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Abstract—Recently, large language models have been scaled
down from large to smaller parameters. Large language models
have generalized to many tasks with pre-training, and these also
excelled in commonsense reasoning with targeted fine-tuning.
Commonsense reasoning is the capability to make judgments
and draw conclusions based on everyday knowledge that humans
typically acquire through life experiences. Reasoning ability in
language models involves understanding implicit relationships,
contextual cues, and causal connections in various scenarios.
Despite the progress of large models in many tasks, commonsense
reasoning has proved challenging in few-shot settings. In this
paper, we propose the evaluation of small language models for
commonsense reasoning using the instruction tuning method.
We performed experiments on two datasets for commonsense
reasoning and evaluated the performance of the models with
different quantization processes in one-shot settings. Our results
show that the model demonstrates promising results; however,
further fine-tuning is required to enhance their commonsense
reasoning abilities. Our study contributes to understanding the
potential and limitations of small language models.

Index Terms—small language models, commonsense reason-
ing, instruction tuning, natural language understanding, large
language models

I. INTRODUCTION

Commonsense reasoning is the process by which machine
intelligence understands implicit reasoning knowledge that
may not explicitly present any commonsense clues in the
given data. Acquiring commonsense knowledge is challenging
for artificial intelligence because it differs from data in large
corpora form for other general NLP fields [1]. Therefore,
evaluating language models for such knowledge is crucial
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because of the complexity of commonsense reasoning tasks. In
recent years, large language models (LLMs) have significantly
advanced natural language understanding (NLU) benchmarks
[2]. These benchmarks are vital for assessing language models’
ability to understand language text. Given the significance of
commonsense reasoning and NLU, our research focuses on
machine reading comprehension (MRC) with commonsense
reasoning tasks. To achieve this, we evaluated the open Small
Language Model (SLM) on datasets that combine these two
tasks.

Language models have undergone a significant transforma-
tion following the methodology shift from recurrent neural
network architectures to transformer architectures [3], enabling
extensive scalability. This paradigm shift has led to the spread
of larger models in the NLP research community, sparking
debate on quantifying the scale of models in terms of pa-
rameters. While models with fewer than seven billion pa-
rameters are generally considered small, and those exceeding
this threshold are termed LLMs, it is worth noting that even
one billion parameters would have been considered large by
past standards. To explore the capabilities of smaller models,
we focus on evaluating the performance of an open SLM
in commonsense reasoning and MRC tasks using instruction-
tuning-based evaluation. Specifically, we employed Phi-3 [4],
an SLM introduced by Microsoft, and implemented prompt
tuning evaluation techniques to assess its commonsense rea-
soning abilities. Instruction-tuning and prompting techniques
have proven highly effective in eliciting various behaviors in
LLMs [5]. Our research aims to investigate whether these
approaches are similarly effective in improving commonsense
reasoning capabilities in smaller models. This study provides
insights into the ability of SLMs to understand and involve
commonsense reasoning in MRC tasks and presents results

2024 10th International Conference on Computer and Communications

298979-8-3315-0707-7/24/$31.00 ©2024 IEEE

20
24

 1
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
om

pu
te

r a
nd

 C
om

m
un

ic
at

io
ns

 (I
CC

C)
 |

 9
79

-8
-3

31
5-

07
07

-7
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

CC
62

60
9.

20
24

.1
09

41
83

4

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on April 08,2025 at 21:53:14 UTC from IEEE Xplore.  Restrictions apply. 



that demonstrate the effectiveness of the instruction-following
paradigm.

Our framework for prompt tuning-based evaluation of SLMs
is straightforward but proved very effective because we can
obtain an aligned response from small models for MRC
commonsense reasoning, as these models are usually good at
following general instructions to present their common knowl-
edge to human agents; however, commonsense reasoning is a
complex task and aligning a SLMs to handle questions that
require some commonsense reasoning demands some iteration
of interaction with the model and derives the best prompt that
makes this model follow instructions. After this prompt design,
we evaluated these models on our two chosen datasets of the
MRC task, which have commonsense reasoning. Our results
show that these small models can follow instructions; however,
understanding commonsense reasoning using the prompting
technique is very challenging, and we strongly argue that these
models require fine-tuning on the target datasets to enhance
their capability to comprehend commonsense reasoning ques-
tions.

Our paper is organized as follows. We briefly introduce
the most relevant theories in Section II. Section III presents
more information on our prompting-based evaluation and
instruction-tuning framework, the architecture of SLMs, and
the quantization process of these SLMs. Section IV presents
technical details of the methodology, experimental setup, and
dataset information. Section V presents the most significant
results of our framework achieved with SLM for commonsense
reasoning and some critics of performance. Finally, we present
the research conclusions, summarize the limitations, and offer
future research directions in the Section VI.

II. RELATED WORK

A. Commonsense Reasoning

There are several reasoning types in automated machine
intelligence, such as abductive, inductive, commonsense, quan-
titative, and symbolic reasoning. Our focus in this research
is commonsense reasoning, and we only discuss benchmarks
and the literature on this reasoning type [1]. Commonsense
reasoning also has several types of categories: social com-
monsense reasoning, often called folk psychology; physical
commonsense reasoning, also referred to as naive physics in
the more traditional way of reasoning; and temporal common-
sense reasoning, which is used to study the reasoning aspect
of time and events. There are several benchmarks and datasets
for all these types of commonsense reasoning, such as Com-
monsenseQA [6], a question-answering benchmark for general
commonsense reasoning that does not focus on any particular
commonsense reasoning category. Other such datasets with-
out a particular focus are COPA [7] and WinoGrande [8].
The famous benchmark datasets that mainly focus on Naive
Physics and Folk Psychology are PIQA [9] and SIQA [10],
both of which are question-answering tasks. PIQA discusses
the physical reasoning aspects of objects. SIQA focuses more
on social interactions in humans and offers a unique aspect of
reasoning for studying the behavior of human sociology. Many

previous studies have focused on commonsense reasoning and
have evaluated their models on such datasets. However, little
attention has been paid to the distinct relationship between
MRC and commonsense reasoning tasks, so this is a large
gap in the current state of research, and we present our study
to fill this gap by evaluating SLMs on these datasets such as
ReCoRD [11], and CosmosQA [12].

B. Small and Large Language Models

In NLP research, unsupervised pre-training techniques [14]
with transformer architectures [3] have provided scalability
opportunities for language models since the inception of pre-
training in the field of computer vision [13]. This fundamental
paradigm shift in the NLP community has resulted in an
influx of language models, more often with large parameters
from GPTs [5], T5 [15], GPT3 [5], and FLAN [16]. The
GPT-3 model has been applied in many applications, such
as ChatGPT, the most hyped-up tool in the history of AI.
This considerable AI adaptation of the general public and
hype forced researchers to disrupt the hegemony of GPT-3
models, which resulted in LLaMA [17] models because these
models were open-sourced and had open weights. This open-
source mindset provided many researchers opportunities to
offer innovation by modifying LLaMA-based models, so many
models presented open weights with different sizes of param-
eters, generally with large parameters such as more than 7B
according to our set standard for large versus SLMs; however,
most small-scale models are presented in this literature. Most
of these SLMs are modified versions of the LLaMA models,
such as Phi-1 and Phi-2. Other related SLMs are Pythia [18],
StableLM [19], and Gemma [20].

C. Instruction Tuning

After introducing the pre-training paradigm and with the
ever-increasing scale of pre-trained models, a new parameter-
efficient technique was introduced to explore the capability
of LLMs [23]. This technique is called prompt tuning and
involves instructing the models without updating their pa-
rameters using instructions and obtaining the required an-
swers from the models. For this purpose, many prompting
techniques are used, such as static, automated, and dynamic
prompting. Some instruction-tuning frameworks, such as In-
structGPT [25], PromptSource [24], Flan Collection [21], and
SuperNatInstruct [22], offer task templates for classification,
sentiment analysis, and text generation tasks. We are using
a static prompting technique to evaluate SLM, and no other
work on our targeted datasets has performed this evaluation
for SLMs.

III. METHODS

A. Overview

The overview of our methodology is that we preprocessed
our target dataset into an instruction-tuning format, where
instruct-based models perform excellently in such a setting.
The next most crucial component of this framework is SLM,
which is used to obtain the output of the input provided as a

299
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on April 08,2025 at 21:53:14 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
PHI-3 ARCHITECTURE’S DETAIL

Parameter Name Detail

Tokenizer LLaMA 2
Vocabulary Size 32064
Pre-train Tokens 3.3T
Model Size 3.8B
Hidden Dimensions 3072
No. of Heads 32
No. of Layers 32

prompt to the model. The next component is the quantization
requirement checker, which puts restrictions on whether to
utilize a quantized SLM or the model’s standard weights
with default precision type. Finally, we captured the mod-
els’ responses for further processing, such as calculating the
evaluation scores and quantifying our results. The overall
architecture of the prompting framework is illustrated in Fig.
1. Further, we present the information about our SLM and
quantization process in the following subsections.

B. Small Language Model
For our language model, we used Phi-3 (i.e., Phi-3.5-mini-

instruct weights), an instruction-tuned model, and an enhanced
version of its previous models in the Phi-3 category offered
to the research community as a weights language model by
Microsoft. The model was pre-trained on high-quality datasets
available in the public domain and synthetic datasets. This
version was enhanced with supervised fine-tuning, proximal
policy optimization, and direct preference optimization to
obtain good results with low-scale model parameters. It has
a large token context window of 128K tokens using the
LongRope [30] technique. The architecture of the Phi-3 is a
decoder-only transformer, and each block is based on LLaMA
2 architecture. The complete details of the model parameters
are presented in Table I.

C. Quantization Process
We also utilized quantized model weights in the evaluation

framework to measure the impact of lower-precision model
weights, such as the base benchmark weights, which are in
half-precision using brain floating point (i.e., bfloat16). We
used five different quantization processes: a 4-bit normalized
floating point (NF4), NF4-dq for double quantization, a 4-bit
floating point (FP4), FP4-dq for double quantization, and an
8-bit integer floating point (INT8). In Fig. 1, not quantized
weights are depicted with full grids, while quantized weights
are displayed with some grids off. These settings were con-
figured using the bitsandbytes library [26]. Quantized models
can help reduce device memory usage, making them suitable
for mobile phones, Internet of Things, and edge devices.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics
Two datasets were used in our experiments to evaluate the

selected SLM. The first dataset is ReCoRD [11], a large-scale

TABLE II
DISTRIBUTION OF COMMONSENSE REASONING TYPES

Datasets CSR Type Percentage (%)

ReCoRD

Conceptual Knowledge 49.3
Causal Reasoning 32.0
Naıve Psychology 28.0
Other 12.0

CosmosQA

Pre or Post Condition 27.2
Motivation 16.0
Reaction 13.2
Temporal Events 12.4
Situational Fact 23.8
Counterfactual 4.4
Other 12.6

reading comprehension dataset with commonsense reasoning
characteristics, and the second is CosmosQA [12], a multi-
choice question-answering dataset for commonsense reasoning
collected from personal blogs on the web. ReCoRD is a cloze-
style query in which the model must fill in suitable answers
according to the provided context of the passage, and we
converted it to a multi-choice question-answering setting for
our needs. It is collected from news articles, focusing on
complex query designs that normal MRC systems struggle to
answer correctly and exclude too many complex queries that
cannot be answered. In contrast, CosmosQA is a narrative
understanding dataset in which the primary distribution of
tasks is the cause and effect of events, facts about entities,
and counterfactuals. The statistics of commonsense reasoning
types for both datasets are presented in Table II. The sample
sizes for the distribution of question types in the ReCoRD
and CosmosQA datasets are randomly selected as 75 examples
[11] and 500 examples [12], respectively. These question types
are categorized manually for both datasets. We used the Exact
Match (EM) and F1 Score for all experiments as the evaluation
metrics.

B. Experimental Setup

We used the PyTorch Lightning framework [27], along with
the Transformer [29] and Pytorch [28], for our experiments.
The model weights are obtained from the Hugging Face and
are accessible to all. For our hardware requirements, we used
one Quadro RTX 6000 GPU. We utilized the bitsandbytes
library for the model quantization process. Our codebase is
configured for inference setup only, as our research involves
evaluating the model’s ability to follow instructions rather than
fine-tuning; therefore, using only the generating feature of the
autoregressive model is sufficient for our process. We used
few essential parameters for answer-generation functionality,
such as top-k, top-p, temperature, and maximum new tokens.
The values specified for the top-k, top-p, temperature, and
maximum new tokens are 50, 1.0, 0.8, and 50, respectively.
Limiting the response of the model is very important for our
task because the autoregressive model working principle is
next token generation, so sometimes it is difficult to limit the
verbose nature of decoder-only models; however, our required
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Fig. 1. Overview of the methodology we used to evaluate SLM for commonsense reasoning

answers are not very long, so we specify this requirement in
our prompt instruction so that the model can predict only the
necessary tokens.

V. RESULTS AND ANALYSIS

A. Results

This section presents the findings from the one-shot eval-
uation of SLM on the ReCoRD and CosmosQA datasets.
Using instruction prompting, various model configurations
were tested to assess the impact of precision formats and
quantization techniques on performance metrics such as EM,
F1 Score, and Accuracy.

1) ReCoRD Dataset Results: The performance of differ-
ent precision and quantization combinations on the ReCoRD
dataset is summarized in Table III. Two key evaluation
metrics—EM and F1 Score—were used to measure model
performance. The model achieved an EM of 28.30% and an F1
Score of 30.06% without quantization. With NF4 and NF4-dq
quantization, the scores slightly dropped, but remained close
to the unquantized model’s performance. The FP4 and FP4-dq
configurations, however, showed a more pronounced decline
in both EM (24.24% and 24.15%) and F1 Score (26.35% and
26.37%), respectively. Using the INT8 quantization method
with float16 precision, the model demonstrated a significant
boost, reaching an EM of 43.60% and an F1 Score of

TABLE III
ONE-SHOT EVALUATION RESULTS FOR RECORD DATASET

Model Configration Evaluation Metrics

Precision Quantization Exact Match (%) F1 Score (%)

bfloat16e

None 28.30 30.06
NF4a 27.23 29.75
NF4-dqb 27.26 29.60
FP4c 24.24 26.35
FP4-dq 24.15 26.37

float16 INT8d 43.60 44.70

a4-bit Normalized Float bdq is Double Quantization c4-bit Float
d8-bit Integer e16-bit BrainFloat

44.70%, clearly outperforming all quantization configurations
with bfloat16.

2) CosmosQA Dataset Results: Table IV presents the re-
sults of various precision and quantization techniques evalu-
ated on the CosmosQA dataset, where the primary metric was
Accuracy. The model attained an accuracy of 60.30% without
quantization. Similar to the ReCoRD dataset, the NF4 and
NF4-dq quantization methods resulted in only minor fluctu-
ations, with NF4-dq slightly improving accuracy (60.34%).
However, the FP4 and FP4-dq configurations saw a decline
in accuracy, reaching 55.31% and 55.04%, respectively. The
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TABLE IV
ONE-SHOT EVALUATION RESULTS FOR COSMOSQA DATASET

Model Configration Evaluation Metrics

Precision Quantization Accuracy (%)

bfloat16e

None 60.30
NF4a 59.40
NF4-dqb 60.34
FP4 55.31
FP4-dq 55.04

float16 INT8d 63.79

a4-bit Normalized Float bdq is Double Quantization c4-bit Float
d8-bit Integer e16-bit BrainFloat

highest accuracy (63.79%) was achieved using float16 preci-
sion with INT8 quantization, again outperforming all other
configurations.

The results show that quantization can significantly impact
model performance, with INT8 quantization in float16 preci-
sion yielding the best results across both datasets. Meanwhile,
FP4 and FP4-dq quantization in bfloat16 consistently led to
decreased performance. These findings suggest that lower-
precision formats can be detrimental unless combined with
efficient quantization techniques, such as INT8, which maxi-
mizes performance.

B. Analysis and Discussion

The line graph in Fig. 2 presents a comparative analysis
of the model performance across two different precision
types and various quantization methods for both ReCoRD
and CosmosQA datasets. The performance was measured in
terms of EM and F1 Score for ReCoRD and accuracy for
CosmosQA. The trend line in this graph shows the results for
both datasets, revealing that INT8 quantization consistently
yields better results, whereas FP4-based quantization methods
result in a significant performance decrease. These findings
support the idea that INT8 quantization is the best option
for maintaining performance in low-precision models with
slightly more memory consumption trade-offs, particularly for
commonsense reasoning tasks.

The graph in Fig. 3 presents a benchmarking analysis of
inference speed (tokens per second) and GPU memory usage
across different quantization methods (i.e., None is for not
quantized, NF4, NF4-dq, FP4, FP4-dq, and INT8). Graph
trend line represents the trade-offs between inference speed
and memory consumption across all quantization methods.
This comparison indicates that INT8 quantization with float16
precision is the most efficient method, as it performed the
highest token generation rate with a little higher memory
usage than other quantization methods. On the other hand,
FP4 and FP4-dq are the slowest in token generation speed but
most efficient for GPU memory consumption. Finally, NF4
and NF4-dq quantization provides a balanced performance
compared to the previous two methods for a better trade-off
between token generation speed and GPU memory allocation.
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VI. CONCLUSION AND FUTURE WORK

This study evaluated Small Language Models (SLMs),
specifically Phi-3, on commonsense reasoning tasks using in-
struction tuning-based evaluation. Different quantization tech-
niques have also been used to evaluate the performance of
SLMs with lower precision points. SLMs can effectively
follow instructions and perform well on commonsense rea-
soning tasks without fine-tuning. The quantization method
significantly impacts the performance, with 8-bit integer quan-
tization outperforming the others. Trade-offs exist between
the model performance, inference speed, and memory usage.
The implications for deploying SLMs in resource-constrained
environments are also discussed. Our study was limited to
two datasets. Future research will expand to a broader range
of commonsense reasoning and MRC datasets to compre-
hensively evaluate the SLM capabilities. While our study
focused on instruction-tuning evaluation for both standard and
quantized weights, future work will investigate the impact
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of fine-tuning and quantized fine-tuning of SLMs on target
datasets to enhance their commonsense reasoning capabilities.
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