
Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

FEATURE-INTERPRETABLE REAL CONCEPT DRIFT
DETECTION

Pranoy Panda, Vineeth N Balasubramanian
Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad
{cs20mtech12002, vineethnb}@iith.ac.in

Gaurav Sinha
Microsoft Research India
{sinhagaur88}@gmail.com

ABSTRACT

Classifiers deployed in production degrade in performance due to changes in the
posterior distribution, a phenomenon referred to as real concept drift. Knowledge
of such distribution shifts is helpful for two main reasons: (i) it helps retain clas-
sifier performance across time by telling us when to retrain it; and (ii) understand-
ing the nature of shift in the relationship between input features and output labels,
which can be of value for business analytics (e.g., understanding change in de-
mand helps manage inventory) or scientific study (e.g., understanding virus behav-
ior across changing demographics helps distribute drugs better). An interpretable
real concept drift detection method is ideal for achieving this knowledge. Existing
interpretable methods in this space only track covariate shifts, thus, are insensi-
tive to the optimal decision boundary (true posterior distribution) and vulnerable
to benign drifts in streaming data. Our work addresses this issue by proposing
an interpretable method that leverages gradients of a classifier in a feature-wise
hypothesis-testing framework to detect real concept drift. We also extend our
method to a more realistic unsupervised setting where labels are not available to
detect drift. Our experiments on various datasets show that the proposed method
outperforms existing interpretable methods and performs at par with state-of-the-
art supervised drift detection methods w.r.t the average model classification accu-
racy metric. Qualitatively, our method identifies features that are relevant to the
drift in the USENET2 dataset, thus providing interpretability and accurate drift
detection.

1 INTRODUCTION
Concept drift is a phenomenon where a given data distribution changes over time. Based on an
application setting, this could manifest as either change in distribution of data covariates or change
in data-label posterior distribution, or a mixture of both. Gama et al. (2014) termed change in
posterior distribution as real concept drift, while change in data covariates which does not change
the optimal decision boundary as virtual concept drift. The relationship between input and output
variables is of high value in machine learning tasks, as change in this relationship can degrade
performance of a classifier Khamassi et al. (2018). We therefore focus on the real concept drift
detection problem in this work. In particular, our objective is to detect real concept drift in data
streams and also interpret the drift in terms of input features, i.e., localize features related to the drift.

A-KS (dos Reis et al 2016) CHT (Kulinski et al 2020)

 …

league hit

outbreak therapy bradley

aids die

hiv steroid thiokol

 …

league hit

hiv steroid thiokol

Methods →

Interpretation

of drift → aids die

outbreak therapy bradley

patient risk patient risk

Ames player Ames player

Ours

 …

patient risk league hit

outbreak therapy bradley

hiv steroid thiokol

Ames player aids die

(Shift in concept: Space →Baseball)

Figure 1: Illustrative results of feature-interpretable drift detection on
USENET2 dataset. Cause of drift here is shift in user interest from
Space to Baseball. Features (here words) responsible for drift w.r.t
different methods are highlighted in yellow . Highlighted boxes are

outlined in green if the selected word/feature is semantically related

to drift concept, and red otherwise. (Thiokol = rocket systems org.)

Interpretable real concept
drift detection can be
beneficial for knowledge
discovery in various ap-
plications ranging from
business/e-commerce an-
alytics to cybersecurity.
Many real-world stream-
ing applications suffer
from real concept drift.
Examples include moni-
toring devices or machin-
ery Toubakh & Sayed-
Mouchaweh (2015), mal-
ware detection Jordaney et al. (2017), credit card fraud detection Salazar et al. (2012); Dal Pozzolo

1

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

et al. (2015), predictive maintenance Zenisek et al. (2019). The wide presence of this problem in
data streams underscores the value of such methods in practice, especially with the increasing need
for interpretability in machine learning.

Real concept drift has been studied in the literature for more than two decades (Pesaranghader
et al. (2018); Bifet & Gavalda (2007); Baena-Garcıa et al. (2006); Gama et al. (2004)). Similarly,
interpretable drift detection methods such as A-KS (dos Reis et al. (2016); Žliobaite (2010)), CHT
(Kulinski et al. (2020)) also exist, but they operate only in the covariate space (virtual concept drift)
and hence cannot detect a change in the optimal decision boundary. Existing post-hoc explainability
methods are not intended for distribution shifts, and thus give unreliable explanations for concept
drifts. For instance, when the relationship between features changes between distributions in drift
settings, the explanations produced have lower fidelity Lakkaraju et al. (2020), and hence are not
trustworthy. While some recent efforts have been made to improve robustness of explanations to
local adversarial perturbations Lakkaraju et al. (2020), these do not capture the setting when the
given data distribution changes by itself over time. Thus, interpreting real-concept drift is still an
open problem. Our work aims to address this problem using classifier gradients in a feature-wise
hypothesis testing framework.

To understand the benefits of interpretable real-concept drift detection consider this problem of
understanding user preferences: say we have a user-based predictive model that classifies text read
by users as engaging (or interesting) or not engaging. Since user interest can change over time,
detecting when a predictive model is outdated (or has drifted) is necessary to ensure that the classifier
stays accurate. Figure 1 shows this example (on the USENET2 dataset), where input features are
words from email messages, and the output label indicates whether an email is interesting to a user
or not. Here, drift is caused due to change in user interest from one concept to another. As can be
seen from the figure, our method can uncover relevant features for a drift in user interest from space
to baseball, as opposed to interpretable virtual drift detectors (A-KS and CHT).
We summarize our key contributions below.

• We propose an interpretable real concept drift detection method that tracks changes in
posterior distribution by relying only on the classifier gradients and no other auxiliary post-
hoc explainer.

• We extend our framework to a more realistic unsupervised setting where we do not require
labels immediately to detect drift.

• We analyze our method and show that our feature-wise test statistic’s power converges.
• We quantitatively evaluate the drift detection capability of our method on eight datasets,

consisting of a mixture of synthetic, semi-real, and real-world datasets.
Below we start by explaining our proposed method. We include the related works in Appendix A.

2 PROPOSED METHODOLOGY
2.1 NOTATIONS AND PRELIMINARIES

We represent random variables using capital letters and values taken by these variables using small
letters. Unless otherwise specified, bold faced letters are used for vectors or sets of variables. For
each positive integer n, we denote the set {1, . . . , n} by [n] and the set {m,m+1, . . . , n} by [m,n].
The symbols P and E will be used to represent probability and expectation. Let X be a random
variable and p(X) be a probability distribution over X . By x ∼ p(X), we mean that x is obtained
by sampling from the distribution p(X). Throughout this work we will represent our covariates by
X and assume that X takes values in an open convex set X ⊂ Rd. For any differentiable function
f : Rd → R, we denote its kth (k ∈ [d]) partial derivative ∂f

∂xk
by ∂kf and the gradient vector

by ∇xf = (∂1f, . . . , ∂kf). We use the term “reference window” to denote a stream of labelled
samples {(xt, yt)}Tt=1 where xt ∈ Rd represents an input feature vector and yt is its corresponding
class label. A “detection window” is a stream of samples that appears after the reference window
(i.e. after t = T). Samples in the detection window might or might not contain labels (depending
on whether we are in the supervised or unsupervised setting). Next, we define real concept drift and
feature driven real concept drift, which is the main kind of drifts we are interested in.
Definition 2.1 (Real Concept Drift). Consider a stream of samples {(xt, yt) : t = 1, 2, . . .}. We
say that a real concept drift occurs at time t = T , if there exist two distributions p(X, Y), q(X, Y)
on the joint variable (X, Y), such that

1. (xt, yt) ∼ p(X, Y) for t ≤ T ,
2. (xt, yt) ∼ q(X, Y) for t > T , and
3. p(y|x) ̸= q(y|x), for some x ∈ X , y ∈ Y .

2

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Definition 2.2 (Feature Driven Real Concept Drift). Consider a stream of samples {(xt, yt) : t =
1, 2, . . .}. We say that a feature driven real concept drift occurs at time t = T , if there exist two
distributions p(X, Y), q(X, Y) (assuming q(Y |X) > 0) on joint variable (X, Y), such that,

1. for each y ∈ Y , p(y|x), q(y|x) are differentiable w.r.t. x.
2. (xt, yt) ∼ p(X, Y) for t ≤ T ,
3. (xt, yt) ∼ q(X, Y) for t > T , and

4. ∇x

(
p(y|x)
q(y|x)

)
̸= 0, for some x ∈ X , y ∈ Y .

In order to understand the difference between the above definitions, note that, when q(Y |X) > 0,

p(y|x) ̸= q(y|x), implies that either p(y|x)
q(y|x) depends non trivially on x (equivalent to ∇x

(
p(y|x)
q(y|x)

)
̸=

01) or equals h(y) for some non-trivial function h : Y → R. Therefore, the only drifts we do not
consider in Definition 2.2 are the ones where the conditional probability changes by a multiple that
depends only on y and not on x. It’s easy to see that we can replace condition (4) in Definition 2.2

with ∇x

(
log p(y|x)

q(y|x)

)
̸= 0, for some x ∈ X , y ∈ Y . This is true since ∇x

(
p(y|x)
q(y|x)

)
= 0, ∀x ∈ X 2

⇔ (using mean value theorem) p(y|x)
q(y|x) is a function of y ⇔∇x

(
log p(y|x)

q(y|x)

)
= 0, ∀x ∈ X .

2.2 FEATURE-WISE HYPOTHESIS TEST

Existing interpretable drift detection methods for streaming data can only cater to changes in the
covariate distribution p(X), i.e., technically, they are virtual drift detection methods. On the other
hand, the goal of interpretable real concept drift detection (Defintion 2.1) is to detect a change in
the conditional distribution p(Y |X), and at the same time reveal the features that are responsible
for this change. Unfortunately, as discussed in Section 2.1, when there exists a non-trivial function
h : Y → R such that p(y|x) = h(y)q(y|x), ∀y ∈ Y,x ∈ X , we will observe a Real Concept
Drift which is captured by the function h(y) and not by the conditional probabilities. This motivates
us to use the Feature Driven Real Concept Drift (Definition 2.2) instead. In this section we design
hypothesis tests which help us detect feature driven real concept drifts.
Hypothesis Tests: Since we wish to obtain an interpretable result, we use a feature-wise hypothe-
sis testing framework i.e., for each feature in the covariates x ∈ X ⊂ Rd, we perform a hypothesis
test to check if the feature is able to detect a change in the conditional distribution. Formally, for the
kth feature (k ∈ [d]), our test essentially captures the change in the partial derivative ∂k log p(y|x).
If even one feature detects a significant change, we signal a drift. The set of features signaling the
drift comprise our interpretation of the drift. Let p(X, Y), q(X, Y) be the joint distribution of the
streaming data pre and post the time stamp T under consideration. The hypothesis test correspond-
ing to the kth feature has the following null hypothesis H0 and alternate hypotheses Ha.

H0: For all x ∈ X , y ∈ Y , ∂k log(p(y|x)) = ∂k log(q(y|x))
Ha: ∃A ⊂ X with lebesgue measure > 0 and y ∈ Y , such that,

∂k log(p(y|x)) ̸= ∂k log(q(y|x)) ∀x ∈ A
Recall that we signal a drift if and only if H0 is rejected for some feature k ∈ [d]. Under the
assumptions mentioned in Definition 2.2, we make the following observations.

1. If H0 is true ∀k ∈ [d], then there is no feature driven real concept drift and vice versa.
2. If Ha is true for some k ∈ [d], then there is a feature driven real concept drift.

3. If Ha is false ∀k ∈ [d], then for each y ∈ Y , ∇x

(
p(y|x)
q(y|x)

)
= 0, almost surely (w.r.t.

lebesgue measure) on X ⊂ Rd.
Test statistic: Given a stream of samples S = {(xi, yi) ∼ p(X,Y) : i ∈ [n]}, along with the two
distributions p(Y |X), q(Y |X), we define our test statistic for kth feature:

ckn(p, q) =
n∑

i=1

(
∂k log p(yi|xi)− ∂k log q(yi|xi)

)2

(1)

In practice we will use the plug-in estimator ckn(p̂, q̂) of ckn(p, q), where p̂, q̂ are estimates (learned
classifiers) of the two conditional distributions p(Y |X), q(Y |X) respectively.

1under differentiability assumption
2we assume X ⊂ Rd is an open convex set

3

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Remarks: We want to mention that given p̂, q̂ and S, the above statistic can be simultaneously
computed for all k ∈ [d] by computing the gradients of p̂, q̂ (say using back-propagation) and then
plugging in the respective co-ordinates into each of the tests. This simultaneous calculation helps us
significantly reduce the dependency of the time complexity on the covariate dimension and therefore
makes our statistic scale easily to high-dimensional datasets.
Next, we analyze the power of our test statistic. In particular, we show that under the alternate
hypothesis, for any fixed t, the probability that our statistic is greater than t tends to 1 as n → ∞.
To prove this, we assume that for all y ∈ Y , p(y) > 0, and p(X|y) is strictly positive almost surely
(w.r.t. lebesgue measure), i.e. lebesgue measure of By = {x : p(x|y) = 0} is 0. We state the
proposition below and include the proof in Appendix B.
Proposition 2.1 (Convergence of Power of our Test Statistic). If the alternate hypothesis Ha is true
for some feature k ∈ [d], then, for any t > 0,

lim
n→∞

P[ckn(p, q) > t] = 1

Algorithm 1 Supervised Interpretable Drift Detection

Require: n, α,K, δ, S = {st = (xt, yt) : t = 1, 2, . . .}, r
Initialize i← 0
p̂← GETCLASSIFIER({s1, ..., sn}, ⌊nr⌋) ▷ use first ⌊nr⌋ pts
Create empty list Explanation← ϕ.
while True do

Flag← False ▷ Drift flag
SR = {st : t ∈ [i+ 1, i+ n]}.
SD = {st : t ∈ [i+ n+ 1, i+ 2n]}.
q̂ ← GETCLASSIFIER(SD , ⌊nr⌋) ▷ train on first ⌊nr⌋ pts
Compute ckn(p̂, q̂), ∀k ∈ [d], using the last n − ⌊nr⌋ samples in

SR, p̂, q̂ in Equation 1.
Get thresholds (T 1

α, . . . , T
d
α)← BOOTSTRAP1(p̂, q̂, α,K,SR, r)

if for any k ∈ [d], ckn(p̂, q̂) > T k
α then

Flag← True, Add all such ks to Explanation.
end if
if Flag = True then ▷ Drift detected

i← i+ n, and p̂← q̂ ▷ Shift windows by n
Print the list Explanation and reset it to ϕ.

else
i← i+ δ ▷ Shift windows by δ if no drift detected

end if
end while

Supervised Drift Detection:
Here, we consider the super-
vised case, i.e., when samples
in the detection window contain
both covariates and labels. We
explain the procedure in detail in
Algorithm 1 and give a summary
of the main steps here. Our al-
gorithm uses a moving window
framework on the input stream
S = {st = (xt, yt) : t =
1, 2 . . .} and iteratively applies
the hypothesis testing methodol-
ogy from Section 2.2 to contin-
uously detect drifts. To perform
the test we need to train classi-
fiers and compute the statistic,
and both of these should be done
on disjoint samples. Let r be
the ratio of the amount of sam-
ples used for training the model
to amount of samples used for
calculating the statistic. In the
first iteration, we train classifiers
p̂ and q̂ using the first ⌊nr⌋ samples in reference window SR = {s1, . . . , sn} and detection window
SD = {sn+1, . . . , s2n} respectively. Then, we compute the scores cnk (p̂, q̂) using SR (last n−⌊nr⌋
samples are used), p̂, q̂ for all k ∈ [d] as defined in Equation 1. Using a significance value α and
number of bootstraps K as inputs to our algorithm, we compute a threshold T k

α for each k ∈ [d]
by using a bootstrapping procedure explained in Algorithm 3 in Appendix D. Once we have these
thresholds, we identify the features k ∈ [d], where ckn(p̂, q̂) > T k

α . We store all the features for
which this happens in a set called “Explanation”, and report a drift with Explanation being the set of
features that explains this drift. Then we move our reference window to SR = {sn+1, . . . , s2n} and
detection window to SD = {s2n+1, . . . , s3n}. Since, we already learned q̂ on this new reference
window, we update p̂ = q̂. If for all k ∈ [d], ckn ≤ T k

α , we do not report a drift and shift our reference
and detection windows by δ (input to our algorithm). Since no drift was found p̂ remains unchanged.
The algorithm then continues with these new reference and detection windows and classifier p̂. We
refer the reader to Appendix D for complete details on the bootstrapping technique.

Unsupervised Drift Detection:

In this section we adapt our statistic to the unsupervised setting where the samples in the detection
window are unlabelled i.e., only the covariates are available (Algorithm 2 in Appendix C). Since
labels in the detection window are not available we cannot learn the classifier q̂, and therefore Algo-
rithm 1 will not work directly in this setting. In order to tackle this, we create a new “uncertainity”
based approximation q̂ and use it in our statistic. Let SR be the reference window and SD be the
detection windows. We define mean entropy of p(Y |X)3 on reference and detection windows as

3conditional distribution of samples in reference window

4

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

follows:
H(p,SR) = −

1

|SR|
∑

(xt,yt)∈SR

∑
y∈Y

p(y|xt) log p(y|xt)

H(p,SD) = − 1

|SD|
∑

xt∈SD

∑
y∈Y

p(y|xt) log p(y|xt)

Using the mean entropy defined above, we define an uncertainty measure τ(p,SR,SD) as follows:
τ(p,SR,SD) = exp(H(p,SR)−H(p,SD))

Note that τ(p,SR,SD) is equal to 1 when p(Y |X) = q(Y |X)4. As p becomes more uncertain on
samples in SD compared to SR, τ(p,SR,SD) increases. Since we have access to labelled samples
SR with distribution p(Y |X), we learn a classifier p̂ that estimates p(Y |X) and compute the plug
in estimator τ(p̂,SR,SD). In order to create an estimate of q(Y |X), we further assume that the
classifier p̂ is obtained post application of softmax on a vector of functions f(x) = (fy(x))y∈Y
learned using SR. We define an approximation q̂(Y |X) of q(Y |X) as follows:

q̂(y|x) =
exp

(
fy(x)

τ

)
∑

y′∈Y
exp

(
fy′(x)

τ

) (2)

Apart from the above definition of q̂, the algorithm in this setting is similar to the one in Algorithm
1. We expand on this further in Appendix C.

3 EXPERIMENTS AND RESULTS

We comprehensively study our contributions in this section on eight different datasets widely used
in the drift detection community Lu et al. (2018); Pesaranghader et al. (2018). Our datasets are
divided into three categories. The first type is purely synthetic – Hyperplane Bifet et al. (2010) with
gradual drifts, Sine & Mixed Gama et al. (2004) with abrupt drifts. The second type of datasets
contain real-world data with synthetically induced drifts – USENET1, USENET2 Katakis et al.
(2008); therefore, we know the location of drifts for these datasets. The third type of datasets
are real-world data streams – Electricity, Poker & Cover Type from the popular MOA repository
Details of each dataset and the drift therein are included in Appendix E. For qualitative evaluation
of interpretability, we use USENET2 dataset, where ground truth for interpretation of concept drift
can be gleaned directly from the dataset design. Below, we describe datasets, evaluation metrics, &
implementation details before presenting our results.

Evaluation Metrics Real-world streaming datasets do not have information on the true drift lo-
cation. Thus, the average classification accuracy of the underlying classifier (classifier trained on
sampling distribution of reference window) is a commonly used metric Tahmasbi et al. (2021) for
assessing drift detection performance. Here, accuracy refers to the underlying classifier’s accuracy
w.r.t. the set of class labels (which does not change) of the data stream. This accuracy is computed
on the detection window at every step and averaged across the data stream. We qualitatively evaluate
interpretability on USENET2 dataset. On datasets with true drift location information (USENET1,
USENET2, Sine and Mixed), we study the correctness of detected drifts in Section 4. For synthetic
datasets with abrupt drifts, average model accuracy is not indicative of true performance since a
higher average accuracy can be achieved with higher false positives. For such datasets, we study the
precision and recall of detected drifts.

Baselines We evaluate our drift detection method against 5 well-known baseline methods: two state-
of-the-art interpretable (virtual) drift detectors: A-KS dos Reis et al. (2016), CHT Kulinski et al.
(2020)); and three popular supervised black-box drift detectors: DDM Gama et al. (2004), EDDM
Baena-Garcıa et al. (2006), and the state-of-the-art method MDDM Pesaranghader et al. (2018).
Since we are the first interpretable real drift detection method, our objective is to perform at par with
state-of-the-art methods (which are black-box) on the above mentioned detection metrics, while
providing interpretability on the outcomes. For all baseline methods, we use default parameters
specified in respective papers.

Implementation Details Sliding Window Procedure: Drift detection methods, especially inter-
pretable ones (including ours), require two windows to operate: reference window (containing sam-
ples from training/past distribution) and detection window (containing current samples which may
or may not be from the same distribution as the reference window). Following the baselines, we use

4conditional distribution of samples in detection window

5

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

(a)

Methods →
Shift in Interest↓

Our (S) A-KS (dos Reis et al 2016) CHT (Kulinski et al 2020)Our (U)

(b)

outbreak therapy bradley

Ames player aids die

hiv steroid thiokol

outbreak therapy bradley

hiv steroid thiokol hiv steroid thiokol

hit

outbreak therapy bradley

die

hiv steroid thiokol

outbreak therapy bradley

die

hiv steroid thiokol

outbreak therapy bradley

hiv steroid thiokol

outbreak therapy bradley

hiv steroid thiokol

patient ball league hit

outbreak therapy bradley

hiv steroid thiokol

outbreak therapy bradley

die

hiv steroid thiokol

outbreak therapy bradley

die

hiv steroid thiokol

outbreak therapy bradley

hiv steroid thiokol

Medicine →Space

Space →Baseball

Baseball →Space

Space →Medicine

league

outbreak therapy bradley

die

die die die

die die

patient ball league hit

patient ball league hit

patient ball league hit

patient ball league hit

patient ball league hit patient ball league hit

patient ball league hit

patient ball league hitpatient ball

patient ball league hit

outbreak therapy bradley

die

hiv steroid thiokol

hit

outbreak therapy bradley

die

hiv steroid thiokol

outbreak therapy bradley

die

hiv steroid thiokol

outbreak therapy bradley

hiv steroid thiokol

league

die

patient ball league hit

patient ball league hit

patient ball

patient ball league hit

Ames player aids Ames player aids Ames player aids

Ames player aids Ames player aids Ames player aids

Ames player aids Ames player aids Ames player aids

outbreak therapy bradley

hiv steroid thiokol

die

patient ball league hit

Ames player aids

Ames player aids

Ames player aidsAmes player aids Ames player aids Ames player aids

(c)

Results of Interpreting Drift on USENET2 datasetAccuracy vs Time Plots
Note:
Features (here
words) indicating
drift w.r.t. different
methods are
highlighted as
yellow boxes. We
outline highlighted
boxes as green if
the selected word
is semantically
related to drift
concepts and red
otherwise. Thiokol
= rocket & missile
systems company;
Ames = Ames
Research Center at
NASA; Bradley =
baseball team;
Steroid is related to
both baseball
medicine category.

(b)

Figure 2: (a) & (b) Comparison of classifier accuracy over time of our supervised (Our (S)) &
unsupervised version (Our (U)) method w.r.t. MDDM (c) Interpretability result: A-KS & CHT
often select words from irrelevant concepts, whereas our method selects words relevant to shift.

the same length n for both these windows, and consider them to be adjacent in time. As the data
stream progresses, both reference and detection windows are shifted forward by δ (we use δ = 50
for window sizes ≥ 500 and 10 otherwise). δ is generally much smaller than n to avoid missing
drifts and thereby localization. If there is a drift, both windows are shifted by the window size n, as
the old detection window is now the new reference window. In the unsupervised setting, we cannot
shift the reference window at every time step as we require the labels of the reference window, which
may not be available for a test data window. Hence, when there is no drift in this setting, only the
detection window is shifted forward by δ. When there is a drift, the reference window is updated
to the recently drift-detected window with corresponding true labels. For our main results reported
in Table 1, the window size for all data streams (except USENET1,USENET2) is set to 500 (much
smaller than data stream lengths). For USENET 1 & 2, window size is set to 150 as drifts occur after
every 300 samples. We further study the impact of window size on drift detection in Appendix F.
Modeling the Posterior Distribution: Since our drift detection framework relies on classifier gradi-
ents, we use neural networks (NNs) to model the posterior distributions (other classifiers like logistic
regression can also be used; we use NNs considering their wide use). For all the main results (Ta-
bles 1 & 2), we use a 2-layer NN with a softmax activation function at the output layer, which is
interpreted as probabilities for class labels. Batch sizes are generally small in a streaming setting,
due to the nature of the setting itself; a small NN is hence more well-suited. Appendix E contains
more details on the architecture and hyperparameters used to train the NN. We also study the effect
of different NN architectures on drift detection in Appendix F.
Hypothesis Testing Protocol: Give a small batch of samples from a new window of a data stream,
this batch is required to train the classifier, as well as to estimate the statistic to detect the drift. We
hence divide this batch into two disjoint parts – one to train the classifier, and the other to estimate
the statistic. As stated in Section 2.2, the ratio r denotes the fraction of this batch used for training
the classifier. For all our experiments herein, we set r = 0.8 i.e. 80% of the reference window is
used to train the model and the rest to compute the statistic. We study the impact of this choice
of r in Appendix F. To obtain the threshold to reject the null hypothesis, we use a sampling-based
bootstrap test (similar to Kulinski et al. (2020)). α is set to 0.05, as typically done in literature. We
also use Bonferroni correction to correct for multiple comparisons. For more details refer to App D.

Method→ Ours(S) Ours(U) A-KS CHT MDDM DDM EDDM
Dataset ↓

Hyperplane 88.0 88.0 87.6 88.0 86.7 85.9 85.7
USENET1 57.2 52.2 55.0 51.0 58.4 56.5 57.2
USENET2 68.6 68.5 67.5 68.4 67.1 67.1 67.1
Cover type 75.6 71.0 AD AD 68.1 50.1 55.1
Electricity 77.9 75.6 AD AD 74.6 73.4 73.4

Poker 96.1 97.0 AD AD 90.1 80.0 78.5

Table 1: Comparison with interpretable (in gray) & black-box
baselines w.r.t. average model accuracy across the stream. (S -
supervised, U - unsupervised, AD - always detect drift)

Results Table 1 reports our re-
sults on drift detection via the
average model accuracy metric
computed on the data stream.
Figure 2 (a) shows model acc
across the data stream on real-
world datasets. From these,
we can observe Our (supervised
and unsupervised) outperforms
the interpretable baselines con-
sistently and is on par with ex-
isting black-box methods. Please
note that interpretable baselines A-KS and CHT latch on to benign drifts in real-world datasets, thus
always signaling drift (a similar observation was made by Kulinski et al. (2020)). However, our
method focuses on the posterior and thus is robust to such benign shifts and hence more useful in
real-world.

6

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Interpretability Results Localizing which features are related to the drift is an important aspect of
our work. To evaluate this aspect, we use the USENET2 dataset, which was constructed in Katakis
et al. (2008) by asking a labeler to read email messages and categorize them as interesting or not
interesting (output labels). The dataset’s input features correspond to words in these messages. It
contains 5 time segments of 300 examples each, and the emails belong to medicine, baseball or
space categories. At the end of each segment, there is change in the labeler’s interest, indicating a
concept drift. Figure 2(c) shows features that were identified to be responsible for drift according to
different methods at different drift locations in the dataset. As can be seen, our method (supervised
and unsupervised) is able to assign importance to features that reflect the change in interest from one
category to another in three out of four drifts. Our unsupervised method (Our (U)) does not detect
the final drift and thus no highlighted boxes. (We used a 4-layer NN for this study across all the
methods to better model the task.)
Note that in the second drift i.e. when user interest changes from space to baseball, our method
selects the feature “thiokol” (company related to rocket and missile systems) which corresponds to
space category. A-KS and CHT methods instead pick words such as “hiv”,“aids”, which belong
to medicine category. We believe that this happens as A-KS and CHT focus only on covariate
distribution, and are hence not sensitive to change in relationship between input features and output
label. Our method’s ability to use posterior distribution helps it detect and understand this change.

4 DISCUSSION AND ANALYSIS
Here we analyze our method using more studies (in both supervised & unsupervised settings).

Method→ Ours(S) Ours(U) A-KS CHT
Dataset ↓ (P/R) (P/R) (P/R) (P/R)

Sine 1.0/1.0 1.0/0.3 0/0 0/0
Mixed 1.0/1.0 0.6/1.0 0.5/1.0 0.5/1.0
USENET1 0.7/1.0 0.7/1.0 0.7/1.0 0.7/1.0
USENET2 0.7/1.0 0.8/0.8 0.7/0.7 0.6/1.0

Table 2: Precision(P) and Recall(R) of detected
drifts for all interpretable methods on datasets that
have true drift loc. (S - supervised, U - unsup.)

Correctness of Detected Drifts. For datasets
that have the true drift location available, we
use precision and recall of detected drifts to
study correctness. We define true positive (TP),
false positive (FP) and false negative (FN) in
our context as follows: TP is a detection that
is made within a small fixed time range of the
true drift location; FN refers to missing a de-
tection within the fixed time range; FP is a de-
tection outside the fixed time range (around the
true drift location) or an extra detection in the
time range of true drift location. Table 2 re-
ports precision and recall for time range equal to the length of detection window (for all datasets and
baselines). It shows that our method (supervised and unsupervised versions) achieves best precision
values across the datasets at high recall values. Our unsupervised version attains a lower recall than
the supervised version across all datasets. We believe this is due to the error in approximation of the
posterior distribution q̂ at test time and the noise in pseudolabels used in the bootstrap test.

Other Studies. We include other studies, including the impact of window size and model com-
plexity, in Appendix F. As we operate in the streaming data regime, we analyze our method’s time
complexity and compare it with existing interpretable baselines in Appendix F. Our method incurs
a time complexity of O(nK(C + d)) (given we have access to the classifiers) i.e. linear in n and
d, and thus scales to high-dim datasets (C - complexity of model that is used to approximate the
posterior distribution).

5 CONCLUSIONS
We presented an interpretable method to detect and understand real concept drifts. We used classi-
fier gradients to understand the contribution of different features toward the difference in posterior
distributions at train and test times. We proposed two versions of our method for supervised and un-
supervised settings, making our solution flexible and practically relevant. We conducted experiments
to analyze our method at four levels: (i) Precision-Recall of detected drifts on datasets with known
drift locations, (ii) Average model classification accuracy on data streams, (iii) Plots of the accuracy
of classifier across time for real-world data streams, and (iv) Qualitative results on USENET2 to
study interpretability aspect. From these wide ranges of experiments, we infer that our drift detector
is accurate and interpretable at the same time.

ACKNOWLEDGMENTS

We would like to thank Kancheti Sai Srinivas (Indian Institute of Technology, Hyderabad) for his
useful feedback and ideas.

7

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

REFERENCES

Manuel Baena-Garcıa, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, R Gavalda, and Rafael
Morales-Bueno. Early drift detection method. In Fourth international workshop on knowledge
discovery from data streams, volume 6, pp. 77–86, 2006.

Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive windowing. In
International Conference on Data Mining, pp. 443–448. SIAM, 2007.

Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer, Timm Jansen,
and Thomas Seidl. Moa: Massive online analysis, a framework for stream classification and
clustering. In First Workshop on Applications of Pattern Analysis, pp. 44–50. PMLR, 2010.

Jock A Blackard and Denis J Dean. Comparative accuracies of artificial neural networks and dis-
criminant analysis in predicting forest cover types from cartographic variables. Computers and
electronics in agriculture, 24(3):131–151, 1999.

Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and Gianluca Bontempi.
Credit card fraud detection and concept-drift adaptation with delayed supervised information. In
International Joint Conference on Neural networks (IJCNN), pp. 1–8. IEEE, 2015.

Denis Moreira dos Reis, Peter Flach, Stan Matwin, and Gustavo Batista. Fast unsupervised on-
line drift detection using incremental kolmogorov-smirnov test. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1545–1554, 2016.

Dheeru Dua, Casey Graff, et al. Uci machine learning repository. 2017.

Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with drift detection. In
Brazilian symposium on artificial intelligence, pp. 286–295. Springer, 2004.

João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A
survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.

Michael Harries and New South Wales. Splice-2 comparative evaluation: Electricity pricing. 1999.

Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia Nouretdinov,
and Lorenzo Cavallaro. Transcend: Detecting concept drift in malware classification models. In
USENIX Security Symposium (USENIX Security 17), pp. 625–642, 2017.

Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. An ensemble of classifiers for coping
with recurring contexts in data streams. In ECAI 2008, pp. 763–764. IOS Press, 2008.

Imen Khamassi, Moamar Sayed-Mouchaweh, Moez Hammami, and Khaled Ghédira. Discussion
and review on evolving data streams and concept drift adapting. Evolving systems, 9(1):1–23,
2018.

Sean Kulinski, Saurabh Bagchi, and David I Inouye. Feature shift detection: Localizing which
features have shifted via conditional distribution tests. In Neural Information Processing Systems,
2020.

Himabindu Lakkaraju, Nino Arsov, and Osbert Bastani. Robust and stable black box explanations.
In International Conference on Machine Learning, pp. 5628–5638. PMLR, 2020.

Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning under concept
drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12):2346–2363,
2018.

Ali Pesaranghader, Herna L Viktor, and Eric Paquet. Mcdiarmid drift detection methods for evolving
data streams. In International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE,
2018.

Kevin B Pratt and Gleb Tschapek. Visualizing concept drift. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 735–740, 2003.

Addisson Salazar, Gonzalo Safont, Antonio Soriano, and Luis Vergara. Automatic credit card fraud
detection based on non-linear signal processing. In International Carnahan Conference on Secu-
rity Technology (ICCST), pp. 207–212. IEEE, 2012.

8

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Tegjyot Singh Sethi and Mehmed Kantardzic. On the reliable detection of concept drift from stream-
ing unlabeled data. Expert Systems with Applications, 82:77–99, 2017.

Ashraf Tahmasbi, Ellango Jothimurugesan, Srikanta Tirthapura, and Phillip B Gibbons. Driftsurf:
Stable-state/reactive-state learning under concept drift. In International Conference on Machine
Learning, pp. 10054–10064. PMLR, 2021.

Houari Toubakh and Moamar Sayed-Mouchaweh. Hybrid dynamic data-driven approach for drift-
like fault detection in wind turbines. Evolving Systems, 6(2):115–129, 2015.

Alexey Tsymbal. The problem of concept drift: definitions and related work. Computer Science
Department, Trinity College Dublin, 106(2):58, 2004.

Geoffrey I Webb, Loong Kuan Lee, Bart Goethals, and François Petitjean. Analyzing concept drift
and shift from sample data. Data Mining and Knowledge Discovery, 32(5):1179–1199, 2018.

Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh, Xinyu Xing, and
Gang Wang. {CADE}: Detecting and explaining concept drift samples for security applications.
In 30th USENIX Security Symposium (USENIX Security 21), pp. 2327–2344, 2021.

Jan Zenisek, Florian Holzinger, and Michael Affenzeller. Machine learning based concept drift
detection for predictive maintenance. Computers & Industrial Engineering, 137:106031, 2019.

Indre Žliobaite. Change with delayed labeling: When is it detectable? In International Conference
on Data Mining Workshops, pp. 843–850. IEEE, 2010.

9

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

APPENDIX

In this appendix, we provide the following additional information that could not be included in the
main paper owing to space constraints:

• Related Work
• Proof of proposition
• Unsupervised drift detection
• Bootstrap testing details
• Dataset and hyperparameter details
• Ablation studies and time complexity analysis

A RELATED WORK

Training distribution Testing distribution

Virtual Concept Drift (only P(X) changes)

Real Concept Drift (P(Y|X) changes)

Figure 3: Different types of drifts: Real and virtual concept drift. Real concept drift focuses
on optimal decision boundary (shown in green) whereas virtual drift tracks change in covariate
distribution (illustration inspired by Fig 1 in (A Gama et al., 2014))

Concept Drift Detection. Concept drift in a machine learning context refers to change in joint
likelihood i.e. p(X, Y) ̸= q(X, Y) Gama et al. (2014), where X corresponds to data, Y corresponds
to labels, and p, q refer to train and test distributions respectively. Concept drift detection has been
studied for over two decades now Tsymbal (2004), and the general framework has remained as fol-
lows Lu et al. (2018): (i) Retrieve temporal chunks of data from the data stream. The chunk of data
from the old distribution is often referred to as reference window, and a new chunk of data is called
as detection window (length of these windows can be fixed or adaptive); (ii) Extract a key statistic
from both windows; (iii) Calculate a metric between reference and detection windows using the key
statistic; and (iv) Use a statistical test to check if the distance is significant for declaring a drift.
Based on the statistic used for drift detection, existing methods can be categorized into virtual con-
cept drift (change in data covariates without a change in the decision boundary) or real concept drift
methods (change in posterior distribution). Please refer to Figure 3 for a visual description of the
differences between the two types of drifts. Virtual concept drift methods include A-KS dos Reis
et al. (2016), CHT Kulinski et al. (2020), and MD3 Sethi & Kantardzic (2017); while real concept
drift methods include MDDM Pesaranghader et al. (2018), DDM Gama et al. (2004), EDDM Baena-
Garcıa et al. (2006), ADWIN Bifet & Gavalda (2007) . These methods can also be categorized as
black-box drift detectors (only drift localization) or interpretable drift detectors (drift localization
with additional insights about drift). Methods such as MDDM, DDM, FW-DDM, HDDM, ECDD
and EDDM fall in the category of black-box methods as they are not interpretable, while methods
such as A-KS and CHT along with detecting drift also provide some additional insights about the
drift. As stated earlier, our method is an interpretable drift detector, i.e. we aim to maintain an
accurate classifier across drifts and also provide feature-level insights on the detected drift. To the
best of our knowledge, this is the first interpretable real concept drift detection method, as detailed
below.

Explaining Concept Drift. Beyond standard drift detection, there have been very few efforts in liter-
ature that aim to provide insights about detected drifts. These efforts can be viewed as visualization-
based methods or feature-interpretable methods. Visualization-based methods use plots and maps to
inform a user about the distribution shift. For e.g., Webb et al. (2018) studied drift using quantitative

10

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

descriptions of drift in the marginal distributions, and then used marginal drift magnitudes between
time periods to plot heat maps that gives insights of the drift. Pratt & Tschapek (2003) developed
a visualization tool that used parallel histograms to study concept drift, that a user could visually
inspect. On the other hand, feature-interpretable methods attempt to detect drift and simultaneously
notify which features might be responsible for it. CADE Yang et al. (2021) addresses a special kind
of concept drift detection and understanding problem where drifting samples come from a class that
is not seen earlier by the classifier. In this work, we consider a more common scenario where classes
encountered in the system remain the same over the drift. A-KS dos Reis et al. (2016) performed
an attribute-wise KS test, while CHT Kulinski et al. (2020) performed a hypothesis test to check for
change in distribution of each feature conditioned on rest of input features. Each of these methods,
focuses on virtual concept drift, while ours focuses on real concept drift detection.

B PROOF OF PROPOSITION

Proposition 2.1 (Convergence of Power of our Test Statistic). If the alternate hypothesis Ha is true
for some feature k ∈ [d], then, for any t > 0,

lim
n→∞

P[ckn(p, q) > t] = 1

Proof. From the definition of the statistic in Equation 1 it’s easy to see that the expected value of
our statistic is:

µk
n = ES [c

k
n(p, q)] = nE(x,y)∼p(X,Y)

[(
∂k log

p(y|x)
q(y|x)

)2]
Let λ(.) denote the lebesgue measure on Rd. Since Ha is true for feature k, we know that there
exists a set A ⊂ X (λ(A) > 0) and y ∈ Y , such that ∂k log(p(y|x)) ̸= ∂k log(q(y|x)) ∀x ∈ A. By
sub-additivity, λ(Ac ∪By) ≤ λ(Ac) + λ(By) < 1, implying that λ(A ∩Bc

y) > 0.

Recall, the expected value of our statistic is µk
n = nθk where:

θk =
∑
y′∈Y

∫
x∈X

(
∂k log

p(y′|x)
q(y′|x)

)2

p(x, y′) dx

Clearly θk ≥ 0. Also, the above expression contains the term
∫

x∈X

(
∂k log

p(y|x)
q(y|x)

)2

p(x, y) dx,

which is further greater than or equal to∫
x∈A∩Bc

y

(
∂k log

p(y|x)
q(y|x)

)2

p(x, y) dx

Since,
(
∂k log

p(y|x)
q(y|x)

)2

is strictly positive on A, it is also positive on A ∩ Bc
y . Probability p(x|y)

is strictly positive on Bc
y , therefore it is strictly positive on A ∩ Bc

y . Also, by assumption p(y) is
strictly positive. Therefore, the integrand above is strictly positive and being integrated on a set of
positive lebesgue measure implying that θk > 0. Thus, for any t > 0, there exists integer N such
that µk

n − t = nθk − t > 0 for all n ≥ N . Now, for n ≥ N , we use Hoeffding inequality to obtain:

P[ckn > t] ≥ P[|ckn − µk
n| < µk

n − t] ≥ 1− exp(− 2(µk
n − t)2

n(M −m)2
)

where m,M > 0 are such that

m ≤
(
∂k log p(yi|xi)− ∂k log q(yi|xi)

)2

≤ M

Substituting µk
n = nθk, we get:

P[ckn > t] ≥ 1− exp(−
2n(θk − t

n)
2

(M −m)2
) → 1 as n → ∞.

11

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Algorithm 2 Unsupervised Interpretable Drift Detection

Require: n, α,K, δ,SR = {x1, . . . ,xn}, S = {xn+1,xn+2, . . .}
i← n, and classifier p̂← GETCLASSIFIER(SR)
Create empty list Explanation← ϕ.
while True do

Flag← False
SD = {xt : t ∈ [i+ 1, i+ n]}
Use definition of q̂ in Equation 3.2 and compute c̃kn(p̂, q̂).
Get thresholds (T 1

α, . . . , T
d
α)← BOOTSTRAP2(p̂, α,K,SR,SD)

if for any k ∈ [d], ckn(p̂, q̂) > T k
α then

Flag← True, Add all such ks to Explanation.
end if
if Flag = True then ▷ Drift detected

i← i+ n ▷ Shift windows by n
Get labels yt for xt, t ∈ [i+ 1, i+ n].
Update SR ← {(xt, yt) : t ∈ [i+ 1, i+ n]}.
p̂← GETCLASSIFIER(SR). ▷ relearn p̂
Print the list Explanation and reset it to ϕ.

else
i← i+ δ ▷ Shift windows by δ if no drift detected

end if
end while

C UNSUPERVISED DRIFT DETECTION

Continuing our discussion in Section 2.2, here we present our algorithm for the unsupervised setting
where the samples in the detection window are unlabelled i.e., only the covariates are available
(Algorithm 2). One minor difference, that was not discussed in the main paper, between supervised
and unsupervised algorithm is that whenever we update the reference window SR, we need to obtain
labels for all samples in the new window. Another difference is in the bootstrapping technique where
we use pseudo labels (labels predicted by classifier q̂) instead of true labels. Since we don’t have
access to labels in SD, we use pseudo labels instead i.e. the labels predicted by classifier q̂. This is
also shown as a separate Algorithm 4 for the unsupervised version in the next section (Appendix D).

D BOOTSTRAP TESTING DETAILS

In Sections 2, we discussed the algorithm of our method (both supervised and unsupervised versions)
where we used the bootstrap test to calculate thresholds for checking which features rejected the null
hypothesis. As stated in Section 3 (under ‘Hypothesis Testing Protocol’), we follow Kulinski et al.
(2020) for this test, which we describe herein. Algorithm 3 (BOOTSTRAPTEST1) is used for
the supervised setting bootstrap test, and Algorithm 4 (BOOTSTRAPTEST2) for the unsupervised
setting. To obtain the threshold to reject the null hypothesis, we perform bootstrap sampling K = 50
number of times. Specifically, we merge and shuffle samples from p and q distributions (as defined
in Section 3), and then pick K two-samples from this mixture. This simulates the null hypothesis.
Now, we calculate the test statistic for these K two-samples and return the (1-α)-th quantile of the
test statistic values as our threshold. We use α = 0.05 as the significance level of our test as is
standard in hypothesis testing literature. Similar to Kulinski et al. (2020), while computing the test
statistic during the bootstrap test, we refit our models for each of the K two-samples. Specifically,
we train models on the original given reference and detection windows, and update these models
(1-2 epochs of finetuning) for each bootstrap episode.

E DATASET AND HYPERPARAMETER DETAILS

This section describes all datasets used in our experiments and hyperparameters used in our experi-
ments.

E.1 DATASETS.

Table 3 provides a summary of relevant statistics about the datasets used. Window Size in Table 3
refers to detection and reference window size used for different datasets.

12

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Algorithm 3 BOOTSTRAPTEST1
Require: p̂, q̂, α,K,SR,SD
n, d← DIM(SR) ▷ n: num of samples, d : num of feats
ScoreMatrix← ZEROS(shape = (K, d))
M ← CONCATENATE(SR, SD)
for i in [1, 2, . . . ,K] do ▷ calc. for K bootstrap samples
S̃R ← SAMPLE(M ,n) ▷ sample n pts with replacement
S̃D ← SAMPLE(M ,n) ▷ sample n pts with replacement
FINETUNE(p̂, S̃R) ▷ finetune for 2 epochs (A Kulinski et al., 2020)
FINETUNE(q̂, S̃D) ▷ finetune for 2 epochs (A Kulinski et al., 2020)
Compute ckn(p̂, q̂), ∀k ∈ [d], using S̃R, p̂, q̂ in Equation 3.1.
[ScoreMatrix]i = [c1n, c

2
n, . . . , c

d
n]

end for
return (1− α

d
) quantile of ckn values stored in ScoreMatrix ∀k

Algorithm 4 BOOTSTRAPTEST2
Require: p̂, α,K,SR,SD
n, d← DIM(SR) ▷ n: num of samples, d : num of feats
ScoreMatrix← ZEROS(shape = (K, d))
ŷD ← ARGMAX(p̂(SD)) ▷ Pseudo labels for detection window
ŜD ← (ŷD, SD) ▷ combine label and covariates
M ← CONCATENATE(SR, ŜD)
for i in [1, 2, . . . ,K] do ▷ calc. for K bootstrap samples
S̃R ← SAMPLE(M ,n) ▷ sample n pts with replacement
S̃D ← SAMPLE(M ,n) ▷ sample n pts with replacement
Use definition of q̂ in Equation 3.2 and compute c̃kn(p̂, q̂) ∀k ∈ [d] using samples S̃R, S̃D .
[ScoreMatrix]i = [c̃1n, c̃

2
n, . . . , c̃

d
n]

end for
return (1− α

d
) quantile of c̃kn values stored in ScoreMatrix ∀k

Hyperplane (A Bifet et al., 2010): A hyperplane is used here to simulate time-varying concepts.
As the position and orientation of the hyperplane is changed smoothly, the old classifier (trained
to separate datapoints lying on different halfspaces of the hyperplane) gets outdated. The mag-
nitude of change is 0.001 to simulate a gradual drift. The drift locations are not known in this dataset.

Mixed (A Gama et al., 2004): This dataset has four input features (x1, x2, x3, x4), where x1 and x2

are Boolean and x3 , x4 are uniformly distributed in [0, 1]. Label of each data is determined to be
positive if two of x1, x2, and x4 < 0.5 + 0.3 sin(3πx3) conditions hold. A drift is caused when the
distribution of x3 and x4 are perturbed i.e. changed from a uniform to a non-uniform distribution.
We use a slightly larger window size for this dataset as drift locations are known to be far apart
(greater than the window sizes used).

Sine (A Gama et al., 2004): This dataset contains two attributes (x1, x2), uniformly distributed in
[0, 1]. The output label is determined by using the curve x2 = sin(x1), and data points lying below
it are classified as positive. The first drift is created by reversing the labels. For the next drift, the
curve (or labeling function) is changed. The subsequent drift is again simulated by reversing the
labels. We use a slightly larger window size for this dataset as drift locations are known to be far
apart (greater than the window sizes used).

USENET1 and USENET2 (A Katakis et al., 2008): Both these datasets are created by labeling a
stream of email messages as interesting or not interesting depending on the labeler’s interest. They
contain data for 5 time periods of 300 samples each. A drift is present after each time period because
of change in user (or labeler) interest. Since these datasets contain words as input features, we
follow standard language processing pre-processing steps and remove stop words such as pronouns,
dates, numbers and articles from this dataset. Examples of such words from the USENET2 dataset
are: ‘taken’, ‘eng’, ‘wrench’, ‘1993apr20’, ‘22’, ‘young’, ‘bob’, ‘mda’.

13

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Stats→ Dimensions Type Size Window Classes
Dataset ↓ Size

Hyperplane 10 Synthetic 20000 500 2
Mixed 3 Synthetic 20000 1500 2
Sine 3 Synthetic 20000 1500 2
USENET1 42 Semi-Real 1500 150 2
USENET2 25 Semi-Real 1500 150 2
Electricity 5 Real 45312 500 2
Poker 10 Real 20000 500 10
Cover Type 54 Real 30000 500 7

Table 3: Details of datasets used for experiments
Electricity (A Harries & Wales, 1999): This dataset contains information about the New South
Wales Electricity Market in Australia. Input features correspond to price, demand and amount of
energy transferred between two states in Australia. The class label indicates whether the transfer
price (cost to transfer electricity from one state to another) is increased or decreased relative to a
moving average of the last 24 hours. Drift is expected due to changes in consumption habits, change
in electricity board and other unexpected deviations.

Poker (A Dua et al., 2017): Each data point in this dataset represents a hand of 5 cards drawn
from a deck of 52 cards. Each card is described by two features (suit and rank). The classification
task is to predict the poker hand i.e. one out of the ten classes. An adjustment of the poker hand
(change of order) constitutes a concept drift. We use the first 30000 instances of this dataset for
experimentation.

Cover Type (A Blackard & Dean, 1999): This dataset contains 54 attributes representing 7 forest
cover types (i.e. 7 classes) for 30×30 meter cells obtained from US Forest Service (USFS) informa-
tion system, for 4 wilderness areas located in the Roosevelt National Forest of Northern Colorado.
Concept drift appears due to change in weather conditions. We use the first 20000 instances of this
dataset for experimentation.

E.2 HYPERPARAMETERS.

We herein describe various hyperparameters used in our experiments to facilitate reproducibility.
As stated earlier, we used neural networks as the model class of choice across all our experiments.
In particular, we used 3 neural network architectures across our experiments (inclusive of ablation
studies in Appendix F):

1. 2-layer Neural Network: First layer has 1024 neurons and second has 512 neurons. This
was used in all our experiments reported in Section 4.

2. 4-layer Neural Network: We used 1024-512-256-128 neuron layers from first to fourth
layer respectively. This was used in all our ablation studies reported in Section F.

3. 6-layer Neural Network: We used 1024-512-256-128-128-64 neuronlayers from first to
sixth layer respectively. This was used in all our ablation studies reported in Section F.

We used Dropout of 10% after every layer in each neural network. An L2 weight decay regularizer
with co-efficient 0.001 in the loss term was used consistently across all models during training.
ReLU activation function is used in all layers across all our networks. We use a learning rate of
1e-04, batch size of 16 and Adam Optimizer for all our experiments.

For both supervised and unsupervised versions of our method (Algorithms 1 and 2), we use number
of bootstraps K = 100 (following Kulinski et al. (2020)), δ = 10 for window sizes less than 500
and δ = 50 for window sizes ≥ 500.

F ABLATION STUDIES AND TIME COMPLEXITY ANALYSIS

Continuing from our discussion in Section 5, we report the results of our ablation studies where we
analyze the impact of different hyperparameters used in our drift detection algorithm (Algorithm 1,
2). We also analyze the time complexities of different interpretable baselines and report the accuracy
across time plots for the unsupervised version of our method.

14

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

F.1 IMPACT OF r

- The ratio that defines the proportion of samples used for training the model to computing the test
statistic in the reference window is referred to as r. In Sections 4, 5 all the results were reported
with the r value being equal to 0.8. Here we vary the value of r and study its impact on the drift
detection performance of our method as measured using the metric of average model classification
accuracy.

r values→ 0.6 0.7 0.8
Dataset ↓
Hyperplane 86.6 87.7 88.0
Electricity 77.2 78.3 77.9

Table 4: Average model accuracy for different r values in supervised setting. Win size = 500; Model
= 2 layer NN

r values→ 0.6 0.7 0.8
Dataset ↓
Hyperplane 88.5 87.8 88.0
Electricity 76.4 77.1 75.6

Table 5: Average model accuracy for different r values in unsupervised setting. Win size = 500;
Model = 2 layer NN

It can be observed from Tables 4 & 5 that the final classifier accuracy stays approximately the same
(1-2% for both the datasets) when r is varied indicating robustness of our method (both versions) to
r value.

F.2 IMPACT OF WINDOW SIZE.

Results reported in Table 1 & 2 of the main paper used detection (and reference) window size of
500, as online settings often have small batch sizes. We now vary the window size in Tables 6 & 7 to
study the impact of window size on drift detection performance of our supervised and unsupervised
versions.

Window Size→ 500 750 1000
Dataset ↓
Hyperplane 88.0 88.9 87.9
Electricity 77.9 75.7 76.7

Table 6: Average model accuracy for different window sizes for our method in supervised setting

The results – across both supervised and unsupervised versions of our method – indicate that for
different window sizes, average model accuracy stays approximately the same (within 0.5-1% for
hyperplane dataset and within 2-3% for the electricity dataset). Thus our method is relatively robust
to the window size. As a design principle, however, a large window size could increase the delay
in detecting the drift, so one should choose the window size based on the application. These results
also indicate that our method (both supervised and unsupervised versions) achieves good average
model accuracy even for small window sizes, which can be beneficial in real-world online settings.

F.3 IMPACT OF MODEL COMPLEXITY.

We conducted a study where the neural network model depth was varied while capturing the poste-
rior distribution, to study the effect of model complexity on our method’s performance. Reference
and detection window sizes were set to 1500 in this study as we were using complex models which
require more samples to train.

It can be observed from Table 8 & 9 that for both versions of our method the average model accuracy
stays practically the same (within 0.5-1% for the hyperplane dataset and within 3-4% for the real-
world electricity dataset). Given that these data streams are of significant length and are diverse (one

15

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Window Size→ 500 750 1000
Dataset ↓
Hyperplane 88.0 87.6 87.4
Electricity 75.6 73.0 76.9

Table 7: Average model accuracy for different window sizes for our method in unsupervised setting

Num of Layers→ 2 layer 4 layer 6 layer
Dataset ↓
Hyperplane 88.0 88.6 88.7
Electricity 76.4 75.0 75.2

Table 8: Average model accuracy for different model complexities of the posterior network in su-
pervised setting. Window size = 1500

Num of Layers→ 2 layer 4 layer 6 layer
Dataset ↓
Hyperplane 86.8 88.6 88.6
Electricity 77.8 73.4 74.3

Table 9: Average model accuracy for different model complexities of the posterior network in unsu-
pervised setting. Window size = 1500
is synthetic and the other is real-world), it can be inferred that our method (both versions) is able to
achieve good classifier performance across different neural network architectures.

F.4 TIME COMPLEXITY ANALYSIS.

For a given reference and detection window, we compare the time complexity of different inter-
pretable methods from the lens of two key variables - sample size n, and input dimension d. Our
method incurs the time complexity of O(nK(C + d)) (given we have we have access to the clas-
sifiers) where C is a variable that represents complexity of the model that estimates the posterior
distribution and K is the number of bootstrap samples. Thus, time complexity of our method is
linear in n and d, and thus scales to high-dimensional datasets.

CHT also has a cost of O(nK(C + d)) where C is a variable that represents complexity of the
model that estimates the data distribution. A-KS has a cost of O(dn log n) for its non-incremental
version. While A-KS has an incremental version which uses a randomized tree and gets better time
complexity, this method was intended for virtual drift detection. Our method, on the other hand,
performs real concept drift detection with about the same time complexity as these methods. An
incremental version of our method that has a lower time complexity is an interesting future direction.

Real-world datasets such as the Electricity dataset (A Harries & Wales, 1999) have sampling
rates in the order of hours. The supervised version of our method takes roughly 100 secs and
the unsupervised version takes roughly 60 secs on the electricity dataset to perform our test on a
window of size 500 (both reference and detection window) when we use a 2-layer NN to model the
posterior distribution. With respect to the sampling rate of the dataset, our proposed drift detectors
(supervised and unsupervised versions) are near real-time, thus making them practically useful for
real-world applications.

16

	Introduction
	Proposed Methodology
	Notations and Preliminaries
	Feature-wise Hypothesis Test

	Experiments and Results
	Discussion and Analysis
	Conclusions
	Related Work
	Proof of Proposition
	Unsupervised Drift Detection
	Bootstrap Testing Details
	Dataset and Hyperparameter Details
	Datasets.
	Hyperparameters.

	Ablation Studies and Time Complexity Analysis
	Impact of r
	Impact of Window Size.
	Impact of Model Complexity.
	Time Complexity Analysis.

