to the question: {question}\n
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<image>"

Prompt template for InfographicVQA [task: VQA]

"Given this infographic image, {question}\n<image>"

Prompt template for TextVQA [task: VQA]

"Given the image, {question}\n<image>"

Prompt template for OCRVQA [task: VQA]

"Here is an image of a book cover, {question}\n<image>"

Prompt template for RVL-CDIP [task: classification]

’Please classify the given image to one of the following classes: ["letter",

"memo", "email", "filefolder", "form", "handwritten", "invoice", "
advertisement", "budget", "news article", '"presentation", "scientific
publication", "questionnaire", "resume", "scientific report", "

specification"].’

Prompt template for CartQA [task: VQA]

Given this image of a chart, {question}\n<image>"
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C Samples from our PDF-arxiv dataset
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