
HarsanyiNet: Computing Accurate Shapley Values
in a Single Forward Propagation

Lu Chen * 1 Siyu Lou * 1 2 Keyan Zhang 1 Jin Huang 1 Quanshi Zhang 1

Abstract

The Shapley value is widely regarded as a trust-
worthy attribution metric. However, when people
use Shapley values to explain the attribution of
input variables of a deep neural network (DNN),
it usually requires a very high computational cost
to approximate relatively accurate Shapley values
in real-world applications. Therefore, we propose
a novel network architecture, the HarsanyiNet,
which makes inferences on the input sample and
simultaneously computes the exact Shapley val-
ues of the input variables in a single forward prop-
agation. The HarsanyiNet is designed on the the-
oretical foundation that the Shapley value can be
reformulated as the redistribution of Harsanyi in-
teractions encoded by the network.

1. Introduction
Explainable artificial intelligence (XAI) has received con-
siderable attention in recent years. A typical direction of
explaining deep neural networks (DNNs) is to estimate the
salience/importance/contribution of an input variable (e.g.,
a pixel of an image or a word in a sentence) to the network
output. Related studies have been termed the attribution
methods (Bach et al., 2015; Selvaraju et al., 2017; Sundarara-
jan et al., 2017; Lundberg & Lee, 2017). In comparison with
most attribution methods designed without solid theoreti-
cal supports, the Shapley value (Shapley, 1953) has been
proved the only solution in game theory that satisfies the
linearity, dummy, symmetry, and efficiency axioms (Young,
1985). Therefore, the Shapley value is widely considered a
relatively trustworthy attribution for each input variable.

*Equal contribution 1Shanghai Jiao Tong University, China
2Eastern Institute for Advanced Study, China. Correspondence
to: Quanshi Zhang is the corresponding author. He is with
the Department of Computer Science and Engineering, the John
Hopcroft Center, at the Shanghai Jiao Tong University, China.
<zqs1022@sjtu.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Output

�(��) = ��(��&��)
�(��) = ��(��&��&��)

�(��)

Sh
ap

le
y

va
lu

es

��
�� ��

��
��

�(2) =
�
�
�(��) +

�
�
�(��) +

�
�
�(��)

�
�
�(��)

�
�
�(��)

�
�
�(��)

for the patch ��

Figure 1. Overview of the HarsanyiNet. The HarsanyiNet encodes
different Harsanyi interactions, each representing an AND relation-
ship between different patches. Shapley values can be computed
as re-allocation of Harsanyi interactions.

However, using the Shapley value in real-world applica-
tions is often impractical because (1) computing the exact
Shapley value is NP-hard, and (2) existing approximation
techniques (Castro et al., 2009; Lundberg & Lee, 2017)
often confront a dilemma in that approximating Shapley val-
ues with an acceptable accuracy usually requires to conduct
a huge number of network inferences.

Thus, in this paper, we aim to directly jump out of the above
dilemma and design a neural network, namely HarsanyiNet,
which simultaneously conducts model inference on the input
sample and computes the exact Shapley value for each input
variable in a single forward propagation1.

Specifically, the theoretical foundation for the HarsanyiNet
is that the Shapley value of an input variable can be refor-
mulated as a redistribution of its different Harsanyi inter-
actions (Harsanyi, 1963) encoded by the DNN. Formally,
given a DNN and an input sample with n variables, a
Harsanyi interaction S represents an AND relationship be-
tween the variables in S, which is encoded by the DNN.
A DNN usually encodes many different Harsanyi interac-
tions. Each Harsanyi interaction makes a specific numerical

1https://github.com/csluchen/harsanyinet

1

https://github.com/csluchen/harsanyinet

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

contribution, denoted by I(S), to the inference score of the
DNN. Let us take the interaction between image patches
S={eye, nose,mouth} as a toy example. If all these patches
co-appear, then they form a face pattern and make a spe-
cific interaction effect I(S) to the confidence score of face
detection. Masking any patch will destroy this pattern and
remove the interaction effect, i.e., making I(S)= 0.

Because it is proven that the Shapley value can be computed
using Harsanyi interactions, the activation of each interme-
diate neuron in the HarsanyiNet is designed to represent a
specific Harsanyi interaction. The intermediate neuron is
termed as the Harsanyi unit. Such a network design enables
us to derive the exact Shapley value of an input variable
using activation scores of Harsanyi units.

The proposed HarsanyiNet has significant advantages over
existing approaches for approximating Shapley values by
conducting a single network inference.

• Existing approximation methods, e.g., DeepSHAP (Lund-
berg & Lee, 2017) and FastSHAP (Jethani et al., 2021),
estimate Shapley values with considerable errors, but the
HarsanyiNet can generate exact Shapley values, which is
both theoretically guaranteed and experimentally verified.

• The only existing work allowing to compute accurate
Shapley values in a single forward propagation is the Shap-
Net (Wang et al., 2021). However, the ShapNet is designed
to only encode interactions between at most k input vari-
ables (k ≪ n, they set k = 4), and the computational
cost of the ShapNet’s inference (forward propagation) is
2k times more than that of traditional networks. Alterna-
tively, this study also provides another network (i.e., Deep
ShapNet) to encode more complex interactions, but it can-
not guarantee the accuracy of the computed Shapley values.
In comparison, the HarsanyiNet does not limit the number
of the input variables within the interaction, thereby ensur-
ing broader applicability and exhibiting significantly better
performance.

Moreover, we implement two specific HarsanyiNets in the
experiment, the Harsanyi-MLP extended from multi-layer
perceptrons (MLP) and the Harsanyi-CNN developed on
convolutional neural networks (CNN).

The contributions of this paper can be summarized as fol-
lows. (1) We propose a novel neural network architecture,
the HarsanyiNet, which can simultaneously perform model
inference and compute exact Shapley values in one forward
propagation. (2) Following the paradigm of HarsanyiNet,
we design Harsanyi-MLP and Harsanyi-CNN for tabular
data and image data, respectively. (3) The HarsanyiNet does
not constrain the representation of specific interactions, but
it can still guarantee the accuracy of Shapley values.

2. Related Work
Estimating the importance/attribution/saliency of input vari-
ables represents a typical direction in XAI. In general, pre-
vious attribution methods usually computed the attributions
of input variables based on gradient (Simonyan et al., 2014;
Springenberg et al., 2015; Shrikumar et al., 2016; Selvaraju
et al., 2017; Sundararajan et al., 2017), via back-propagation
of attributions (Bach et al., 2015; Montavon et al., 2017;
Shrikumar et al., 2017), and based on perturbations on the
input variables (Ribeiro et al., 2016; Zintgraf et al., 2017;
Fong & Vedaldi, 2017; Lundberg & Lee, 2017; Plumb et al.,
2018; Covert et al., 2021; Deng et al., 2021; Chen et al.,
2022).

2.1. Shapley values

Unlike other attribution methods, the Shapley value is de-
signed in game theory. Let us consider the following coop-
erative game, in which a set of n players N = {1, 2, . . . , n}
collaborate with each other and finally win a reward R.
The Shapley value (Shapley, 1953) is then developed as a
fair approach to allocating the overall reward R to the n
players. The Shapley value ϕ(i) is defined as the composi-
tional reward allocated from R to the player i ∈ N , and we
can consider ϕ(i) reflects the numerical contribution of the
player i in the game.

Definition 1 (Shapley values). The Shapley value ϕ(i) of
an input variable i is given by

ϕ(i) :=
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[V (S ∪ {i})−V (S)] , (1)

where V : 2N 7→ R denotes the reward function, i.e.,
∀S ⊆ N,V (S) measures the reward if a subset S of players
participate in the game. Thus, V (∅) = 0, and V (N) = R
denotes the overall reward won by all players in N .

Faithfulness. The Shapley value is widely considered a rela-
tively faithful attribution, because Young (1985) has proved
that it is the unique game-theoretic solution that satisfies the
linearity, dummy, symmetry and efficiency axioms for ideal
attributions. Please see Appendix A for details.

In addition to estimating the importance of each input vari-
able, the Shapley value is also widely used to estimate the
importance of every single data point in a whole dataset,
which can be, for instance, used to address data evaluation
problem (Jia et al., 2019a; 2021).

2.2. Dilemma of computational complexity versus
approximation accuracy

The biggest challenge of applying Shapley values to real-
world applications is the NP-hard computational complexity.
According to Equation (1) and Section 3, when we compute

2

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Shapley values for input variables of a DNN, it requires to
conduct inference on all the 2n different masked samples.
To alleviate the computational burden, many approximation
methods (Castro et al., 2009; Lundberg & Lee, 2017; Covert
& Lee, 2021) have been proposed. However, as Figure 3
shows, a higher approximation accuracy of Shapley values
usually requires more network inferences (e.g., inferences
on as many as thousands of masked samples).

Specifically, some approaches estimated Shapley values
via sampling techniques (Castro et al., 2009; Strumbelj &
Kononenko, 2010; Okhrati & Lipani, 2021; Mitchell et al.,
2022), and some converted the approximation of Shapley
values to a weighted least squares problem (Lundberg &
Lee, 2017; Simon & Vincent, 2020; Covert & Lee, 2021).
However, these methods all faced a dilemma, i.e., a more ac-
curate approximation required higher computational costs.

Other studies accelerated the computation by assuming a
specific distribution of data (Chen et al., 2019), ignoring
small interactions between input variables (Wang et al.,
2022), or learning an explainer model to directly predict
the Shapley value (Jethani et al., 2021). However, these
methods could not generate fully accurate Shapley values.
Wang et al. (2021) proposed the ShapNets. The ShapNet
was constrained to only encode interactions between a small
number of variables (usually less than 4). When the ShapNet
was extended to encode interactions between more variables,
it could no longer estimate exactly accurate Shapley values.
In comparison, our HarsanyiNet can accurately compute
Shapley values in a single forward propagation, and it is not
constrained to encode specific interactions, thereby exhibit-
ing much more flexibility and better performance.

3. Methodology
The Shapley value defined in Equation (1) is widely used
to estimate attributions of input variables in a DNN. We
consider the DNN as a cooperative game, and consider
input variables x = [x1, x2, ..., xn]

⊺ as players, N =
{1, 2, . . . , n}. v(x) ∈ R corresponds to the network predic-
tion score2 on x. Let xS denote a masked sample, where
input variables in N \ S, S ⊆ N are masked by baseline
values3. In this way, we can define the total reward gained
by the input variables in S as the inference score on the
masked sample xS , i.e., V (S) := v(xS)− v(x∅). Thus, the
Shapley value ϕ(i) in Equation (1) measures the importance

2As in previous studies (Jethani et al., 2021; Wang et al., 2022),
if the network has a scalar output, then v(x) can be formulated
directly as the network output. If the network has a vector out-
put, e.g., multi-category classification, we may define v(x) as the
output dimension corresponding to the ground-truth category.

3The baseline value can be set as zero, mean value over differ-
ent inputs or other statistic values in previous studies (Lundberg &
Lee, 2017; Covert & Lee, 2021).

of the i-th input variable to the network prediction score.

3.1. Preliminaries: Harsanyi interactions

The Harsanyi interaction (or the Harsanyi divi-
dend) (Harsanyi, 1963) provides a deeper insight
into the essential reason why the Shapley value is computed
as in Equation (1). A DNN usually does not use each
individual input variable to conduct model inference
independently. Instead, the DNN models the interactions
between different input variables and considers such
interactions as basic inference patterns. To this end, the
Harsanyi interaction I(S) measures the interactive effect
between each subset S ⊆ N of input variables, which is
encoded by a DNN.

Definition 2 (Harsanyi interactions). The Harsanyi interac-
tion between a set of variables in S w.r.t. the model output
v(x) is recursively defined I(S) := V (S)−∑

L⊊S I(L) =
v(xS)− v(x∅)−

∑
L⊊S I(L) subject to I(∅) := 0.

According to Definition 2, the network output can be
explained as the sum of all Harsanyi interactions, i.e.,
v(x)−v(x∅)=

∑
S⊆N I(S). Essentially, each Harsanyi

interaction I(S) reveals an AND relationship between all
the variables in set S. Let us consider a visual pattern
S = {eye, nose,mouth} for face detection as a toy example.
If the image patches of eye, nose, and mouth appear together,
the co-appearance of the three parts forms a visual pattern
and makes a numerical contribution I(S) to the classifica-
tion score v(x) of the face. Otherwise, masking any part
in S will deactivate the pattern and remove the interactive
effect, i.e., making I(S) = 0.

Grabisch et al. (2016) and Ren et al. (2023a) further proved
that the Harsanyi interaction also satisfies the four properties,
namely linearity, dummy, symmetry and efficiency.

3.2. Harsanyi interactions compose Shapley values

We jump out of the dilemma of computational complexity
versus approximation accuracy mentioned in Section 2. The-
orem 1 allows us to derive a novel neural network architec-
ture, namely HarsanyiNet, which uses Harsanyi interactions
to simultaneously perform model inference and compute
exact Shapley values in a single forward propagation.

• Basic requirements for the HarsanyiNet. The key idea
of the HarsanyiNet is to let different intermediate-layer neu-
rons to represent different Harsanyi interactions. Later, we
will prove that we can use such a network design to compute
the exact Shapley values in a single forward propagation.
Specifically, let us introduce the following two designs in
the HarsanyiNet.

Firstly, as shown in Figure 1, the HarsanyiNet has L cas-
caded blocks in the neural network. In each block, we add

3

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

an AND operation layer between a linear layer and a ReLU
layer. Given an input sample x, let z(l)u (x) denote the u-th
dimension of the output feature vector z(l)(x) ∈ Rm(l)

in
the l-th linear layer. The HarsanyiNet is designed to let each
feature dimension z

(l)
u (x) satisfy the following two require-

ments, and z
(l)
u (x) is also called a Harsanyi unit. Theorem 3

will show how to use the Harsanyi unit to compute exact
Shapley values directly.

Requirement 1 (R1). The neural output z
(l)
u (x) is ex-

clusively determined by a specific set of input variables
R(l)

u ⊆ N , namely the receptive field of neuron z
(l)
u (x). In

other words, none of the other input variables in N \R(l)
u af-

fect the neuron activation, i.e., given two arbitrary samples
x and x′, if ∀ i ∈ R(l)

u , x′
i = xi, then z

(l)
u (x′) = z

(l)
u (x).

Requirement 2 (R2). Masking any variables in the recep-
tive field R(l)

u of the neuron z
(l)
u will make z

(l)
u (x) = 0.

Specifically, let xS denote the sample obtained by masking
variables in the set N \ S in the sample x. Then, given any
masked sample xS , the neuron z

(l)
u must satisfy the property

z
(l)
u (xS) = z

(l)
u (x) ·∏

i∈R(l)
u
1(i ∈ S).

These two requirements indicate that a Harsanyi unit
z
(l)
u must represent an AND relationship between input

variables in R(l)
u . Changing variables outside the receptive

field R(l)
u will not affect the neural activation of the Harsanyi

unit, i.e., z(l)u (xS) = z
(l)
u (x), but masking any variables in

R(l)
u will deactivate the unit, i.e., making z

(l)
u (xS) = 0.

Secondly, although the HarsanyiNet may have various types
of outputs (including a scalar output, a vectorized output,
a matrix output, and a tensor output), each dimension of
the network output is designed as a weighted sum of all
Harsanyi units. Let v(x) denote the multi-dimensional
output, and let v(x) be an arbitrary output dimension pa-
rameterized by {w(l)

v }. Then, we get

v(x)=[v(x), v′(x), . . .]⊺, v(x)=

L∑
l=1

(w(l)
v)⊺z(l)(x), (2)

where w
(l)
v ∈ Rm(l)

denotes the weight for the specific out-
put dimension v. As shown in Figure 1, the above equation
can be implemented by adding skip connections to connect
the Harsanyi units in all L layers to the HarsanyiNet output.

• Proving that we can compute accurate Shapley values
in a single forward propagation. The preceding para-
graphs only outline the two requirements for Harsanyi units,
and Section 3.3 will introduce how to force neurons to meet
such requirements. Before that, we derive Theorem 3 to
prove that the above requirements allow us to compute the
exact Shapley values in a forward propagation.
Theorem 1 (Connection between Shapley values and
Harsanyi interactions, proof in (Harsanyi, 1963)). The

Shapley value ϕ(i) equals to the sum of evenly distributed
Harsanyi interactions that contain i, i.e.,

ϕ(i) =
∑

S⊆N :S∋i

1

|S|I(S). (3)

Theorem 1 demonstrates that we can understand the Shap-
ley value ϕ(i) as a uniform reassignment of each Harsanyi
interaction I(S) which includes the variable i. For example,
let us consider a toy model that uses age (a), education (e),
occupation (o), and marital status (m) to infer the income
level. We assume that we can only decompose four non-zero
Harsanyi interactions, i.e., v(x)=

∑
S⊆N={a,e,o,m} I(S)=

I({a, o}) + I({a, e}) + I({a, o,m}) + I({o,m}) to sim-
plify the story. We uniformly allocate the numerical con-
tribution I({a, o,m}) to variables age, occupation, and
marital status, with each receiving 1

3I({a, o, r}) as a com-
ponent of its attribution. In this way, each input vari-
able accumulates compositional attributions from differ-
ent Harsanyi interactions, e.g., ϕ̂(a) = 1

2I({a, o}) +
1
2I({a, e}) + 1

3I({a, o,m}). Such an accumulated attri-
bution ϕ̂(a) equals to the Shapley value ϕ(a).

Lemma 1 (Harsanyi interaction of a Harsanyi unit, proof
in Appendix C). Let us consider the output of a Harsanyi
unit z(l)u (x) as the reward. Then, let J (l)

u (S) denote the
Harsanyi interaction w.r.t. the function z

(l)
u (x). Then, we

have J
(l)
u (R(l)

u) = z
(l)
u (x), and ∀S ̸= R(l)

u , J
(l)
u (S) = 0,

according to the two requirements R1 and R2.

Theorem 2 (Proof in Appendix B). Let a network output
v(x) ∈ R be represented as v(x) =

∑L
l=1(w

(l)
v)⊺z(l)(x),

according to Equation (2). In this way, the Harsanyi in-
teraction between input variables in the set S computed
on the network output v(x) can be represented as I(S) =∑L

l=1

∑m(l)

u=1 w
(l)
v,uJ

(l)
u (S).

Theorem 2 shows that the Harsanyi interaction
I(S) w.r.t. network output v(x) can be represented
as the sum of Harsanyi interactions J

(l)
u (S) computed on

different Harsanyi units z(l)u (x). In this manner, we plug the
conclusions in Lemma 1 and Theorem 2 into Equation (3),
and we derive the following theorem.

Theorem 3 (Deriving Shapley values from Harsanyi units
in intermediate layers, proof in Appendix B). The Shapley
value ϕ(i) can be computed as

ϕ(i)=
∑L

l=1

∑m(l)

u=1

1

|R(l)
u |

w(l)
v,uz

(l)
u (x)1(R(l)

u ∋ i). (4)

Theorem 3 demonstrates that the Shapley value ϕ(i) can
be directly computed using the outputs of Harsanyi units
z(l)(x) in the intermediate layers in forward propagation.

4

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Cost of computing HarsanyiNet. We conduct one network
inference to obtain the outputs of all Harsanyi units z(l)u (x).
Then, we compute Shapley values based on Equation (4),
whose computational cost is O(nM), where M=

∑L
l=1 m

(l)

denotes the total number of Harsanyi units. The compu-
tational cost O(nM) is negligible, compared to the heavy
computational cost of one forward propagation. Therefore,
we can roughly consider the overall cost of computing
Shapley values as one forward propagation.

3.3. Designing the HarsanyiNet towards R1 and R2

This subsection first introduces the detailed design of the
HarsanyiNet. The basic idea is to construct a neural net-
work in which each neuron represents an AND relationship
between its children nodes in the previous layers, and the
neuron’s receptive field can be computed as the union of
the receptive fields of its children nodes. Then, Theorem 4
proves that such a network design satisfies the requirements
R1 and R2 in Section 3.2.

Harsanyi blocks. As Figure 1 shows, the HarsanyiNet
contains L cascaded Harsanyi blocks. Specifically, we use
tuple (l, u) to denote the u-th neuron in the l-th Harsanyi
block’s linear layer. Each neuron (l, u) has a set of children
nodes S(l)

u . The children nodes in S(l)
u can be selected

from all neurons in all (l−1) previous Harsanyi blocks4.
Alternatively, we can just select children nodes from the
(l−1)-th block, as a simplified implementation. The children
nodes S(l)

u which can be learned for each neuron (l, u) will
be introduced later. Thus, given the children set S(l)

u , the
neural activation z

(l)
u (x) of the neuron (l, u) is computed by

applying the linear, AND, and ReLU operations

g(l)u (x) =(A(l)
u)⊺·

(
Σ(l)

u ·z(l−1)
)
.
//Linear operation

on children nodes
(5)

h(l)
u (x) = g(l)u (x)·

∏
(l′,u′)∈S(l)

u

1(z
(l′)
u′ (x) ̸= 0).

//AND
operation

(6)

z(l)u (x) = ReLU(h(l)
u (x)). //Non-linear operation (7)

In the above equations, z(l−1) = [z(1)(x)⊺, z(2)(x)⊺, . . . ,

z(l−1)(x)⊺]⊺ ∈ RM(l)

vectorizes the neurons in all the
previous (l − 1) blocks. The children set S(l)

u is imple-
mented as a binary diagonal matrix Σ

(l)
u ∈ {0, 1}M(l)×M(l)

,
which selects children nodes of the neuron (l, u) from all
M (l) =

∑l−1
l′=1 m

(l′) neurons in all the (l − 1) previous
blocks. A(l)

u ∈ RM(l)

denotes the weight vector.

The three operations in Equations (5)–(7) ensure that
each Harsanyi unit z(l)u (x) represents an AND relationship

4In particular, children nodes in S(1)
u are directly selected from

the input variables.

among its children nodes (more discussions in Appendix D).

To implement the children selection in Equation (5),
we compute the binary diagonal matrix Σ

(l)
u by setting

(Σ
(l)
u)i,i=1((τ

(l)
u)i > 0), where τ (l)

u ∈ RM(l)

is a trainable
parameter vector. Note that during the training phase,
the gradient of the loss function cannot pass through
Σ

(l)
u to τ

(l)
u in the above implementation; therefore, we

employ Straight-Through Estimators (STE) (Bengio
et al., 2013) to train the parameter τ

(l)
u . The STE uses

(Σ
(l)
u)i,i = 1((τ

(l)
u)i > 0) in the forward-propagation

and set ∂(Σ(l)
u)i,i/∂(τ

(l)
u)i = βe−(τ (l)

u)i/(1 + e−(τ (l)
u)i)2

in the back-propagation process, where β is a pos-
itive scalar. Besides, to reduce the optimization
difficulty of the AND operation in Equation (6), we
approximate the AND operation as h

(l)
u (x) = g

(l)
u (x)[∏M(l)

u′=1(Σ
(l)
u ·tanh(γ ·Σ(l)

u z
(l−1))+(I−Σ

(l)
u)·1)u′

]1/tr(Σ(l)
u)

,
where γ is a positive scalar. Here, each output dimension of
the function tanh(·) is within the range of [0, 1), since z(l−1)

passes through the ReLU operation, and ∀u, z(l−1)u ≥0.

Input and receptive field. Let us set z(0) = x−b ∈ Rn as
the input of the linear operation in the first Harsanyi block,
and let us define the baseline value bi as the masking state
of each input variable xi. To further simplify the imple-
mentation, we adopt a single value baseline b5. It is worth
noting that more sophisticated baseline values have been
discussed in (Lundberg & Lee, 2017; Covert et al., 2020;
Sundararajan & Najmi, 2020; Chen et al., 2022). Based
on Equations (5)–(7), we can obtain that the receptive field
R(l)

u of a Harsanyi unit (l, u) can be computed recursively,
as follows.

R(l)
u := ∪

(l′,u′)∈S(l)
u
R(l′)

u′ , s.t. R(1)
u := S(1)

u . (8)

Theorem 4 (proof in Appendix B). Based on Equations (5)–
(7), the receptive field R(l)

u of the neuron z
(l)
u automatically

satisfies the two requirements R1 and R2.

This theorem proves that setting each neuron z
(l)
u based

on Equations (5)–(7) can successfully encode an AND re-
lationship between input variables in R(l)

u . In other words,
only the input variables in the receptive field R(l)

u can affect
neural output z(l)u (x), and masking any input variables in
R(l)

u will make z(l)u (x) = 0. In particular, let us consider the
inference on a masked sample xS as an example. According
to Theorem 4, the masked sample xS is implemented by
setting ∀i /∈ S, xi = bi. Subsequently, this masked sam-
ple can exclusively activate all Harsanyi units subject to
R(l)

u ⊆ S. All other Harsanyi units are not activated, i.e.,
∀R(l)

u ̸⊆ S, z
(l)
u (xS) = 0.

5We simply set the baseline value b = 0, since we use the
ReLU function as the non-linear operation.

5

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

MLP-5 trained
on Census dataset

ResMLP-5 trained
on Census dataset

MLP-5 trained
on TV news dataset

ResMLP-5 trained
on TV news dataset

ResNet-32 trained
on MNIST dataset

VGG-16 trained
on MNIST dataset

N
um

be
r o

f H
ar

sa
ny

i i
nt

er
ac

tio
ns

Interaction stength |I(S)| Interaction stength |I(S)| Interaction stength |I(S)|

Interaction stength |I(S)| Interaction stength |I(S)| Interaction stength |I(S)|

Figure 2. The histogram of interaction strength |I(S)| of different
Harsanyi interactions encoded by a DNN.

3.4. Discussion on the sparsity of Harsanyi interactions

Theoretically, a model can encode at most 2n different
Harsanyi interactions, but each AI model has its own limi-
tation in encoding interactions, which are far less than 2n.
The HarsanyiNet learns at most M=

∑L
l=1 m

(l) Harsanyi
interactions, as proved in Lemma 1 and Theorem 2. Thus,
the next question is whether the HarsanyiNet has sufficient
representation capacity to handle real-world applications.

To this end, recent studies have observed (Deng et al., 2022;
Ren et al., 2023a; Li & Zhang, 2023) and mathematically
proved (Ren et al., 2023b) that traditional DNNs often en-
code only a few Harsanyi interactions in real-world applica-
tions, instead of learning all 2n Harsanyi interactions. To be
precise, the network output can be represented as

v(x) =
∑

S∈2N
I(S) =

∑
S∈Ω

I(S) + ϵ, (9)

where Ω⊆ 2N={S′ ⊆N} denotes a small set of Harsanyi
interactions with considerable interaction strength |I(S)|.
All other Harsanyi interactions have negligible interaction
strength, i.e., |I(S)| ≈ 0, which can be considered noisy
inference patterns. ϵ=

∑
S′∈2N\Ω I(S′) is relatively small.

Furthermore, we conducted new experiments to verify the
sparsity of Harsanyi interactions in DNNs. Given a trained
network v and an input sample x, we computed the interac-
tion strength |I(S)| of all 2n Harsanyi interactions w.r.t.all
S ⊆ N . We followed (Ren et al., 2023a) to compute the in-
teraction strength |I(S)| of different Harsanyi interactions6.
Please see Appendix F.6 for more details. Figure 2 shows
the extracted Harsanyi interactions. Such experiments were
conducted on various DNNs, including MLP, the residual
MLP7 used in Touvron et al. (2022), the residual net with
32 layers (ResNet-32) (He et al., 2016) and the VGG net
with 16 layers (VGG-16) (Simonyan et al., 2014), on the
Census Income (Dua & Graff, 2017), the TV news commer-

6For image data, Ren et al. (2023a) computed Harsanyi inter-
actions between randomly sampled image regions to reduce the
computational cost.

7We used 5-layer MLP (MLP-5) and 5-layer residual MLP
(ResMLP-5) with 100 neurons in each hidden layer respectively.

cial detection (Dua & Graff, 2017), and the MNIST (LeCun
& Cortes, 2010) datasets. Only a few Harsanyi interactions
were found to be salient. Most Harsanyi interactions were
close to zero, and could be considered noise.

Therefore, the above experiments demonstrated that many
applications only required DNNs to encode a few salient
Harsanyi interactions, instead of modeling an exponential
number of Harsanyi interactions. From this perspective, the
HarsanyiNet has sufficient representation capacity.

4. Experiments
4.1. Two types of HarsanyiNets

In the experiments, we constructed and tested two types
of HarsanyiNets following the paradigm in Equations (5)–
(7), i.e., the HarsanyiNet constructed with fully-connected
layers, namely Harsanyi-MLP, and the HarsanyiNet con-
structed with convolutional layers, namely Harsanyi-CNN.
The Harsanyi-MLP was suitable for handling tabular data,
and the Harsanyi-CNN was designed for image data.

• Harsanyi-MLP was designed as an extension of the MLP
network. As mentioned at the beginning of Section 3.3, we
chose not to connect each neuron (l, u) from the neurons in
all (l − 1) previous blocks. Instead, we simply selected a
set of children nodes S(l)

u from the (l − 1)-th block. Specif-
ically, this was implemented by fixing all elements in τ

(l)
u

corresponding to all neurons in the 1st, 2nd,. . . ,(l − 2)-th
blocks to 0.

• Harsanyi-CNN mainly used the following two specific
settings to adapt convolutional layers into the paradigm of
HarsanyiNet. Setting 1. Similar to the Harsanyi-MLP, the
Harsanyi-CNN constructed the children set S(l)

u of each
neuron (l, u) from the neurons in the (l − 1)-th block. Let
C×K×K denote the tensor size of the convolutional kernel.
As Figure 6 shows, we selected children nodes S(l)

u of the
neuron (l, u = (c, h, w)) from neurons in the C ×K ×K
sub-tensor, which was clipped from the feature tensor of the
(l−1)-th block and corresponded to the upper neuron (l, u),
where c, h, w represent the location of the neuron (l, u).
Accordingly, we had τ

(l)
u as a CK2-dimensional vector.

Setting 2. Furthermore, we set all neurons (l, u = (:, h, w))
at the same location, but on different channels, to share
the same children set S(l)

u=(:,h,w) to reduce the number of

parameters τ (l)
u . This could be implemented by letting all

neurons (l, u = (1, h, w)), . . . , (l, u = (C, h,w)) share
the same parameter τ (l)

u . Based on the above design, we
proved that all Harsanyi units (l, u = (c, h, w)) in the
same location (h,w) on different channels (c = 1, . . . , C)

had the same receptive field R(l)
u=(:,h,w) and contributed

to the same Harsanyi interaction I(S = R(l)
u=(:,h,w)).

6

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Please see Appendix E for the proof. Therefore, we
further considered neurons in the same location (h,w)
on different channels as a single Harsanyi unit. In this
way, Equation (6) could be rewritten as h(l)

u (x) = g
(l)
u (x) ·∏

(l−1,u′)∈S(l)
u
1(
∑C

c=1 |z
(l−1)
u′=(c,h,w)(x)| ≠ 0).

In the implementation, we first applied a convolutional layer,
max-pooling layer, and ReLU layer on the input image to ob-
tain the feature z(0) in an intermediate layer. Subsequently,
we regarded z(0) as the input of the Harsanyi-CNN, instead
of directly using raw pixel values as input variables. It was
because using the ReLU operation enabled us to simply
define bi = 0 as the baseline value (i.e., the masking state)
for all the feature dimensions z(0). In addition, according
to Setting 2, we could consider the feature vector z(0)(:,h,w)

at location (h,w) as a single input variable, and we used
z
(0)
(:,h,w) = 0 to identify its masking state.

4.2. Experiments and comparison

Dataset. We trained the Harsanyi-MLP on three tabular
datasets from the UCI machine learning repository (Dua &
Graff, 2017), including the Census Income dataset (n = 12),
the Yeast dataset (n = 8) and the TV news commercial
detection dataset (n = 10), where n denotes the number of
input variables. For simplicity, these datasets were termed
Census, Yeast, and TV news. We trained the Harsanyi-CNN
on two image datasets: the MNIST dataset (LeCun & Cortes,
2010) and the CIFAR-10 dataset (Krizhevsky et al., 2009).

Accuracy of Shapley values and computational cost. We
conducted experiments to verify whether the HarsanyiNet
could compute accurate Shapley values in a single for-
ward propagation. We evaluated both the accuracy and
the time cost of calculating Shapley values. We computed
the root mean squared error (RMSE) between the esti-
mated Shapley values ϕx and the true Shapley values, i.e.,
RMSE=Ex[

1√
n
||ϕx − ϕ∗

x||], where the vector of ground-
truth Shapley values ϕ∗

x on the sample x could be directly
computed by following Definition 1 when n ≤ 16.

Comparing with approximation methods. We com-
pared the accuracy of Shapley values computed by the
HarsanyiNet with those estimated by various approxi-
mation methods, including the sampling method (Castro
et al., 2009), KernelSHAP (Lundberg & Lee, 2017), Ker-
nelSHAP with paired sampling (KernelSHAP-PS) (Covert
& Lee, 2021), antithetical sampling (Mitchell et al., 2022),
DeepSHAP (Lundberg & Lee, 2017) and FastSHAP (Jethani
et al., 2021). The approximation methods also computed
Shapley values on the HarsanyiNet for fair comparison. Fig-
ure 3 shows that many approximation methods generated
more accurate Shapley values, when they conducted more
inferences for approximation. The number of inferences
was widely used (Lundberg & Lee, 2017; Ancona et al.,

Table 1. Root mean squared errors of the estimated Shapley value
and the classification accuracy of the DNN.

HarsanyiNet Shallow
ShapNet

Deep
ShapNet8

MNIST dataset

Classification accuracy (↑) 99.16 40.18 93.85
Errors of Shapley values (↓) 1.19e-07 3.79e-07 0.891

CIFAR-10 dataset

Classification accuracy (↑) 89.34 20.48 73.51
Errors of Shapley values (↓) 6.88e-08 2.41e-07 0.409

Census dataset

Classification accuracy (↑) 84.57 84.14 84.72
Errors of Shapley values (↓) 2.18e-08 5.12e-07 0.412

Yeast dataset

Classification accuracy (↑) 59.91 57.17 59.70
Errors of Shapley values (↓) 3.36e-08 1.97e-07 0.127

TV news dataset

Classification accuracy (↑) 82.20 79.72 82.46
Errors of Shapley values (↓) 5.69e-08 2.47e-07 0.239

Table 2. Error of the computed Shapley values on the Census, Yeast
and TV news dataset.

Datasets
Models HarsanyiNet DeepSHAP FastSHAP

Census 2.18e-08 0.701 0.270

Yeast 3.36e-08 1.311 0.467

TV news 5.69e-08 0.758 0.526

2019) to quantify the computational cost of approximating
Shapley values. These methods usually needed thousands of
network inferences to compute the relatively accurate Shap-
ley values. In comparison, the HarsanyiNet only needed
one forward propagation to obtain the exact Shapley values
(see “⋆” in Figure 3). DeepSHAP and FastSHAP could
compute the Shapley values in one forward propagation, but
as shown in Table 2, the estimated errors of Shapley values
were considerably larger than the HarsanyiNet.

Comparing with the ShapNets. Besides, we also com-
pared the classification accuracy and the accuracy of Shap-
ley values with two types of ShapNet (Wang et al., 2021),
namely Shallow ShapNet and Deep ShapNet. Input sam-
ples in the MNIST and CIFAR-10 datasets contained many
more input variables. To calculate the ground-truth Shapley
values through Definition 1, we randomly sampled n = 12
variables as input variables in the foreground of the sample
x. In this way, ground-truth Shapley values were computed
by masking the selected 12 variables and keeping all the
other variables as original values of these variables. Simi-

8The results were obtained using the codes released by the
original paper (Wang et al., 2021). In particular, for image datasets,
each experiment was run for ten rounds with different random
initialization, and the best result from the 10 runs was presented.

7

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

R
M
SE

Census dataset Yeast dataset TV news dataset

number of network inferences number of network inferences number of network inferences

Sampling

KernelSHAP

KernelSHAP-PS

Antithetical
Sampling

HarsanyiNet
(RMSE = 3.4 × 10��,
#inference = 1)

R
M
SE

R
M
SE

HarsanyiNet
(RMSE = 5.7 × 10��,
#inference = 1)

HarsanyiNet
(RMSE = 2.2 × 10��,
#inference = 1)

Figure 3. Comparison of estimation errors and the computational cost (number of network inferences) required by different methods.

HarsanyiNet Sampling KernelSHAP FastSHAP DeepSHAP
(1) (2×10!) (2×10!) (1) (1)

number of
inferences

(1) (2×10!) (2×10") (1) (1)
number of
inferences

Figure 4. Shapley values computed2 by different methods. The
number of inferences conducted for approximation is also shown.

larly, we could still use the Harsanyi-CNN and ShapNets to
derive the Shapley value when we only considered n = 12
input variables (please see Appendix F.8 for details).

Table 1 shows that both the HarsanyiNet and the Shallow
ShapNet generated exact Shapley values with negligible
errors, which were caused by unavoidable computational
errors, but the HarsanyiNet had much higher classification
accuracy than the Shallow ShapNet. This was because the
representation capacity of the Shallow ShapNet was limited
and could only encode interactions between a few input
variables. On the other hand, the Deep ShapNet could not
compute the exact Shapley values, although the Deep Shap-
Net achieved higher classification accuracy than the Shallow
ShapNet. This was because the Deep ShapNet managed
to encode interactions between more input variables, but
the cost was that the Deep ShapNet could no longer theo-
retically guarantee the accuracy of the estimated Shapley
values. Despite of this, the HarsanyiNet performed much
better than the Deep ShapNet on more sophisticated tasks,
such as image classification on the CIFAR-10 dataset.

Input

𝑧!
(#)𝑧!

(!)

𝑧#
(!)

𝑧%
(!)

𝑧&
(!)

𝑧#
(#)

𝑧%
(#)

𝑧&
(#)

𝑧!
(%)

𝑧'
(!)

𝑧(
(!)

𝑧)
(!)

𝑧*
(!)

𝑧'
(#)

𝑧(
(#)

𝑧)
(#)

𝑧*
(#)

𝑧#
(%)

January 20, 2023

R(2)
2

R(2)
2

1

Figure 5. Visualization of the receptive field of Harsanyi units and
the corresponding children nodes.

Visualization. We generated attribution maps based on the
Shapley values estimated by each method on the MNIST
and CIFAR-10 datasets. As Figure 4 shows9, the attribution
maps generated by the HarsanyiNet were almost the same as
Shapley values, which were estimated by conducting infer-
ences on 20000 sampled masked images and had converged
to the true Shapley values. We also visualized the receptive
fields of Harsanyi units on digit image in Figure 5. It veri-
fied that we could obtain the receptive field of a Harsanyi
unit z(l)u by merging receptive fields of its children nodes.

Implementation details. The Harsanyi-MLP was con-
structed with 3 cascaded Harsanyi blocks, where each
was formulated by following Equations (5)–(7), and each
Harsanyi block had 100 neurons. The Harsanyi-CNN was
constructed with 10 cascaded Harsanyi blocks upon the
feature z(0), and each Harsanyi block had 512 × 16 × 16
neurons, where 512 is the number of channels. The hyperpa-
rameters were set to β = 10 and γ = 100 for Harsanyi-MLP
trained on tabular data, and set β = 1000 and γ = 1 for
Harsanyi-CNN trained on the image data respectively. For
the Harsanyi-MLP, we randomly selected 10 neurons in the
previous layer as the initial children set S(l)

u , and set the
corresponding dimensions in τ

(l)
u to 1. For all other neu-

9To facilitate comparison with other methods, for the MNIST
dataset, the Harsanyi-CNN was constructed with 4 cascaded
Harsanyi blocks, and each Harsanyi block had 32× 14× 14 neu-
rons, where 32 is the number of channels. The hyperparameters
were set to β = 100 and γ = 0.05, respectively. For the CIFAR-
10 dataset, the Harsanyi-CNN was constructed with 10 cascaded
Harsanyi blocks, and each Harsanyi block had 256 × 16 × 16
neurons, where 256 is the number of channels. The hyperparam-
eters were set to β = 1000 and γ = 1, respectively. Please see
Appendix F.7 for more details.

8

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

rons in the previous layer, their corresponding dimensions
in τ

(l)
u were initialized to −1. For the Harsanyi-CNN, we

initialized each parameter (τ (l)
u)i ∼ N (0, 0.012), which

randomly selected about half of the neurons in the previous
layer to satisfy (τ

(l)
u)i > 0 as the initial children set S(l)

u .

Discussion on evaluation metrics for attributions. Actu-
ally, many other metrics have been used to evaluate attri-
bution methods, such as ROAR (Hooker et al., 2019) and
weakly-supervised object localization (Zhou et al., 2016;
Schulz et al., 2020). As Table 1 and Figure 3 show that the
HarsanyiNet generated the fully accurate Shapley values, the
evaluation of the attribution generated by the HarsanyiNet
should be the same as the Shapley values, and the perfor-
mance of Shapley values had been sophisticatedly analyzed
in previous studies (Lundberg & Lee, 2017; Chen et al.,
2019; Wang et al., 2021; Jethani et al., 2021). In particular,
the Shapley value did not always perform the best in all
evaluation metrics, although it was considered one of the
most standard attribution methods and satisfied linearity,
dummy, symmetry, and efficiency axioms.

5. Conclusion
In this paper, we have proposed the HarsanyiNet that can
simultaneously perform model inference and compute the
exact Shapley values of input variables in a single forward
propagation. We have theoretically proved and experimen-
tally verified the accuracy of Shapley values computed by
the HarsanyiNet. Only negligible errors at the level of 10−8

– 10−7 were caused by unavoidable computational errors.
Furthermore, we have demonstrated that the HarsanyiNet
does not constrain the interactions between input variables,
thereby exhibiting strong representation power.

Acknowledgements
This work is partially supported by the National Nature
Science Foundation of China (62276165), National Key
R&D Program of China (2021ZD0111602), Shanghai Natu-
ral Science Foundation (21JC1403800,21ZR1434600), Na-
tional Nature Science Foundation of China (U19B2043),
Shanghai Municipal Science and Technology Key Project
(2021SHZDZX0102).

References
Ancona, M., Oztireli, C., and Gross, M. Explaining deep

neural networks with a polynomial time algorithm for
shapley value approximation. In International Confer-
ence on Machine Learning, pp. 272–281. PMLR, 2019.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,
K.-R., and Samek, W. On pixel-wise explanations for

non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Castro, J., Gómez, D., and Tejada, J. Polynomial calculation
of the shapley value based on sampling. Computers &
Operations Research, 36(5):1726–1730, 2009.

Chen, H., C. Covert, I., M. Lundberg, S., and Lee, S.-I.
Algorithms to estimate shapley value feature attributions.
arXiv preprint arXiv:2207.07605, 2022.

Chen, J., Song, L., Wainwright, M. J., and Jordan, M. I.
L-shapley and c-shapley: Efficient model interpretation
for structured data. International Conference on Learning
Representation, 2019.

Covert, I. and Lee, S.-I. Improving kernelshap: Practi-
cal shapley value estimation using linear regression. In
International Conference on Artificial Intelligence and
Statistics, pp. 3457–3465. PMLR, 2021.

Covert, I., Lundberg, S., and Lee, S.-I. Explaining by remov-
ing: A unified framework for model explanation. Journal
of Machine Learning Research, 2021.

Covert, I. C., Lundberg, S., and Lee, S.-I. Understand-
ing global feature contributions with additive importance
measures. Advances in Neural Information Processing
Systems, 33, 2020.

Deng, H., Zou, N., Chen, W., Feng, G., Du, M., and Hu, X.
Mutual information preserving back-propagation: Learn
to invert for faithful attribution. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, pp. 258–268, 2021.

Deng, H., Ren, Q., Zhang, H., and Zhang, Q. Discover-
ing and explaining the representation bottleneck of dnns.
International Conference on Learning Representation,
2022.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Fong, R. C. and Vedaldi, A. Interpretable explanations of
black boxes by meaningful perturbation. In Proceed-
ings of the IEEE International Conference on Computer
Vision, pp. 3429–3437, 2017.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representation, 2015.

9

http://archive.ics.uci.edu/ml

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Grabisch, M. et al. Set functions, games and capacities in
decision making, volume 46. Springer, 2016.

Harsanyi, J. C. A simplified bargaining model for the n-
person cooperative game. International Economic Re-
view, 4(2):194–220, 1963.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Hooker, S., Erhan, D., Kindermans, P.-J., and Kim, B. A
benchmark for interpretability methods in deep neural
networks. Advances in Neural Information Processing
Systems, 32, 2019.

Jethani, N., Sudarshan, M., Covert, I. C., Lee, S.-I., and Ran-
ganath, R. Fastshap: Real-time shapley value estimation.
In International Conference on Learning Representations,
2021.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Gurel, N. M., Li,
B., Zhang, C., Spanos, C. J., and Song, D. Efficient task-
specific data valuation for nearest neighbor algorithms.
In International Conference on Very Large Databases,
2019a.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Hynes, N., Gurel,
N. M., Li, B., Zhang, C., Song, D., and Spanos, C. To-
wards efficient data valuation based on the shapley value.
In International Conference on Artificial Intelligence and
Statistics, 2019b.

Jia, R., Wu, F., Sun, X., Xu, J., Dao, D., Kailkhura, B.,
Zhang, C., Li, B., and Song, D. Scalability vs. utility: Do
we have to sacrifice one for the other in data importance
quantification? In IEEE Conference on Computer Vision
and Pattern Recognition, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y. and Cortes, C. Mnist handwritten digit
database, 2010. URL http://yann.lecun.com/
exdb/mnist/.

Li, M. and Zhang, Q. Does a neural network really en-
code symbolic concepts? International Conference on
Machine Learning, 2023.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representation, 2018.

Mitchell, R., Cooper, J., Frank, E., and Holmes, G. Sam-
pling permutations for shapley value estimation. Journal
of Machine Learning Research, 23:1–46, 2022.

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., and
Müller, K.-R. Explaining nonlinear classification deci-
sions with deep taylor decomposition. Pattern recogni-
tion, 65:211–222, 2017.

Nilsback, M.-E. and Zisserman, A. Automated flower classi-
fication over a large number of classes. In Indian Confer-
ence on Computer Vision, Graphics & Image Processing,
2008.

Okhrati, R. and Lipani, A. A multilinear sampling algorithm
to estimate shapley values. International Conference on
Pattern Recognition, 2021.

Pavlova, M., Terhljan, N., G Chung, A., Zhao, A., Surana,
S., Aboutalebi, H., Gunraj, H., Sabri, A., Alaref, A., and
Wong, A. Covid-net cxr-2: An enhanced deep convolu-
tional neural network design for detection of covid-19
cases from chest x-ray images. In Front Med (Lausanne),
2022.

Plumb, G., Molitor, D., and Talwalkar, A. S. Model agnos-
tic supervised local explanations. Advances in Neural
Information Processing Systems, 31, 2018.

Ren, J., Li, M., Chen, Q., Deng, H., and Zhang, Q. Defin-
ing and quantifying the emergence of sparse concepts in
dnns. IEEE Conference on Computer Vision and Pattern
Recognition, 2023a.

Ren, Q., Gao, J., Shen, W., and Zhang, Q. Where we
have arrived in proving the emergence of sparse symbolic
concepts in ai models. arXiv preprint arXiv:2305.01939,
2023b.

Ribeiro, M. T., Singh, S., and Guestrin, C. ”why should
i trust you?” explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 1135–1144, 2016.

Schulz, K., Sixt, L., Tombari, F., and Landgraf, T. Re-
stricting the flow: Information bottlenecks for attribution.
International Conference on Learning Representation,
2020.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In
Proceedings of the IEEE International Conference on
Computer Vision, pp. 618–626, 2017.

Shapley, L. S. A value for n-person games. In Contributions
to the Theory of Games, 2(28):307–317, 1953.

10

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Shrikumar, A., Greenside, P., Shcherbina, A., and Kundaje,
A. Not just a black box: Learning important features
through propagating activation differences. arXiv preprint
arXiv:1605.01713, 2016.

Shrikumar, A., Greenside, P., and Kundaje, A. Learning
important features through propagating activation differ-
ences. In International Conference on Machine Learning,
pp. 3145–3153. PMLR, 2017.

Simon, G. and Vincent, T. A projected stochastic gradient
algorithm for estimating shapley value applied in attribute
importance. In International Cross-Domain Conference
on Machine Learning and Knowledge Extraction, 2020.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representation, 2015.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. International Conference on
Learning Representations, 2014.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. Striving for simplicity: The all convolutional
net. International Conference on Learning Representa-
tions, 2015.

Strumbelj, E. and Kononenko, I. An efficient explanation of
individual classifications using game theory. The Journal
of Machine Learning Research, 11:1–18, 2010.

Sundararajan, M. and Najmi, A. The many shapley values
for model explanation. In International Conference on
Machine Learning, pp. 9269–9278. PMLR, 2020.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks. In International Conference on
Machine Learning, pp. 3319–3328. PMLR, 2017.

Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-
Nouby, A., Grave, E., Izacard, G., Joulin, A., Synnaeve,
G., Verbeek, J., et al. Resmlp: Feedforward networks for
image classification with data-efficient training. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2022.

Wang, G., Chuang, Y.-N., Du, M., Yang, F., Zhou, Q., Tri-
pathi, P., Cai, X., and Hu, X. Accelerating shapley ex-
planation via contributive cooperator selection. In Inter-
national Conference on Machine Learning, pp. 22576–
22590. PMLR, 2022.

Wang, L., Lin, Z. Q., and Wong, A. Covid-net: a tailored
deep convolutional neural network design for detection
of covid-19 cases from chest x-ray image. In Scientific
Reports, 2020.

Wang, R., Wang, X., and Inouye, D. Shapley explanation
networks. In International Conference on Learning Rep-
resentations, 2021.

Weber, R. J. Probabilistic values for games. The Shapley
Value. Essays in Honor of Lloyd S. Shapley, 101–119,
1988.

Wightman, R., Touvron, H., and Jégou, H. Resnet strikes
back: An improved training procedure in timm. In Neural
Information Processing Systems, 2021.

Young, H. P. Monotonic solutions of cooperative games.
International Journal of Game Theory, 14:65–72, 1985.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba,
A. Learning deep features for discriminative localization.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2921–2929, 2016.

Zintgraf, L. M., Cohen, T. S., Adel, T., and Welling, M.
Visualizing deep neural network decisions: Prediction
difference analysis. International Conference on Learn-
ing Representations, 2017.

11

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

A. The Shapley values
In this section, we revisits the four axioms that the Shapley values satisfy, which ensures the Shapley values as relatively
faithful attribution values. Let us consider the following cooperative game V : 2N 7→ R, in which a set of n players
N = {1, 2, . . . , n} collaborate and win a reward R. Here, V (S) is equivalent to v(xS)− v(x∅) mentioned in the paper, and
we have V (∅) = 0. Young (1985) proved that the Shapley value was the unique solution which satisfied the four axioms,
including the linearity axiom, dummy axiom, symmetry axiom and efficiency axiom (Weber, 1988) .

(1) Linearity axiom: If the game V (·) is a linear combination of two games U(·), W (·) for all S ⊆ N , i.e. V (S) =
U(S) +W (S) and (c · V)(S) = c · V (S),∀c ∈ R, then the Shapley value in the game V is also a linear combination of
that in the games U and W , i.e. ∀i ∈ N,ϕV (i) = ϕU (i) + ϕW (i) and ϕc·V (i) = c · ϕV (i).

(2) Dummy axiom: A player i is defined as a dummy player if V (S ∪ {i}) = V (S) + V ({i}) for every S ⊆ N \ {i}.
The dummy player i satisfies ϕ(i) = V ({i}), which indicates player i influence the overall reward alone, without
interacting/cooperating with other players in N .

(3) Symmetry axiom: For two players i and j, if ∀S ⊆ N \ {i, j}, V (S ∪ {i}) = V (S ∪ {j}), then the Shapley values of
players i and j are equal, i.e. ϕ(i) = ϕ(j).

(4) Efficiency axiom: The overall reward is equal to the sum of the Shapley value of each player, i.e.
∑n

i=1 ϕ(i) = V (N).

B. Proofs of Theorems
In this section, we prove the theorems in the paper.

Theorem 2. Let a network output v(x) ∈ R be represented as v(x) =
∑L

l=1(w
(l)
v)⊺z(l)(x), according to Equation (2).

In this way, the Harsanyi interaction between input variables in the set S computed on the network output v(x) can be

represented as I(S) =
∑L

l=1

∑m(l)

u=1 w
(l)
u J

(l)
u (S).

Proof. We have

v(x) =
∑L

l=1
(w(l)

v)⊺z(l)(x)

=
∑L

l=1

∑m(l)

u=1
w(l)

u z(l)u (x).

According to the linearity property of the Harsanyi interactions, if ∀S ⊆ N , v(xS) = u(xS) + w(xS) and (cv)(xS) =
c · v(xS),∀c ∈ R, then the Harsanyi interaction Iv(S) is also a linear combination of Iu(S) and Iw(S), i.e., ∀S ⊆ N ,
Iv(S) = Iu(S) + Iw(S) and I(cv)(S) = c · Iv(S). Therefore, as J (l)

u (S) denotes the Harsanyi interaction computed on the
function z

(l)
u (x), we have the Harsanyi interaction computed on network output v(x) a linear combination of J (l)

u (S), i.e.,

I(S) =
∑L

l=1

∑m(l)

u=1
w(l)

u J (l)
u (S).

Theorem 3 (Deriving Shapley values from Harsanyi units in intermediate layers). The Shapley value ϕ(i) can be computed
as

ϕ(i) =
∑L

l=1

∑m(l)

u=1

1

|R(l)
u |

w(l)
u z(l)u (x)1(R(l)

u ∋ i).

12

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Proof. According to Theorem 1 and Theorem 2, we have

ϕ(i) =
∑

S⊆N :S∋i

1

|S|I(S)

=
∑

S⊆N

1

|S|I(S)1(S ∋ i)

=

L∑
l=1

m(l)∑
u=1

1

|R(l)
u |

w(l)
u z(l)u (x)1(R(l)

u ∋ i).

Theorem 4. Based on Equations (5)–(7), the receptive field R(l)
u of the neuron z

(l)
u automatically satisfies the Requirement 1

and 2. The receptive field R(l)
u of a neuron (l, u) is defined recursively by R(l)

u := ∪
(l′,u′)∈S(l)

u
R(l′)

u′ , s.t. R(1)
u := S(1)

u .

Proof. (1) Proof of the receptive field R(l)
u of the neuron z

(l)
u satisfies the Requirement 1.

Given two arbitrary samples x̃ = z̃(0) and x = z(0), to satisfy the Requirement 1, we will prove that if ∀ i ∈ R(l)
u , x̃i = xi,

then z
(l)
u (x̃) = z

(l)
u (x).

Firstly, for the first layer, ∀u′,R(1)
u′ = S(1)

u′ ⊆ R(l)
u , we prove z

(1)
u′ (x̃) = z

(1)
u′ (x).

We get g(1)u′ (x̃) = (A
(1)
u′)⊺ ·

(
Σ

(1)
u′ · z̃(0)

)
= (A

(1)
u′)⊺ · ζ, where ∀i ∈ R(1)

u′ = S(1)
u′ ⊆ R(l)

u , ζi = z̃
(0)
i , otherwise ζi = 0.

We also get g(1)u′ (x) = (A
(1)
u′)⊺ ·

(
Σ

(1)
u′ · z(0)

)
= (A

(1)
u′)⊺ · η, where ∀i ∈ R(1)

u′ ,ηi = z
(0)
i = z̃

(0)
i , otherwise ηi = 0.

Thus, g(1)u′ (x̃) = g
(1)
u′ (x) and z

(1)
u′ (x̃) = z

(1)
u′ (x).

Secondly, we prove z
(l)
u (x̃) = z

(l)
u (x) using the above conclusion.

For the second layer, ∀u′,R(2)
u′ = ∪

(1,u′′)∈S(2)

u′
R(1)

u′′ ⊆ R(l)
u , we can get z(2)u′ (x̃) = z

(2)
u′ (x) easily, since its children nodes

is selected from ∀u′′,R(1)
u′′ = S(1)

u′′ ⊆ R(l)
u , and the output of which satisfies z(1)u′′ (x̃) = z

(1)
u′′ (x). Similarly, we can derive

z
(l)
u (x̃) = z

(l)
u (x) recursively.

In this way, we have proved that the receptive field R(l)
u of the neuron z

(l)
u satisfies the Requirement 1.

(2) Proof of the receptive field R(l)
u of the neuron z

(l)
u satisfies the Requirement 2.

Given a sample x = z(0) and its arbitrary masked sample xS = z
(0)
S , to satisfy the Requirement 2, we will prove that

z
(l)
u (xS) = z

(l)
u (x) · ∏

i∈R(l)
u
1(i ∈ S). Specifically, we will prove that under the conditions of (1) ∀S ⊇ R(l)

u , (2)

∀S ⊊ R(l)
u , or ∀S, S ∪R(l)

u ̸= S and S ∪R(l)
u ̸= R(l)

u , we can get z(l)u (xS) = z
(l)
u (x) ·∏

i∈R(l)
u
1(i ∈ S), respectively.

Firstly, we can easily get ∀S ⊇ R(l)
u , z

(l)
u (xS) = z

(l)
u (x) ·∏

i∈R(l)
u
1(i ∈ S). Since ∀i ∈ R(l)

u , (xS)i = xi, let us use the

proven conclusion of (1) to derive z
(l)
u (xS) = z

(l)
u (x) = z

(l)
u (x) ·∏

i∈R(l)
u
1(i ∈ S).

Secondly, we prove that under the conditions of ∀S ⊊ R(l)
u , or ∀S, S ∪ R(l)

u ̸= S and S ∪ R(l)
u ̸= R(l)

u , we can get
z
(l)
u (xS) = z

(l)
u (x) ·∏

i∈R(l)
u
1(i ∈ S).

Let xS denote the sample obtained by masking variables with b in the set N \ S in the sample x, then z(0) = x− b ∈ Rn.
In both settings, there exists at least a variable j that belongs to R(l)

u but not to S, i.e., ∃j ∈ R(l)
u , j /∈ S, we have (xS)j = b,

(z
(0)
S)j = 0 and

∏
i∈R(l)

u
1(i ∈ S) = 0.

For the first layer, there exists at least a neuron (1, u′) which satisfies j ∈ R(1)
u′ = S(1)

u′ ⊆ R(l)
u . Then ∀u′, h

(1)
u′ (xS) =

g
(1)
u′ (xS) ·

∏
(0,u′′)∈S(1)

u′
1(z

(0)
u′′ (xS) ̸= 0) = g

(1)
u′ (xS) · 1((z(0)S)j ̸= 0) = 0 and z

(1)
u′ (xS) = 0. Since j ∈ R(l)

u =

13

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

∪
(l′,u′′)∈S(l)

u
R(l′)

u′′ , there exists at least a neuron (1, u′) will affect the neuron (l, u) recursively, i.e., h(l)
u (xS) = 0 and

z
(l)
u (xS) = 0. Thus, z(l)u (xS) = z

(l)
u (x) ·∏

i∈R(l)
u
1(i ∈ S) = 0.

In this way, we have proved that the receptive field R(l)
u of the neuron z

(l)
u satisfies the Requirement 2.

C. Proof of Lemma 1
Lemma 1 (Harsanyi interaction of a Harsanyi unit). Let us consider the output of a Harsanyi unit z(l)u (x) as the reward.
Then, let J (l)

u (S) denote the Harsanyi interaction w.r.t. the function z
(l)
u (x). Then, we have J

(l)
u (R(l)

u) = z
(l)
u (x), and

∀S ̸= R(l)
u , J

(l)
u (S) = 0, according to Requirements 1 and 2.

Proof. According to Definition 2, i.e., I(S) = v(S) − ∑
L⊊S I(L) subject to I(∅) := 0, and Requirements 2, i.e.,

z
(l)
u (xS) = z

(l)
u (x) ·∏

i∈R(l)
u
1(i ∈ S), the Harsanyi interaction of a Harsanyi unit can be written as,

J (l)
u (S) = z(l)u (xS)−

∑
L⊊S

J (l)
u (L)

= z(l)u (x) ·
∏

i∈R(l)
u

1(i ∈ S)−
∑
L⊊S

J (l)
u (L)

(1) Proof of J (l)
u (R(l)

u) = z
(l)
u (x).

Firstly, let us use the inductive method to prove ∀L ⊊ R(l)
u , J

(l)
u (L) = 0.

If |L| = 1,∀L′ ⊆ L ⊊ R(l)
u , we have

∏
i∈R(l)

u
1(i ∈ L′) = 0, then we get J (l)

u (L′) = z
(l)
u (x) ·∏

i∈R(l)
u
1(i ∈ L′) = 0.

Assume that if |L| = k, ∀L′ ⊆ L ⊊ R(l)
u , we have J

(l)
u (L′) = 0.

Then if |L| = k + 1, ∀L′ ⊆ L ⊊ R(l)
u , we have

∏
i∈R(l)

u
1(i ∈ L) = 0 and ∀L′ ⊊ L, J

(l)
u (L′) = 0. Thus, we get

J
(l)
u (L) = z

(l)
u (x) ·∏

i∈R(l)
u
1(i ∈ L)−∑

L′⊊L J
(l)
u (L′) = 0.

In this way, we have proved that ∀1 ≤ |L| < |R(l)
u |,∀L ⊊ R(l)

u , J
(l)
u (L) = 0.

Secondly, let us use the proven conclusion ∀L ⊊ R(l)
u , J

(l)
u (L) = 0 to derive J

(l)
u (R(l)

u) = z
(l)
u (x).

Since
∏

i∈R(l)
u
1(i ∈ R(l)

u) = 1, we get J (l)
u (R(l)

u) = z
(l)
u (x) ·∏

i∈R(l)
u
1(i ∈ R(l)

u)−∑
L⊊R(l)

u
J
(l)
u (L) = z

(l)
u (x).

In this way, we have proved that J (l)
u (R(l)

u) = z
(l)
u (x).

(2) Proof of ∀S ̸= R(l)
u , J

(l)
u (S) = 0.

To prove ∀S ̸= R(l)
u , J

(l)
u (S) = 0, we will prove that under the conditions of (1) ∀S ⊊ R(l)

u , (2) ∀S ⊋ R(l)
u , and (3)

∀S, S ∪R(l)
u ̸= S and S ∪R(l)

u ̸= R(l)
u , we can get J (l)

u (S) = 0, respectively.

Firstly, we have proved that ∀S ⊊ R(l)
u , J

(l)
u (S) = 0.

Secondly, let us use the inductive method to prove ∀S ⊋ R(l)
u , J

(l)
u (S) = 0.

In this setting,
∏

i∈R(l)
u
1(i ∈ S) = 1. If |S| = |R(l)

u | + 1,∀S ⊋ R(l)
u , we have J

(l)
u (S) = z

(l)
u (x) · ∏

i∈R(l)
u
1(i ∈

S)−∑
L⊊S J

(l)
u (L) = z

(l)
u (x)− [J

(l)
u (R(l)

u)+
∑

L⊊S,L ̸=R(l)
u

J
(l)
u (L)] = 0. (Similarly, ∀L ⊊ S and L ̸= R(l)

u , J
(l)
u (L) = 0

can be proved by the inductive method.)

Assume that if |S| = |R(l)
u |+ k,∀S ⊋ R(l)

u , we have J
(l)
u (S) = 0.

Then if |S| = |R(l)
u |+ (k + 1),∀S ⊋ R(l)

u , we have J
(l)
u (S) = 0.

14

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Thirdly, let us use the inductive method to prove ∀S, S ∪R(l)
u ̸= S and S ∪R(l)

u ̸= R(l)
u , J

(l)
u (S) = 0.

In this setting,
∏

i∈R(l)
u
1(i ∈ S) = 0. Then we have J

(l)
u (S) = z

(l)
u (x) · ∏

i∈R(l)
u
1(i ∈ S) − ∑

L⊊S J
(l)
u (L) = 0.

(Similarly, ∀L ⊊ S, J
(l)
u (S) = 0 can be proved by the inductive method.)

In this way, we have proved that ∀S ̸= R(l)
u , J

(l)
u (S) = 0.

D. Discussion on Equations (5)–(7)

Section 3.3 introduced that the neural activation z
(l)
u (x) of the neuron (l, u) in a Harsanyi block was computed by applying

a linear operation (Equation (5)), an AND operation (Equation (6)), and a ReLU operation (Equation (7)). We provide
further discussions on the above three operations as follows.

Unlike a linear layer in a traditional DNN, Equation (5) shows that among neurons in all previous (l − 1) blocks, only
outputs of the children nodes Σ(l)

u · z(l−1) can affect the output of the neuron (l, u). Equation (6) denotes that if all children
nodes in S(l)

u are activated, then the activation score g
(l)
u (x) can pass through the AND operation, i.e., h(l)

u (x) = g
(l)
u (x).

Otherwise, if any children node is not activated, i.e., ∃(l′, u′) ∈ S(l)
u , e.g., z(l

′)
u′ (x) = 0, then we have h

(l)
u (x) = 0.

E. Proofs and implementation details for Harsanyi-CNN
Harsanyi-CNN architecture. Figure 6 illustrates the architecture of the Harsanyi-CNN. As introduced in Section 4.1, we
first applied a convolutional layer, max-pooling layer and ReLU layer to obtain the feature z(0). Then, we built cascaded
Harsanyi blocks on z(0). Similar to the traditional CNN, each neuron (l, u = (c, w, h)) in the convolutional layer of each
HarsanyiBlock corresponds to a subtensor T(l)

u ∈ RC×K×K w.r.t. the previous layer, where C is the number of channels in
the previous layer and K ×K is the 2D kernel size. The neurons which share the same location but on different channels
(l, u = (:, w, h)) correspond to the same subtensor T(l)

u . The children set S(l)
u of each neuron (l, u) were selected from

the subtensor T(l)
u . Moreover, neurons on the same location but on different channels (l′, u′ = (:, w′, h′)) belong to the

children set S(l)
u simultaneously. The output of the HarsanyiBlock was constructed following Equations (5)–(7). Finally,

each dimension of the network output v(x) is constructed as the weighted sum of the output of each HarsanyiBlock using
linear transformations and the skip-connection.

Harsanyi Blocks

Sub tensor neurons (l,u=(:,w,h))

�(�)

Figure 6. Schematic diagram of the Harsanyi-CNN architecture.

15

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Proof of the conclusion in Setting 2 that based on the design of letting all neurons (l, u = (1, h, w)), . . . , (l, u = (C, h,w))

share the same parameter τ
(l)
u , all Harsanyi units (l, u = (c, h, w)) in the same location (h,w) on different channels

(c = 1, . . . , C) had the same receptive field R(l)
u=(:,h,w) and contributed to the same Harsanyi interaction I(S = R(l)

u=(:,h,w)).

Proof. According to the implementation ∀(l, u), τ (l)
u=(1,h,w) = τ

(l)
u=(2,h,w) = · · · = τ

(l)
u=(C,h,w) ∈ RCK2

, we will prove

that ∀(l, u),R(l)
u=(1,h,w) = R(l)

u=(2,h,w) = · · · = R(l)
u=(C,h,w).

Since ∀(l, u), (Σ(l)
u)i,i=1((τ

(l)
u)i > 0), then for arbitrary binary diagonal matrix Σ

(l)
u , we have ∀(l, u),Σ(l)

u=(1,h,w) =

Σ
(l)
u=(2,h,w) = · · · = Σ

(l)
u=(C,h,w). The children set S(l)

u is implemented by Σ
(l)
u , then we have ∀(l, u),S(l)

u=(1,h,w) =

S(l)
u=(2,h,w) = · · · = S(l)

u=(C,h,w). According to Equation (8), we derive R(l)
u from S(l)

u recursively, then we have

∀(l, u),R(l)
u=(1,h,w) = R(l)

u=(2,h,w) = · · · = R(l)
u=(C,h,w). In this way, the Harsanyi units (l, u = (c, h, w)) in the same

location (h,w) on different channels (c = 1, . . . , C) had the same receptive field R(l)
u=(:,h,w).

Next, we will show that considering C channels as C Harsanyi units, and considering C channels together as a single
Harsanyi unit, their Harsanyi interactions are equal in both cases.

Considering C channels as C Harsanyi units, we have totally m(l) = H ×W × C Harsanyi units in the l-th layer. We have
I(S = R(l)

u=(1,h,w)) = I(S = R(l)
u=(2,h,w)) = · · · = I(S = R(l)

u=(C,h,w)), which is abbreviated to I(S = R(l)
u). According

to Theorem 2 and Lemma 1, we have

I(S = R(l)
u) =

∑L

l=1

∑m(l)

u=1
w(l)

v,uJ
(l)
u (S = R(l)

u) =
∑L

l=1

∑H×W×C

u=1
w(l)

v,uz
(l)
u (x)

where w
(l)
v,u ∈ R and z

(l)
u (x) ∈ R. Based on Equations (5)–(7), note that ∀c ∈ {1, 2, . . . , C}, (l, u = (c, h, w)) share the

same children nodes S(l)
u=(1,h,w) = S(l)

u=(2,h,w) = · · · = S(l)
u=(C,h,w), then h

(l)
u=(c,h,w)(x) at the same location on different

channels is activated or deactivated at the same time, due to the AND operation on the child nodes. Besides, z(l)u (x)

is determined by the linear combination of the child nodes g
(l)
u (x) = (A

(l)
u)⊺·

(
Σ

(l)
u ·z(l−1)

)
, where A

(l)
u ∈ RCK2

is

the parameter of a convolution kernel (A total of C convolution kernels, denoted as B
(l)
u ∈ R(CK2)×C , can derive C

harsanyi units at the same position on different channels), Σ(l)
u ∈ R(CK2)×(CK2) denotes the selected children nodes and

z
(l−1) ∈ RCK2

denotes the feature maps of the (l − 1)-th layer within the coverage of the convolution kernel.

Considering C channels together as a single Harsanyi unit, we have totally m(l) = H ×W Harsanyi units in the l-th layer.
We use I(S = R(l)

u=(:,h,w)) to denote this case. According to Theorem 2 and Lemma 1, we have

I(S = R(l)
u=(:,h,w)) =

∑L

l=1

∑m(l)

u=1
w(l)

v,uJ
(l)
u (S = R(l)

u) =
∑L

l=1

∑H×W

u=1
(w(l)

v,u)
⊺z(l)u (x)

where w
(l)
v,u ∈ RC and z

(l)
u (x) ∈ RC . Based on Equations (5)–(7), note that ∀c ∈ {1, 2, . . . , C},S(l)

u=(:,h,w) = S(l)
u=(c,h,w),

then the single C-dimensional Harsanyi unit has the same activation state as C Hassani units in above case. Besides,
z
(l)
u (x) is determined by the linear combination of the child nodes g

(l)
u (x) = (B

(l)
u)⊺ ·

(
Σ

(l)
u ·z(l−1)

)
∈ RC , where

B
(l)
u ∈ R(CK2)×C is the parameters of a total of C convolution kernels, Σ(l)

u ∈ R(CK2)×(CK2) denotes the selected children
nodes and z(l−1) ∈ RCK2

denotes the feature maps of the (l − 1)-th layer within the coverage of the convolution kernel.

In this way, we proved that the Harsanyi units (l, u = (c, h, w)) in the same location (h,w) on different channels
(c = 1, . . . , C) had the same receptive field R(l)

u=(:,h,w) and contributed to the same Harsanyi interaction I(S = R(l)
u=(:,h,w)).

F. More experiment results and details
F.1. Experiment results of more challenging datasets on the HarsanyiNets

To further explore the classification performance of the HarsanyiNets, we conducted experiments on more challenging
datasets, including the Oxford Flowers-102 (Nilsback & Zisserman, 2008) and COVIDx dataset (Wang et al., 2020). To

16

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Table 3. Classification accuracy (%) of the HarsanyiNet and baseline models on more challenging datasets
Dataset HarsanyiNet baseline models

Oxford Flowers-102 95.48 97.9 (ResNet50 (Wightman et al., 2021))
COVIDx 96.75 96.3 (COVID-Net CXR-2 (Pavlova et al., 2022))

Table 4. Error between the Shapley values computed by the HarsanyiNet and the Shapley values estimated by the sampling method

Dataset Errors of Shapley values (5000 iterations) Errors of Shapley values (10000 iterations)

MNIST 0.017 0.012
CIFAR-10 0.007 0.004

compare the classification accuracy of the HarsanyiNet with a traditional DNN, we used ResNet-50 (He et al., 2016) and
COVID-Net CXR-2 (Pavlova et al., 2022) as baseline models and reported the results in Table 3. Specifically, we used the
intermediate-layer features with the size of 512× 14× 14 from the pre-trained VGG-16 model (Simonyan & Zisserman,
2015) as z(0), and then trained the HarsanyiNet upon z(0) with the same hyperparameters as described in Section 4.

As shown in Table 3, the classification accuracy of the HarsanyiNet on the Oxford Flowers-102 is slightly lower than
ResNet-50. However, on medical dataset COVIDx, the classification accuracy of the HarsanyiNet is slightly higher than
COVID-Net CXR-2. Despite this relatively small sacrifice in classification accuracy on certain datasets, the HarsanyiNet
computed the exact Shapley values in a single forward propogation, which was its main advantage over other neural
networks.

F.2. Experiment results for verifying the accuracy of the Shapley values on the HarsanyiNets

To further verify the accuracy of the Shapley values on high-dimensional image datasets, we compared the Shapley values
calculated by HarsanyiNet with those estimated by the sampling method. Specifically, we ran the sampling algorithm
with 5000 and 10000 iterations on the MNIST dataset and the CIFAR-10 dataset, respectively. Table 4 shows the root
mean square error (RMSE) between the Shapley values calculated by HarsanyiNet and the Shapley values estimated by
the sampling algorithm. The estimation errors between both methods are quite small. Nevertheless, we need to emphasize
that the sampling algorithm was more accurate when the sampling number was large, there was still a non-negligible error
between the the estimated Shapely values and the ground-truth Shapley values.

F.3. Experiment results of the training cost of the HarsanyiNets

To further explore the training cost of the HarsanyiNets, we conducted experiments on the Census, MNIST, and CIFAR-10
datasets to evaluate the training cost of HarsanyiNets and traditional DNNs with comparable sizes. Table 5 shows that the
computational cost of training the HarsanyiNet is higher than training a comparable DNN, and the computational cost of the
HarsanyiNet is about twice the cost of a traditional DNN with the same number of parameters.

F.4. Experiment results of the robustness of the HarsanyiNets

We conducted more experiments to analyze the robustness of the HarsanyiNet. Specifically, we estimate the adversarial
robustness of the classification performance and the adversarial robustness of the estimated Shapley values (Jia et al., 2019b).

To estimate the adversarial robustness of the classification performance on HarsanyiNet, we conducted experiments on the
CIFAR-10 dataset to evaluate the model robustness by examining its classification accuracy on the test set of adversarial
examples. To generate adversarial examples, we used the FGSM attack (Goodfellow et al., 2015), a gradient-based method,
with a maximum perturbation of 8/255 (Madry et al., 2018). Table 6 shows that the classification accuracy of the adversarial
examples of HarsanyiNet is slightly higher than that of ResNet-18 (He et al., 2016).

To estimate the adversarial robustness of the estimated Shapley values on HarsanyiNet, we assessed the robustness of its
estimated Shapley values by computing the ℓ2 norm of the difference in Shapley values between the adversarial and natural
examples, i.e., ||ϕnat−ϕadv||ℓ2 , where ϕnat denotes the Shapley values of natural examples, and ϕadv denotes the Shapley
values of adversarial examples. To calculate the Shapley values of the ResNet-18 model, we estimate Shapley values using
the sampling algorithm with 1000 iterations. Table 6 shows that the adversarial robustness of the estimated Shapley values

17

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Table 5. Training cost per epoch (s) of the HarsanyiNet and the comparable DNN
Dataset HarsanyiNet Comparable DNN

Census 5.0 1.9
MNIST 243.3 127.0
CIFAR-10 205.0 106.7

Table 6. Model robustness and Shapley value robustness
Model Classification accuracy of adversarial examples (%) ℓ2 norm of the Shapley value difference

HarsanyiNet 13.83% 1.44
ResNet-18 8.21% 1.50

on HarsanyiNet (estimated by the ℓ2 norm of the difference of Shapley values, the lower the better) is slightly higher than
that of ResNet-18.

Both experiments indicate that HarsanyiNet has a robustness close to, or even slightly higher than, that of the traditional
model.

F.5. More results of the estimated Shapley values on the HarsanyiNets

We conducted more experiments to show the explanations produced by our HarsanyiNets. Specifically, we trained the
Harsanyi-MLP on tabular datasets and the Harsanyi-CNN on image datasets.

For the tabular datasets including the Census, Yeast and TV news datasets, we compared the estimated Shapley values
for each method in Figure 7, Figure 8, and Figure 9, respectively. It can be seen that the Shapley values calculated
by our HarsanyiNet were exactly the same as the ground-truth Shapley values calculated by Definition 1, while the
approximation methods, including the sampling method (Castro et al., 2009), antithetical sampling (Mitchell et al., 2022),
KernelSHAP (Lundberg & Lee, 2017), and KernelSHAP with paired sampling (KernelSHAP-PS) (Covert & Lee, 2021),
needed thousands of network inferences to compute the relatively accurate Shapley values.

For the image datasets including the MNIST and CIFAR-10 datasets, we generated more attribution maps on different
categories in Figure 10 and Figure 11, respectively.

F.6. Experiment details for computing interaction strength of Harsanyi interactions encoded by a DNN

When the number of input variables is small (e.g., n < 16), we can iteratively calculate the interaction strength of all
Harsanyi interactions following Definition 2. For tabular datasets, including the Census, Yeast and TV news datasets, we set
the baseline value of each input variable the mean value of this variable over all training samples. Then we computed each
Harsanyi interaction’s strength in a brute-force manner.

For the MNIST dataset, it is impractical to directly compute the Harsanyi strength of all Harsanyi interactions. To reduce
the computational cost, we randomly sampled 8 image regions in the foreground of each image following the previous
work (Ren et al., 2023a). Then we were able to compute the Harsanyi effect of all possible Harsanyi interactions among the
sampled 8 image regions (In total we obtained 28 = 256 different Harsanyi interactions). In terms of the baseline value, we
set, for each pixel, the baseline value to zero.

F.7. Experiment details for generating attribution maps in Figure 4

We compare the attribution maps of each method on the Harsanyi-CNN models. To facilitate comparison with other methods,
the Harsanyi-CNN for the MNIST dataset was constructed with 4 cascaded Harsanyi blocks, and each Harsanyi block
had 32× 14× 14 neurons, where 32 is the number of channels. The hyperparameters were set to β = 100 and γ = 0.05
respectively. The Harsanyi-CNN for the CIFAR-10 dataset was constructed with 10 cascaded Harsanyi blocks, and each
Harsanyi block had 256×16×16 neurons, where 256 is the number of channels. The hyperparameters were set to β = 1000
and γ = 1 respectively. In this way, the HarsanyiNet and the other four model-agnostic methods used the same model to
ensure the fairness of the comparison.

Besides, since the Harsanyi-CNN model calculated Shapley values on the feature z(0), we also calculated Shapley values on

18

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Figure 7. Shapley values computed by different methods on the Census dataset. The number of inferences conducted for each method is
indicated in the brackets. The samples in the first row are from category ‘≤50K’ and the samples in the second row are from the category
‘>50K’.

z(0) using the sampling, KernelSHAP, and DeepSHAP methods. For the MNIST dataset, we run about 20000 iterations of
the sampling method and 20000 iterations of the KernelSHAP method until convergence. For the CIFAR-10 dataset, we run
about 20000 iterations of the sampling method and 200000 iterations of the KernelSHAP method until convergence.

For the FastSHAP method, we used the training samples x and the model predictions of the Harsanyi-CNN to train a
explainer model ϕfast, and slightly modified the model architecture to return the attribution maps with a tensor of the same
size as the size of z(0), i.e., 14× 14 for the MNIST dataset and 16× 16 for the CIFAR-10 dataset. For the MNIST dataset,
since (Jethani et al., 2021) did not report the explainer model ϕfast, we trained a explainer model with the same structure as
which the CIFAR-10 dataset used, and computed the attribution maps on the MNIST dataset.

F.8. Experiment details for comparing computed Shapley values with true Shapley values on the MNIST and
CIFAR-10 datasets

As mentioned in Section 4.2, in order to reduce the computational cost, we randomly sampled n = 12 variables in the
foreground of the sample as input variables on image datasets. In this way, ground-truth Shapley values were computed
by masking the selected 12 variables and keeping all the other variables as the original variables of the sample. Let us
denote the set of the selected variables as N̂ , thus, |N̂ | = 12. Specifically, we set all the variables xi, i /∈ N̂ as the baseline
value, i.e., ∀i /∈ N̂ , bi = xi and ∀i ∈ N̂ , bi = 0, to obtain a baseline sample v(x∅). Based on the baseline sample v(x∅),
we obtained 2|N̂ | different masked samples. For the HarsanyiNet, when we computed the Shapley values for the selected
variables based on Theorem 1, we only visited the sets that contain the selected variables, i.e., S ∋ i,∀i ∈ N̂ . Besides, |S|
denoted the number of the selected variables in S. In this way, we computed the Shapley values for the selected variables
by ϕ(i) =

∑
S⊆N :S∋i,i∈N̂

1
|S|I(S) and

∑n
i=1 ϕ(i) = v(xN = x) − v(x∅). For the ShapNets, we set all the variables

xi, i /∈ N̂ as the baseline value bi = 0 to obtain a masked sample x′, i.e., x′
i = xi,∀i ∈ N̂ ; x′

i = 0, otherwise. Then, with
the masked input sample, we could compute the Shapley values for the selected variables with the ShapNet.

19

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Sh
ap

le
y

va
lu

es
Sh

ap
le

y
va

lu
es

Sh
ap

le
y

va
lu

es

Figure 8. Shapley values computed by different methods on the Yeast dataset. The number of inferences conducted for each method is
indicated in the brackets. The Shapley values calculated on samples from 3 categories (out of 10 categories) are shown. Samples in the
first row are from category ‘CYT’, samples in the second row are from category ‘MIT’, and samples in the last row are from category
‘NUC’.

20

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Figure 9. Shapley values computed by different methods on the TV News dataset. The number of inferences conducted for each method is
indicated in the brackets. The samples in the first row are from category ‘Non Commercials’ and the samples in the second row are from
the category ‘Commercials’.

Class 0

Class 1

Class 2

Figure 10. Shapley values produced by the HarsanyiNet on the MNIST dataset. The Shapley value is computed by setting v(xS) as the
output dimension of the ground-truth category of the input sample x.

21

HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Figure 11. Shapley values produced by the HarsanyiNet on the CIFAR-10 dataset. The Shapley value is computed by setting v(xS) as the
output dimension of the ground-truth category of the input sample x.

22

