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Abstract

The rapid expansion of Vision-Language001
Models (VLMs) has spurred research into002
their applicability across various domains.003
While VLMs excel in understanding envi-004
ronmental contexts, their effectiveness de-005
clines with visually-rich scanned documents.006
Although some VLMs use Optical Char-007
acter Recognition (OCR) to mitigate this,008
OCR alone is insufficient for the complex009
textual and visual insights required. Devel-010
oping tailored models for Document AI ap-011
plications also demands substantial labeled012
data and high training costs. To address013
these challenges, we conducted experiments014
with various models, data types, architec-015
tures, and training methodologies. Based016
on our findings, we introduce DOLMA, an017
OCR-free vision-language model designed018
for diverse Document AI applications in a019
zero-shot setting. Despite having a moder-020
ate parameter count of 7 billion, DOLMA021
performs on par with models ten times022
larger on numerous Document AI bench-023
marks. The complete model, including024
weights, training data, and code, is pub-025
licly available.026

1 Introduction027

In recent years, there has been a notable surge028

in interest surrounding the understanding of029

visually-rich scanned documents (VRD). The030

latter encompasses PDFs and document images031

such as business forms, receipts, driving licenses032

and invoices. The understanding and digitiza-033

tion of those document images entails intricate034

tasks such as document visual question answer-035

ing (DVQA), document classification (CLS),036

and key information extraction (KIE).037

Traditional approaches address these chal-038

lenges by employing Optical Character Recog-039

nition (OCR) alongside handcrafted rules or040

Figure 1: The training pipeline of DOLMA.

layout analysis. However, these methods often 041

necessitate post-processing steps, potentially 042

limiting the efficacy and use of those models. 043

In recent years, the Document AI community 044

has proposed various transformer-based archi- 045

tectures providing remarkable progress on VRD 046

understanding (VRDU). Notably, Transformer- 047

based models like LayoutLM and its variants 048

have showcased advancements by integrating 049

OCR, image, and layout information. Never- 050

theless, recent efforts in OCR-free, end-to-end 051

document understanding from images indicate 052
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a shift towards more versatile models, mini-053

mizing task-specific engineering and reducing054

reliance on external components during infer-055

ence.056

In this study, we aimed to explore various de-057

sign choices to identify the optimal combination058

of models, data, and architecture based on our059

experiments. We also imposed constraints on060

model size and resource usage to demonstrate061

the most efficient and cost-effective approach062

to developing a model that can perform on par063

with other state-of-the-art models. To assess064

the quality and utility of the model, we evaluate065

it based on the following properties:066

• Property 1: Multitasking. The model067

is expected to perform the main Document068

AI tasks such as document classification,069

document question answering, and key in-070

formation extraction.071

• Property 2: OCR-independence. Key072

information in documents is many times in-073

corporated in non-optical characters such074

as logos, images, charts and other visu-075

als. OCR-dependent models do not have076

the capability to extract this information.077

Nonetheless, we consider the models that078

do not necessarily rely on OCR yet can079

improve the results using OCR informa-080

tion. We call them OCR-enhanced models081

as they can still perform without relying082

on OCR.083

• Property 3: Instruction following.084

The typical usage of information extraction085

from documents is related to structuring086

image data into programmatically read-087

able formats such as JSON, XML or CSV.088

As the use cases of information extraction089

can be different, the Document AI foun-090

dation model should have the ability to091

follow the user’s instruction and generate092

extracted output in the required format093

(including notation format such as JSON094

and its internal structure such as key/value095

hierarchy).096

• Property 4: Template independence.097

The Document AI foundation model098

should be able to provide competitive per-099

formance on the same documents even if100

the templates are different.101

We outline the following roadmap of experi- 102

ments, which will be discussed in subsequent 103

sections. The modalities we consider include 104

a Vision encoder, a Language decoder, and a 105

bridge connector between them. We establish 106

two stages for training: (1) pretraining and (2) 107

fine-tuning. Stage (1) is designed to enable 108

the model to acquire OCR capabilities, while 109

stage (2) focuses on task-specific supervised 110

instruction tuning. 111

During stage (1), we experiment with (a) 112

the design of the bridge connector and (b) the 113

choice of language model. For (a), we report 114

findings using design choices from LLAVA (Liu 115

et al., 2023) for the linear projection strat- 116

egy, QwenVL (Bai et al., 2023) for the cross- 117

attention strategy, and Idefics2 (Laurençon 118

et al., 2024) for the projection + perceiver- 119

resampler strategy. For (b), we evaluate Vi- 120

cuna (Zheng et al., 2023), LLAMA 3 (Team, 121

2024), and Phi 3 (Abdin et al., 2024). We select 122

Vicuna as a well-established instruction model, 123

LLAMA 3 as a state-of-the-art large language 124

model, and Phi to assess the impact of using 125

smaller models. 126

During stage (2), our primary focus is on 127

training strategies. We discovered that train- 128

ing all modalities yields the best results. Con- 129

sequently, the main variable is the strategic 130

approach to the largest modality, which in our 131

case is the LLM. We report on three strate- 132

gies: fine-tuning only the attention layers of 133

the LLM, full LLM fine-tuning, and applying 134

LoRA on top of the LLM. In all three scenar- 135

ios, we fully fine-tune the vision encoder and 136

the bridge connector. All the aforementioned 137

experiments are conducted using 8 H100 GPU 138

spot instances to ensure the fastest possible 139

training time. Building on our observations, we 140

propose DOLMA, "Document Optimized Lan- 141

guage Model for Automation," which adheres 142

to the four principles outlined above. DOLMA 143

is a 7-billion-parameter Vision-Language Model 144

(VLM) that achieves results on various Docu- 145

ment AI benchmarks on par with state-of-the- 146

art models, even matching the performance of 147

models that are ten times larger. 148

2 Related Work 149

The advent of ChatGPT represents a significant 150

advancement in the domain of Large Language 151
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Models (LLMs). LLMs constitute a substan-152

tial area of study in natural language process-153

ing, specializing in processing and generating154

textual content for tasks like language trans-155

lation, summarizing, question answering, and156

text completion.157

2.1 LLMs158

Through extensive pre-training on textual159

datasets, LLMs acquire proficiency in contex-160

tual relationships and linguistic patterns. The161

transformative impact of transformers, as in-162

troduced in "Attention is All You Need," has163

played a pivotal role in the success of LLMs,164

leading to the development of pre-trained mod-165

els such as BERT, BART, and others. This166

success has spurred further exploration into167

LLMs like OPT (Zhang et al., 2022), BLOOM168

(Workshop et al., 2023), PaLM (Chowdhery169

et al., 2022), and LLaMA (Touvron et al.,170

2023a). Particularly noteworthy is LLama3171

(Team, 2024), an open-source LLM demon-172

strating comparable or superior performance173

to both open and closed-source models. The174

open-source nature of Llama has encouraged175

numerous researchers to build models on top176

of it, employing diverse training strategies and177

architectural modifications, including models178

like Vicuna (Zheng et al., 2023) and Alpaca179

(Taori et al., 2023).180

2.2 Multimodal LLM181

In the realm of multimodal AI, Multimodal182

Language Models (MLMs) have emerged as a183

significant focus. Unlike text-to-text models,184

MLMs are designed to comprehend and gen-185

erate content across multiple modalities, often186

integrating text and images. These models187

exhibit proficiency in tasks requiring a fusion188

of textual and visual understanding, such as189

generating image captions, image-text match-190

ing, visual question answering and contextualiz-191

ing information in mixed-media environments.192

Training MLMs involves leveraging datasets193

encompassing both textual and visual informa-194

tion, facilitating the capture of intricate rela-195

tionships between words and images. Notable196

MLMs include GPT-4V, LLaVA (Liu et al.,197

2023), Gemini Pro Vision, and others.198

2.3 Document AI 199

Transformer-based architectures have found 200

success in Visual Document Understanding 201

(VRDU) and Document Visual Question An- 202

swering (DVQA) tasks (Wang et al., 2023b; 203

Ye et al., 2023a,b; Kim et al., 2022; Hong 204

et al., 2023; Bai et al., 2023). Recent works 205

like LayoutLM (Huang et al., 2022) focus on 206

pre-training a language model, such as BERT 207

(Devlin et al., 2019), alongside an OCR-based 208

engine to comprehend both textual content and 209

layout information in document images. This 210

approach extends traditional language models 211

by incorporating positional embeddings that 212

encode the spatial arrangement of words on a 213

page, enabling the model to capture both struc- 214

tural relationships and contextual meanings. 215

Recent works, such as DocLLM (Wang et al., 216

2023a), integrate lightweight visual information 217

by utilizing spatial positions and dimensions 218

of text tokens obtained through OCR. It em- 219

ploys separate vectors to represent vision and 220

image modalities, extending the self-attention 221

mechanism of the transformer architecture to 222

compute their interdependencies in a disentan- 223

gled manner. Alternative methods, exemplified 224

by DONUT (Kim et al., 2022), leverage trans- 225

former architectures for document understand- 226

ing tasks, focusing on extracting information 227

directly from the document’s content without 228

relying on OCR. DONUT employs the Swin 229

transformer (Liu et al., 2021) as the vision en- 230

coder and BART (Lewis et al., 2019) as the 231

decoder model. A more general model, Qwen- 232

VL (Bai et al., 2023), incorporates an adapter 233

with cross-attention layers to attenuate vision 234

encoder embeddings with language embeddings. 235

Qwen-VL, trained on a large corpus of both 236

regular and document images, demonstrates 237

proficiency in tasks such as image captioning, 238

question answering, visual grounding, and text 239

reading. 240

As shown in the Table 1, among the models 241

mentioned above, GPT4-V, Gemini Pro Vision, 242

LLaVA and Qwen-VL are the only models that 243

satisfy the 4 properties we seek in a Document 244

AI foundation model. 245

In summary, our review highlights the signif- 246

icant strides in LLMs, the emergence of multi- 247

modal AI with MLMs, and the successful ap- 248

plications of transformer architectures in VrDu 249
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Table 1: Comparison of different models across the 4 properties we seek

Model Property 1
Multitasking

Property 2
OCR-free

Property 3
Instruction following

Property 4
Template independent

GPT4-V ✓ ✓ ✓ ✓
Gemini-Pro-Vision ✓ ✓ ✓ ✓

Donut × ✓ × ×
LayoutLMV3 ✓ × × ✓

DocLLM ✓ × × ✓
Qwen-VL ✓ ✓ ✓ ✓
LLaVA ✓ ✓ ✓ ✓

CogAgent ✓ ✓ ✓ ✓
UReader ✓ ✓ ✓ ✓
DocOwl ✓ ✓ ✓ ✓

DOLMA (ours) ✓ ✓ ✓ ✓

and DVQA tasks. These advancements lay the250

groundwork for versatile models like Qwen-VL,251

showcasing the evolving landscape of AI and252

machine learning.253

3 Analysing the design possibilities254

for vision-language models255

In this section, we will examine the various256

design choices for vision-language models in257

Document AI as documented in the open-258

source literature and present our findings. For259

our experiments, we will utilize the IIT-CDIP260

dataset and our own PDF-generated dataset261

for pretraining. Additionally, we will em-262

ploy various benchmarking datasets, including263

DocVQA (Mathew et al., 2021b), CORD-V2264

(Park et al., 2019), Infographics-VQA (Mathew265

et al., 2021a), ICDAR-SROIE (ICDAR, 2019),266

Chart-QA (Masry et al., 2022), OCR-VQA267

(Mishra et al., 2019), RVL-CDIP (Harley et al.,268

2015), and TextVQA (Singh et al., 2019), for269

fine-tuning experiments.270

3.1 The design of the bridge connector271

Vision-language models comprise two modal-272

ities: vision and language. While there are273

numerous models available for these modalities,274

it is essential for them to effectively "communi-275

cate" with each other. We explore three types276

of connectors: linear projection, cross-attention,277

and projection + perceiver-resampler.278

For our experiments, we fixed Swin Base279

(Liu et al., 2021) as the vision model and Vi-280

cuna (Zheng et al., 2023) as the language model281

across all three bridge connector designs. Dur-282

ing the pretraining stage, we trained both the 283

vision model and each connector while keeping 284

the LLM model frozen. Utilizing a total of 3 285

million image-text pairs from the IIT-CDIP 286

(Soboroff, 2022) dataset and our in-house PDF- 287

generated data (details of which will be dis- 288

cussed in subsequent sections), we pretrained 289

the model for the text extraction task, thereby 290

imparting OCR capabilities. We trained each 291

configuration for a total of one epoch. Among 292

the three connectors, only the linear projec- 293

tor connector successfully converged. We hy- 294

pothesize that extended training might enhance 295

the performance of the other connectors; how- 296

ever, given our experimental setup and resource 297

constraints, the linear projector layer demon- 298

strated the best results. 299

Insight 1

The linear projector layer is the fastest and
most straightforward method to connect the
vision and language models, achieving train-
ing convergence with just one epoch on 3
million image-text pairs.

300

3.2 The design of the Vision model 301

For the vision model, we selected the SWIN 302

Transformer (Liu et al., 2021) (base, large) 303

and the Vision Transformer (Dosovitskiy et al., 304

2020) (CLIP ViT-L/14). Similar to the previ- 305

ous section, we conducted the pretraining stage 306

by keeping the LLM frozen and training the vi- 307

sion model along with the connector. We fixed 308

the bridge connector to the linear projection 309

design and experimented with different vision 310
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encoders.311

Our findings revealed that 3 million image-312

text pairs and one epoch of training were313

insufficient for the vision models to acquire314

text extraction capabilities. We utilized pre-315

trained weights for each model, but none of316

the trainings converged except for the Swin317

Base model. For Swin Base, we used weights318

from the DONUT (Kim et al., 2022) model,319

which had been pretrained for the text extrac-320

tion task using over 11 million image-text pairs321

and trained for 200K steps with a batch size of322

196. The DONUT model employed Swin Base,323

and similarly, when we integrated Swin Base324

into our architecture, the training eventually325

converged.326

Insight 2

Vision models require tens of millions of text
extraction pretraining data and extended
training sessions to develop OCR capabili-
ties.

327

3.3 The design of the LLM model328

We selected Vicuna 1.5 (Zheng et al., 2023),329

LLama3 (Team, 2024), and Phi (Abdin et al.,330

2024) for our experiments. Following the suc-331

cess of LLaVA, we chose Vicuna as our initial332

model. We included LLama3 to evaluate the333

impact of a relatively newly released state-of-334

the-art model. Additionally, we decided to use335

the Phi-3 model to assess the performance of336

a model with fewer than seven billion param-337

eters. The vision encoder employed was Swin338

Base, and the projection design was used as339

the bridge connector. During the pretraining340

stage, we kept the LLM frozen and only pre-341

trained the vision model and bridge connector.342

At the conclusion of the experiments, both Phi343

and LLama3 failed to converge during train-344

ing, whereas only Vicuna was able to achieve345

near-zero loss for the text extraction task.346

The objective of this experiment is to com-347

pare different fine-tuning strategies within the348

given setup, based on performance across vari-349

ous benchmarks as well as computational com-350

plexity. Our experimental configuration in-351

cludes Swin Base (pretrained with Donut) as352

the vision encoder, a projection as the bridge353

connector, and Vicuna as the LLM decoder.354

Swin Base and the projection were pretrained355

as described in the previous sections. During 356

the fine-tuning stage, we continue training the 357

entire model (all three modalities) on bench- 358

mark datasets. While we fully train the Vision 359

Encoder and the bridge connector, we apply 360

three different strategies for training the LLM: 361

full LLM fine-tuning, fine-tuning only the at- 362

tention layers of the LLM, and applying LoRA 363

to the LLM. We focus these strategies on the 364

LLM because it constitutes 98% of the model’s 365

weights, making the full training of the Vision 366

Encoder and bridge connector less computa- 367

tionally intensive. For LoRA, we set r=128. 368

Each strategy involves training the model for a 369

total of four epochs. 370

We report the results of these three strate- 371

gies on selected benchmark datasets in Table 2. 372

For each benchmark dataset, we use the official 373

train, validation, and test splits. Evaluation 374

results are presented on the test split, except 375

for the TextVQA dataset, as the test set labels 376

are not available. For each dataset, we use 377

the corresponding evaluation metric commonly 378

employed in the literature. The experiments 379

indicate that LoRA training produces the low- 380

est results across all benchmarks compared to 381

full and attention-only fine-tuning. We also 382

experimented with changing the compression 383

dimension of LoRA to r=256 but obtained sim- 384

ilar, near-identical scores. 385

Attention-only and full fine-tuning yield sig- 386

nificantly better results, with each method out- 387

performing the other on different benchmarks. 388

For instance, the attention-only method outper- 389

forms full fine-tuning by 2 points on DocVQA, 390

whereas full fine-tuning scores 3 points higher 391

on SROIE compared to attention-only fine- 392

tuning. Overall, the average results are very 393

close, with attention-only fine-tuning being 394

marginally better than full fine-tuning. 395

Insight 3

Given our experimental setup, fine-tuning
only the attention layers of the LLM is equiv-
alent to full LLM fine-tuning in terms of per-
formance. And both are better then LORA
in terms of evaluation scores.

396

In the next section, we will take the best 397

model from our experiments and compare it 398

with other Document Language Models (Do- 399

cLMs). 400
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Model DocVQA CORD V2 Info VQA SROIE Chart QA OCR VQA RVL-CDIP TextVQA
[ANLS] [F1] [ANLS] [F1] [Rel. EM] [EM] [Accuracy] [VQA Score]

Attention 0.75 0.76 0.3633 0.76 0.5952 0.722 0.94 0.4644
LORA 0.47 0.463 0.28 0.53 0.442 0.504 0.91 0.2498
Full 0.73 0.76 0.30 0.79 0.5948 0.741 0.94 0.4698

Table 2: Performance of fine-tuning strategy on various benchmarks.

4 DOLMA401

4.1 Architecture402

We constructed DOLMA by incorporating the403

insights derived from our previous experiments.404

The architecture consists of Swin Base as the405

visual encoder and Vicuna as the LLM decoder,406

connected via a projection layer serving as the407

bridge connector. Swin Base is a Swin Trans-408

former with a patch size of 4 and a window size409

of 10, comprising fewer than 100 million pa-410

rameters. This model is pretrained with Donut411

and was trained on 11 million image-text pairs.412

Following the approach of LLaVA, we employ413

a 2-layer MLP as the projection layer, utilizing414

the GELU activation function between layers,415

resulting in a total of fewer than 30 million416

parameters. Vicuna 1.5 serves as the LLM, fea-417

turing 7 billion parameters. It is trained by fine-418

tuning Llama 2 (Touvron et al., 2023b) on user-419

shared conversations collected from ShareGPT.420

4.2 Datasets421

We utilized two datasets for pretraining and422

eight datasets for fine-tuning our model. Specif-423

ically, IIT-CDIP (Soboroff, 2022) and our own424

PDF-generated datasets were employed for pre-425

training the vision encoder and the projection426

layer. The other datasets—DocVQA, CORD427

V2, Infographics VQA, SROIE, Chart QA,428

OCR VQA, RVL-CDIP, and TextVQA—were429

used to train the full model, with fine-tuning430

applied only to the attention layers of the LLM.431

For each dataset, we constructed a unique in-432

struction prompt to ensure that the model re-433

tains its instruction-following capabilities. The434

prompts can be found in the appendix.435

IIT-CDIP (Soboroff, 2022). "CDIP" stands436

for "Complex Document Information Process-437

ing" and "IIT" stands for "Illinois Institute of438

Technology" who originally built the dataset.439

The dataset consists of documents from the440

states’ lawsuit against the tobacco industry441

in the 1990s. Labels are the text extracted 442

from the dataset using Tesseract. Ovearall, the 443

datasets consist of around 7 million documents. 444

As the quality of the dataset is crucial for our 445

task we applied some pre processing techniques 446

and removed all the images that had almost no 447

text and ha low quality OCR. The final short- 448

listed number is around 2 million image-text 449

pairs. 450

PDF-archive. We downloaded an additional 451

1 million pages of open-source archive PDF 452

documents and extracted the text from them 453

using PyPDF. To obtain these documents, we 454

utilized the arXiv API to download various sci- 455

entific papers. To get png images from PDFs 456

we set the image zoom equal to 1.8. Given 457

that the archive data is too clean and perfect, 458

it would not adequately represent the every- 459

day scanned document types that Document 460

AI models typically encounter. Therefore, we 461

employed Augraphy (Project) to augment the 462

PDF data by adding random marks, paper 463

folding effects, various colors, and blur effects. 464

Example of an augmented images can be found 465

in the appendix. 466

CORD V2 (Park et al., 2019). Public bench- 467

mark of 1000 receipts images. We follow the 468

official split of 800 - train, 100 - validation and 469

100 - test samples. The text is fully in Latin 470

characters. Each image may contain different 471

fields with the total number of unique fields 472

amounting to 30. Our data generation pro- 473

cess imposes instruction to extract either all or 474

a subset of those fields in a predefined struc- 475

tured format (e.g. JSON) or in unstructured, 476

question-answering manner. 477

ICDAR SROIE (ICDAR, 2019). A dataset 478

of 1000 whole scanned receipt images. The text 479

is in English characters and each image contains 480

around 4 main fields. The dataset comes with 481

JSON structured annotation intended for KIE 482

task. We separate 347 images for the testing 483

set and utilize the rest in training. 484
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DocVQA (Mathew et al., 2021b). Document485

question answering dataset consisting of 50k486

records sourced from the Industry Documents487

Library, maintained by the UCSF. The dataset488

includes mixture of printed, typewritten and489

handwritten documents that are letters, memos,490

notes, reports and other types of documents.491

We follow the official split with 40k - train, 5k492

- validation and 5k - test sets.493

RVL-CDIP (Harley et al., 2015). Relatively494

larger dataset of 400k images used for docu-495

ment classification task. The dataset includes496

documents such as letter, memo, email and oth-497

ers. Overall, there are 16 unique classes with498

25k images per class. We follow the official split499

of 320k - training, 40k - validation and 40k -500

testing splits.501

Infographic VQA (Mathew et al., 2021a).502

Similar to typical VQA task, task is to answer503

questions asked on a given infographic image.504

Similar to extractive QA framework popular in505

NLP, and the DocVQA dataset, here question-506

answers are primarily extractive type. But507

there are a small percentage of questions where508

answers arr not extractive. There are 30 K509

questions and 5K Images in the dataset. Im-510

ages are collected from the Internet. Questions511

and answers are manually annotated.512

ChartQA (Masry et al., 2022). A Benchmark513

for Question Answering about Charts with Vi-514

sual and Logical Reasoning. The datasets is515

split into 30K train, 2K validation and 2.5K516

test image-question-answer pairs.517

OCR VQA (Mishra et al., 2019). OCR-VQA518

dataset contains 207572 images and associated519

question-answer pairs. They provide questions520

inquiring about title, author, edition, year and521

genre of the book and corresponding ground-522

truth answer. This dataset contains approxi-523

mately 1 million QA pairs.524

Text VQA (Singh et al., 2019). TextVQA re-525

quires models to read and reason about text in526

images to answer questions about them. Specif-527

ically, models need to incorporate a new modal-528

ity of text present in the images and reason529

over it to answer TextVQA questions.530

4.3 Training Details531

The training process consists of multiple steps,532

as outlined in Figure 2.533

First, we pre-trained the Swin Base and the534

MLP projector using the IIT-CDIP and PDF-535

Figure 2: The training pipeline of DOLMA.

archive data. The objective of this pretraining 536

stage is to enable the model to acquire OCR ca- 537

pabilities and learn to project the visual embed- 538

dings into the LLM embedding space. During 539

this stage, the language model is kept frozen. 540

We pre-trained the model for 1 epoch, with a 541

batch size of 16 per device, a learning rate of 542

2e−4, and a cosine learning rate scheduler with 543

3% warmup steps. We used the AdamW opti- 544

mizer with β1 = 0.9, β2 = 0.999, and ϵ = 1e−8. 545

Given the importance of image resolution in 546

Document AI, we increased the resolution of 547

images to 1280x960 pixels and applied padding 548

when necessary. 549

Second, we unfroze the entire model and 550

continued with the fine-tuning process. As 551

suggested by Insight 3, we fine-tuned only the 552

attention layers of the LLM. The model was 553

trained for 10 epochs, with a batch size of 10, a 554

learning rate of 2e−5, and a cosine learning rate 555

scheduler with 3% warmup steps. Similarly, we 556

used the AdamW optimizer with β1 = 0.9, β2 = 557

0.999, and ϵ = 1e−8. The image resolution was 558

maintained at 1280x960 pixels. 559

The training was conducted using 8x H100 560

80GB GPUs1. 561

4.4 Qualitative analysis and 562

benchmark results 563

We compare DOLMA with models that sat- 564

isfy the four properties outlined in Table 1. 565

The evaluation scores are reported in Table 3. 566

All scores are sourced from their respective 567

papers. For scores that were not directly avail- 568

able, we referenced other papers: specifically, 569

the OCR VQA score of Qwen VL was taken 570

from the CogAgent paper, and the Infographic- 571

sQA, ChartQA, and TextVQA scores of Donut 572

1Cloud resources were generously provided by AWS
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Model DocVQA CORD V2 Info VQA Chart QA OCR VQA RVL-CDIP TextVQA
[ANLS] [F1] [ANLS] [Rel. EM] [EM] [Accuracy] [VQA Score]

DOLMA (ours) 0.75 0.76 0.363 0.595 0.722 0.94 0.464
Donut 0.675 0.841 0.116 0.418 - 0.95 0.435
Qwen-VL 0.651 - 0.354 0.657 0.757 - 0.638
UReader 0.654 - 0.422 0.593 0.411 - 0.576
DocOwl 0.622 - 0.382 0.574 - - 0.526
CogAgent 0.816 - 0.445 0.684 0.75 - 0.761

Table 3: Comparison of document AI models on various Document AI tasks.

were sourced from the UReader paper. For573

each benchmark dataset, we used the official574

train, validation, and test splits. Evaluation575

results are reported on the test split, except for576

the TextVQA dataset, where test set labels are577

unavailable. We employed the evaluation met-578

rics commonly used in the literature for each579

dataset.580

DOLMA outperforms Donut in all tasks ex-581

cept for CORD V2 and RVL-CDIP. The reason582

for this discrepancy is the relative simplicity583

of these tasks and the fact that the evaluation584

used task-specific fine-tuned models, meaning585

that the models were fine-tuned on a single586

dataset for many epochs, as described in the587

Donut paper. Nevertheless, DOLMA managed588

to outperform Donut in the DocVQA tasks589

under the same training conditions.590

Overall, DOLMA demonstrated performance591

on par with models such as Qwen VL and Do-592

cOWL, even though the vision encoders in these593

models are 20x and 5x larger in parameter size,594

respectively. For the DocVQA task, DOLMA595

outperforms all models except CogAgent. It is596

important to note that while the other models597

listed have fewer than 10 billion parameters,598

CogAgent has 17 billion parameters. As the599

scores illustrate, model size has a significant600

impact on performance in our case.601

5 Conclusion and Future Work602

In this paper, we conducted experiments to un-603

derstand the requirements for building a Vision-604

Language model for Document AI tasks. Our605

findings highlight the effectiveness of different606

model architectures, model sizes, pretraining,607

and fine-tuning strategies. Based on these in-608

sights, we introduced DOLMA, an OCR-free,609

instruction-following vision-language model610

that can be utilized for various Document AI611

tasks. We demonstrated that DOLMA can per-612

form on par with larger VLM models, despite 613

being trained on fewer data samples and with 614

fewer resources. 615

In future research, we plan to investigate 616

the possibility of scaling DOLMA to handle 617

multilingual and multi-page documents. 618

6 Limitations 619

While DOLMA demonstrates promising results 620

in various Document AI tasks, several limita- 621

tions must be acknowledged: 622

1. Data Diversity : Although we utilized 623

a substantial amount of data for pretraining 624

and fine-tuning, the datasets may not fully 625

capture the diversity of real-world documents. 626

This could limit the model’s generalizability to 627

unseen document types and formats. 628

2. Model Size: Despite DOLMA’s competi- 629

tive performance with a moderate parameter 630

count of 7 billion, it remains computationally 631

intensive. This may pose challenges for deploy- 632

ment in resource-constrained environments. 633

3. OCR Capabilities: While DOLMA is 634

designed to be OCR-free, its performance in 635

extracting text from highly complex or de- 636

graded documents may still lag behind spe- 637

cialized OCR systems. Further improvements 638

are needed to enhance its robustness in such 639

scenarios. 640

4. Multilingual and Multi-page Documents: 641

Our current experiments focus primarily on 642

single-page, monolingual documents. The 643

model’s effectiveness in handling multilingual 644

and multi-page documents remains unexplored 645

and warrants further investigation. 646

5. Training Costs: Although we aimed to 647

minimize training costs, the process still re- 648

quires significant computational resources, par- 649

ticularly for fine-tuning. This could be a bar- 650

rier for smaller research groups or organizations 651
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with limited access to high-performance com-652

puting resources.653

6. Evaluation Metrics: The evaluation met-654

rics used in our experiments are standard in655

the literature, but they may not fully capture656

the nuanced performance of the model in prac-657

tical applications. Future work should consider658

more comprehensive evaluation frameworks.659

7. Ethical Considerations: As with any AI660

model, there are ethical considerations related661

to data privacy and potential biases in the train-662

ing data. These issues need to be addressed to663

ensure the responsible deployment of DOLMA.664

By acknowledging these limitations, we aim665

to provide a balanced view of our work and666

highlight areas for future research and improve-667

ment.668
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A Prompts for the pertaining stage 1045

System 1046

You are a helpful language and vision assistant. You are able to understand the visual content
that the user provides. "

User 1047

Extract all the text from the document.

B Prompts for the fine-tuning stage 1048

Prompt template for CORD [task: KIE] 1049

Please read the text in this image and return the information in JSON format. 1050
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The nested JSON should have the following keys: menu, void_menu,
subtotal, total. Each key has subkeys as listed below (with descriptions
in brackets):

menu:
- nm (name of menu)
- num (identification # of menu)
- unitprice (unit price of menu)
- menu.cnt (quantity of menu)
- discountprice (discounted price of menu)
- price (total price of menu)
- itemsubtotal (price of each menu after discount applied)
- vatyn (whether the price includes tax or not)
- etc (others)
- sub_nm (name of submenu)
- sub_unitprice (unit price of submenu)
- sub_cnt (quantity of submenu)
- sub_price (total price of submenu)
- sub_etc (others)

void_menu:
- nm (name of menu)
- price (total price of menu)

subtotal:
- subtotal_price (subtotal price)
- discount_price (discounted price in total)
- service_price (service charge)
- othersvc_price (added charge other than service charge)
- tax_price (tax amount)
- etc (others)

total:
- total_price (total price)
- total_etc (others)
- cashprice (amount of price paid in cash)
- changeprice (amount of change in cash)
- creditcardprice (amount of price paid in credit/debit card)
- emoneyprice (amount of price paid in emoney, point)
- menutype_cnt (total count of type of menu)
- menuqty_cnt (total count of quantity)

1051

Prompt template for SROIE [task: KIE]1052

Please read the text in this image and return the information in JSON format.
The JSON should have the following keys: company, date, address, total.

Prompt template for DocVQA [task: VQA]1053

"Please read the text in this image and answer to the question: {question}\n1054
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<image>"
1055

Prompt template for InfographicVQA [task: VQA] 1056

"Given this infographic image, {question}\n<image>"

Prompt template for TextVQA [task: VQA] 1057

"Given the image, {question}\n<image>"

Prompt template for OCRVQA [task: VQA] 1058

"Here is an image of a book cover, {question}\n<image>"

Prompt template for RVL-CDIP [task: classification] 1059

’Please classify the given image to one of the following classes: ["letter",
"memo", "email", "filefolder", "form", "handwritten", "invoice", "

advertisement", "budget", "news article", "presentation", "scientific
publication", "questionnaire", "resume", "scientific report", "
specification"].’

Prompt template for CartQA [task: VQA] 1060

Given this image of a chart, {question}\n<image>"
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C Samples from our PDF-arxiv dataset1061
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