
Published as a workshop paper at DeLTa Workshop (ICLR 2025)

LAM-SLIDE: LATENT SPACE MODELING OF SPATIAL
DYNAMICAL SYSTEMS VIA LINKED ENTITIES

Florian Sestak1, Artur P. Toshev2, Andreas Fürst1, Günter Klambauer∗,1,4,
Andreas Mayr∗,1, Johannes Brandstetter∗,1,3
1 ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University

Linz, Austria
2 Department of Engineering Physics and Computation, TUM, Germany
3 Emmi AI GmbH, Linz, Austria
4 NXAI GmbH, Linz, Austria
{klambauer,mayr,brandstetter}@ml.jku.at
* Equal contribution

ABSTRACT

Generative models are spearheading recent progress in deep learning, showing
strong promise for trajectory sampling in dynamical systems as well. However,
while latent space modeling paradigms have transformed image and video gen-
eration, similar approaches are more difficult for most dynamical systems. Such
systems – from chemical molecule structures to collective human behavior – are
described by interactions of entities, making them inherently linked to connectiv-
ity patterns and the traceability of entities over time. Our approach, LAM-SLIDE
(Latent Space Modeling of Spatial Dynamical Systems via Linked Entities), com-
bines the advantages of graph neural networks, i.e., the traceability of entities
across time-steps, with the efficiency and scalability of recent advances in image
and video generation, where pre-trained encoder and decoder are frozen to enable
generative modeling in the latent space. The core idea of LAM-SLIDE is to in-
troduce identifier representations (IDs) to allow for retrieval of entity properties,
e.g., entity coordinates, from latent system representations and thus enables trace-
ability. Experimentally, across different domains, we show that LAM-SLIDE
performs favorably in terms of speed, accuracy, and generalizability. Code is
available at https://github.com/ml-jku/LaM-SLidE.

1 INTRODUCTION

Graph Neural Networks Latent Dynamics Modeling 
(bulk dynamics)

Latent Diffusion  
(conditional generation) LaM-SLidE 

(ours)

Latent Space

ID-based
tracking

Conditioning

Semantic 
Map

Text

Repres

entations

Images

9
9

6 6

5 5
2 6

5
2

2

9

6

5

2

Latent Space Latent Space

9

Figure 1: LAM-SLIDE modeling paradigm. Right: LAM-SLIDE combines the advantages of
GNNs, i.e., the traceability of particles across time-steps, with the efficiency and scalability of gen-
erative latent space modeling approaches.

Understanding the dynamics of spatial systems is a fundamental challenge in many scientific and
engineering domains (Karplus & Petsko, 1990; Jumper et al., 2021; Price et al., 2025). In this pa-
per, we focus on spatial dynamical systems, where scenes are composed of distinguishable entities

1

https://github.com/ml-jku/LaM-SLidE

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

at defined spatial locations. Modeling temporal trajectories of such entities quickly becomes chal-
lenging, especially when (i) stochasticity is involved, and (ii) when entities should be traceable. A
prime example is molecular dynamics (Karplus & Petsko, 1990), where trajectories of individual
atoms are modeled via Langevin dynamics, which accounts for omitted degrees of freedom by using
of stochastic differential equations. Consequently, the trajectories of the atoms themselves become
non-deterministic, but the atoms remain traceable over time.

A conventional approach to predict spatial trajectories of entities is to represent scenes as neighbor-
hood graphs and to subsequently process these graphs with graph neural networks (GNNs). When
using GNNs (Scarselli et al., 2009; Micheli, 2009; Gilmer et al., 2017; Battaglia et al., 2018), each
entity is usually represented by a node, and the spatial entities nearby are connected by an edge in
the neighborhood graph. Neighborhood graphs have extensively been used for trajectory prediction
tasks (Kipf et al., 2018), especially for problems with a large number of indistinguishible entities,
(e.g., Sanchez-Gonzalez et al., 2020; Mayr et al., 2023). Recently, GNNs have been integrated into
generative modeling frameworks to effectively capture the behavior of stochastic systems (Yu et al.,
2024; Costa et al., 2024).

Despite their widespread use in modeling spatial trajectories, GNNs hardly follow recent trends in
latent space modeling, where unified representations together with universality and scalability of
transformer blocks (Vaswani, 2017) offer simple application across datasets and tasks, a behavior
commonly observed in computer vision and language processing (Devlin, 2018; Dosovitskiy, 2020).
Notably, recent breakthroughs in image and video generation can be accounted to latent space condi-
tioned generative modeling (Ho et al., 2022; Blattmann et al., 2023). In such paradigms, pre-trained
encoders and decoders are employed to map data into a latent space, where subsequent modeling is
performed, leveraging the efficiency and expressiveness of this representation. This poses the ques-
tion: what does it take to leverage recent techniques from generative latent space modeling to boost
the modeling of stochastic trajectories of entities? Recently, it has been shown (Alkin et al., 2024b)
that it is possible to model the bulk behavior of large particle systems purely in the latent space,
at the cost of sacrificing the traceability of individual particles, which is acceptable or even favor-
able for systems where particles are indistinguishable, but challenging for, e.g., molecular modeling
where atom assignments are essential.

In order to combine the advantages of GNNs, i.e., the traceability of entities across time-steps,
with the efficiency and scalability of latent space approaches, we introduce LAM-SLIDE (see
Figure 1). The core idea of LAM-SLIDE is the introduction of identifier representations (IDs) that
allow for retrieval of entity properties, e.g., entity coordinates, from latent system representations.
Consequently, we can train generative models, such as stochastic interpolants (Albergo et al., 2023),
purely in the latent space, where pre-trained decoder blocks map the generated states back to the
physics domain. Qualitatively, LAM-SLIDE demonstrates flexibility and favorable performance
across a variety of different modeling tasks.

In summary, our contributions are the following:

• We propose LAM-SLIDE for generative modeling of stochastic trajectories, which com-
bines the advantages of GNNs, concretely traceable entities, with the scaling properties of
latent space models.

• We introduce entity structure preservation to recover the entity structure of the inputs from
latent space.

• We perform experiments in different domains with varying degrees of difficulty, focusing
on molecular dynamics. LAM-SLIDE performs favorably with respect to all other archi-
tectures, showcasing scalability with model size.

2 BACKGROUND & RELATED WORK

Dynamical systems. Formally, we consider a dynamical system to be defined by a state space S,
representing all possible configurations of the system, and an evolution rule Φ : R × S 7→ S that
determines how a state s ∈ S evolves over time, and which exhibits the following properties for the

2

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

time differences 0, t̂1, and, t̂2:

Φ(0, s) = s (1)

Φ(t̂2,Φ(t̂1, s)) = Φ(t̂1 + t̂2, s) (2)

We note, that Φ does not necessarily need to be defined on the whole space R × S , but assume
this is the case for notational simplicity. The exact formal definition of random dynamical systems
is more involved and consists of a base flow (noise) and a cocycle dynamical system defined on a
physical phase space (Arnold, 1998). We skip the details, but assume to deal with random dynamical
systems for the remainder of the paper, where the stochasticity of such random dynamical systems
is inherently connected with generative modeling.

Flow Matching. Flow Matching (Lipman et al., 2022; Liu et al., 2022; Albergo et al., 2023), has
emerged as a powerful alternative to diffusion models (Sohl-Dickstein et al., 2015), in generative
modeling. This framework has been successfully applied across different domains like images (Esser
et al., 2024), audio (Vyas et al., 2023), videos (Polyak et al., 2024), protein design (Huguet et al.,
2024) and robotics (Black et al., 2024).

Latent space modeling. Latent space modeling has achieved remarkable success at image and
video generation (Blattmann et al., 2023; Esser et al., 2024), where pre-trained encoders and de-
coders map data into a latent space, and back into the physics space. The latent space aims to
preserve the essential structure and features of the original data, often following a compositional
structure D ·A · E (Seidman et al., 2022; Alkin et al., 2024a;b), where the encoder E maps the input
signal into the latent space, the approximator A models a process, and the decoder maps back to
the original space. Examples of approximators are conditional generative modeling techniques, e.g.,
generating an image given a text prompt (condition). This framework was, e.g., recently used for
3D shape generation, where 3D shapes are generated in latent space, the final shape in the spatial
domain is then constructed by querying the latent representations over a fixed spatial grid (Zhang
et al., 2023; Zhang & Wonka, 2024).

3 LATENT SPACE MODELING OF SPATIAL DYNAMICAL SYSTEMS VIA
LINKED ENTITIES

Pos

IDC
ro

ss
 -

A
tt

en
tio

n

C
ro

ss
 -

A
tt

en
tio

n

K

K
Q

QV

V

La
ye

rN
or

m

La
ye

rN
or

m

Encoder Decoder Input Token

latents

input 
tokens Features

Figure 2: Overview of our entity-preserving encoder-decoder architecture. Left: LAM-SLIDE
’s encoder maps N input tokens to a fixed size latent representation via cross-attention. The decoder
reconstructs the input data from the latent space using the assigned IDs. Right: Structure of the
input token, consisting of an ID, spatial information and features.

LAM-SLIDE introduces an identifier (ID) pool and an identifier assignment function which allow
us to effectively map and retrieve latent system representations. The ID components preserve the
relationships between entities, making them traceable across time-steps. LAM-SLIDE follows an
encoder E - approximator A - decoder D paradigm.

3.1 PROBLEM FORMULATION

State space. We consider spatial dynamics. Our states s ∈ S describe the configuration of entities
within the scene together with their individual features. We assume that a scene consists of N

3

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

entities ei with i ∈ 1, . . . , N . An entity ei is described by its spatial location xi ∈ RDx and some
further properties mi ∈ RDm (e.g., atom type, etc.). We refer to the state at a time point at index t
within the given sequence. Analogously, we use t, mt

i to describe coordinates and properties at time
point t. We refer to the coordinate concatenation [xt1, ..,x

t
N] of theN entities in st as Xt ∈ RN×Dx .

Analogously, we use Mt ∈ RN×Dm to denote [mt
1, ..,m

t
N]. When properties are conserved over

time, i.e., Mt = M0, we just skip the time index and the time-wise repetition of states and use
M ∈ RN×Dm . We concatenate sequences of coordinate states Xt with t ∈ 0 .. T−1 to a tensor
X ∈ RT×N×Dx , which describe a whole sampled coordinate trajectory of a system with T time
points and N entities. An example for such trajectories from a dynamical systems are molecular
dynamics trajectories (see Fig. 6; details in Sec. 4). A notation table is available, see App. A.

Predictive aim. Our aim is to generate the spatial continuation X[To : T−1] =
[XTo ,Xt, . . . ,XT−1] ∈ R(T−To)×N×Dx of a system trajectory, given a short (observed) initial
spatial trajectory X[0 : To−1] = [X0,Xt, . . . ,XTo−1] ∈ RTo×N×Dx together with general (time-
invariant) entity properties M, where To represents the length of the observed trajectory.

3.2 ENTITY STRUCTURE PRESERVATION

As motivated above, our aim is to maintain the integrity of scene entity structures when mapping
them to and processing them in a latent space. The main idea of this module is to randomly assign an
ID from an ID pool to each entity of the system, which later allows us to learn to retrieve the entity’s
location from the system state by using an ID-embedding as a query in cross-attention (Vaswani,
2017; Ramsauer et al., 2021). The two key components of this module are: (i) creating a fixed, finite
pool of identifiers (IDs) and (ii) defining a stochastic function, which assigns, or links, each entity
in a scene to of the unique identifiers from our identifier pool.
Definition 3.1 (Identifier pool) We consider the set I = {i | i ∈ N ∧ i < u} with u ∈ N to be an
identifier pool. An identifier i is an element of the set I.
Definition 3.2 (Identifier assignment function) Given an entity space, which summarizes the en-
tities of a dynamic system, i.e., E = {e1, . . . , eN}, we define a stochastic identifier assignment
function ID, which maps E to I as follows:

ID : E × Ω 7→ I , (3)
where Ω is a sample space representing randomness, and, ∀ω ∈ Ω ∀e1, e2 ∈ E : e1 ̸= e2 ⇒
ID(e1, ω) ̸= ID(e2, ω).

The condition on ID in Definition 3.2 is a requirement of injectivity in its first argument given a
fixed second argument. Such a function might not always exist.
Proposition 3.3 Given an identifier pool I as defined by definition 3.1, then an ID function accord-
ing to definition 3.2 only exists, if |E| ⩽ |I|.

The use of a stochastic function allows us to apply our entity structure preservation concept to a wide
class of problems, as no exact assignment algorithm between entities and IDs needs to be specified
explicitly. Instead, it only matters that an injective assignment is made. Further, Proposition 3.3
suggests to use an identifier pool which is large enough, such that a learned model based on this
Identifier Pool can generalize across systems with varying numbers of entities.

3.3 MODEL ARCHITECTURE: LATENT SPACE MODELING

Since predicting continuations of system trajectories is a conceptually similar task to generating
videos from an initial sequence of images, we took inspiration from Blattmann et al. (2023) in using
a latent diffusion architecture. We also took inspiration from Jaegle et al. (2021) to decompose our
model architecture as follows: To map the state of the system composed of N entities to a latent
space containing L latent tokens (∈ RDz), we use a cross-attention mechanism. In the resulting
latent space, we aim to train an approximator to predict future latent states based on the embedded
initial states. Inversely to the encoder, we again use a cross-attention mechanism to retrieve the
latent information for the entities of the system. To wrap it up, LAM-SLIDE , is built up by an
encoder (E) - approximator (A) - decoder (D) architecture, which represents the following function:

D ◦ A ◦ E : RTo×N×Dx × RN×Dm 7→ R(T−To)×N×Dx

4

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

A detailed composition of E and D is shown in the left part of Fig. 2.

Encoder. The encoder E aims to encode a state of the system such that the properties of each
individual entity en can be decoded (retrieved) later. At the same time the structure of the latent
state representation (∈ RL×Dz) should not depend on N , i.e., L and Dz are constants and serve as
hyperparameters, while individual samples may be composed of different numbers N of entities, as
opposed to GNNs, for which the size of the latent depends on the number of nodes throughout each
message passing step.

To allow for traceability of the entities, we first embed each identifier i in the space RDu by a learned
embedding IDEmb: I 7→ RDu . Then we draw a random number ω ∈ Ω and map all (n = 1, . . . , N)
system entities en to un ∈ RDu as follows:

un = IDEmb(ID(en, ω)) ∀n ∈ 1, . . . , N (4)

The inputs to the encoder comprise the (time-specific) location xtn ∈ RDx , properties mn ∈ RDx ,
and an identity representation un ∈ RDx , as visualized in the right part of Fig. 2. We concate-
nate the different types of features across the entities of the system: Xt = [xt1, ..,x

t
N],M =

[m1, ..,mN],Uω = [u1, ..,uN]. The encoding function ETrace : RN×(Dx+Dm+Du) 7→ RL×Dz

maps the input to a fixed-size latent space state representation Zt := E(Xt,M,Uω) ∈ RL×Dz ,
realized by cross-attention (Vaswani, 2017) between the input tensor ∈ RN×(Dx+Dm+Du) of ETrace,
keys and values, and a fixed number of L learned query vectors ∈ RDz , see Fig. 2 (left).

Decoder. The aim of the decoder D is to retrieve the system state information Xt and M, cor-
responding to the latent state representation Zt and Uω , i.e., encoded entity identifier embeddings.
This is realized by a decoding function DTrace : RL×Dz × RDu 7→ R(Dx+Dm), which is applied to
each un available from Uω , i.e., (xtn,mn) = DTrace(Z

t,un). As indicated in the left part of Fig. 2,
also DTrace is realized by cross-attention layers. The latent space information Zt is input to both
keys and values of the cross-attention mechanism, while the embedded identifier of en is input to
the queries. The decoder makes use of a cross-attention mechanism using learned ID embeddings as
query (Widrich et al., 2020; Locatello et al., 2020; Ramsauer et al., 2021), which could be seen as
content-based retrieval system and an associative memory (Amari, 1972; Hopfield, 1982; Ramsauer
et al., 2021).

Approximator. Finally, the approximator models the system’s time evolution in latent space, i.e.,
predicts a series of future latent system states Z[To : T−1] = [ZTo ,Zt, . . . ,ZT−1], given a series of
initial system states, which are already embedded in latent space Z[0 : To−1] = [Z0,Zt, . . . ,ZTo−1].
Hence, the approximator is a function A : RTo×L×Dz 7→ R(T−To)×L×Dz .

Given the analogy of predicting the time evolution of a dynamic system to the task of synthesizing
videos, we realizedA by a flow-based model. Specifically, we constructed it based on the stochastic
interpolants framework (Albergo et al., 2023; Ma et al., 2024), see App. C.

We are interested in time-dependent processes, which interpolate between data o1 ∼ p1 from a
target data distribution p1 and noise ϵ ∼ p0 := N (0, I):

oτ = ατo1 + στ ϵ, (5)

where τ ∈ [0, 1] is a diffusion time (to be distinguished from dynamic system times t). ατ and στ are
differentiable functions in τ , which have to fulfill α2

τ+σ
2
τ > 0 ∀τ ∈ [0, 1], and, further α1 = σ0 = 0,

and, α0 = σ1 = 1. The goal is to learn a parametric model vθ(o, τ), s.t.,
∫ 1

0
||E[vθ(oτ , τ) −

α̇τo1 − σ̇τ ϵ||2] dτ is minimized. Within the stochastic interpolants framework, we identify o1 with
a whole trajectory Z = Z[0 : T−1] = [Z[0 : To−1],Z[To : T−1]] ∈ RT×L×Dz . Since the generated
trajectories should be conditioned on latent representations of initial time frames Z[0 : To−1], we
extend vθ with a conditioning argument C ∈ RT×L×Dz , making it effectively a conditional vector
field vθ : RT×L×Dz × [0, 1] × RT×L×Dz 7→ RT×L×Dz . The tensor structure of C is the same as
the one for Z. For the first time steps, both tensors have equal values, i.e., C[0 : To−1] = Z[0 : To−1].
The remaining tensor entries C[To : T−1] are filled up with mask tokens. (see. Fig. 3).

From a practical point of view, we did not make direct use of implementing vθ, but instead repa-
rameterize a data prediction model oθ : RT×L×Dz × [0, 1]×RT×L×Dz 7→ RT×L×Dz with the aim
to have small differences ∥oθ(oτ , τ,C)− o1∥2, i.e., oθ should directly learn to predict Z instead of

5

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

learning a velocity vector field vθ directly. To be able to use oθ, we employ a reparametrization ac-
cording to Kingma & Gao (2024) (details in App. C.2). The backbone of oθ consists of alternating
attention blocks that operate across the latent dimension L and the time dimension T (see. App. B).

3.4 TRAINING PROCEDURE

}
mask

tokens

ID-based

decoding

Figure 3: Left: The latent model receives con-
ditioning information, through a configuration of
known tokens (observed timesteps) and mask to-
kens (the tokens to be predicted). The example
illustrates conditioning on a single timeframe to
predict three future timeframes. Right: ID-based
decoding, the predicted latent vectors are decoded
using assigned IDs. For example, when IDs are
assigned to individual atoms, we can track the
atom’s position across the predicted timesteps.

The training process is structured into two
stages as in latent diffusion models (Rombach
et al., 2022): First stage: Training the en-
coder E and decoder D, to reconstruct entities
from latent space using the assigned identifiers
(see. Fig. 2). Second stage: Train latent ap-
proximator A by mapping system states to la-
tent space using the frozen encoder E (details
in App. E.2).

4 EXPERIMENTS

Our evaluation of LAM-SLIDE , focused on
three key aspects: (i) Robust generalization
in diverse domains. We examine LAM-
SLIDE ’s generalization in different data do-
mains in relation to other methods, for which
we utilized tracking data from human motion
behavior and data from molecular dynamics
(MD) simulations. (ii) Temporal adaptability.
We evaluated temporal adaptability through various conditioning/prediction horizons, considering
single/multi-frame conditioning and short/long-term forecasts; (iii) Computational efficiency and
scalability. Finally, we assessed LAM-SLIDE ’s inference time, and performance in relation model
size. The subsequent sections detail our key findings, while comprehensive implementation details,
additional results are in App. E.

Metrics. We utilized the Average Discrepancy Error (ADE) and the Final Discrepancy Error (FDE),
defined as ADE(X, X̂) = 1

(T−To)N

∑T−1
t=To

∑N
i=1 ∥Xt

i − X̂t
i∥2, FDE(X, X̂) = 1

N

∑N
i=1 ∥X

T−1
i −

X̂T−1
i ∥2, capturing model performance across predicted future time steps and the model per-

formance specifically for the last predicted frame, respectively. These metrics represent well-
established evaluation criteria in forecasting (Xu et al., 2023; 2022). For the MD experiments includ-
ing proteins (tetrapeptides), we used Jensen-Shannon divergence (JSD), evaluating the distribution
of torsion angles, considering both, backbone (BB) and side chain (SC) angles. In order to capture
long temporal behavior, we used Time-lagged Independent Component Analysis (TICA) (Pérez-
Hernández et al., 2013), focusing on the slowest components TIC 0 and TIC 1. To investigate
metastable state transitions we make use of Markov State Models (MSMs) (Prinz et al., 2011; Noé
et al., 2013). Finally, for inference time and scalability we assessed the number of function evalua-
tions (NFEs), and report performance of our method for different parameter sizes.

4.1 PEDESTRIAN MOVEMENT

Experimental setup. For human motion behavior, we first considered the ETH-UCY dataset (Pel-
legrini et al., 2009; Lerner et al., 2007), which provides pedestrian movement behavior, over five
different scenes: ETH, Hotel, Univ, Zara1 and Zara2. We used the same setup as Han et al. (2024);
Xu et al. (2023; 2022), in which the methods obtain the first 8 frames as input and have to predict
the next 12 frames. We report the minADE/ minFDE, computed across 20 sampled trajectories
and compare LAM-SLIDE to eight state-of-the-art generative methods covering different model
categories, including: GANs : SGAN, SoPhie; VAEs: PECNet, Traj+ +, BiTrap, SVAE; diffusion
models: MID and GeoTDM; and a Linear baseline. The baseline methods predominantly target
pedestrian trajectory prediction, with GeoTDM and Linear being the exceptions.

6

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Results. As shown in Tab. 1, our model performs competitively across all five scenes, achieving
lower minFDE for Zara1 and Hotel scene, and lower minADE on the ETH scene. Notably, in
contrast to compared baselines, we did not create additional features like velocity and acceleration
or imply any kind of connectivity between entities. In terms of computational efficiency, LAM-
SLIDE required only 10 NFE using Euler integration, compared to 100 NFE in GeoTDM.

Table 1: Method comparison at pedestrian motion forecasting. Methods have to predict locations
of pedestrian given 8 time frames as input. The first column provides the method name and the
further columns different scenes. In the cells the metrics minADE/minFDE on pedestrian movement
forecasting across 20 frames are reported.

ETH Hotel Univ Zara1 Zara2 Average

Lineara 1.07/2.28 0.31/0.61 0.52/1.16 0.42/0.95 0.32/0.72 0.53/1.14
SGAN Gupta et al. (2018)a 0.64/1.09 0.46/0.98 0.56/1.18 0.33/0.67 0.31/0.64 0.46/0.91
SoPhie Sadeghian et al. (2019)a 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
PECNet Mangalam et al. (2020)a 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
Traj++ Salzmann et al. (2020)a 0.54/0.94 0.16/0.28 0.28/0.55 0.21/0.42 0.16/0.32 0.27/0.50
BiTraP Yao et al. (2021)a 0.56/0.98 0.17/0.28 0.25/0.47 0.23/0.45 0.16/0.33 0.27/0.50
MID Gu et al. (2022)a 0.50/0.76 0.16/0.24 0.28/0.49 0.25/0.41 0.19/0.35 0.27/0.45
SVAE Xu et al. (2022)a 0.47/0.76 0.14/0.22 0.25/0.47 0.20/0.37 0.14/0.28 0.24/0.42
GeoTDM (Han et al., 2024)a 0.46/0.64 0.13/0.21 0.24/0.45 0.21/0.39 0.16/0.30 0.24/0.40
LAM-SLIDE (ours) 0.45/0.75 0.13/0.19 0.26/0.47 0.21/0.35 0.17 / 0.30 0.24/ 0.41
a Results from Han et al. (2024).

4.2 PLAYER MOVEMENT IN BASKETBALL

Table 2: Method comparison at fore-
casting player positions in basketball
games. Compared methods have to pre-
dict player positions for 12 frames and
are given the initial 8 frames as input.
The first column provides the method
name, the consecutive columns the per-
formance at Rebounding and Scoring
scenes in terms of the metrics mi-
nADE/minFDE.

Rebounding Scoring

Lineara 2.14/5.09 2.07/4.81
Traj++ (Salzmann et al., 2020)a 0.98/1.93 0.73/1.46
BiTraP (Yao et al., 2021)a 0.83/1.72 0.74/1.49
SGNet-ED (Wang et al., 2022)a 0.78/1.55 0.68/1.30
SVAE (Xu et al., 2022)a 0.72/1.37 0.64/1.17

LAM-SLIDE (ours) 0.79/1.42 0.64/1.09
a Results from Xu et al. (2022).

Experimental setup. We evaluate basketball player
movement using the SportVU NBA dataset (Yue et al.,
2014), which captures player positions during the 2015-
2016 season. Each recorded frame included ten player
positions (5 for each team) and the ball position, and two
different scenarios are considered. The evaluation proce-
dure by, which we used, provides 8 frames as input con-
ditioning and the consecutive 12 frames for prediction.
We report minADE/minFDE metrics, computed across
20 sampled trajectories, and consider only the player po-
sition in the metric calculation (Xu et al., 2022). We
compared against VAE-based methods (Traj++, BiTrap,
SGNet-ED, SVAE) and a linear baseline.

Results. As illustrated in Tab. 2, our model shows
robust performance across both scenarios, Rebounding
and Scoring. For the Scoring scenario, LAM-SLIDE
achieves parity with SocialVAE (Gupta et al., 2018) in
terms of minADE and surpassing the performance in terms of minFDE. In the Rebounding scenario,
we observed comparable but slightly lower performance of LAM-SLIDE compared to SocialVAE.

4.3 SMALL MOLECULES

Experimental setup. To assess the performance of LAM-SLIDE against several state-of-the-
art methods, we also used the MD17 Chmiela et al. (2017) dataset, which contains the simulated
molecular dynamics trajectories of 8 small molecules. The size of those molecules ranges from 9
atomes (Ethanol and Malonaldehyde) to 21 atoms(Aspirin). In line with Han et al. (2024), we used
10 conditioning frames and 20 frames for prediction and report ADE/FDE averaged over K = 5
runs. We compared against six g-equivariant GNN based methods: TFN, RF, SE(3)-Tr., EGNN,
EqMotion, GeoTDM, and a non-equivariant method: SVAE.

Results. The results in Tab. 3 show the performance on the MD17 benchmark. LAM-SLIDE
achieves the lowest ADE/FDE of all methods and for all molecules. These results are particu-

7

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Table 3: Method comparison at forecasting MD trajectories of small molecules. Compared
methods have to predict atom positions of 20 frames, conditioned on 10 input frames. Results in
terms of ADE/FDE, averaged over 5 sampled trajectories.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

RF (Köhler et al., 2019)a 0.303 0.442 0.120 0.194 0.374 0.515 0.297 0.454 0.168 0.185 0.261 0.343 0.199 0.249 0.239 0.272
TFN (Thomas et al., 2018)a 0.133 0.268 0.024 0.049 0.201 0.414 0.184 0.386 0.072 0.098 0.115 0.223 0.090 0.150 0.090 0.159
SE(3)-Tr. (Fuchs et al., 2020)a 0.294 0.556 0.027 0.056 0.188 0.359 0.214 0.456 0.069 0.103 0.189 0.312 0.108 0.184 0.107 0.196
EGNN (Satorras et al., 2021)a 0.267 0.564 0.024 0.042 0.268 0.401 0.393 0.958 0.095 0.133 0.159 0.348 0.207 0.294 0.154 0.282
EqMotion (Xu et al., 2023)a 0.185 0.246 0.029 0.043 0.152 0.247 0.155 0.249 0.073 0.092 0.110 0.151 0.097 0.129 0.088 0.116
SVAE (Xu et al., 2022)a 0.301 0.428 0.114 0.133 0.387 0.505 0.287 0.430 0.124 0.135 0.122 0.142 0.145 0.171 0.145 0.156
GeoTDM (Han et al., 2024) a 0.107 0.193 0.023 0.039 0.115 0.209 0.107 0.176 0.064 0.087 0.083 0.120 0.083 0.121 0.074 0.099

LAM-SLIDE (ours) 0.059 0.098 0.021 0.032 0.087 0.167 0.073 0.124 0.037 0.058 0.047 0.074 0.045 0.075 0.050 0.074
a Results from Han et al. (2024).

larly remarkable considering that: (1) our model operates without incorporating molecular bond
information, and (2) it surpasses the performance of all equivariant baselines, an inductive bias we
intentionally omitted in LAM-SLIDE . For additional information see App. E.2.

4.4 TETRAPEPTIDES (4AA)

Table 4: Method comparison for predicting MD
trajectories of tetrapeptides. The first column
denotes the method. The following columns de-
note the JSD between distributions of torsion an-
gles (backbone (BB), side-chain (SC), and all), the
TICA, and the MSM metric. LAM-SLIDE per-
forms best with respect to 4 out of 6 metrics.

Torsions TICA MSM Time

BB SC All 0 0,1 joint

100nsa .103 .055 .076 .201 .268 .208 ∼ 3h

MDGena .130 .093 .109 .230 .316 .235 ∼ 60s

LAM-SLIDE .128 .122 .125 .227 .315 .224 ∼ 53s
a Results from Jing et al. (2024).

Experimental setup. For long prediction
horizons, we utilized a tetrapeptide dataset Jing
et al. (2024), which contains explicit-solvent
MD trajectories . We used a single condition-
ing frame to predict 10,000 consecutive frames.
The predictions are structured as a sequence of
ten cascading 1,000-step rollouts, where each
subsequent rollout is conditioned on the final
frame of the previous. Note that, in contrast to
the MD17 dataset, the methods predict trajecto-
ries of unseen molecules. We compare LAM-
SLIDE to the recently proposed method MD-
Gen (Jing et al., 2024) which is geared towards
protein MD simulation, and to a replicate of the ground truth MD simulation as a baseline.

Results. Tab. 4 shows performance metrics of the methods (see above; for details on those metrics,
Sec. E.5). Fig. 5 shows the distribution of backbone torsions angles, and the free energy surfaces of
the first two TICA components, for ground truth vs simulated trajectories. LAM-SLIDE performs
competitively with the current state-of-the- art method MDGen with respect to torsion angles, which
is a notable achievement given that MDGen operates in torsion space only. With respect to the TICA
and MSM metrics, LAM-SLIDE even outperforms MDGen.

4.5 ANALYSIS OF SCALING BEHAVIOR

We performed experiments in which we analyzed the dependence of the performance of LAM-
SLIDE on the number of parameters. The results indicate that the performance consistently increases
with parameter count (see App. F).

5 CONCLUSION

We have introduced LAM-SLIDE , which combines the advantages of GNNs and latent space mod-
els. Its novel entity structure preservation module uses ID embeddings to retrieve entity positions in
latent space. Across diverse domains, LAM-SLIDE matches or exceeds specialized methods, and
offers efficiency, cross-task information-sharing, and promising scalability. Its minimal reliance on
prior knowledge makes LAM-SLIDE suitable for many tasks, e.g., pedestrian or molecule trajectory
prediction, suggesting its potential as a foundational system dynamics architecture (see App. D).

8

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

ACKNOWLEDGMENTS

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported by the
Federal State Upper Austria. We thank the projects Medical Cognitive Computing Center (MC3),
INCONTROL-RL (FFG-881064), PRIMAL (FFG-873979), S3AI (FFG-872172), EPILEPSIA
(FFG-892171), AIRI FG 9-N (FWF-36284, FWF-36235), AI4GreenHeatingGrids (FFG- 899943),
INTEGRATE (FFG-892418), ELISE (H2020-ICT-2019-3 ID: 951847), Stars4Waters (HORIZON-
CL6-2021-CLIMATE-01-01). We thank Audi.JKU Deep Learning Center, TGW LOGISTICS
GROUP GMBH, Silicon Austria Labs (SAL), FILL Gesellschaft mbH, Google, ZF Friedrichshafen
AG, Robert Bosch GmbH, UCB Biopharma SRL, Merck Healthcare KGaA, Verbund AG, GLS
(Univ. Waterloo), Software Competence Center Hagenberg GmbH, Borealis AG, TÜV Austria,
dSPACE, TRUMPF and the NVIDIA Corporation.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

MS Albergo, NM Boffi, and E Vanden-Eijnden. Stochastic interpolants: A unifying framework for
flows and diffusions, 2023. ArXiv preprint ArXiv230308797, 2023.

Benedikt Alkin, Andreas Fürst, Simon Lucas Schmid, Lukas Gruber, Markus Holzleitner, and Jo-
hannes Brandstetter. Universal physics transformers: A framework for efficiently scaling neural
operators. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024a.

Benedikt Alkin, Tobias Kronlachner, Samuele Papa, Stefan Pirker, Thomas Lichtenegger, and
Johannes Brandstetter. Neuraldem-real-time simulation of industrial particulate flows. arXiv
preprint arXiv:2411.09678, 2024b.

Shun-Ishi Amari. Learning patterns and pattern sequences by self-organizing nets of threshold
elements. IEEE Transactions on computers, 100(11):1197–1206, 1972.

L. Arnold. Random Dynamical Systems. Monographs in Mathematics. Springer, 1998. ISBN
9783540637585.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π 0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2023.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22563–22575, 2023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

9

https://github.com/black-forest-labs/flux

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

D.A. Case, H.M. Aktulga, K. Belfon, I.Y. Ben-Shalom, J.T. Berryman, S.R. Brozell, D.S. Cerutti,
T.E. Cheatham, III, G.A. Cisneros, V.W.D. Cruzeiro, T.A. Darden, N. Forouzesh, M. Ghaz-
imirsaeed, G. Giambaşu, T. Giese, M.K. Gilson, H. Gohlke, A.W. Goetz, J. Harris, Z. Huang,
S. Izadi, S.A. Izmailov, K. Kasavajhala, M.C. Kaymak, A. Kovalenko, T. Kurtzman, T.S. Lee,
P. Li, Z. Li, C. Lin, J. Liu, T. Luchko, R. Luo, M. Machado, M. Manathunga, K.M. Merz,
Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, K.A. O’Hearn, A. Onufriev, F. Pan, S. Pan-
tano, A. Rahnamoun, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, A. Shajan, J. Shen,
C.L. Simmerling, N.R. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, J. Wang, X. Wu,
Y. Wu, Y. Xiong, Y. Xue, D.M. York, C. Zhao, Q. Zhu, and P.A. Kollman. Amber 2024, 2024.

Ricky T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/
torchdiffeq.

Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Schütt, and
Klaus-Robert Müller. Machine learning of accurate energy-conserving molecular force fields.
Science advances, 3(5):e1603015, 2017.

Allan dos Santos Costa, Ilan Mitnikov, Franco Pellegrini, Ameya Daigavane, Mario Geiger,
Zhonglin Cao, Karsten Kreis, Tess Smidt, Emine Kucukbenli, and Joseph Jacobson. Equi-
jump: Protein dynamics simulation via so (3)-equivariant stochastic interpolants. arXiv preprint
arXiv:2410.09667, 2024.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis, 2024. URL https://arxiv. org/abs/2403.03206, 2, 2024.

GW Ford, M Kac, and P Mazur. Statistical mechanics of assemblies of coupled oscillators. Journal
of Mathematical Physics, 6(4):504–515, 1965.

Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-
translation equivariant attention networks. arXiv preprint arXiv:2006.10503, 2020.

Everette S Gardner Jr. Exponential smoothing: The state of the art. Journal of forecasting, 4(1):
1–28, 1985.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Tianpei Gu, Guangyi Chen, Junlong Li, Chunze Lin, Yongming Rao, Jie Zhou, and Jiwen Lu.
Stochastic trajectory prediction via motion indeterminacy diffusion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17113–17122, 2022.

Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan: So-
cially acceptable trajectories with generative adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2255–2264, 2018.

Jiaqi Han, Minkai Xu, Aaron Lou, Haotian Ye, and Stefano Ermon. Geometric trajectory diffusion
models. arXiv preprint arXiv:2410.13027, 2024.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

10

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Håkon Hoel and Anders Szepessy. Classical langevin dynamics derived from quantum mechanics.
arXiv preprint arXiv:1906.09858, 2019.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat
Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, et al.
Sequence-augmented se (3)-flow matching for conditional protein backbone generation. arXiv
preprint arXiv:2405.20313, 2024.

Brooke E Husic and Vijay S Pande. Markov state models: From an art to a science. Journal of the
American Chemical Society, 140(7):2386–2396, 2018.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021.

Bowen Jing, Hannes Stärk, Tommi Jaakkola, and Bonnie Berger. Generative modeling of molecular
dynamics trajectories. arXiv preprint arXiv:2409.17808, 2024.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Martin Karplus and Gregory A Petsko. Molecular dynamics simulations in biology. Nature, 347
(6294):631–639, 1990.

Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
augmentation. Advances in Neural Information Processing Systems, 36, 2024.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International conference on machine learning, pp. 2688–
2697. PMLR, 2018.

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: sampling configurations for multi-
body systems with symmetric energies. arXiv preprint arXiv:1910.00753, 2019.

Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. In Computer graphics
forum, volume 26, pp. 655–664. Wiley Online Library, 2007.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang,
Lichao Sun, Philip S Yu, et al. Towards graph foundation models: A survey and beyond. arXiv
preprint arXiv:2310.11829, 2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. Advances in neural information processing systems, 33:11525–11538, 2020.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

11

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024.

Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli, Jitendra
Malik, and Adrien Gaidon. It is not the journey but the destination: Endpoint conditioned tra-
jectory prediction. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part II 16, pp. 759–776. Springer, 2020.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In Forty-first
International Conference on Machine Learning.

Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, and Johannes
Brandstetter. Boundary graph neural networks for 3d simulations. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 37(8):9099–9107, Jun. 2023. doi: 10.1609/aaai.v37i8.26092.

Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions
on Neural Networks, 20(3):498–511, 2009. doi: 10.1109/TNN.2008.2010350.

Frank Noé, Hao Wu, Jan-Hendrik Prinz, and Nuria Plattner. Projected and hidden markov models
for calculating kinetics and metastable states of complex molecules. The Journal of chemical
physics, 139(18), 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never walk alone:
Modeling social behavior for multi-target tracking. In 2009 IEEE 12th international conference
on computer vision, pp. 261–268. IEEE, 2009.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Guillermo Pérez-Hernández, Fabian Paul, Toni Giorgino, Gianni De Fabritiis, and Frank Noé. Iden-
tification of slow molecular order parameters for markov model construction. The Journal of
chemical physics, 139(1), 2013.

Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media founda-
tion models. arXiv preprint arXiv:2410.13720, 2024.

Jay W. Ponder and David A. Case. Force fields for protein simulations. Advances in protein chem-
istry, 66:27–85, 2003. ISSN 0065-3233. doi: 10.1016/S0065-3233(03)66002-X.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
weather forecasting with machine learning. Nature, 637(8044):84–90, 2025.

Jan-Hendrik Prinz, Hao Wu, Marco Sarich, Bettina Keller, Martin Senne, Martin Held, John D
Chodera, Christof Schütte, and Frank Noé. Markov models of molecular kinetics: Generation
and validation. The Journal of chemical physics, 134(17), 2011.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gru-
ber, Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, Klambauer G, and
S Hochreiter. Hopfield networks is all you need. International Conference on Learning Rep-
resentations, 2021.

12

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Alex Rogozhnikov. Einops: Clear and reliable tensor manipulations with einstein-like notation. In
International Conference on Learning Representations, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid Rezatofighi, and Silvio
Savarese. Sophie: An attentive gan for predicting paths compliant to social and physical con-
straints. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 1349–1358, 2019.

Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII
16, pp. 683–700. Springer, 2020.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural net-
works. arXiv preprint arXiv:2102.09844, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.
doi: 10.1109/TNN.2008.2005605.

Martin K Scherer, Benjamin Trendelkamp-Schroer, Fabian Paul, Guillermo Pérez-Hernández,
Moritz Hoffmann, Nuria Plattner, Christoph Wehmeyer, Jan-Hendrik Prinz, and Frank Noé.
Pyemma 2: A software package for estimation, validation, and analysis of markov models. Jour-
nal of chemical theory and computation, 11(11):5525–5542, 2015.

Jacob Seidman, Georgios Kissas, Paris Perdikaris, and George J Pappas. Nomad: Nonlinear man-
ifold decoders for operator learning. Advances in Neural Information Processing Systems, 35:
5601–5613, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Apoorv Vyas, Bowen Shi, Matthew Le, Andros Tjandra, Yi-Chiao Wu, Baishan Guo, Jiemin Zhang,
Xinyue Zhang, Robert Adkins, William Ngan, et al. Audiobox: Unified audio generation with
natural language prompts. arXiv preprint arXiv:2312.15821, 2023.

Chuhua Wang, Yuchen Wang, Mingze Xu, and David J Crandall. Stepwise goal-driven networks for
trajectory prediction. IEEE Robotics and Automation Letters, 7(2):2716–2723, 2022.

Michael Widrich, Bernhard Schäfl, Milena Pavlović, Hubert Ramsauer, Lukas Gruber, Markus Hol-
zleitner, Johannes Brandstetter, Geir Kjetil Sandve, Victor Greiff, Sepp Hochreiter, et al. Modern
hopfield networks and attention for immune repertoire classification. Advances in neural infor-
mation processing systems, 33:18832–18845, 2020.

Chenxin Xu, Robby T Tan, Yuhong Tan, Siheng Chen, Yu Guang Wang, Xinchao Wang, and Yan-
feng Wang. Eqmotion: Equivariant multi-agent motion prediction with invariant interaction rea-
soning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 1410–1420, 2023.

13

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Pei Xu, Jean-Bernard Hayet, and Ioannis Karamouzas. Socialvae: Human trajectory prediction
using timewise latents. In European Conference on Computer Vision, pp. 511–528. Springer,
2022.

Yu Yao, Ella Atkins, Matthew Johnson-Roberson, Ram Vasudevan, and Xiaoxiao Du. Bitrap: Bi-
directional pedestrian trajectory prediction with multi-modal goal estimation. IEEE Robotics and
Automation Letters, 6(2):1463–1470, 2021.

Ziyang Yu, Wenbing Huang, and Yang Liu. Force-guided bridge matching for full-atom time-
coarsened dynamics of peptides. arXiv preprint arXiv:2408.15126, 2024.

Yisong Yue, Patrick Lucey, Peter Carr, Alina Bialkowski, and Iain Matthews. Learning fine-grained
spatial models for dynamic sports play prediction. In IEEE International Conference on Data
Mining, pp. 670–679, 2014.

Biao Zhang and Peter Wonka. Lagem: A large geometry model for 3d representation learning and
diffusion. arXiv preprint arXiv:2410.01295, 2024.

Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape
representation for neural fields and generative diffusion models. ACM Transactions on Graphics
(TOG), 42(4):1–16, 2023.

Robert Zwanzig. Nonlinear generalized langevin equations. Journal of Statistical Physics, 9(3):
215–220, 1973.

14

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Appendix

Table of Contents
A Notation 16

B Details on the LAM-SLIDE Model Architecture 17
B.1 Encoder and Decoder Functions . 17
B.2 Latent Flow Model Architecture . 17

C Additional Information on Stochastic Interpolants 19
C.1 Interpolants . 19
C.2 Parametrizations . 19

D Related Work 20
D.1 Molecular Dynamics (MD) . 20
D.2 Relationship of LAM-SLIDE to Graph Foundation Models 21

E Experimental Details 22
E.1 Employed Loss Functions . 22
E.2 Implementation details . 22
E.3 Hyperparameters . 23
E.4 Employed Datasets . 23
E.5 Evaluation Details . 23
E.6 Computational Resources . 24

F Additional Results and Scaling Behavior 25

15

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

A NOTATION

Table 5: Overview of used symbols and notations

Definition Symbol/Notation Type

continuous time t̂ R
overall number of (sampled) time steps T N
number of observed time steps (when predicting later ones) To 0 .. T−1
time index for sequences of time steps t 0 .. T−1
system state space S application-dependent set, to be further defined
system state s S
randomness ω Ω ≡ pool of randomness

entity e symbolic
number of entities N N
entity index i, n 1 .. N
spatial entity dimensionality Dx N
entity feature dimensionality Dm N
entity location (coordinate) x RDx

entity properties (entity features) m RDm

identifier representation dimensionality Du N
number of latent vectors used L N
latent vector dimensionality Dz N
trajectory of a system (locations of entities over time) X RTo×N×Dx

entity locations at t Xt RN×Dx

entity i of trajectory at t Xt
i RDx

trajectory in latent space Z RTo×L×Dz

latent system state at t Zt RL×Dz

time invariant features of entities M RN×Dm

matrix of identifier embeddings Uω RN×Du

projection matrices Q,K,V not specified; depends on number of heads etc.

encoder E(.) RN×(Du+Dx+Dm) 7→ RL×Dz

decoder D(.) RL×Dz × RN×Du 7→ RN×(Dx+Dm)

approximator (time dynamics model) A(.) RT×L×Dz 7→ RT×L×Dz

loss function L(., .) var.

time parameter of the flow-based model τ [0, 1]
noise distribution o0 RT×L×Dz

de-noised de-masked trajectory o1 = Z RT×L×Dz

flow-based model ”velocity prediction” (neural net) vθ(oτ , τ) RT×L×Dz × R 7→ RT×L×Dz

flow-based model ”data prediction” (neural net) oθ(oτ , τ) RT×L×Dz × R 7→ RT×L×Dz

neural network parameters θ undef.

16

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

B DETAILS ON THE LAM-SLIDE MODEL ARCHITECTURE

B.1 ENCODER AND DECODER FUNCTIONS

We provide pseudocode of the forward passes for encoding (ETrace) to and decoding (DTrace) from the
latent system space of LAM-SLIDE in algorithm 1 and algorithm 2 respectively. In general, encoder
and decoder blocks follow the standard Transformer architecture (Vaswani, 2017) with feedforward
and normalization layers. To simplify the explanation, we omitted additional implementation details
here and refer readers to our provided source code.

Algorithm 1 (Cross-Attention) Encoder Function ETrace

Input: input data XMU = [X,M,Uω] ∈ RN×(Dx+Dm+Du)

Output: latent system state Z ∈ RL×Dz

Additional Internal Encoder Weights: learned latent queries Zinit ∈ RL×Dz

K = Linear(XMU)
V = Linear(XMU)
Q = Linear(Zinit)
return LayerNorm(Attention(Q,K,V)) // without affine transformation

Algorithm 2 (Cross-Attention) Decoder Function DTrace

Input: latent system representation Z ∈ RL×Dz , entity representation u ∈ RDu from Uω ∈
RN×Du

Output: [x,m] ∈ RDx+Dm

Z = LayerNorm(Z) // without affine transformation
K = Linear(Z)
V = Linear(Z)
q = Linear(u)
return Attention([q],K,V)

For the decoding functionality presented in Algorithm 2, we made use of multiple specific decoder
blocks depending on the actual task (e.g., for the molecules dataset, we used one decoder block for
atom positions and one decoder block for atom types).

B.2 LATENT FLOW MODEL ARCHITECTURE

We provide pseudocode of the data prediction network oθ forward pass in algorithm 3. The latent
layer functionality is given by algorithm 4. The architecture of the latent layers (i.e., our flow
model) is based on Dehghani et al. (2023), with the additional usage of adaptive layer norm (adaLN)
(Perez et al., 2018) as also used for Diffusion Transformers (Peebles & Xie, 2023). The exact
implementation is based on ParalellMLP block codes from Black Forest Labs (2023), which are
used along the latent dimension as well as along the temporal dimension (see Fig. 4).

Algorithm 3 Latent Flow Model oθ (data prediction network)
Input: noise-interpolated data ointer ∈ RT×L×Dz , diffusion time τ used for interpolation, condi-
tioning C ∈ RT×L×Dz , conditioning mask B ∈ {0, 1}T×L×Dz

Output: prediction of original data (not interpolated with noise): o ∈ RT×L×Dz

τ ← Embed(τ);
o = Linear(ointer) + Linear(C) + Embed(B)
for i = 1 to num layers do
o = LatentLayer(o, τ)

end for
α, β, γ = Linear(SiLU(τ))
return o+ γ ⊙MLP(α⊙ LayerNorm(o) + β)

17

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Algorithm 4 LatentLayer
Input: o ∈ RT×L×C , diffusion time embedding τ
Output: updated o ∈ RT×L×C

o += ParallelMLPAttentionWithRoPE(o, τ , dim = 0)
o += ParallelMLPAttentionWithRoPE(o, τ , dim = 1)
return o

MLPLayerNorm

LayerNorm

Q K

Att-out

Attention

V MLP-In

MLP-Out

GELU

BiasBias

Scale, Shift

Scale

Bias

LayerNorm

Parallel-MLP Block

(latent)

Parallel-MLP Block

(temporal)

Latent Layer

Positional 
Encoding (RoPE)

ConditioningInput Tokens

Figure 4: Left: LatentLayer of our method, consisting of a latent and a temporal ParallelMLP block.
Right: Zoomed in view of the ParalellMLP block

Using einops Rogozhnikov (2021) notation, the latent layer in Fig. 4 can be expressed as:

o′ ← rearrange(o, (B L) T D→ (B T) L D)

o′ ← liψ(o
′, t)

o′ ← rearrange(o′, (B T) L D→ (B L) T D)

o′ ← liϕ(o
′, t)

with parameters sets ψ and ϕ, where for the latent block the time dimension gets absorbed into
the batch dimension and for the temporal block the latent dimension gets absorbed into the batch
dimension.

18

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

C ADDITIONAL INFORMATION ON STOCHASTIC INTERPOLANTS

General Interpolants. The stochastic interpolants framework (Albergo et al., 2023; Albergo
& Vanden-Eijnden, 2022; Ma et al., 2024) is defined without reference to an forward SDE, which
allows a lot of flexibility, any choice of αt an σt, satisfying the following conditions is possible:

1. α2
τ + σ2

τ > 0;
2. ατ and στ are differentiable for all τ ∈ [0, 1]

3. α0 = σ1 = 0 and α1 = σ0 = 1

According to Ma et al. (2024) the stochastic interpolant framework decouples the formulation of
the stochastic process specified by eq. (5) from the forward SDE and therefore allows for more
flexibility in the choosing αt and σt. App. C.1 details αt and σt for a linear and a generalized
variance-preserving (GVP) interpolant. App. C.2 show equivalences of different parameterizations
for a score network, which are according to Ma et al. (2024) and Kingma & Gao (2024).

C.1 INTERPOLANTS

Linear: ατ = τ, στ = 1− τ, (6)

GVP: ατ = sin(
1

2
πτ), στ = cos(

1

2
πτ), (7)

C.2 PARAMETRIZATIONS

ŝθ(o; τ) = −∇xEθ(o, τ) (With the gradient of an energy-based model) (8)
= −ϵ̂θ(o; τ)/στ (With a noise prediction model) (9)

= −σ−2
τ (o− ατ ôθ(o; τ)) (With a data prediction model) (10)

= σ−1
τ

ατ v̂θ(o, τ)− α̇τo
α̇τστ − ατ σ̇τ

(With a velocity prediction model) (11)

Note: In our work we learn a data prediction model ôθ(o; τ), which can be expressed in terms of
velocity:

v̂θ(o, τ) = ŝθ(o; τ)

(
α̇τσ

2
τ

ατ
− στ σ̇τ

)
+
α̇τ
ατ

o (12)

19

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

D RELATED WORK

D.1 MOLECULAR DYNAMICS (MD)

The most fundamental concepts nowadays to describe the dynamics of molecules are given by the
laws of quantum mechanics. The Schrödinger equation is a partial differential equation, that gives

the evolution of the complex-valued wave function ψ over time t: iℏ
∂ψ

∂t
= Ĥ(t)ψ. Here i is

the imaginary unit with i2 = −1, ℏ is reduced Planck constant, and, Ĥ(t) is the Hamiltonian
operator at time t, which is applied to a function ψ and maps to another function. It determines how
a quantum system evolves with time and its eigenvalues correspond to measurable energy values
of the quantum system. The solution to Schrödinger’s equation in the many-body case (particles
1, . . . , N) is the wave function ψ(x1, . . . ,xN , t) :×N

i=1
R3 × R → C which we abbreviate as

ψ({x} , t). It’s the square modulus |ψ({x} , t)|2 = ψ∗({x} , t)ψ({x} , t) is usually interpreted as
a probability density to measure the positions x1, . . . ,xN at time t, whereby the normalization
condition

∫
. . .
∫
|ψ({x} , t)|2dx1 . . . dxN = 1 holds for the wave function ψ.

Analytic solutions of ψ for specific operators ˆH(t) are hardly known and are only available for sim-
ple systems like free particles or hydrogen atoms. In contrast to that are proteins with many thou-
sands of atoms. However, already for much smaller quantum systems approximations are needed.
A famous example is the Born–Oppenheimer approximation, where the wave function of the multi-
body system is decomposed into parts for heavier atom nuclei and the light-weight electrons, which
usually move much faster. In this case, one obtains a Schrödinger equation for electron movement
and another Schrödinger equation for nuclei movement. A much faster option than solving a sec-
ond Schrödinger equation for the motion of the nuclei is to use the laws from classical Newtonian
dynamics. The solution of the first Schrödinger equation defines an energy potential, which can
be utilized to obtain forces Fi on the nuclei and to update nuclei positions according to Newton’s
equation of motion: Fi = mi q̈i(t) (with mi being the mass of particle i and qi(t) describing the
motion trajectory of particle i over time t).

Additional complexity in studying molecule dynamics is introduced by environmental conditions
surrounding molecules. Maybe the most important is temperature. For bio-molecules it is often
of interest to assume that they are dissolved in water. To model temperature, a usual strategy is
to assume a system of coupled harmonic oscillators to model a heat bath, from which Langevin
dynamics can be derived (Ford et al., 1965; Zwanzig, 1973). The investigation of the relationship
between quantum-mechanical modeling of heat baths and Langevin dynamics still seems to be a
current research topic, where there there are different aspects like the coupling of the oscillators or
Markovian properties when stochastic forces are introduced. For instance, Hoel & Szepessy (2019),
studies how canonical quantum observables are approximated by molecular dynamics. This includes
the definition of density operators, which behave according to the quantum Liouville-von Neumann
equation.

The forces in molecules are usually given as the negative derivative of the (potential) energy: Fi =
−∇E. In the context of molecules, E is usually assumed to be defined by a force field, which is a
parameterized sum of intra- and intermolecular interaction terms. An example is the Amber force
field (Ponder & Case, 2003; Case et al., 2024):

E =
∑

bonds r

kb(r − r0)2 +
∑

angles θ

kθ(θ − θ0)2+ (13)

∑
dihedrals ϕ

Vn(1 + cos(nϕ− γ)) +
N−1∑
i=1

N∑
j=i+1

(
Aij
R12
ij

− Bij
R6
ij

+
qiqj
ϵRij

)

Here kb, r0, kθ, θ0, Vn, γ, Aij , Bij , ϵ, qi, qj serve as force field parameters, which are found either
empirically or which might be inspired by theory.

Newton’s equations of motions for all particles under consideration form a system of ordinary dif-
ferential equations (ODEs), to which different numeric integration schemes like Euler, Leapfrog,
or, Verlet can be applied to obtain particle position trajectories for given initial positions and ini-
tial velocities. In case temperature is included, the resulting Langevin equations form a system of

20

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

stochastic differential equations (SDEs), and Langevin integrators can be used. It should be men-
tioned, that it is often necessary to use very small integration timesteps to avoid large approximation
errors. This, however, increases the time needed to find new stable molecular configurations.

D.2 RELATIONSHIP OF LAM-SLIDE TO GRAPH FOUNDATION MODELS

From our perspective, LAM-SLIDE bears a relationship to graph foundation models (GFMs; Liu
et al., 2023; Mao et al.). Bommasani et al. (2021) consider foundation models to be trained on broad
data at scale and to be adaptable to a wide range of downstream tasks. Mao et al. argue, that graphs
are more diverse than natural language or images, and therefore there are quite unique challenges for
GFMs. Especially they mention that none of the current GFM have the capability to transfer across
all graph tasks and datasets from all domains. It is for sure true that LAM-SLIDE is not a GFM
in this sense. However, it might be debatable whether LAM-SLIDE might serve as a domain- or
task-specfic GFM. While we mainly focused on a trajectory prediction task and are from that point
of view task-specific, we observed that our trained models can generalize across different molecules
or differently taken scenes, which might seem quite remarkable given that it is common practice
to train specific trajectory prediction models for single molecules or single scenes. Nevertheless, it
was not our aim in this research to provide a GFM, since we believe that this would require more
investigation into further domains and could also require, for instance, checking whether emergent
abilities might arise with larger models and more training data (Liu et al., 2023).

21

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

E EXPERIMENTAL DETAILS

E.1 EMPLOYED LOSS FUNCTIONS

This section defines the losses, which we use throughout training:

Position loss.

Lpos(X
t, X̂t) =

1

N

N∑
i=1

||Xt
i − X̂t

i||22 (14)

Inter-distance loss.

Lint(X
t, X̂t) =

1

N2

N∑
i=1

N∑
j=1

(Dij(X
t)−Dij(X̂

t))2 (15)

with

Dij(X
t) = ||Xt

i −Xt
j ||2 (16)

For our experiments on the tetrapeptide dataset, we employ two well-established loss functions
tailored to better capture the unique geometric constraints of proteins, which are outlined below.

Frame Loss. The frame loss is based on representing all residue atoms within local reference
frames (Abramson et al., 2024, Algorithm 29). This approach ensures the invariance of the loss to
the protein’s overall orientation. The frame loss is denoted asDframe and is backpropagated through
our network.

Torsion Loss. Inspired by Jumper et al. (2021), LAM-SLIDE uses a torsion loss Ltors, which is
backpropagated to the coordinates.

E.2 IMPLEMENTATION DETAILS

Training procedure. (i) First stage. In the first stage we train the encoding and decoding functions
ETrace and DTrace in an auto-encoding fashion, i.e., we optimize the reconstruction of the original
system state representation from its latent representation well. For discrete features (e.g., atom
type, residue type) we tend to use a cross-entropy loss, whereas for continuous features we use a
regression loss (e.g., position, distance). The loss functions for each individual task are summarized
in App. E.3. Since our method is not equivariant w.r.t. translations or rotations, we apply random
rotations and translations to the input positions. Notably, also the entity identifier assignment is
random. (ii) Second stage. In the second stage, we freeze the encoder and train the approximator
to model the temporal dynamics via the encoded latent vectors. To learn a consistent behavior over
time, we pass Uω from the encoder E to the decoder D. To avoid high variance latent spaces we
used layer-normalization (Ba, 2016) (see. App. E.2).

Identifiers. For the embedding of the identifiers we used a torch.nn.Embedding (Paszke
et al., 2019) layer, where we assign a random subset of the possible embeddings to the entities in
each training step.

Latent space regularization. To avoid high variance latent spaces, Rombach et al. (2022) relies
on KL-reg., imposing a small KL-penalty towards a standard normal on the latent space, as used
in VAE (Kingma, 2013). Recent work (Zhang & Wonka, 2024) has shown that layer normaliza-
tion (Ba, 2016) can achieve similar regulatory effects without requiring an additional loss term and
simplifying training procedure, we adapt this approach in our method (see left part of Fig. 2).

Latent Model. For the latent Flow Model we additionally apply auxiliary losses for the individual
tasks, as shown in App. E.3. Were we decode the the predicted latents and back-propagate through
the frozen decoder to the latent model.

22

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

MD17. We train a single model on all molecules – a feat that is structurally encouraged by the
design of LAM-SLIDE . For ablation, we also trained GeoTDM Han et al. (2024) on all molecules
and evaluated the performance on each one of them (“all→each” in the Tab. 10). Interestingly, we
also observe consistent improvements in the GeoTDM performance; however, GeoTDM’s perfor-
mance does not reach the one of LAM-SLIDE . Furthermore, Whereas GeoTDM requires 1000
integration steps in their diffusion process, our model achieves the reported performance with 10
Euler integration steps, demonstrating strongly improved computational efficiency.

Tetrapeptides. For the experiments on tetrapeptides in Section 4.4, we employ the Atom14
representation as used in AlphaFold (Abramson et al., 2024). In this representation, each entity
corresponds to one amino acid of the tetrapeptide, where multiple atomic positions are encoded into
a single vector of dimension Dx = 3 × 14. Masked atomic positions are excluded from gradient
computation during model updates. This representation is computational more efficient.

E.3 HYPERPARAMETERS

Tab. 6, Tab. 7, Tab. 9 and Tab. 8 show the hyperparameters for the individual tasks, loss functions are
as defined above (App. E.1). For all trained models we used the AdamW (Kingma, 2014; Loshchilov
et al., 2017) optimizer and use EMA (Gardner Jr, 1985) in each update step with a decay parameter
of β = 0.999.

E.4 EMPLOYED DATASETS

Pedestrian Movement. The pedestrian movement dataset is accessible at http://vision.
imar.ro/human3.6m/description.php, with data processing based on https://
github.com/MediaBrain-SJTU/EqMotion.

Basketball Player Movement. The dataset, along with its predefined splits, is available at https:
//github.com/xupei0610/SocialVAE. Data processing is provided in our source code.

Small Molecules (MD17). The MD17 dataset is available at http://www.sgdml.org/
#datasets. Preprocessing and dataset splits follow Han et al. (2024) and can be accessed through
their GitHub repository at https://github.com/hanjq17/GeoTDM. The dataset comprises,
5,000 training, 1000 validation and 1000 test trajectories for each molecule.

Tetrapeptides. The dataset, including the full simulation parameters for ground truth simulations,
is sourced from Jing et al. (2024) and is publicly available in their GitHub repository at https:
//github.com/bjing2016/mdgen. The dataset comprises 3,109 training, 100 validation and
100 test peptides.

E.5 EVALUATION DETAILS

Tetrapeptides. Our analysis of the Tetrapeptide trajectories utilized PyEMM (Scherer et al., 2015)
and followed the procedure as (Jing et al., 2024), incorporating both Time-lagged Independent Com-
ponent Analysis (TICA) (Pérez-Hernández et al., 2013) and Markov State Models (MSM) (Husic &
Pande, 2018).

23

http://vision.imar.ro/human3.6m/description.php
http://vision.imar.ro/human3.6m/description.php
https://github.com/MediaBrain-SJTU/EqMotion
https://github.com/MediaBrain-SJTU/EqMotion
https://github.com/xupei0610/SocialVAE
https://github.com/xupei0610/SocialVAE
http://www.sgdml.org/#datasets
http://www.sgdml.org/#datasets
https://github.com/hanjq17/GeoTDM
https://github.com/bjing2016/mdgen
https://github.com/bjing2016/mdgen

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

E.6 COMPUTATIONAL RESOURCES

Our experiments were conducted using a system with 128 CPU cores and 2048GB of system mem-
ory. Model training was performed on 4 NVIDIA H200 GPUs, each equipped with 140GB of
VRAM. In total, roughly 5000 GPU hours were used in this work.

24

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

F ADDITIONAL RESULTS AND SCALING BEHAVIOR

On the MD17 and the tetrapeptides dataset, we performed experiments in which we increased the
number of parameters of LAM-SLIDE . On MD17, LAM-SLIDE uses 1.7M, 2.1M and 2.5M
parameters, and for almost all molecules, the performance metrics ADE and FDE increase with
parameter count (see Tab. 10). On the tetrapeptides dataset, LAM-SLIDE was trained with con-
figurations of 4M, 7M, 11M, and 28M parameters. Again, all metrics consistently improve with
parameter counts (see Tab. 11). Overall, LAM-SLIDE exhibits a favorable scaling behavior.

AP
W

F

BB torsions MD FES Sample FES

CP
EE

SD
FS

SS
NN

SF
CH

PN
HP

BB torsions MD FES Sample FES

PI
DV

DQ
KV

GG
HN

HE
LI

Figure 5: Torsion angle distributions of the six backbone torsion angles, comparing molecular
dynamics (MD) trajectories (orange) and sampled trajectories (blue); and Free energy surfaces
projected onto the top two time-lagged independent component analysis (TICA) components, com-
puted from both backbone and sidechain torsion angles.

25

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Figure 6: Molecular dynamics trajectories from the MD17 dataset, showing time-evolved struc-
tural predictions for each molecule. For every compound, we display four distinct trajectory pre-
dictions, with each prediction comprising 20 superimposed time frames to illustrate the range of
conformational changes.

26

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Table 6: Hyperparameter configuration for the pedestrian movement experiments (Section 4.1).

First Stage

Network
Encoder
Number of latents L 2
Number of entity embeddings 8
Number of attention heads 2
Number of cross attention layers 1
Dimension latents Dz 32
Dimension entity embedding 128
Dimension attention head 16

Decoder
Number of attention heads 2
Number of cross attention layers 1
Dimension attention head 16

Loss Weight

Lpos(X, X̂) 1
Lint(X, X̂) 1

Training
Learning rate 1e-4
Learning rate scheduler CosineAnnealing(min lr=1e-7)
Batch size 256
Epochs 3K
Precision 32-Full
Batch size 1024

Second Stage

Setup
Condition 8 Frames
Prediction 12 Frames

Network
Hidden dimension 128
Number of Layers 6

Auxiliary - Loss Weight

Lpos(X, X̂) 0.25
Lint(X, X̂) 0.25

Training
Learning rate 1e-3
Batch size 64
Epochs 1K
Precision BF16-Mixed

Inference
Integrator Euler
ODE steps 10

27

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Table 7: Hyperparameter configuration for the basketball player movement experiments (Sec-
tion 4.2).

First Stage

Network
Encoder
Number of latents L 32
Number of entity embeddings 11
Number of attention heads 2
Number of cross attention layers 1
Dimension latents Dz 32
Dimension entity embedding 128
Dimension attention head 16

Decoder
Latent dimension 32
Number of attention heads 8
Number of cross attention layers 1

Loss Weight

Lpos(X, X̂) 1
Lint(X, X̂) 1
LCE(·, ·) − Group 0.01
LCE(·, ·) − Team 0.01

Training
Learning rate 1e-4
Learning rate scheduler CosineAnnealing(min lr=1e-7)
Optimizer AdamW
Batch size 16

Second Stage

Setup
Condition 8 Frames
Prediction 12 Frames

Network
Hidden dimension H 128
Number of Layers 6

Auxiliary - Loss Weight

Lpos(X, X̂) 0.25
Lint(X, X̂) 0.25

Training
Learning rate 1e-3
Learning rate scheduler CosineAnnealing(min lr=1e-7)
Batch size 64
Epochs 500
Precision BF16-Mixed

Inference
Integrator Euler
ODE steps 10

28

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Table 8: Hyperparameter configuration for the small molecule (MD17) experiments (Section 4.3).

First Stage

Network
Encoder
Number of latents L 32
Number of entity embeddings 8
Number of attention heads 2
Number of cross attention layers 1
Dimension latents Dz 32
Dimension entity embedding 128
Dimension attention head 16

Decoder
Number of cross attention layers 1
Number of attention heads 2
Number of cross attention layers 16

Loss Weight

Lpos(X, X̂) 1
Lint(X, X̂) 1
LCE(·, ·) − Atom type 1

Training
Learning rate 1e-4
Batch size 256
Epochs 3K
Precision 32-Full

Second Stage

Setup
Condition 10 Frames
Prediction 20 Frames

Network
Hidden dimension 128
Number of Layers 6

Auxiliary - Loss Weight

Lpos(X, X̂) 0.25
Lint(X, X̂) 0.25

Training
Learning rate 1e-3
Learning rate scheduler CosineAnnealing(min lr=1e-7)
Batch size 64
Epochs 2K
Precision BF16-Mixed

Inference
Integrator Euler
ODE steps 10

29

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Table 9: Hyperparameter configuration for the Tetrapeptides experiments (Section 4.4).

First Stage

Network
Encoder
Number of latents L 5
Number of entity embeddings 8
Number of attention heads 2
Number of cross attention layers 1
Dimension latents Dz 96
Dimension entity embedding 128
Dimension attention head 16

Decoder
Number of attention heads 2
Number of cross attention layers 1
Dimension attention head 16

Loss Weight

Lpos(X, X̂) 1
Lint(X, X̂) 1
Lframe(X, X̂) 1
Ltors(X, X̂) 0.1
LCE(·, ·) − Residue type 0.001

Training
Learning rate 1e-4
Batch size 16
Epochs 200K
Precision 32-Full

Second Stage

Setup
Condition 1 Frame
Prediction 10,000 Frames (10x rollouts)

Network
Hidden dimension 384
Number of Layers 6

Auxiliary - Loss Weight

Lpos(X, X̂) 0.25
Lint(X, X̂) 0.25
Lframe(X, X̂) 0.25

Training
Learning rate 1e-3
Optimizer AdamW
Batch size 64
Epochs 1.5K
Precision BF16-Mixed

Inference
Integrator Dopri5 (Chen, 2018)
ODE steps adaptive

30

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Table 10: Method comparison at forecasting MD trajectories of small molecules. Compared
methods have to predict atom positions of 20 frames, conditioned on 10 input frames. Results in
terms of ADE/FDE, averaged over 5 sampled trajectories.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

RF Köhler et al. (2019)a 0.303 0.442 0.120 0.194 0.374 0.515 0.297 0.454 0.168 0.185 0.261 0.343 0.199 0.249 0.239 0.272
TFN Thomas et al. (2018)a 0.133 0.268 0.024 0.049 0.201 0.414 0.184 0.386 0.072 0.098 0.115 0.223 0.090 0.150 0.090 0.159
SE(3)-Tr. Fuchs et al. (2020)a 0.294 0.556 0.027 0.056 0.188 0.359 0.214 0.456 0.069 0.103 0.189 0.312 0.108 0.184 0.107 0.196
EGNN Satorras et al. (2021)a 0.267 0.564 0.024 0.042 0.268 0.401 0.393 0.958 0.095 0.133 0.159 0.348 0.207 0.294 0.154 0.282

EqMotion Xu et al. (2023)a 0.185 0.246 0.029 0.043 0.152 0.247 0.155 0.249 0.073 0.092 0.110 0.151 0.097 0.129 0.088 0.116
SVAE Xu et al. (2022)a 0.301 0.428 0.114 0.133 0.387 0.505 0.287 0.430 0.124 0.135 0.122 0.142 0.145 0.171 0.145 0.156
GeoTDM 1.9Ma 0.107 0.193 0.023 0.039 0.115 0.209 0.107 0.176 0.064 0.087 0.083 0.120 0.083 0.121 0.074 0.099
GeoTDM 1.9M (all→each) 0.091 0.164 0.024 0.040 0.104 0.191 0.097 0.164 0.061 0.092 0.074 0.114 0.073 0.112 0.070 0.102

LAM-SLIDE 2.5M (ours) 0.059 0.098 0.021 0.032 0.087 0.167 0.073 0.124 0.037 0.058 0.047 0.074 0.045 0.075 0.050 0.074
LAM-SLIDE 2.1M (ours) 0.064 0.104 0.023 0.033 0.097 0.182 0.084 0.141 0.044 0.067 0.053 0.081 0.054 0.086 0.054 0.079
LAM-SLIDE 1.7M (ours) 0.074 0.117 0.025 0.037 0.110 0.195 0.097 0.159 0.053 0.074 0.063 0.091 0.064 0.094 0.064 0.089

a Results from Han et al. (2024).

Table 11: Method comparison for predicting MD trajectories of tetrapeptides. The first column
denotes the method. The following columns denote the JSD between distributions of torsion angles,
backbone (BB), side-chain (SC), and all, the TICA, and the MSM metric, for different model sizes.

Torsions TICA MSM Params Time

BB SC All 0 0,1 joint (M)

100 nsa .103 .055 .076 .201 .268 .208 ∼ 3h

MDGena .130 .093 .109 .230 .316 .235 34 ∼ 60s

LAM-SLIDE .128 0.122 0.125 .227 .315 .224 28 ∼ 53s
LAM-SLIDE .152 .151 .152 .239 .331 .226 11
LAM-SLIDE .183 .191 .187 .26 .356 .235 7
LAM-SLIDE .284 .331 .311 .339 .461 .237 4
a Results from Jing et al. (2024).

31

	Introduction
	Background & Related Work
	Latent Space Modeling of Spatial Dynamical Systems via Linked Entities
	Problem Formulation
	Entity Structure Preservation
	Model Architecture: Latent Space Modeling
	Training procedure

	Experiments
	Pedestrian movement
	Player movement in basketball
	Small molecules
	Tetrapeptides (4AA)
	Analysis of scaling behavior

	Conclusion
	Appendix
	 Appendix
	Notation
	Details on the LaM-SLidE Model Architecture
	Encoder and Decoder Functions
	Latent Flow Model Architecture

	Additional Information on Stochastic Interpolants
	Interpolants
	Parametrizations

	Related Work
	Molecular Dynamics (MD)
	Relationship of LaM-SLidE to Graph Foundation Models

	Experimental Details
	Employed Loss Functions
	Implementation details
	Hyperparameters
	Employed Datasets
	Evaluation Details
	Computational Resources

	Additional Results and Scaling Behavior

