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ABSTRACT

Large language models (LLMs) often generate confident yet inaccurate outputs,
posing serious risks in safety-critical applications. Existing hallucination detection
methods typically rely on final-layer logits or post-hoc textual checks, which can
obscure the rich semantic signals encoded across model layers. Thus, we propose
Shapley NEAR (Norm-basEd Attention-wise usable infoRmation), a principled,
entropy-based attribution framework grounded in Shapley values that assigns a
confidence score indicating whether an LLM output is hallucinatory. Unlike prior
approaches, Shapley NEAR decomposes attention-driven information flow across
all layers and heads of the model, where higher scores correspond to lower halluci-
nation risk. It further distinguishes between two hallucination types: parametric
hallucinations, caused by the model’s pre-trained knowledge overriding the context,
and context-induced hallucinations, where misleading context fragments spuri-
ously reduce uncertainty. To mitigate parametric hallucinations, we introduce
a test-time head clipping technique that prunes attention heads contributing to
overconfident, context-agnostic outputs. Empirical results in four QA benchmarks
(CoQA, QuAC, SQuAD, and TriviaQA), using Qwen2.5-3B, LLaMA3.1-8B, and
OPT-6.7B, demonstrate that Shapley NEAR outperforms strong baselines, without
requiring additional training, prompting, or architectural modifications.

1 INTRODUCTION

The rapid proliferation of large language models (LLMs) in a variety of applications, from conversa-
tional agents to automated decision making systems, has underscored their impressive capabilities
Ouyang et al. (2022); OpenAI Achiam et al. (2023). However, a challenge persists: these models often
generate outputs that are confidently stated yet factually incorrect, a phenomenon widely known as
hallucination Ji et al. (2023). This issue becomes especially critical in safety-sensitive environments
where factual accuracy is paramount Cohen et al. (2023); Ren et al. (2022).

To tackle this, a number of recent studies have investigated hallucination in LLMs using both
theoretical and empirical approaches. While token-level uncertainty measures such as entropy and
confidence have proven useful in hallucination detection for NLP tasks Huang et al. (2023), extending
these methods to sentence-level predictions in autoregressive LLMs remains challenging due to the
models’ complex and interdependent outputs Duan et al. (2023); Kuhn et al. (2023). As a workaround,
recent research has attempted to infer sentence-level uncertainty directly from the generated language
itself Lin et al. (2023); Zhou et al. (2023). However, these works did not consider the dense semantic
information encoded inside the internal layers of the LLM Chen et al. (2025; 2024); Xu et al. (2020).
In parallel, Xu et al. (2020) introduced the concept of V-usable information, which quantifies how
much useful information a model can extract under computational constraints. Building on this,
Ethayarajh et al. (2022) proposed Pointwise V-Information (PVI) to estimate instance-level dataset
difficulty, although this metric only considers the final layer. In contrast, Chen et al. (2024) proposed
using the EigenScore of the final token from a middle transformer layer to detect hallucinations, and
further analyzed model reliability by comparing multiple responses to a shared prompt. However,
despite these advances, most of these methods focus exclusively on final-layer logits and overlook
the rich information encoded in all the internal states of LLMs Azaria & Mitchell (2023). With
further development, LLM-Check Sriramanan et al. (2024b) extended hallucination detection to both
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Figure 1: Overview of the proposed pipeline for detecting hallucinations. Shapley NEAR detects
hallucination by computing entropy-based information gain across all attention heads and layers, and
attributing it fairly to individual context sentences using Shapley values.

white-box and black-box settings by employing an auxiliary LLM to analyze hidden states, attention
patterns, and output probabilities. Similarly, Lookback Lens Chuang et al. (2024a) trained a linear
classifier using the ratio of attention on the context versus generated tokens to identify contextual
hallucinations. However, both approaches fail to distinguish whether hallucinations originate from
the pre-trained knowledge of the model (parametric hallucination) or from misleading contextual
information (contextual hallucination). Complementing these lines of work, Kim et al. (2024)
examined deficiencies across layers for unanswerable question detection, while Chen et al. (2025)
revealed that feed-forward layers often exhibit less reliable distributional associations compared to
the more robust in-context reasoning encoded by attention mechanisms.

To address the limitations of these prior approaches, we introduce Shapley NEAR (Norm-basEd
Attention-wise usable infoRmation), a method designed to assign a confidence score indicating
whether an LLM-generated answer is trustworthy or hallucinatory, given a question and context. In
contrast to previous methods that primarily rely on outputs from feed-forward layers, which have
limited bearing on reasoning Chen et al. (2025), our approach focuses exclusively on attention layers.
Shapley NEAR aggregates information from all attention heads across all layers Azaria & Mitchell
(2023), enabling a fine-grained, attention-wise and layer-wise analysis of information propagation.
Crucially, our method requires no additional training or architectural changes, making it both easy to
integrate into existing pre-trained models and highly interpretable in practice. The main contributions
of our paper are as follows:

• We propose Shapley NEAR, a principled, interpretable entropy-based attribution method
grounded in Shapley-value theory that quantifies usable information flow in LLMs by
decomposing entropy reduction across layers and heads using the norm of attention outputs.

• We demonstrate that our framework not only detects hallucinations introduced by context
segments but also distinguishes between parametric and context-induced hallucinations.

• We introduce a test-time strategy to identify attention heads that consistently exhibit para-
metric hallucinations. Selectively removing these heads during inference demonstrates a
novel application of attribution techniques to improve model reliability without retraining.

• We evaluate Shapley NEAR on multiple QA datasets using Qwen2.5-3B, LLaMA3.1-8B,
and OPT-6.7B, showing that it outperforms strong baselines mention in Section.

2 BACKGROUND

In this work, we focus on quantifying how much usable information a generative language model can
extract from a given context to answer a specific question. Formally, we consider an input context
X = {s1, s2, . . . , sn}, and a typical autoregressive large language model (LLM), denoted by V ,
which generates a response sequence Y = [y1, y2, . . . , yT ], where each token yt is conditioned on
the input and previous outputs. Our central goal is to determine how much V-usable information the
model can leverage from the context X to predict the output Y . A lower value of usable information
implies greater prediction difficulty, indicating that the dataset is more challenging for the models V .
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While classical information-theoretic tools such as Shannon’s mutual information I(X;Y )Shannon
(1948) and the data processing inequality (DPI)Pippenger (1988) have long served as foundational
metrics for analyzing information flow, recent research has revealed their limitations when applied to
deep models. These classical measures tend to overestimate the practically usable signal, particularly
in settings where models operate under computational constraints as modern LLMs can progres-
sively extract structured and meaningful representations from raw inputs through deep computation,
rendering traditional metrics insufficient.

To bridge this gap, Xu et al. (2020) introduced the notion of predictive V-information, which accounts
for the computational limitations of a model family V . They define this as the difference between
two entropy terms: the conditional V-entropy with and without contextual input. Specifically, the
predictive V-information is given by:

IV(X → Y ) = HV(Y |∅)−HV(Y |X),

where HV(Y |X) denotes the expected uncertainty over outputs Y when conditioned on context
X , and HV(Y |∅) captures the model’s uncertainty in the absence of any input. While predictive
V-information captures dataset-level trends, Ethayarajh et al. (2022) extend it to the instance level via
pointwise V-information (PVI), which measures how much information a specific input x provides
for predicting its output y. This enables fine-grained analysis of instance difficulty, essential for
real-world model evaluation.

Building on these foundations, Kim et al. (2024) propose layer-wise usable information (LI),
a method that decomposes usable information across the layers of a model, thereby enhancing
interpretability. Complementary to this, Chen et al. (2025) show that feed-forward layers primarily
encode superficial distributional patterns, whereas attention mechanisms are more closely aligned
with in-context reasoning. These insights motivate our work, which integrates the strengths of
previous efforts to develop a unified, interpretable framework to assess usable information in LLMs,
both across layers and at the sentence level, while accounting for how different components of the
model influence predictive certainty.

3 SHAPLEY NEAR: NORM-BASED ATTENTION-WISE USABLE INFORMATION

Given a set of context passages, generative language models (LLMs) produce free-form text responses
to questions. In this work, we aim to systematically quantify how individual parts of the context
influence the prediction at the final token of the question. Transformer-based models organize
computation across multiple layers and attention heads, where each head captures distinct patterns of
contextual dependencyWang et al. (2022). Building on this insight, we propose Shapley NEAR, a
framework for measuring how much usable information each sentence in a context contributes to
reducing the model’s predictive uncertainty. Shapley NEAR is computed by isolating the output of
each attention head at the final token position of the question and measuring the change in entropy
when conditioning on subsets of the input context versus a null context. To attribute this entropy
reduction fairly to individual sentences, we adopt a Shapley-value-based decomposition. For clarity,
the remainder of the paper, we will use the terms Shapley NEAR and NEAR interchangeably. An
overview of our architecture is illustrated in Figure 1, while the detailed algorithmic procedure is
presented in Appendix A7.

Let sx = (s1, s2, . . . , sn) ∈ C denote a context passage composed of n disjoint sentences, and let
q ∈ Q represent the associated question. The concatenated input sequence sx q is tokenized into
a sequence of length T , with the final token of the question indexed by qt ∈ {1, . . . , T}. In this
framework, we consider a formally defined predictive family V consisting of pretrained generative
language models, where each model is composed of L transformer layers and each layer contains
H attention heads. Each attention head h in each layer ℓ of the language models creates different
computations. Mathematically, we define V ⊆ Ω = {f (l,h) : C ∪ ∅ → P(Q)}, where C and Q
are random variables with sample spaces C and Q, respectively, and P(Q) denotes the set of all
probability measures over Q equipped with the Borel algebra on C. The mapping f (l,h) represents
the function associated with attention head of a specific layer (l, h) within the predictive family V .
The range of f corresponds to the vocabulary space of the model. Given a layer l and attention-head
h in V , the function f maps the context tokens (or null context) to probability distribution over the
vocabulary. Unlike prior work, the function f is assumed to operate without any additional fine-tuning
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on external training data. In the rest of the section we will build the mathematical formula for NEAR,
defining and explaining each step.
Definition 3.1 (Norm-based Attention Information). Prior research by Kobayashi et al. (2020)
suggests that the norm of the attention output serves as a meaningful proxy for the amount of
information transmitted by each head. We omit the output of the feedforward layers (FC), as previous
work by Chen et al. (2025) has shown that these layers predominantly capture shallow distributional
associations, whereas the attention layers are more effectively engaged in in-context reasoning.

For each layer ℓ ∈ {1, . . . , L} and head h ∈ {1, . . . ,H}, given an input context subset x and a
question q, we compute the attention output of the model V for the combined input (x, q) as follows:

α(ℓ,h)(x, q) ≜ softmax

(
Q(ℓ,h)(x, q)K(ℓ,h)(x, q)

⊤

√
d

)
,

Z(ℓ,h)(x, q) ≜ α(ℓ,h)(x, q)V (ℓ,h)(x, q), (1)

where Q(ℓ,h) and K(ℓ,h) denote the query and key matrices for layer ℓ and head h, respectively,
α(ℓ,h)(x, q) ∈ RT×T and V (ℓ,h)(x, q) ∈ RT×d are the value matrices with d = D/H being the per-
head dimension. Both attention weights and value vectors are computed based on the concatenated
subset x and question q. The resulting attention outputs are projected using equation 1 and a
head-specific output matrix W

(h)
O ∈ Rd×D to obtain

Z̃(ℓ,h)(x, q) ≜ Z(ℓ,h)(x, q)W
(h)
O ∈ RT×D. (2)

According to Azaria & Mitchell (2023); Ren et al. (2022), the last token embedding captures the
semantic information of the entire text. Therefore, we then extract the projected vector corresponding
to the final question token qt from equation 2,

z(ℓ,h)x,q ≜ Z̃(ℓ,h)
qt ∈ RD,

which serves as a summary of information flow from the context subset x towards predicting the next
token after the question. Now we will define the information gain from x for a specific head.

Definition 3.2 (Information Gain). From Definition 3.1, the vector z(ℓ,h)x,q encapsulates dense semantic
information preserved within the internal attention mechanisms of LLMs. By applying a softmax
operation over z(ℓ,h)x,q , we obtain a vocabulary distribution p

(ℓ,h)
x,q ∈ R|V |. The entropy at the final

token is computed as

H(ℓ,h)(qt | q<t, x) ≜ −
|V |∑
i=1

p
(ℓ,h)
i log p

(ℓ,h)
i . (3)

We emphasize that entropy is calculated over the entire softmax-normalized vocabulary. This is a
critical distinction: hallucination often stems not from low confidence in the correct token alone,
but from broad misallocation of probability mass across incorrect options. Therefore, full entropy
measurement enables us to detect whether the model’s uncertainty is genuinely reduced when
informative context is provided. Now to calculate the information gain provided by the subset x at
head h and layer ℓ, it is defined as the reduction in entropy relative to a null context (i.e., no input)
using equation 3,

IG(ℓ,h)(x→ q) ≜ H(ℓ,h)(qt | q<t, ∅)−H(ℓ,h)(qt | q<t, x), (4)

whereH(ℓ,h)(qt | q<t, ∅) is computed solely from the model’s parametric knowledge, without access
to any retrieved context. Summing over all heads and layers yields the total information gain using 4:

IG(x→ q) ≜
L∑

ℓ=1

H∑
h=1

IG(ℓ,h)(x→ q). (5)

The quantity IG(x→ q) captures the behavior of the function f (ℓ,h) : C ∪ ∅ → P(Q), which maps
a context input, or its absence, to a probability distribution over the vocabulary space Q for each
attention head and layer. Moreover, IG(x→ q) quantifies the amount of information that the context
x provides about the question q.

4
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Table 1: Hallucination detection performance evaluation across four QA datasets (CoQA, QuAC,
SQuAD, TriviaQA) and three LLMs (Qwen2.5-3B, LLaMA3.1-8B, OPT-6.7B). We report average
AUROC (AUC), Kendall’s τ , and Pearson correlation coefficient (PCC) for various baseline methods.
Higher values indicate better performance. NEAR achieves the best overall performance.

Models CoQA QuAC SQuAD TriviaQA

AUC↑ τ ↑ PCC↑ AUC↑ τ ↑ PCC↑ AUC↑ τ ↑ PCC↑ AUC↑ τ ↑ PCC↑
Qwen2.5-3B
P(True) 0.48 0.32 0.30 0.49 0.33 0.31 0.51 0.34 0.32 0.50 0.33 0.31
Pointwise VI 0.51 0.35 0.32 0.50 0.34 0.31 0.52 0.36 0.33 0.53 0.36 0.34
Usable LI 0.67 0.45 0.41 0.66 0.44 0.40 0.68 0.45 0.42 0.64 0.43 0.40
Semantic Entropy 0.70 0.47 0.44 0.68 0.45 0.42 0.69 0.44 0.41 0.72 0.46 0.43
Loopback Lens 0.71 0.48 0.45 0.69 0.46 0.43 0.70 0.45 0.42 0.73 0.46 0.44
INSIDE 0.76 0.54 0.49 0.75 0.53 0.48 0.74 0.54 0.50 0.77 0.55 0.49
NEAR 0.85 0.65 0.64 0.84 0.66 0.65 0.86 0.67 0.66 0.85 0.66 0.65
LLaMA3.1-8B
P(True) 0.52 0.34 0.31 0.53 0.35 0.32 0.56 0.37 0.34 0.55 0.36 0.33
Pointwise VI 0.56 0.36 0.34 0.52 0.32 0.31 0.55 0.37 0.33 0.68 0.46 0.40
Usable LI 0.74 0.49 0.44 0.69 0.46 0.41 0.71 0.47 0.43 0.63 0.45 0.40
Semantic Entropy 0.73 0.42 0.43 0.67 0.40 0.44 0.69 0.39 0.41 0.76 0.41 0.41
Loopback Lens 0.74 0.43 0.44 0.68 0.41 0.44 0.70 0.40 0.42 0.76 0.42 0.41
INSIDE 0.80 0.56 0.51 0.79 0.55 0.50 0.76 0.58 0.53 0.81 0.57 0.50
NEAR 0.85 0.66 0.61 0.84 0.65 0.60 0.86 0.68 0.63 0.85 0.67 0.60
OPT-6.7B
P(True) 0.51 0.33 0.30 0.52 0.34 0.31 0.55 0.36 0.33 0.54 0.35 0.32
Pointwise VI 0.55 0.35 0.33 0.51 0.31 0.30 0.54 0.36 0.32 0.66 0.44 0.38
Usable LI 0.72 0.47 0.42 0.67 0.44 0.39 0.70 0.46 0.41 0.61 0.43 0.38
Semantic Entropy 0.71 0.41 0.42 0.65 0.39 0.43 0.68 0.38 0.40 0.74 0.40 0.40
Loopback Lens 0.72 0.42 0.43 0.66 0.40 0.44 0.69 0.39 0.41 0.75 0.41 0.40
INSIDE 0.78 0.54 0.49 0.77 0.52 0.48 0.74 0.56 0.51 0.79 0.55 0.48
NEAR 0.84 0.65 0.60 0.83 0.64 0.59 0.85 0.66 0.61 0.84 0.65 0.59

Definition 3.3 (Shapley Sentence Attribution). Now, for the context passage sx = (s1, s2, . . . , sn) ∈
C and associated question q ∈ Q, we aim to quantify the individual contribution of each sentence si
in the context to the model’s total information gain. To do this, we use the Shapley value Lundberg &
Lee (2017), a concept from cooperative game theory that fairly assigns credit to each element based
on its average marginal contribution. Using the total information gain defined in Equation equation 5,
the Shapley value for sentence si is computed as:

Shapley IGi ≜
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[IG(S ∪ {si} → q)− IG(S → q)] , (6)

where N = {1, . . . , n} is the set of all sentence indices in the context. For each subset S of sentences
that excludes si, the term inside the brackets measures the marginal increase in information gain when
si is added. The prefactor is the standard Shapley coefficient, which ensures that the contributions
are averaged fairly over all possible insertion orders of the sentences.

Definition 3.4 (Sentence-level NEAR Score). The total information that can be gained from the
context with respect to the given question is captured by aggregating the contributions of individual
sentences. Using the Shapley values from Equation 6, the NEAR score is defined as:

Shapley NEAR(sx, q) ≜
1

n

n∑
i=1

Shapley IGi, (7)

which reflects average marginal information gain from context sentences in answering the question.

Thus, based on Definitions 3.1 through 3.4, Shapley NEAR 7 offers a fine-grained decomposition of
the total information gain, quantifying how much usable information the model extracts from sx to
answer the question q. The Information Gain (IG) 3 measures the contribution of each attention head
and layer, while the Shapley Information Gain (Shapley IG) 6 further attributes this information to
individual sentence segments within the context. A higher NEAR score indicates greater information
utility from the context, implying that the generated output is less likely to be hallucinatory.
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Figure 2: (a) Contribution of Shapley aggregation on an example context where the 14th sentence
contains the answer to the question. (b) Information gain scores for detecting parametric and context-
induced hallucinations across context segments. (c) Layer-wise information gain comparison between
NEAR and LI . As shown in the subgraphs, relying only on the last layer causes loss of information
from earlier layers. The last-layer IG of LI corresponds to VI .

4 PROPERTIES AND BOUNDS OF SHAPLEY NEAR

This section outlines the mathematical and experimental properties of NEAR, with derivations in
Appendix A1. NEAR aggregates entropy-based information gain across all transformer layers and
attention heads, with each term bounded by log V , the maximum entropy over a vocabulary of size
V . Thus, NEAR is theoretically bounded within [−L ·H · log V, L ·H · log V ], where L and H are
the number of layers and heads. In practice, it reflects cumulative entropy reduction from contextual
conditioning and scales as NEAR(s, q) ∈ O(L ·H · log V ). Beyond boundedness, NEAR satisfies
key behavioral properties. First, it is symmetric: if two context sentences si and sj satisfy

IG(S ∪ {si} → q) = IG(S ∪ {sj} → q) for all S ⊆ s \ {si, sj},
then their Shapley values are identical, i.e., IGi = IGj . We also empirically observed (Section 5) that
for each layer ℓ and attention head h, the following inequality holds:

IG(ℓ,h)(∅ → q) ≤ IG(ℓ,h)(sirr
i → q) ≤ IG(ℓ,h)(sans

j → q),

here, sirr
i denotes a context sentence irrelevant to the answer, and sans

j contains the ground truth answer.
Empirically, NEAR scores also exhibit a monotonicity property similar to information-theoretic
measures: for any subset of layers U ⊆ L, the NEAR score computed over U is always less than or
equal to that over the full set L, as aggregating more layers cannot reduce total entropy gain:

NEARU (s, q) ≤ NEARL(s, q),

here, NEARU and NEARL denote NEAR scores computed over the subset U ⊆ {1, . . . , L} and the
full set L, respectively. This follows from NEAR’s additive structure over head-layer pairs, ensuring
information accumulates monotonically as more layers are included.

We estimate the NEAR score using an Average Marginal Effect (AME) estimator, which models
total information gain as a linear combination of sentence-level contributions. For each query, we
sample M random subsets of the n context sentences, compute the corresponding IG values, and
fit an ℓ1-regularized linear model to recover a sparse attribution vector. Under standard conditions,
including k-sparsity, sub-Gaussian noise, and a restricted eigenvalue condition, the resulting estimate
satisfies, with probability at least 1− δ:∣∣ ˆNEAR − NEAR

∣∣ ≤ C k

nκ2
(LH log V )

√
log(n/δ)

M
,

where L, H , and V denote the number of transformer layers, attention heads, and vocabulary size.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We classify unanswerable questions by computing NEAR scores to assess whether the response
generated by a model should be trusted in a given context, that is, whether the answer to a question

6
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Figure 3: Activation distributions at the final token position in the penultimate layer of LLaMA-
3.1-8B: (a) Norm-based attention output, (b) MLP layer output, (c) Final layer output, and (d)
Attention-wise Information Gain across all four datasets (CoQA, QuAC, SQuAD, and TriviaQA).

Methods AUC ↑ τ ↑ PCC ↑

NEAR w/o Shapley 0.79 0.51 0.48

Shapley NEAR 0.85 0.66 0.64

(a)

Methods AUC ↑ Acc. ↑ RL ↑

NEAR 0.85 0.78 0.82

INSIDE 0.80 0.74 0.80

NEAR + HC 0.89 0.81 0.83

(b)

Table 2: (a) Contribution of Shapley aggregation to NEAR scores. (b) Head Clipping (HC) results for
attention heads with IG < −0.05. The following heads were clipped: 349, 459, 485, 833, 955, 1007.

posed can be reliably inferred. We compare NEAR against several strong baselines, including
P(True) Kadavath et al. (2022), semantic entropy Farquhar et al. (2024), pointwise V-information
(PVI) Ethayarajh et al. (2022), layer-wise information (LI) Kim et al. (2024), Loopback Lens
with Sliding Window Chuang et al. (2024a), and INSIDE (K = 20, middle layer of the LLM is
considered) Chen et al. (2024). Each method captures a different perspective: P(True) estimates
model confidence in binary verification tasks; semantic entropy measures uncertainty via answer
diversity; PVI quantifies instance-level predictive difficulty; and LI captures entropy reduction across
transformer layers. We evaluate all methods on four question-answering benchmarks: CoQA Reddy
et al. (2019), QuAC Choi et al. (2018), SQuAD v2.0 Rajpurkar et al. (2016), and TriviaQA Joshi et al.
(2017). Following the setup in Lin et al. (2023), we use the development split of CoQA, validation split
of QuAC, a filtered version of the SQuAD v2.0 development set where is impossible=True,
and the rc-nocontext validation subset of TriviaQA with duplicates removed. Experiments are
conducted on three pretrained models: Qwen2.5-3B, LLaMA3.1-8B, and OPT-6.7B. We report
average area under the ROC curve (AUROC), Kendall’s τ , and Pearson correlation coefficient (PCC),
computed across three independent runs. NEAR scores are estimated with an AME estimator using
M = 50 randomly sampled coalitions of context sentences and failure probability δ = 0.01, yielding
high-confidence estimates of each sentence’s contribution to information gain (Appendix A8; further
details in Appendix A3). This approximation provides a practical trade-off between computational
cost and estimation accuracy, with all reported results exhibiting standard deviations within ±0.04.
We further evaluate on larger models—LLaMA-3.1-70B and Phi-3-Medium-14B—and on the
LongRA dataset, comparing NEAR (AME) against ANAH-v2 and MIND. Detailed setup, metrics,
and results are provided in Appendix A6.

5.2 RESULTS

Table 1 shows the results of hallucination detection using NEAR and several baseline methods across
four QA datasets (CoQA, QuAC, SQuAD, and TriviaQA) and three language models (Qwen2.5-3B,
LLaMA3.1-8B, and OPT-6.7B). We report performance using AUROC, Kendall’s τ , and Pearson
correlation (PCC). NEAR consistently performs the best across all datasets and models, showing
clear improvements over existing methods. In many cases, it outperforms the strongest baseline,
INSIDE, by 8–13% in AUROC and by 10–15% in correlation metrics like τ and PCC. The best
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Figure 4: Accuracy vs. NEAR threshold on CoQA, QuAC, SQuAD, and TriviaQA. Optimal
separation consistently occurs near the first quartile (Q1) across model variants.

scores for NEAR are observed on the SQuAD dataset for all models, suggesting that SQuAD is easier
for LLMs to understand and answer accurately. Among the three models, LLaMA3.1-8B achieves
the highest overall performance, ahead of Qwen2.5-3B and OPT-6.7B, especially when used with
NEAR. This suggests that stronger pre-trained models can lead to better hallucination detection when
combined with effective methods like NEAR. We also evaluated the methods after fine-tuning on the
dataset; the results are presented in Appendix A4 and quantitative examples without finetuning in
Appendix A9. We also tested NEAR on generalized tasks, detailed in Appendix A6.

6 ABLATION STUDIES

For the ablation studies, we primarily focus on the LLaMA-3.1-8B model with the CoQA dataset.
Results for other models and datasets are provided in Appendix A2.

Do we really need to consider all layers instead of only the final layer? Unlike methods such as
VI Ethayarajh et al. (2022), which consider only final-layer outputs, our results show that important
semantic information is also captured in earlier layers. As illustrated in Figure 2c, both LI and NEAR
scores indicate that usable information accumulates progressively across inner layers. A similar
trend is visible in Figure 3d, where different attention heads capture varying amounts of information.
This suggests that focusing only on the final layer overlooks valuable signals present throughout the
model.

Why not consider the output from the layers, as in LI , for NEAR? Figures 3a and 3b show the
activations of the self-attention and MLP components from the penultimate layer of the LLaMA
3.1-8B model. The sharp spikes in these plots reflect extreme internal features in the network, which
can cause the model to produce highly overconfident answers Chen et al. (2024); Sun et al. (2021). A
similar pattern of overconfidence is also clearly visible in the layer output shown in Figure 3c. We
observed this behavior consistently across nearly all layers and LLMs, aligning with the findings
of Chen et al. (2025). Based on this evidence, we choose to focus on norm-based attention outputs
rather than raw layer activations.

Detection of Parametric and Context-Induced Hallucinations from NEAR Scores. Let si /∈ A(q)
be a context sentence that does not contain the correct answer to question q, where A(q) denotes the
set of answer-containing sentences. Ideally, such a sentence should contribute no useful information,
and the information gain under attention head (ℓ, h) should satisfy IG(ℓ,h)(si → q) ≈ 0. This follows
from equation 4, which becomes negligible when conditioning on si does not reduce uncertainty,
i.e.,H(ℓ,h)(qt | q<t, si) ≈ H(ℓ,h)(qt | q<t, ∅). However, we find that even when si /∈ A(q), NEAR
scores can be negative (IGi < 0) or positive (IGi > 0). A negative score indicates the model
becomes more uncertain when conditioned on si, meaning the context harms rather than helps, this
is parametric hallucination. A positive score, despite the absence of the answer, implies that the
context falsely boosts confidence, this is context-induced hallucination. Such cases arise due to
in-context learning, the model interprets partial or stylistically similar information as relevant, leading
to reduced entropy and overconfidence. To validate this, we measured the mean negative NEAR
scores across all context pieces. Adding random noisy text (similar technique used in Chen et al.
(2025)) caused negligible change, suggesting that the observed negativity is not due to noise or
formulation errors. However, fine-tuning the model on CoQA significantly increased negative NEAR
scores, indicating that the model had learned to rely more on context, which led to greater uncertainty
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when misleading context was introduced, confirming parametric hallucination. For context-induced
hallucination, we computed mean positive NEAR scores for non-answer sentences. While adding
random noise had little effect, appending misleading but partially aligned segments of the rest of the
context led to a sharp increase in NEAR scores. This confirms that NEAR effectively captures how
misleading context increases confidence in incorrect predictions. The results are shown in Figure 2b.
However, these hallucinations do not significantly affect the overall reliability of Shapley NEAR, as
demonstrated in Appendix A5.

What Should Be the Threshold Value for NEAR to Segregate Hallucinated Answers? A key step
in using NEAR for hallucination detection is choosing an effective threshold to separate answerable
from hallucinated responses. We evaluate classification accuracy by sweeping thresholds across
quantiles: 0, 0.5 × Q1, Q1, Median, Q3, and 1.5 × Q3. As shown in Figure 4, the first quartile
(Q1) consistently yields the best accuracy across models (LLaMA-3.1-8B, OPT-6.7B, Qwen2.5-3B)
and datasets (CoQA, QuAC, SQuAD, TriviaQA). In contrast, thresholds near 0 or 1.5×Q3 reduce
performance. Based on this, we use Q1 as the default NEAR threshold for all experiments.

Effect of Shapley Combination on NEAR. We evaluated the effect of Shapley aggregation in
NEAR, comparing it to a greedy method that ranks sentences by standalone gain (without Shapley
attribution). As shown in Table 2a, Shapley improves Kendall’s τ (0.51→ 0.66), PCC (0.48→ 0.64),
and AUC (0.79→ 0.85), highlighting the benefit of highlighting the benefit of Shapley aggregation
over coalitions for robust attribution. Figure 2a shows Shapley downweights irrelevant segments and
upweights answer-relevant ones.

Clipping Heads showing Parametric Hallucination To further demonstrate the effectiveness of our
framework in identifying hallucination-prone attention heads, we clipped all heads in LLaMA-3.1-8B
(on the CoQA dataset) with IG values below half the most negative score. This conservative threshold
avoids pruning heads with mildly negative IG, which may still contribute useful information (see
Figure 3d). We compared our method to INSIDE (EigenScore + Feature Clipping) with a fixed
threshold of 0.5, evaluating AUROC, accuracy, and ROUGE-L (computed between the given and
generated answers). For both NEAR and NEAR+HC (Head Clipping), we used the first quartile
(Q1) as the classification threshold. As shown in Table 2b, applying head clipping led to consistent
improvements across all metrics. All results are averaged over three independent runs, with standard
deviation < 0.3. These findings align with prior work Michel et al. (2019); Gong et al. (2021); Voita
et al. (2019), which suggests that not all attention heads contribute meaningfully to model output.

7 RELATED WORK

Recent studies increasingly leverage attention patterns to detect hallucinations in language models.
Lookback Lens Chuang et al. (2024b) introduces a “lookback ratio” that contrasts attention on the
input context versus generated tokens, enabling lightweight yet competitive classification. Spectral
methods Binkowski et al. (2025) treat attention maps as graphs and extract top eigenvalues from the
attention Laplacian to signal abnormality. LLM-Check Sriramanan et al. (2024a) integrates internal
signals, including attention matrices and hidden states, but its accuracy is sensitive to the chosen
layer. Beyond attention, entropy-based approaches such as Semantic Entropy Farquhar et al. (2024)
and Semantic Entropy Probes Kossen et al. (2024) estimate model uncertainty via output clustering
or learned probes. Hidden-state probing Azaria & Mitchell (2023); Fadeeva et al. (2024) also helps
identify token-level unreliability. More recently, mechanistic interpretability has been applied to
hallucination detection: some methods regress over parametric versus contextual signals Sun et al.
(2025), while others fine-tune based on internal layer projections Yu et al. (2024). In contrast, our
framework is fully plug-and-play - requiring neither retraining nor architectural modifications - while
offering fine-grained attention-level attribution.

8 CONCLUSION

Shapley NEAR is an interpretable hallucination detector that attributes entropy-based information
flow across layers/heads using sentence-level Shapley values. It outperforms baselines, separates
parametric from context-induced hallucinations, and enables test-time head clipping to curb overcon-
fidence without retraining. Limitations appear in Appendix A10.

9
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ETHICS STATEMENT

We affirm adherence to the ICLR Code of Ethics. This study evaluates hallucination detection in
LLMs using publicly available QA datasets (CoQA, QuAC, SQuAD, TriviaQA, LongBench v2)
and collects no new human-subject data; no additional personally identifiable information beyond
what exists in these benchmarks is processed. Our analyses target model behavior rather than
individuals or groups, though we acknowledge that pretraining data and benchmarks may encode
biases. To mitigate risks, we report results across multiple models and datasets, release code with
clear documentation, and recommend pairing NEAR with toxicity/bias audits and task-specific
guardrails. NEAR (including AME estimation and test-time head clipping) requires no additional
model training, helping limit compute and environmental cost; we report runtime for transparency.
We will release code and configurations to enable reproducibility without distributing copyrighted
or sensitive data. This work has no known dual-use intended to cause harm, though reliability tools
could be misapplied to overstate safety; users should exercise caution. The authors report no conflicts
of interest or external sponsorship influencing this work.

REPRODUCIBILITY STATEMENT

We have submitted an anonymous codebase as supplementary material, containing end-to-end
scripts, configuration files, and a minimal environment specification to reproduce all tables and
figures. The paper provides the complete algorithmic description (Algorithm 1), with implementation
details for AME–NEAR in Section A7 and hyperparameter choices (e.g., M=50 coalitions, fixed ℓ1
regularization) in. Data preprocessing and sentence segmentation follow the same pipeline; dataset
splits and prompts are included in the supplementary configs. Theoretical assumptions and proofs
supporting the estimator are consolidated in Appendix A1.2, while sensitivity to M and runtime
settings are documented in Appendix A8 and Table 24. We fix random seeds in all runs and report
hardware/batching details alongside results to facilitate exact replication.
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A1 DERIVATION OF THEORETICAL PROPERTIES AND ERROR BOUNDS FOR
SHAPLEY NEAR SCORES

A1.1 PROPERTIES DERIVATION

We begin by formally defining the NEAR score. Let the context passage be x = {x1, x2, . . . , xn},
consisting of n disjoint sentences, and let q denote the corresponding question. For a transformer
model with L layers and H attention heads per layer, the NEAR score is given by

NEAR(x, q) =
1

n

n∑
i=1

IGi, (8)

where IGi denotes the Shapley value assigned to sentence xi, measuring its marginal contribution to
the model’s information gain at the final prediction token.

The information gain for a subset of context sentences xS ⊆ x is defined as

IG(xS → q) =

L∑
ℓ=1

H∑
h=1

[
H(ℓ,h)(qt | ∅)−H(ℓ,h)(qt | xS)

]
, (9)

whereH(ℓ,h)(qt | xS) denotes the entropy of the softmax-normalized vocabulary distribution at the
final token qt, computed using context subset xS .

A fundamental property of entropy is that for any discrete distribution p ∈ RV over vocabulary size
V , the Shannon entropy is bounded as

0 ≤ H(p) ≤ log V, (10)

where the minimum is achieved for deterministic distributions and the maximum for uniform distribu-
tions. Applying this to attention outputs, it follows that

0 ≤ H(ℓ,h)(qt | xS) ≤ log V, (11)

for any layer ℓ, head h, and context subset xS .

Thus, the maximum change in entropy across any head-layer combination is bounded by∣∣∣H(ℓ,h)(qt | ∅)−H(ℓ,h)(qt | xS)
∣∣∣ ≤ log V, (12)

implying that the total information gain satisfies

|IG(xS → q)| ≤ L ·H · log V. (13)

The Shapley value IGi for a sentence xi is computed by averaging its marginal contributions over all
subsets of other sentences:

IGi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[IG(S ∪ {xi} → q)− IG(S → q)] , (14)

where N = {1, . . . , n} indexes the context sentences. Given the bound in equation 13, it immediately
follows that

|IGi| ≤ L ·H · log V, (15)
and thus the NEAR score itself is bounded by

− L ·H · log V ≤ NEAR(x, q) ≤ L ·H · log V . (16)

Moreover, the asymptotic growth of NEAR with respect to model size is characterized by

NEAR(x, q) ∈ O(L ·H · log V ), (17)

indicating that larger models with more layers and heads can potentially exhibit larger NEAR scores.

In practice, NEAR scores tend to remain significantly below their theoretical maxima because
softmax-normalized attention distributions are rarely fully uniform or fully deterministic. Confident
predictions (low entropy) result in large NEAR scores, while uncertain or irrelevant contexts yield
low NEAR values.
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Symmetry of Shapley-Based NEAR NEAR preserves the symmetry property of Shapley values.
If two sentences xi and xj have identical marginal contributions across all subsets S ⊆ x \ {xi, xj},
then their Shapley attributions are equal:

IGi = IGj . (18)

Thus, NEAR treats functionally equivalent sentences identically, ensuring fair attribution.

Context redundancy and diminishing marginal gains. In practice, we often observe diminishing
marginal information gains as context grows, consistent with redundancy among sentences. Formally,
if the model-induced IG behaves in a submodular-like manner on sampled coalitions, then for S ⊆ T
one expects

IG(S ∪ {xi} → q)− IG(S → q) ≥ IG(T ∪ {xi} → q)− IG(T → q). (19)

We use this as an empirical trend rather than a theoretical assumption: overlapping (redundant) sen-
tences typically receive smaller Shapley attributions and contribute less to NEAR, but our guarantees
do not rely on submodularity.

Zero NEAR for Context-Free Questions If the context x provides no useful information for
answering q, the entropy remains unchanged after conditioning:

H(qt | ∅) ≈ H(qt | xS), ∀xS ⊆ x, (20)

leading to
NEAR(x, q) ≈ 0, (21)

indicating that the model’s uncertainty is unaffected by the context.

A1.2 ESTIMATION ERROR BOUND FOR AME–NEAR

Setup. Let n be the number of context sentences. For each query, we sample M random coalitions
of sentences, compute the corresponding information gains (IG), and form a binary design X ∈
{0, 1}M×n (row m indicates which sentences are included in coalition m) with responses y ∈ RM .
We estimate the sentence-level contribution vector ϕ ∈ Rn via an ℓ1-regularized least-squares (AME)
estimator:

ϕ̂ ∈ arg min
ϕ∈Rn

1

2M
∥y −Xϕ∥22 + λ∥ϕ∥1, (22)

and define the NEAR estimate as the average contribution

N̂EAR(x, q) =
1

n
1⊤ϕ̂. (23)

Assumptions. (i) (k-sparsity) The true contribution vector ϕ⋆ satisfies ∥ϕ⋆∥0 ≤ k. (ii) (Noise) The
residuals y −Xϕ⋆ are sub-Gaussian with proxy σ; a conservative envelope is σ ≤ B, where

B = L ·H · log V, (24)

since each coalition IG lies in [−B,B]. (iii) (Design) X satisfies a restricted–eigenvalue condition

with constant κ > 0. Choose λ ≍ σ
√

log(n/δ)
M .

Main bound. With probability at least 1− δ,

∣∣N̂EAR(x, q)−NEAR(x, q)
∣∣ =

1

n

∣∣1⊤(ϕ̂−ϕ⋆)
∣∣ ≤ 1

n
∥ϕ̂−ϕ⋆∥1 ≤

C k σ

nκ2

√
log(n/δ)

M
, (25)

for a universal constant C > 0. Using σ ≤ B from equation 24 yields the explicit form

∣∣N̂EAR(x, q)− NEAR(x, q)
∣∣ ≤ C k

nκ2

(
LH log V

) √ log
(
n/δ

)
M

. (26)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0

2.5

5.0

7.5 CoQA QuAC

0 200 400 600

0.0

2.5

5.0

7.5 SQuAD

0 200 400 600

TriviaQA

Attention-heads

Sh
ap

le
y 

NE
AR

 S
co

re
s

(a)

0

2

4 CoQA QuAC

0 250 500 750 1000

0

2

4

SQuAD
0 250 500 750 1000

TriviaQA

Attention-heads

Sh
ap

le
y 

NE
AR

 S
co

re
s

(b)

Figure 5: Attention-wise Information Gain for (a) Qwen2.5-3B and (b) OPT-6.7B.
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Figure 6: Layer-wise Information Gain for (a) Qwen2.5-3B and (b) OPT-6.7B.

Implications. The AME estimation error for NEAR decays as O
(

k
nκ2 (LH log V )

√
log(n/δ)

M

)
,

improving with more sampled coalitions M and depending mildly on model depth (L), heads (H),
and vocabulary size (V ).

A2 ABLATION STUDIES FOR REST OF THE DATASETS

A2.1 LAYER-WISE INFORMATION TRENDS IN QWEN2.5-3B AND OPT-6.7B

Unlike methods such as VI Ethayarajh et al. (2022), which rely solely on final-layer outputs, our
experiments with Qwen2.5-3B and OPT-6.7B across CoQA, QuAC, SQuAD, and TriviaQA reveal
that significant semantic information emerges well before the final layer. As shown in Figure 6a and
Figure 6b, both LI and NEAR scores accumulate progressively from early to later layers, highlighting
that inner layers contribute meaningfully to usable information for Qwen2.5 3B and OPT6.7 respec-
tively. Additionally, attention head analysis in these models (Figure 5a and Figure 5b) demonstrates
substantial variance in information captured by different heads, reinforcing that attention dynamics
vary widely across layers and heads. These observations confirm that limiting interpretability to the
final layer overlooks critical intermediate representations and that capturing attention-driven signals
across all layers is essential for reliable attribution.

A2.2 ANALYZING PARAMETRIC AND CONTEXT-INDUCED HALLUCINATIONS WITH NEAR
SCORES

To better understand the origin of hallucinations, we analyze NEAR scores assigned to context
sentences that do not contain the ground-truth answer. Let si /∈ A(q), where A(q) denotes the
minimal set of answer-supporting sentences for a given question q. Ideally, such irrelevant sentences
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Figure 7: Emergence of parametric and context-induced hallucinations captured by NEAR scores.

should yield zero usable information, implying that the entropy before and after conditioning remains
approximately equal. This leads to an information gain of zero: IG(ℓ,h)(si → q) ≈ 0. However,
empirical findings across all four QA datasets—CoQA, QuAC, SQuAD, and TriviaQA—demonstrate
that even when si /∈ A(q), the NEAR attribution IGi is often either significantly negative or positive.
These deviations allow us to distinguish between two types of hallucination.

If IGi < 0, it indicates that the entropy after conditioning on si is higher than that with no context, i.e.,
H(qt | si) > H(qt | ∅). This suggests that the model becomes more uncertain due to misleading con-
text overriding its parametric knowledge—a behavior we term parametric hallucination. Conversely,
if IGi > 0 despite si /∈ A(q), the model incorrectly gains confidence due to spurious semantic cues
or surface-level similarities. This phenomenon is referred to as context-induced hallucination.

Figures 7a and 7b visually depict these effects by comparing NEAR scores before and after perturba-
tions, such as noise injection or model fine-tuning. These experiments confirm that NEAR faithfully
captures both types of hallucination via its attention-wise decomposition of usable information.

Experimental Setup. To validate this decomposition, we analyze NEAR attributions on CoQA,
QuAC, SQuAD, and TriviaQA using LLaMA-3.1-8B, OPT-6.7B, and Qwen2.5-3B. For each data-
point, we extract context segments si /∈ A(q) and compute:

MeanNeg = Esi /∈A(q)[IGi | IGi < 0], MeanPos = Esi /∈A(q)[IGi | IGi > 0].

We run two ablations to support the hypothesis:

1. Random Noise Injection: Injecting randomly sampled tokens into si decreases the mag-
nitude of MeanNeg and MeanPos, indicating that noise alone does not explain strong
deviations in NEAR.

2. Fine-tuning: Fine-tuning the model on CoQA increases |MeanNeg|, showing heightened
model sensitivity to misleading context after alignment, and thus more pronounced paramet-
ric hallucinations.

Conclusion. These results confirm that NEAR scores reflect two distinct modes of hallucination:

Parametric Hallucination⇐⇒ Context increases entropy (IGi < 0),

Context-Induced Hallucination⇐⇒ Spurious entropy reduction (IGi > 0, si /∈ A(q)).
Therefore, NEAR provides a faithful and granular decomposition of hallucination signals within the
model’s internal reasoning.

A2.3 ABLATION: ESTIMATORS FOR SENTENCE–LEVEL SHAPLEY ATTRIBUTION

Setup. We compare five estimators for sentence–level Shapley attribution within NEAR on CoQA
using LLaMA-3.1-8B: (i) SHAP (Exact) via exhaustive coalitions (ground truth on a stratified subset
with n ≤ 10 sentences), (ii) Monte Carlo (uniform permutations), (iii) Beta Shapley (weighted

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

coalitions), (iv) FastSHAP (learned explainer), and (v) AME (coalition sampling + ℓ1 regression).
Unless noted, all approximate methods use M=50 evaluations per datapoint. We report agreement
with SHAP (Exact) via mean absolute error (MAE; ↓) and Spearman correlation ρ (↑), downstream
hallucination AUROC (↑), and wall-clock runtime per 100 QA examples (↓). FastSHAP is trained on
5k held-out examples; we amortize its one-time training over the evaluation set.

Experimental details. We use the identical preprocessing and NEAR IG pipeline as in Section 5:
sentence segmentation and tokenization are unchanged; IG is computed by conditioning on sampled
coalitions and aggregating entropy changes across all layers/heads. For AME, each datapoint
contributes M=50 uniformly sampled coalitions to the design matrix; the ℓ1 regularization weight λ
is selected once on a small validation split and then fixed across all AME runs. Monte Carlo uses
M=50 random permutations; Beta Shapley uses the canonical beta-weighted coalition sampling from
prior work with the same evaluation budget; FastSHAP trains a single explainer (same model/dataset)
and is then applied to the test subset. All methods are run on the same model/dataset configuration
as our main experiments and measured under the same batching setup; AME’s runtime matches
Table 24.

Results. AME is the most faithful among approximate Shapley estimators to SHAP (Exact) (lowest
MAE, highest ρ) and yields the best downstream AUROC after SHAP, while achieving the shortest
total runtime under the shared budget (Table 3). Monte Carlo and Beta Shapley trail AME in both
accuracy and time. FastSHAP attains competitive agreement but, at this scale, explainer training
dominates end-to-end cost, making it slower than AME. As expected, exact SHAP offers the highest
fidelity but is by far the slowest. These findings support AME as the preferred estimator for NEAR in
our setting: it closely matches SHAP while being the fastest to deploy among practical estimators.

Table 3: Ablation of Shapley estimators for NEAR on CoQA (LLaMA-3.1-8B). Agreement is
measured against SHAP (Exact); AUROC is for hallucination detection. Runtimes are per 100 QA
examples. AME uses the same M=50 coalition budget as the rest of the paper.

Estimator MAE to SHAP ↓ ρ to SHAP ↑ AUROC ↑ Runtime (s) ↓
SHAP (Exact) 0.000 1.00 0.862 1,240.3
Monte Carlo (M=50) 0.028 0.91 0.842 58.9
Beta Shapley (M=50) 0.023 0.93 0.845 45.2
FastSHAP (end-to-end) 0.035 0.88 0.838 200.7
AME (M=50) 0.015 0.96 0.852 30.6

AME attains the second-best fidelity to SHAP and the best runtime among practical Shapley estima-
tors, aligning with our theoretical and empirical analyses elsewhere in the paper.

A3 EXPERIMENT EXTENDED

We evaluated our method using four standard QA benchmarks: CoQA, QuAC, SQuAD, and Trivi-
aQA, across three pretrained language models: LLaMA-3.1-8B, OPT-6.7B, and Qwen2.5-3B. For
each model–dataset pair, NEAR scores were computed by aggregating information gain across all
transformer layers and attention heads. Attention outputs were taken at the final token of each
question, and entropy was calculated from the softmax-normalized vocabulary logits. Sentence-level
context segmentation was applied consistently across datasets.

To efficiently estimate Shapley values, we use an AME estimator with M = 50 random coalitions
per example, fitting an ℓ1-regularized linear model to obtain sparse attributions. We set δ = 0.01, and
bounded the estimation error using:∣∣N̂EAR(x, q)− NEAR(x, q)

∣∣ ≤ C k

κ2
(LH log V )

√
log(n/δ)

M
. (27)

where L is the number of layers, H the number of heads per layer, V the vocabulary size, and n the
number of context segments.

To study parametric hallucinations, we fine-tuned each model on CoQA using the AdamW optimizer
with a learning rate of 2 × 10−5, batch size 8, weight decay 0.01, and 2 training epochs with 500

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 4: Hallucination detection performance after fine-tuning. Scores improve while maintaining
relative proportions.

Models CoQA QuAC SQuAD TriviaQA
AUC τ PCC AUC τ PCC AUC τ PCC AUC τ PCC

Qwen2.5-3B
P(True) 0.58 0.38 0.36 0.59 0.39 0.37 0.61 0.40 0.38 0.60 0.39 0.37
Pointwise VI 0.61 0.42 0.38 0.60 0.41 0.37 0.62 0.43 0.39 0.63 0.43 0.40
Usable LI 0.75 0.51 0.47 0.74 0.50 0.46 0.76 0.51 0.48 0.72 0.49 0.46
Semantic Entropy 0.78 0.54 0.50 0.76 0.52 0.48 0.77 0.51 0.47 0.80 0.53 0.49
INSIDE 0.84 0.60 0.56 0.83 0.59 0.55 0.82 0.60 0.57 0.85 0.61 0.56
NEAR 0.91 0.71 0.70 0.90 0.72 0.71 0.92 0.73 0.72 0.91 0.72 0.71
LLaMA3.1-8B
P(True) 0.63 0.40 0.36 0.64 0.41 0.37 0.67 0.43 0.39 0.66 0.42 0.37
Pointwise VI 0.67 0.43 0.40 0.63 0.39 0.37 0.66 0.44 0.39 0.79 0.53 0.46
Usable LI 0.83 0.55 0.50 0.78 0.52 0.47 0.80 0.53 0.49 0.72 0.51 0.46
Semantic Entropy 0.82 0.48 0.49 0.76 0.46 0.50 0.79 0.45 0.47 0.86 0.47 0.47
INSIDE 0.89 0.62 0.57 0.88 0.61 0.56 0.85 0.64 0.59 0.90 0.63 0.56
NEAR 0.91 0.73 0.68 0.90 0.72 0.67 0.92 0.74 0.70 0.91 0.73 0.67
OPT-6.7B
P(True) 0.60 0.39 0.36 0.61 0.40 0.37 0.64 0.42 0.38 0.63 0.41 0.37
Pointwise VI 0.64 0.41 0.38 0.60 0.37 0.36 0.63 0.42 0.38 0.75 0.51 0.44
Usable LI 0.81 0.53 0.48 0.76 0.51 0.46 0.79 0.52 0.47 0.70 0.51 0.44
Semantic Entropy 0.80 0.46 0.47 0.74 0.44 0.48 0.77 0.43 0.45 0.83 0.45 0.45
INSIDE 0.87 0.62 0.56 0.86 0.60 0.55 0.83 0.63 0.58 0.88 0.62 0.55
NEAR 0.90 0.73 0.67 0.89 0.72 0.66 0.91 0.74 0.68 0.90 0.73 0.66

warmup steps. Training was performed on NVIDIA A100 80GB GPUs using PyTorch 2.1 and
DeepSpeed ZeRO Stage 2, with mixed-precision (bf16) training enabled.

We report mean NEAR scores on context segments with and without the ground-truth answer, based
on 10,000 sampled questions. These controlled experiments show that NEAR scores are robust
indicators of hallucination, effectively capturing model uncertainty and context influence.

A4 EXPERIMENTAL RESULTS WITH MODEL FINETUNING

Hallucination Detection Results after Fine-Tuning. Table 4 presents the hallucination detection
performance of various uncertainty estimation methods across four QA benchmarks (CoQA, QuAC,
SQuAD, and TriviaQA) and three LLMs (Qwen2.5-3B, LLaMA3.1-8B, and OPT-6.7B), after fine-
tuning. The evaluation metrics include area under the ROC curve (AUC), Kendall’s τ , and Pearson
correlation coefficient (PCC).

Fine-tuning consistently improves the performance of all methods across all models and datasets.
Notably, our proposed method NEAR continues to outperform all baselines with a substantial margin.
On average, NEAR achieves AUC scores above 0.90 across all datasets, with Kendall’s τ and PCC
also reaching peak values around 0.72–0.74, indicating both strong rank-order and linear correlation
with ground truth hallucination labels. Other methods such as INSIDE and Semantic Entropy also
benefit from fine-tuning but remain 4–6 points behind NEAR in AUC and show lower correlation
coefficients. For instance, on the SQuAD dataset with the LLaMA3.1-8B model, NEAR achieves
an AUC of 0.92 compared to 0.85 from INSIDE and 0.79 from Semantic Entropy. Similarly, in
TriviaQA, NEAR maintains a consistent advantage across all metrics and models.

Experimental Setup. Each model was fine-tuned using the train split of the corresponding dataset
and evaluated on its validation split. We used the AdamW optimizer with a learning rate of
2 × 10−5, weight decay of 0.01, batch size of 8, and trained for 2 epochs with 500 warmup steps
and early stopping. Training was performed on NVIDIA A100 80GB GPUs using DeepSpeed
ZeRO Stage 2 and bf16 precision. To efficiently estimate Shapley values, we use an AME estimator
with M = 50 random coalitions per example. All reported evaluation metrics are averaged over 3
independent runs, with standard deviations within ±0.03.
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A5 ROBUSTNESS OF NEAR AGAINST PARAMETRIC AND CONTEXT-INDUCED
HALLUCINATIONS.

While NEAR captures both parametric and context-induced hallucinations at the sentence level, it
is crucial to verify that such artifacts do not dominate or distort the final information attribution.
Ideally, context segments that do not contain the correct answer should have NEAR scores near
zero. However, due to model pretraining effects (parametric hallucination) and contextual mimicry
(context-induced hallucination), small negative or positive NEAR values can occur even without the
ground truth answer.

To evaluate the robustness of NEAR, we formally partition the context into sentences that contain the
answer (Sans) and those that do not (Snon-ans). The total information gain decomposes as

IG(x→ q) =
∑
i∈Sans

IGi +
∑

j∈Snon-ans

IGj , (28)

where IGi denotes the Shapley value of sentence xi. We then define the dominance ratio:

Dominance Ratio =
Mean(IGi, i ∈ Sans)

|Mean(IGj , j ∈ Snon-ans)|
, (29)

which quantifies whether true answer-supporting information overwhelms hallucination artifacts.

Experimental Setup. We conduct experiments across three model families: LLaMA-3.1-8B, OPT-
6.7B, and Qwen2.5-3B. Evaluations are performed on four datasets: CoQA, QuAC, SQuAD v1.1,
and TriviaQA. Each context passage is segmented into sentences, and NEAR scores are computed per
sentence. Context sentences are manually aligned with ground truth answers using string matching
and fuzzy heuristics. NEAR scores are calculated using randomly sampled coalitions M = 50 per
datapoint, allowing stable Shapley estimation through sparse ℓ1-regular regression. The temperature
parameter during softmax inference is set to T = 1.0 (default). No additional prompt tuning or
instruction tuning is applied unless otherwise noted. Models are evaluated in a zero-shot setting
without retrieval augmentation.

Table 5 summarizes the average NEAR scores for answer-containing and non-answer-containing
context sentences, along with the dominance ratio. Across all models and datasets, the dominance
ratio consistently exceeds 20, with most values ranging between 23 and 26. This indicates that the
information gain from answer-containing context sentences is significantly higher—by more than an
order of magnitude—than the entropy contributions of non-answer sentences. These results affirm
that NEAR provides a strong and reliable decomposition of usable information, even in the presence
of noise or hallucination-inducing segments.

Table 5: Robustness of NEAR attribution: Average NEAR scores for answer-containing vs non-
answer-containing sentences. Higher dominance ratios indicate stronger signal-to-noise separation.

Model Dataset Mean NEAR (Ans.) Std. Dev. Mean NEAR (Non-Ans.) Std. Dev. Dominance Ratio
LLaMA-3.1-8B CoQA 7.21 0.14 -0.31 0.06 23.26
LLaMA-3.1-8B QuAC 7.38 0.13 -0.30 0.05 24.60
LLaMA-3.1-8B SQuAD 7.50 0.16 -0.32 0.05 23.44
LLaMA-3.1-8B TriviaQA 7.65 0.15 -0.29 0.06 26.38

OPT-6.7B CoQA 7.02 0.17 -0.28 0.07 25.07
OPT-6.7B QuAC 7.20 0.18 -0.29 0.08 24.83
OPT-6.7B SQuAD 7.30 0.19 -0.30 0.09 24.33
OPT-6.7B TriviaQA 7.10 0.18 -0.27 0.08 26.30

Qwen2.5-3B CoQA 6.90 0.15 -0.33 0.07 20.91
Qwen2.5-3B QuAC 6.85 0.14 -0.31 0.08 22.10
Qwen2.5-3B SQuAD 6.95 0.16 -0.32 0.07 21.72
Qwen2.5-3B TriviaQA 6.88 0.13 -0.30 0.08 22.93

A6 GENERALIZATION TO OTHER TASKS

While NEAR is primarily formulated for question answering (QA) tasks by computing entropy at
the final answer token, the framework naturally extends to other generation settings. For instance, in
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summarization, information gain can be evaluated at the end of the summary sequence. In dialog
systems, NEAR can be applied at each utterance boundary to assess context contribution toward the
next response.

To illustrate this potential, we conduct a small pilot experiment on the XSum Narayan et al. (2018)
summarization dataset. We compute NEAR scores using entropy at the final token of generated
summaries, following the same context segmentation and Shapley attribution methodology. Prelim-
inary results show that answer-relevant document spans receive consistently higher NEAR scores,
suggesting effective context attribution in summarization as well.

S1 S2 S3 S4 S5 S6
Context Sentences

0.0

0.2

0.4

0.6

0.8

1.0

NE
AR

 S
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re

Pilot NEAR Scores on XSum Example
Relevance threshold

Figure 8: Pilot NEAR scores on the XSum dataset. NEAR identifies summary-relevant context
sentences with higher average attribution, supporting its applicability to summarization.

This evidence indicates that NEAR may serve as a unified attribution framework across a variety of
text generation tasks. We leave a full empirical evaluation for future work.

A6.1 ADDITIONAL MODELS: LLAMA-3.1-70B AND PHI-3-MEDIUM-14B-4K-INSTRUCT

Experimental setup. We replicate the main evaluation on four QA datasets (CoQA, QuAC, SQuAD,
TriviaQA) using two larger models: Phi-3-Medium-4K-Instruct (14B, Microsoft): 1 , and Llama-
3.1-70B (Meta) 2. NEAR uses the AME estimator with M=50 uniformly sampled coalitions per
datapoint and a fixed ℓ1 regularization chosen once on a small validation split and held constant
across all runs. All methods share the same preprocessing, sentence segmentation, tokenization, and
NEAR IG pipeline (entropy aggregation over all layers/heads). We report average AUROC (AUC),
Kendall’s τ , and Pearson correlation (PCC). Batching/hardware are matched to the main experiments;
for NEAR (AME) this corresponds to the same per-100 example runtime budget reported elsewhere.

Results. On both larger models, NEAR (AME) consistently outperforms all baselines across the four
datasets. LLaMA-3.1-70B attains the strongest absolute scores overall, and NEAR (AME) provides
the largest margin over baselines on TriviaQA and CoQA, reflecting its ability to aggregate useful
evidence over long and multi-hop contexts. Phi-3-Medium-14B-4K-Instruct shows a similar trend:
NEAR (AME) maintains clear gains over INSIDE and entropy-based detectors, with improvements
in AUROC accompanied by higher rank and linear correlations (Kendall’s τ and PCC), indicating
better calibration of sentence-level uncertainty signals. Because we keep the AME configuration
fixed (M=50 coalitions, same λ and IG pipeline), these gains reflect estimator quality rather than
hyperparameter tuning or runtime budget differences.

A6.2 EXTENDED EXPERIMENTS: NEAR (AME) VS. BASELINES

Setup. Unless noted, NEAR uses the AME estimator with M=50 uniformly sampled coalitions
per datapoint and a fixed ℓ1 regularization (selected once on a small validation split and held
constant thereafter). All methods share the same preprocessing, sentence segmentation, tokenization,

1https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
2https://huggingface.co/meta-llama/Llama-3.1-70B
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Table 6: Hallucination detection performance on CoQA, QuAC, SQuAD, and TriviaQA for two
larger models (LLaMA-3.1-70B, Phi-3-Medium-14B-4K-Instruct). We report average AUROC
(AUC), Kendall’s τ , and Pearson correlation (PCC). Higher is better. NEAR (AME) attains the best
overall performance across datasets for both models.

Models CoQA QuAC SQuAD TriviaQA

AUC↑ τ ↑ PCC↑ AUC↑ τ ↑ PCC↑ AUC↑ τ ↑ PCC↑ AUC↑ τ ↑ PCC↑
LLaMA-3.1-70B
P(True) 0.55 0.36 0.33 0.56 0.37 0.34 0.59 0.39 0.36 0.58 0.38 0.35
Pointwise VI 0.61 0.38 0.35 0.59 0.36 0.34 0.62 0.39 0.36 0.71 0.48 0.42
Usable LI 0.77 0.51 0.46 0.73 0.49 0.44 0.75 0.50 0.45 0.69 0.47 0.42
Semantic Entropy 0.76 0.45 0.46 0.71 0.43 0.45 0.73 0.42 0.44 0.79 0.44 0.44
Loopback Lens 0.77 0.46 0.47 0.72 0.44 0.46 0.74 0.43 0.45 0.80 0.45 0.45
INSIDE 0.85 0.60 0.55 0.84 0.59 0.54 0.82 0.61 0.56 0.86 0.60 0.53
NEAR (AME) 0.89 0.72 0.67 0.88 0.71 0.66 0.89 0.73 0.69 0.89 0.72 0.66
Phi-3-Medium-14B-4K-Instruct
P(True) 0.52 0.34 0.31 0.53 0.35 0.32 0.56 0.37 0.34 0.54 0.35 0.33
Pointwise VI 0.58 0.36 0.34 0.55 0.34 0.32 0.58 0.37 0.34 0.68 0.46 0.40
Usable LI 0.74 0.49 0.44 0.70 0.47 0.42 0.72 0.48 0.43 0.66 0.46 0.41
Semantic Entropy 0.73 0.43 0.44 0.68 0.41 0.44 0.70 0.40 0.42 0.76 0.42 0.41
Loopback Lens 0.74 0.44 0.45 0.69 0.42 0.45 0.71 0.41 0.43 0.77 0.43 0.42
INSIDE 0.81 0.57 0.52 0.80 0.56 0.51 0.78 0.58 0.53 0.82 0.57 0.50
NEAR (AME) 0.86 0.68 0.63 0.85 0.67 0.62 0.86 0.69 0.64 0.86 0.68 0.61

and NEAR IG pipeline (entropy aggregation across all layers/heads). We evaluate on the same
model/dataset configurations as the main results and report AUROC (↑), Kendall’s τ (↑), and Pearson
correlation (PCC; ↑). Runtimes (when shown) are measured under the same batching and hardware
settings.

Long-context generalization (LongBench v2). To assess robustness in long-context QA, we
evaluate on LongBench v2Bai et al. (2024) (multi-document and long-context tasks; up to 100K
tokens; 503 datapoints). Across three base models, NEAR (AME) outperforms INSIDE and
Loopback Lens on all three metrics, indicating strong performance in challenging long-context
scenarios. Variability across three runs is low (±0.006 AUROC, ±0.007 Kendall’s τ , ±0.007 PCC).

Table 7: LongBench v2 comparison. NEAR (AME) achieves 7–12% relative AUROC gains and
consistent improvements in Kendall’s τ and PCC across models.

Model Method AUROC ↑ Kendall’s τ ↑ PCC ↑

Qwen2.5-3B
NEAR (AME) 0.792 0.514 0.527
INSIDE 0.709 0.457 0.471
Loopback Lens 0.683 0.438 0.452

LLaMA-3.1-8B
NEAR (AME) 0.812 0.529 0.544
INSIDE 0.727 0.468 0.483
Loopback Lens 0.701 0.449 0.463

OPT-6.7B
NEAR (AME) 0.799 0.521 0.538
INSIDE 0.719 0.461 0.479
Loopback Lens 0.692 0.442 0.456

Comparison with non-entropy approaches. We further compare NEAR (AME) with recent
non-entropy methods ANAH-v2Gu et al. (2024) and MINDSu et al. (2024) across four QA datasets
(CoQA, QuAC, SQuADv2, TriviaQA) and three models. NEAR (AME) consistently achieves higher
AUROC, Kendall’s τ , and PCC across all settings. Over three runs and all models, the overall
standard deviations remain small (±0.005 AUROC, ±0.006 Kendall’s τ , ±0.006 PCC).

Comparison with leave-one-out attribution. We also compare against a masking-based baseline
(leave-one-out; Su et al. (2024)) on LongBench v2. NEAR (AME) surpasses leave-one-out on
AUROC, Kendall’s τ , and PCC across all three models, with low run-to-run variance.
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Table 8: Comparison with non-entropy methods (ANAH-v2, MIND) across four QA datasets. NEAR
(AME) yields consistent gains across all three base models.

Model Method Dataset AUROC ↑ τ ↑ PCC ↑

Qwen2.5-3B

ANAH-v2

CoQA 0.78 0.51 0.50
QuAC 0.77 0.50 0.49
SQuADv2 0.79 0.52 0.49
TriviaQA 0.77 0.51 0.49

MIND

CoQA 0.80 0.53 0.50
QuAC 0.79 0.52 0.51
SQuADv2 0.80 0.53 0.52
TriviaQA 0.79 0.52 0.51

NEAR (AME)

CoQA 0.85 0.56 0.61
QuAC 0.84 0.56 0.60
SQuADv2 0.86 0.60 0.65
TriviaQA 0.85 0.60 0.65

LLaMA-3.1-8B

ANAH-v2

CoQA 0.80 0.53 0.50
QuAC 0.80 0.53 0.49
SQuADv2 0.81 0.54 0.51
TriviaQA 0.79 0.53 0.50

MIND

CoQA 0.82 0.55 0.53
QuAC 0.80 0.53 0.52
SQuADv2 0.82 0.56 0.54
TriviaQA 0.81 0.55 0.52

NEAR (AME)

CoQA 0.85 0.66 0.61
QuAC 0.84 0.66 0.60
SQuADv2 0.86 0.68 0.63
TriviaQA 0.85 0.67 0.60

OPT-6.7B

ANAH-v2

CoQA 0.79 0.52 0.49
QuAC 0.77 0.51 0.48
SQuADv2 0.80 0.53 0.50
TriviaQA 0.78 0.52 0.49

MIND

CoQA 0.81 0.54 0.51
QuAC 0.79 0.53 0.50
SQuADv2 0.82 0.55 0.52
TriviaQA 0.80 0.54 0.50

NEAR (AME)

CoQA 0.84 0.63 0.60
QuAC 0.83 0.64 0.59
SQuADv2 0.85 0.66 0.61
TriviaQA 0.84 0.65 0.59

Across these experiments, Shapley-based attribution in NEAR (AME) fairly distributes contributions
among interacting sentences and leverages attention-wise decomposition to capture deep model-
internal signals, yielding faithful and interpretable attributions in both standard and long-context QA
settings.

A6.3 COMPARISON WITH LLM-CHECK ON FAVA

To evaluate the effectiveness of NEAR in detecting hallucinations, we compare its performance against
LLM-Check Sriramanan et al. (2024b), a recent method that leverages attention kernel eigenvalues
and hidden activations for hallucination detection across transformer layers. We focus on the zero-
resource setting without external references, using the human-annotated FAVA datasetMishra et al.
(2024).
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Table 9: NEAR (AME) vs. Leave-one-out on LongBench v2 (mean ± std over 3 runs).

Model Method AUROC ↑ Kendall’s τ ↑ PCC ↑

Qwen2.5-3B Li et al. 0.701± 0.006 0.449± 0.007 0.463± 0.007
NEAR (AME) 0.792± 0.005 0.514± 0.006 0.527± 0.006

LLaMA-3.1-8B Li et al. 0.722± 0.006 0.467± 0.007 0.481± 0.007
NEAR (AME) 0.812± 0.005 0.529± 0.006 0.544± 0.006

OPT-6.7B Li et al. 0.694± 0.006 0.443± 0.007 0.457± 0.007
NEAR (AME) 0.799± 0.005 0.521± 0.006 0.538± 0.006

LLM-Check reports strong results using Attention Scores and Hidden Scores, computed from the
mean log-determinants of attention kernels and hidden state covariance matrices, respectively. On the
FAVA-Annotation split, their best-performing variant achieves an AUROC of 72.34 and F1 score of
69.27 using LLaMA-2 7B at layer 21 (see Table 2 in Sriramanan et al. (2024b)).

In contrast, NEAR computes the entropy-based information gain attributed to each sentence in the
context, based on Shapley values over attention norms. Despite being conceptually different, LLM-
Check focuses on low-rank shifts in latent space, whereas NEAR tracks attention-driven entropy
reduction, both methods aim to isolate ungrounded model behavior.

To enable direct comparison, we compute NEAR scores on the same FAVA-Annotation samples
used in LLM-Check and report AUROC, F1, and TPR@5%FPR. Across three LLMs (LLaMA-2-7B,
LLaMA-3-8B, OPT-6.7B), NEAR achieves competitive detection performance, with AUROC up to
73.8, F1 scores exceeding 70, and notable stability across layers.

A7 ALGORITHM

The algorithm of our methodology is provided in Algorithm 1.

Algorithm 1 Compute AME–NEAR Attribution

1: Input: Context C = {s1, s2, . . . , sn}, Question Q with m datapoints, Pretrained Model fθ
2: Set number of random coalitions M , regularization λ
3: for each datapoint i = 1 to m do
4: Initialize dataset D ← ∅
5: for j = 1 to M do
6: Sample subset S ⊆ {s1, ..., sn} uniformly at random
7: Encode input X ← Tokenizer(S +Q)
8: Get model output: (VS , AS)← fθ(X)

9: Compute projected logits N (ℓ)
S across layers

10: Compute entropy: HS ← H(Q|S)
11: Compute design row x(j) ∈ {0, 1}n where x

(j)
k = 1[sk ∈ S]

12: Add (x(j), H∅ −HS) to dataset D
13: end for
14: Form matrix X ∈ RM×n and vector y ∈ RM from D
15: Estimate ϕ̂← argminϕ

1
2M ∥y −Xϕ∥22 + λ∥ϕ∥1

16: Set NEAR(sk → Q)← ϕ̂k for all k ∈ [n]
17: end for
18: Return: AME–NEAR attributions {NEAR(sk → Q)}nk=1

A8 EFFECT OF NUMBER OF COALITIONS ON NEAR STABILITY

A critical parameter in AME–NEAR is M , the number of randomly sampled sentence subsets
(coalitions) used to estimate sentence-level Shapley values. Larger M reduces estimation variance
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but increases computational cost. To analyze this trade-off, we study how AUROC varies with M
using 500 randomly sampled CoQA examples with the LLaMA-3.1-8B model.

As shown in Figure 9, performance improves rapidly between M = 5 and M = 30, after which gains
taper off. By M = 50, AUROC stabilizes around 0.85, with only marginal improvements beyond
that point. This suggests M = 50 strikes an effective balance between computational efficiency and
statistical reliability, and we adopt it in our main experiments. The standard deviation across three
runs remained within ±0.02 for all settings with M ≥ 30.

These results are consistent with our AME concentration bound (Appendix A1.2), which predicts es-

timation error decreasing on the order of Õ
(√

logn
M

)
under standard sparsity and design assumptions.

Figure 9: AUROC as a function of the number of randomly sampled coalitions M used for AME–
NEAR estimation on CoQA (LLaMA-3.1-8B).

A9 QUALITATIVE EXAMPLES

To show our quantitative results, we present qualitative examples, comparing NEAR scores with
several established attribution and uncertainty-based baselines. For each example, we provide the
full input context along with a corresponding question. We then report the estimated scores across
methods including P(True), Semantic Entropy, Loopback Lens, VI, LI, INSIDE, and NEAR.

These examples illustrate two important observations: (1) NEAR assigns significantly higher scores
when the context provides meaningful answer cues (Table 11, Table 13, Table 15, Table 17),
and (2) in unanswerable cases, NEAR consistently produces lower values(Table 19, Table 21,
Table 23), offering a more reliable signal of context utility. Compared to baselines, NEAR better
distinguishes between answerable and hallucinated predictions, even in cases involving ambiguous or
misleading context fragments.
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Context
Guinness World Records, known from its inception in 1955 until 1998 as The Guinness Book
of Records and in previous United States editions as The Guinness Book of World Records, is
a reference book published annually, listing world records both of human achievements and
the extremes of the natural world. The book itself holds a world record, as the best-selling
copyrighted book of all time. As of the 2017 edition, it is now in its 63rd year of publication,
published in 100 countries and 23 languages. The international franchise has extended beyond
print to include television series and museums. The popularity of the franchise has resulted
in ”Guinness World Records” becoming the primary international authority on the cataloging
and verification of a huge number of world records; the organization employs official record
adjudicators authorized to verify the authenticity of the setting and breaking of records.
On 10 November 1951, Sir Hugh Beaver, then the managing director of the Guinness Breweries,
went on a shooting party in the North Slob, by the River Slaney in County Wexford, Ireland.
After missing a shot at a golden plover, he became involved in an argument over which was
the fastest game bird in Europe, the golden plover or the red grouse. (It is the plover.) That
evening at Castlebridge House, he realized that it was impossible to confirm in reference books
whether or not the golden plover was Europe’s fastest game bird. Beaver knew that there must
be numerous other questions debated nightly in pubs throughout Ireland and abroad, but there
was no book in the world with which to settle arguments about records. He realized then that a
book supplying the answers to this sort of question might prove successful.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

What does the Guinness Book record? 1.01 2.1 1.91 0.31 1.59 3.02 11.22

Table 11: Example showing a question on the Guinness World Records passage. The top table
provides the full narrative context. The lower table compares several attribution and confidence
metrics—P(True), Semantic Entropy, Loopback Lens, VI, LI, INSIDE, and NEAR—on a single
example. NEAR produces the highest value, suggesting greater confidence and information gain
from the context.
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Context
(CNN) – Dennis Farina, the dapper, mustachioed cop-turned-actor best known for his tough-as-
nails work in such TV series as ”Law & Order,” ”Crime Story,” and ”Miami Vice,” has died. He
was 69.
”We are deeply saddened by the loss of a great actor and a wonderful man,” said his publicist,
Lori De Waal, in a statement Monday. ”Dennis Farina was always warmhearted and professional,
with a great sense of humor and passion for his profession. He will be greatly missed by his
family, friends and colleagues.”
Farina, who had a long career as a police officer in Chicago, got into acting through director
Michael Mann, who used him as a consultant and cast him in his 1981 movie, ”Thief.” That role
led to others in such Mann-created shows as ”Miami Vice” (in which Farina played a mobster)
and ”Crime Story” (in which he starred as Lt. Mike Torello).
Farina also had roles, generally as either cops or gangsters, in a number of movies, including
”Midnight Run” (1988), ”Get Shorty” (1995), ”The Mod Squad” (1999) and ”Snatch” (2000).
In 2004, he joined the cast of the long-running ”Law & Order” after Jerry Orbach’s departure,
playing Detective Joe Fontana, a role he reprised on the spinoff ”Trial by Jury.” Fontana was
known for flashy clothes and an expensive car, a distinct counterpoint to Orbach’s rumpled
Lennie Briscoe.
Farina was on ”Law & Order” for two years, partnered with Jesse L. Martin’s Ed Green. Martin’s
character became a senior detective after Farina left the show.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

Is someone in showbiz? 1.16 2.21 1.72 0.48 2.53 3.76 10.74

Table 13: Example centered on actor Dennis Farina. The top table provides the narrative context.
The lower table compares various hallucination detection and attribution methods. NEAR yields
the highest score, highlighting its ability to capture context relevance and answer confidence more
effectively than competing methods.
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Context
When my father was dying, I traveled a thousand miles from home to be with him in his last
days. It was far more heartbreaking than I’d expected, one of the most difficult and painful times
in my life. After he passed away I stayed alone in his apartment. There were so many things to
deal with. It all seemed endless. I was lonely. I hated the silence of the apartment.
But one evening the silence was broken: I heard crying outside. I opened the door to find a little
cat on the steps. He was thin and poor. He looked the way I felt. I brought him inside and gave
him a can of fish. He ate it and then almost immediately fell sound asleep. The next morning I
checked with neighbors and learned that the cat had been abandoned by his owner who’s moved
out. So the little cat was there all alone, just like I was. As I walked back to the apartment, I
tried to figure out what to do with him. Having something else to take care of seemed. But as
soon as I opened the apartment door he came running and jumped into my arms. It was clear
from that moment that he had no intention of going anywhere. I started calling him Willis, in
honor of my father’s best friend.
From then on, things grew easier. With Willis in my lap time seemed to pass much more quickly.
When the time finally came for me to return home I had to decide what to do about Willis. There
was absolutely no way I would leave without him.
It’s now been five years since my father died. Over the years, several people have commented
on how nice it was of me to rescue the cat. But I know that we rescued each other. I may have
given him a home but he gave me something greater.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

What was crying? 1.21 2.33 1.79 0.43 2.69 3.82 9.92

Table 15: An example focused on a story of grief and companionship. The top table presents the
narrative context, while the bottom table compares several hallucination detection and attribution
methods for the question ”What was crying?”. NEAR achieves the highest score, indicating stronger
alignment between the context and answerability signal compared to other baselines.

Context
The Six-Day War (Hebrew: , ”Milhemet Sheshet Ha Yamim”; Arabic: , ”an-Naksah”, ”The
Setback” or , ”arb 1967”, ”War of 1967”), also known as the June War, 1967 Arab–Israeli
War, or Third Arab–Israeli War, was fought between June 5 and 10, 1967 by Israel and the
neighboring states of Egypt (known at the time as the United Arab Republic), Jordan, and Syria.
Relations between Israel and its neighbours had never fully normalised following the 1948
Arab–Israeli War. In 1956 Israel invaded the Egyptian Sinai, with one of its objectives being the
reopening of the Straits of Tiran which Egypt had blocked to Israeli shipping since 1950. Israel
was subsequently forced to withdraw, but won a guarantee that the Straits of Tiran would remain
open. Whilst the United Nations Emergency Force was deployed along the border, there was no
demilitarisation agreement.
In the period leading up to June 1967, tensions became dangerously heightened. Israel reiterated
its post-1956 position that the closure of the straits of Tiran to its shipping would be a ”casus
belli” and in late May Nasser announced the straits would be closed to Israeli vessels. Egypt then
mobilised its forces along its border with Israel, and on 5 June Israel launched what it claimed
were a series of preemptive airstrikes against Egyptian airfields. Claims and counterclaims
relating to this series of events are one of a number of controversies relating to the conflict.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

When was the Six-Day War fought? 1.45 2.41 1.98 0.59 2.92 3.94 8.90

Table 17: Example regarding the Six-Day War. The top section presents the historical context, and
the lower table compares baseline metrics including P(True), Semantic Entropy, Loopback Lens, VI,
LI, INSIDE, and NEAR for the question ”When was the Six-Day War fought?”. NEAR achieves the
highest attribution score, reflecting strong contextual grounding and confidence alignment.
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Context
Robots are smart. With their computer brains, they help people work in dangerous places or do
difficult jobs. Some robots do regular jobs. Bobby, the robot mail carrier, brings mail to a large
office building in Washington, D.C. He is one of 250 robot mail carriers in the United States. Mr.
Leachim, who weighs two hundred pounds and is six feet tall, has some advantages as a teacher.
One is that he does not forget details. He knows each child’s name, their parents’ names, and
what each child knows and needs to know. In addition, he knows each child’s pets and hobbies.
Mr. Leachim does not make mistakes. Each child goes and tells him his or her name, then dials
an identification number. His computer brain puts the child’s voice and number together. He
identifies the child with no mistakes.
Another advantage is that Mr. Leachim is flexible. If the children need more time to do their
lessons they can move switches. In this way they can repeat Mr. Leachim’s lesson over and over
again. When the children do a good job, he tells them something interesting about their hobbies.
At the end of the lesson the children switch Mr. Leachim off.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

how many articles were read? 0.31 0.45 0.37 0.12 0.28 0.62 -0.08

Table 19: Example involving an educational robot. The top table provides the narrative context. The
bottom table compares hallucination detection and attribution scores from various baselines. The low
NEAR score, relative to others, reflects poor contextual grounding for the question, suggesting likely
hallucination.

Context
”Everything happens for the best,” my mother said whenever I was disappointed. ”If you go
on, one day something good will happen.” When I graduated from college, I decided to try
for a job in a radio station and then work hard to become a sports announcer. I took a taxi to
Chicago and knocked on the door of every station, but I was turned away every time because
I didn’t have any working experience. Then, I went back home. My father said Montgomery
Ward wanted a sportsman to help them. I applied, but I didn’t get the job, either. I was very
disappointed. ”Everything happens for the best,” Mom reminded me. Dad let me drive his car to
look for jobs. I tried WOC Radio in Davenport, Iowa. The program director, Peter MacArthur,
told me they already had an announcer. His words made me disappointed again. After leaving
his office, I was waiting for the elevator when I heard MacArthur calling after me, ”What did
you say about sports? Do you know anything about football?” Then he asked me to broadcast an
imaginary game. I did so and Peter told me that I would be broadcasting Saturday’s game! On
my way home, I thought of my mother’s words again: ”If you go on, one day something good
will happen.”

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

What was the name of the great author? 0.55 0.68 0.74 0.50 0.74 0.55 0.39

Table 21: Example featuring a narrative about persistence and opportunity. The top table provides the
passage context. The bottom table presents attribution and confidence scores for the question ”What
was the name of the great author?”, which is unanswerable from the context. The low NEAR score,
in line with other baselines, reflects the absence of relevant information in the context.
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Context
Lisa has a pet cat named Whiskers. Whiskers is black with a white spot on her chest. Whiskers
also has white paws that look like little white mittens.
Whiskers likes to sleep in the sun on her favorite chair. Whiskers also likes to drink creamy
milk.
Lisa is excited because on Saturday, Whiskers turns two years old.
After school on Friday, Lisa rushes to the pet store. She wants to buy Whiskers’ birthday
presents. Last year, she gave Whiskers a play mouse and a blue feather.
For this birthday, Lisa is going to give Whiskers a red ball of yarn and a bowl with a picture of a
cat on the side. The picture is of a black cat. It looks a lot like Whiskers.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

Where was the joint residence? 0.42 0.51 0.63 0.37 0.59 0.48 0.02

Table 23: Example featuring a short story about Lisa and her cat Whiskers. The top table shows
the narrative context, while the bottom table compares attribution and confidence metrics for the
unanswerable question ”Where was the joint residence?”. All methods show relatively low scores,
with NEAR correctly reflecting the absence of relevant information.
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A10 LIMITATIONS

While Shapley NEAR provides fine-grained, interpretable attribution by decomposing usable informa-
tion across attention layers and heads, its primary limitation is computational efficiency. In particular,
permutation-based Shapley approximations over sentence orderings are costly; our AME formula-
tion avoids permutations by sampling coalitions and solving a sparse ℓ1 regression. Nevertheless,
AME–NEAR still requires M coalition evaluations per example (plus a regression solve), which can
be substantial for long contexts or large model families. Future work could explore more efficient
approximation strategies—e.g., stratified or importance sampling over coalitions, early stopping
based on attribution stability, or differentiable surrogates—to mitigate these overheads. This section
benchmarks NEAR’s runtime against prior methods and outlines directions for efficiency.

Table 24: Runtime per 100 QA samples (seconds) for hallucination detectors on LLaMA-3.1-8B.
AME–NEAR is evaluated with varying numbers of sampled coalitions M .

Method Qwen2.5-3B LLaMA-3.1-8B OPT-6.7B Avg Time
Semantic Entropy 2.3 3.1 3.0 2.8
Lookback Lens 3.8 5.0 4.9 4.6
INSIDE 9.2 10.7 9.8 9.9

AME–NEAR (M=50) 22.4 30.6 28.8 27.3
AME–NEAR (M=100) 41.3 58.9 55.0 51.7
AME–NEAR (M=1000) 402.1 537.6 498.2 479.3

Discussion. While accurate, AME–NEAR can run slower than lightweight baselines because
it requires M coalition evaluations per example (the subsequent ℓ1 solve adds overhead but is
typically secondary), see Table 24. This motivates adaptive sampling to cut cost—e.g., budget-aware
coalition selection, early stopping when NEAR or coefficients stabilize, and importance sampling
over coalitions—to retain fidelity at lower runtime.
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