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ABSTRACT

This work is motivated by the growing demand for reproducible machine learn-
ing. We study the stochastic multi-armed bandit problem, where the algorithm’s
sequence of actions is, with a high probability, not affected by the randomness
of the dataset. Existing algorithms require a regret scale of O(K3), which in-
creases much faster than the number of actions (or “arms”), denoted as K. We
introduce an algorithm with a distribution-dependent regret of O(K) when the
suboptimality gaps for each arm are within a constant factor. Furthermore, we
propose another algorithm, which not only achieves a regret of O(K) but also
boasts a distribution-independent regret of O(K1.5

√
T log T ). Additionally, we

propose an algorithm for the linear bandit with regret of O(d), which is linear in
the dimension of associated features, denoted as d, and it is independent of K.
For the analysis of these algorithms, we offer a principled approach to limiting the
probability of non-replication, which clarifies the steps that existing research has
implicitly followed.

1 INTRODUCTION

The multi-armed bandit (MAB) problem is one of the most well-known instances of sequential
decision-making problems in uncertain environments, which can model various real-world scenar-
ios. The problem involves conceptual entities called arms, of which there are a total of K. At each
round t = 1, 2, . . . , the forecaster selects one of the K arms and receives a corresponding reward.
The forecaster’s objective is to maximize the cumulative reward over these rounds. Maximizing this
cumulative reward is equivalent to minimizing regret, the difference between the forecaster’s cumu-
lative reward and the reward of the best arm. The initial investigation of this problem took place
within the field of statistics (Thompson, 1933; Robbins, 1952). In the past two decades, the machine
learning community has conducted extensive research in this area, driven by numerous applications,
including website optimization, A/B testing, and the formulation of meta-algorithms for algorithmic
procedures (Auer et al., 2002; Li et al., 2010; Komiyama et al., 2015; Li et al., 2017).

Several algorithms have proven to be effective. Notably, the upper confidence bound (UCB,
Lai & Robbins, 1985; Auer et al., 2002) and Thompson sampling (TS, Thompson, 1933) are widely
recognized. Research has shown that these algorithms are asymptotically optimal (Cappé et al.,
2013; Agrawal & Goyal, 2012; Kaufmann et al., 2012) in terms of their regret, meaning that these
efficient algorithms exploit accumulated reward information to the fullest extent possible.

1.1 REPLICABILITY

One possible drawback of such efficiency is the algorithm’s stability when dealing with small
changes in the dataset, which can make replicating results challenging. To illustrate this, consider
the following example:
Example 1. (Crowdsourcing (Abraham et al., 2013; Tran-Thanh et al., 2014)) Imagine a company
conducting a crowd-based A/B testing with K items. In this scenario, each round t corresponds to
a worker visiting their website, and each reward represents the feedback provided by the worker,
such as a five-star rating. The key statistic of interest here is the mean score given by the workers.
By using UCB or TS to allocate an item to each user, the system can quickly eliminate unpopular
items from the candidate set. Although the company aims to publish the results, it is reluctant to
disclose all the specific details of the setup. Therefore, it provides the experimental protocol along
with summary statistics.
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Table 1: Comparison of regret bounds in the K-armed and linear bandit problems. Means {µi}i∈[K]

are sorted in descending order, ∆i = µ1 − µi is the suboptimality gap of the arm i, and ∆ = ∆2.
Algorithm 2 is referenced multiple times, implying that it has the smallest regret among the bounds.
The lower bound is derived for the two-armed case. Õ omits a polylog factor in d,K, T .

Problem Esfandiari et al. (2023a) This work

K-armed O
(∑K

i=2
1
∆i

K2 log T
ρ2

)
(= O(K3))

O
(∑K

i=2
∆i

∆2
log T
ρ2

)
(= O(K), REC (Theorem 3) and RSE (Theorem 4))

O
(∑K

i=2
1
∆i

K2 log T
ρ2

)
(RSE, Theorem 4)

O
(

K
ρ

√
KT log T

)
(RSE, Theorem 4)

Ω
((

1
∆

)
max

(
log T, 1

ρ2 log((ρ∆)−1)

))
(Lower bound, Theorem 5)

Linear Õ
(

K2
√
dT

ρ2

)
(= O(K2))

O
(

d log T
∆2ρ2

)
(RLSE, Theorem 8)

O
(

K
ρ

√
dKT log T

)
(RLSE, Theorem 8)

In Example 1, the original dataset is not disclosed, making it impossible for an external institution
to perfectly replicate the experiment. To address this lack of guarantee due to the vague dataset
specification, we focus on the algorithm’s stability. Broadly speaking, a stable algorithm is robust
against minor changes in the dataset. Notable categories of stability encompass differential pri-
vacy (Dwork et al., 2014), worst-case and average sensitivity (Varma & Yoshida, 2021), and pseudo-
determinicity (Gat & Goldwasser, 2011). Among these notions of stability, we consider the replica-
bility (Impagliazzo et al., 2022) in this work. In simple terms, a replicable algorithm exhibits almost
identical behavior on two datasets sharing the same data-generating process. This concept aligns
well with Example 1, where the data-generating process is clearly defined as a material method,
whereas the dataset itself remains undisclosed.

Another advantage of promoting replicability in the context of sequential learning is its relation to
statistical testing. It is well-known that the standard frequentist confidence interval no longer holds
for the results of the multi-armed bandit problem because such an adaptive algorithm violates the as-
sumption of statistical testing that the number of samples is fixed. In general, mean statistics derived
from the multi-armed bandit algorithm are downward biased (Xu et al., 2013; Shin et al., 2019), and
this bias persists even for a large sample scheme (Lai & Wei, 1982), rendering the use of standard
confidence intervals ineffective even for asymptotics (Deshpande et al., 2018). Replicability is one
of the best methods to address such bias because it forces the algorithm to exhibit identical behavior
in multiple runs with different datasets sharing a common underlying data-generating process.

1.2 OUR CONTRIBUTIONS

The concept of replicability in learning was formalized by Impagliazzo et al. (2022). As far as we
know, Esfandiari et al. (2023a) is the sole work that provides algorithms studying replicability for the
multi-armed bandit problem. Roughly speaking, the regret of the algorithms therein is O(K2/ρ2)
times larger than that of non-replicable algorithms, which have O(K) regret, such as UCB and TS.
Here, K is the number of arms, and ρ is the probability of non-replication. Although the additional
factor might appear necessary for the cost of replicability, it is somewhat disappointing because an
O(K3)-regret algorithm does not scale well with a moderate value of K. Upon closer examination
of the problem, we discovered that K2 factor can be eliminated, while the 1/ρ2 factor remains
essential. The algorithmic contributions of this work are outlined as follows.

• We first introduce the general framework for bounding the probability of nonreplication.
• We introduce the Replicable Explore-then-Commit (REC) algorithm, which is the first

replicable K-armed bandit algorithm with a regret bound of O(K) when the suboptimality
gaps for each arm are within a constant factor.
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• While REC has an O(K) bound, its distribution-dependent multiplicative factor may ex-
ceed that of existing algorithms in certain cases. To deal with this issue, we introduce the
Replicable Successive Elimination (RSE) algorithm whose regret bound is the minimum
of those of REC and the existing algorithms. Furthermore, we establish the distribution-
independent regret bound for the replicable K-armed bandit problem.

• We derive the first lower bound for the replicable K-armed bandit problem, implying the
necessity of the 1/ρ2 factor.

• Furthermore, we consider the linear bandit problem, in which each of the K arms is asso-
ciated with d < K features. We show that a straightforward modification of RSE yields an
algorithm with a regret bound of O(d), indepenent of K.

A comparison of existing algorithms and our algorithms is summarized in Table 1.

2 PROBLEM SETUP

We consider the finite-armed stochastic bandit problem with T rounds. At each round t, the fore-
caster who adopts an algorithm selects one of the arms It ∈ [K] := {1, 2, 3, . . . ,K} and receives
the corresponding reward rt. Each arm i ∈ [K] has an (unknown) mean parameter µi ∈ R. Here,
µi ∈ [a, b] for some a, b ∈ R and let S = b − a. For ease of discussion, we assume S = 1, but all
our results can be easily generalized1 to any S > 0. The reward at round t is rt = µIt + ηt, where
ηt is a σ-subgaussian random variable that is independently drawn at each round.2 The subgaussian
assumption is quite general that is not limited to Gaussian random variables. Any bounded random
variable is subgaussian, and thus, it is capable of representing binary events (Yes/No) and ordered
choice (e.g., 5-star rating). For subgaussian random variables, the following inequality holds.
Lemma 1 (Concentration inequality). Let X1, X2, . . . , XN be N independent (zero-mean) σ-
subgaussian random variables, and µ̂N = (1/N)

∑
i Xi be the empirical mean. Then, we have

P [|µ̂N | ≥ s] ≤ 2 exp

(
−s2N
2σ2

)
. (1)

For ease of discussion, we assume the mean reward of each arm is distinct. In this case, we can
assume µ1 > µ2 > · · · > µK without loss of generality. Of course, an algorithm cannot exploit this
ordering. A quantity called regret is defined as follows:

Regret(T ) :=
∑
t∈[T ]

(µ1 − µIt) =
∑
i∈[K]

∆iNi(T ),

where ∆i = µ1 − µi and Ni(T ) is the number of draws on arm i during the T rounds. We also
denote ∆ = mini≥2 ∆i = ∆2. The performance of an algorithm is measured by the expected regret,
where the expectation is taken over (hypothetical) multiple runs. Before discussing the replicability,
we formalize the notion of dataset in a sequential learning problem because the reward rt in the
aforementioned procedure is drawn adaptively upon the choice of the arm It. The fact that each
noise term ηt is drawn independently enables us to reformulate the problem as follows:
Definition 1. (Dataset) The process of the multi-armed bandit problem is equivalent to the follow-
ing: First, draw a matrix (ri,n)i∈[K],n∈[T ], where ri,n = µi + ηi,n and ηi,n is a σ-subgaussian
random variable. Second, Run a multi-armed bandit problem. Here, rt is the (It, NIt(t))-entry of
the matrix. We call this matrix a dataset and denote it as D. We call (µi)i∈[K] a data-generating
process or a model.

Following Esfandiari et al. (2023a), we consider the class of replicable algorithms that, with high
probability, gives exactly the same sequence of selected arms for two independent runs.
Definition 2. (ρ-replicability, Impagliazzo et al. (2022); Esfandiari et al. (2023a)) For ρ ∈ [0, 1], an
algorithm is ρ-replicable if,

PU,D(1),D(2)

[
(I

(1)
1 , I

(1)
2 , . . . , I

(1)
T ) = (I

(2)
1 , I

(2)
2 , . . . , I

(2)
T )
]
≥ 1− ρ, (2)

1In particular, ϵp of Algorithms 1–3 should be replaced with ϵp = S2−p and all the other parts remain the
same.

2A random variable η is σ-subgaussian if E[exp(λη)] ≤ exp(σ2λ2/2) for any λ. For example, a zero-mean
Gaussian random variable with variance σ2 is σ-subgaussian.
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where U represents the internal randomness, andD(1),D(2) are the two datasets that are drawn from
the same data-generating process {µi}i∈[K].

Here, we may consider U as a sequence of uniform random variables on [0, 1] that the algorithm
can use to control its behavior. For an algorithm to be replicable, the use of such random variables
is crucial. The value ρ corresponds to the probability of misreplication. The smaller ρ is, the
more likely the sequence of actions is replicated. By definition, any algorithm is 1-replicable, and
no nontrivial algorithm is 0-replicable.3 In this paper, we consider ρ ∈ (0, 1) as an exogenous
parameter, and our goal is to minimize the regret subject to the ρ-replicability.

3 GENERAL BOUND OF THE PROBABILITY OF NON-REPLICATION ρ

It is not very difficult to see that a standard bandit algorithm, such as UCB, lacks replicability. UCB,
in each round, compares the UCB index of the arms, and thus, a minor change in the dataset can
alter the sequence of draws I1, I2, . . . , IT . Thus, designing a replicable algorithm must deviate sig-
nificantly from standard bandit algorithms. This section presents a general framework for bounding
non-replicable probability in the multi-armed bandit problem. We believe that this framework can
be applied to many other sequential learning problems. First, a replicable algorithm should limit its
flexibility by introducing phases.

Definition 3. A set of phases is a consecutive partition of rounds [T ]. Namely, phase p is a consec-
utive subset of [T ], and the first round of phase p + 1 follows the last round of phase p, and each
round belongs to one of the phases. We define P to be the number of phases.

The sequence of draws I1, I2, . . . , IT is only allowed branch at the end of each phase, which we
formalize in the following definition.

Definition 4. (Randomness) The randomness U consists of the one for each phase. Namely, U =
(U1, U2, . . . , UP ).

Definition 5. (Good events, decision variables, and decision points) We call the end of the final
round of each phase a decision point, which we denote as Tp. For each p ∈ [P ], we consider the
historyHp to be the set of all results up to the final round Tp of phase p. Namely,

Hp = (I1, r1, I2, r2, . . . , ITp , rTp) ∪ (U1, U2, . . . , Up). (3)

Each phase p is associated with good event Gp(Hp), which is a binary function of Hp. Each phase
p is associated with random variables that are called decision variables dp. Decision variables
take discrete values and are functions of Hp. Moreover, the sequence of draws on the next phase
{ITp+1, ITp+2, . . . , ITp+1} is uniquely determined by the decision variables d1, d2, . . . , dp.

Intuitively speaking, the good events correspond to the concentration of statistics with its probability
we can bound with concentration inequalities (by Lemma 1). The set of decision variables uniquely
determines the sequence of draws. Note that each phase can be associated with more than one
decision variable. To obtain intuition, we consider the following example.

Example 2. (A replicable elimination algorithm, Alg 2. in Esfandiari et al. (2023a)) At the end of
each phase, the algorithm obtains an empirical estimate of µi for each arm. It tries to eliminate
suboptimal arm i, and the corresponding decision variable is

dp,i = 1[max
j

LCBj(p) ≥ UCBi(p)], (4)

where UCBi(p),LCBi(p) are the (randomized) upper/lower confidence bounds of the arm i at phase
p. Here, 1[E ] is 1 if event E holds or 0 otherwise. Under good events, by randomizing the confidence
bounds with Up, it bounds the probability of non-replication of each decision variable.

In the following, we defined the non-replication probability for each component.

Definition 6. (Probability of bad event) Let ρGp = P
[
Gcp
]
, where Gc is a complement event of G.

3A 0-replicable algorithm draws an identical sequence of arms for almost all fixed U .
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Definition 7. (Non-replication probability of a decision variable) Let dp,i be the i-th decision vari-
able at phase p. Its non-replication probability ρp,i is defined as

ρ(p,i) := PU,D(1),D(2)

d(1)p ̸= d(2)p

∣∣∣∣∣
p−1⋂
p′=1

{
d
(1)
p′ = d

(2)
p′ ,G(1)p′ ,G(2)p′

}
,G(1)p ,G(2)p ,

 (5)

where we use superscripts (1) and (2) for the corresponding variables on the two datasetsD(1),D(2).
Theorem 2. (Replicability of an algorithm) An algorithm is ρ-replicabile with

ρ ≤ 2
∑
p

ρGp +
∑
p,i

ρ(p,i). (6)

In summary, Theorem 2 enables us to decompose the non-replication probability ρ into the sum of
the non-replication probabilities due to the bad events (Gc) and decision variables (ρ(p,i)).

3.1 COMPARISION OF ALGORITHMS IN VIEW OF DECISION VARIABLES

The smaller the non-replication probability of each decision variable is, the higher the cost the
algorithm must pay to guarantee it. Assuming all ρ(p,i) are equal, ρ(p,i) ∼ ρ/|{ρ(p,i)}|, where
|{ρ(p,i)}| is the number of decision variables. Algorithm 2 in Karbasi et al. (2023) uses the decision
variables for eliminating each suboptimal arm. Therefore, it has Õ(K) decision variables, implying
that each of the non-replication probability must be Õ(ρ/K). As a result, these algorithms has an
O(K2/ρ2) factor in the leading term of the regret. In our Replicable Explore-the-Commit (REC)
algorithm, we use decision variables representing whether or not to finish the exploration process,
which means that we only need O(1) (in fact, only one of them is effective!) decision variables with
its non-replication level O(ρ), and as a result, it has O(1/ρ2) factor in the leading term of the regret,
which dramatically reduces the dependence on K.

4 AN O(K)-REGRET ALGORITHM FOR K-ARMED BANDIT PROBLEM

This section introduces the Replicable Explore-then-Commit (REC, Algorithm 1), an O(K)-regret
algorithm for the K-armed bandit problem. This algorithm consists of multiple exploration phases
and an exploitation period. The last round of each phase is a decision point, where the algorithm
decides whether it terminates the exploration period or not. For this aim, it utilizes the minimum
suboptimality gap estimator ∆̂(p) = maxi µ̂i(p)−max

(2)
i µ̂i(p), where max

(2)
i denotes the second

largest element. This algorithm involves a single uniform random variable Up ∼ Unif(0, 1) for each
phase p.

Let Conf(p) := ϵp/Cρ and ϵp = 2−p. Here, the universal constant Cρ is clarified later in Theorem
3. At phase p, if the algorithm is in the exploration period, we draw each arm up to

Np := 4σ2 log(KPT )

(Conf(p))2
= O (4p log T ) (7)

times, where P = minp{Np ≥ T} = O(log T ) is the maximum number of phases. Lemma 1 with
s = Conf(p) implies that, with probability at least 1− 1/PT , we have |∆ij(p)−∆ij | ≤ Conf(p),

for each gap ∆ij = |µi − µj | and its empirical estimator ∆̂ij(p) = |µ̂i(p)− µ̂j(p)|.

Algorithm 1: Replicable Explore-then-Commit (REC)
// Exploration period

1 for p = 1, 2, . . . , P do
2 ϵp = 2−p ;
3 Draw shared random variable Up ∼ Unif(0, 1);
4 Draw each arm for Np times;
5 If ∆̂(p) ≥ (2+Up)ϵp

ρ , then fix the estimated best arm î∗ ∈ argmaxi µ̂i(p) and break the

loop. Note that ∆̂(p) > 0 implies |Ap+1| = 1.
// Exploitation period

6 Draw arm î∗ for the rest of the rounds.
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The following theorem guarantees the replicability and performance of Algorithm 1.
Theorem 3. Let Cρ ≥ 9/4. Assume that ρ ≤ 1/2 and T ≥ 36K/ρ. Then, Algorithm 1 is ρ-
replicable and the following regret bound holds:

E[Regret(T )] = O

(
K∑
i=2

∆i

∆2

log T

ρ2

)
. (8)

Remark 1. (Use of explore-then-commit) Esfandiari et al. (2023a) briefly remarked the possibility
of the use of the explore-then-commit strategy and sketched an O(T

∑
i ∆i) regret, from which we

significantly improved the regret as well as getting rid of the assumption of known ∆.

5 A GENERALIZED ALGORITHM FOR K-ARMED BANDIT PROBLEM

Algorithm 2: Replicable Successive Elimination (RSE)
1 Initialize the candidate set A1 = [K];
2 for p = 1, 2, . . . , P do
3 ϵp = 2−p;
4 Draw shared random variables Up,i ∼ Unif(0, 1) for i = 0, 1, 2, . . . ,K ;
5 Draw each arm in Ap up to Np times;
6 Ap+1 ← Ap;
7 if ∆̂(p) ≥ (2+Up,0)ϵp

ρa
then

8 Ap+1 = {argmaxi µ̂i(p)}; ▷ Eliminate all arms except for one. By definition of
∆̂(p) > 0, |Ap+1| = 1 holds.

9 for i ∈ Ap+1 do
10 if ∆̂i(p) ≥ (2+Up,i)ϵp

ρe
then

11 Ap+1 ← Ap+1 \ {i}; ▷ Eliminate arm i.

Although Algorithm 1 improves the existing O(K3) regret bound in terms of the dependency to K,
there are two potential drawbacks: First, when we further compare the ratio between REC’s regret
bound with the existing regret bound of

O

(
K∑
i=2

1

∆i

K2 log T

ρ2

)
(Alg.2 in Esfandiari et al. (2023a)), (9)

the ratio between the two distribution-dependent bounds is bounded as (equation 8/equation 9) ≤
((∆K)/(K∆))

2, which implies that REC may be inferior if the minimum suboptimality gap ∆ is
extremely small (i.e., ∆ ≪ (∆K)/K). Second, it does not have a distribution-independent regret
bound. To address these issues, we introduce Algorithm 2, which generalizes Algorithm 1. Unlike
Algorithm 1, it keeps the list of remaining arms Ap that it draws. At the end of each phase, it
attempts to eliminate all but one arm (Line 7). If that fails, it attempts to eliminate each arm i

(Line 10). Here, ∆̂i(p) = maxj µ̂j(p) − µ̂i(p) be the estimated suboptimality gap. Here, the
hyperparameters ρa, ρe therein determine the confidence level for elimination. One can confirm
that Algorithm 1 is a specialized version of Algorithm 2 where (ρa, ρe) = (ρ, 0), where ρe = 0
implies the corresponding elimination never occurs. Here, eliminating all but one arm is equivalent
to switching to the exploration period. However, when ρe > 0, it attempts to eliminate each arm as
well. The following theorem guarantees the replicability and the regret of Algorithm 2.
Theorem 4. Let Cρ ≥ 9/4, ρa = ρ/2, and ρe = ρ/(2max(K − 2, 2)). Assume that ρ ≤ 1/2 and
T ≥ 36K/ρ. Then, Algorithm 2 is ρ-replicable. Moreover, the following three regret bounds hold:

E[Regret(T )] = O

(
K∑
i=2

∆i

∆2

log T

ρ2

)
, (same as equation 8) (10)

E[Regret(T )] = O

(
K∑
i=2

K2 log T

∆iρ2

)
, (same as equation 9) (11)
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E[Regret(T )] = O

(
K

ρ

√
KT log T

)
. (distribution-independent regret) (12)

In other words, Algorithm 2 has the best bound of Algorithm 1 and existing algorithms. Moreover,
this algorithm is the first replicable algorithm that has a distribution-independent regret bound in the
K-armed bandit problem.

6 REGRET LOWER BOUND FOR REPLICABLE ALGORITHMS

This section provides the regret lower bound for K-armed bandit algorithms. Following the liter-
ature, we consider the class of uniformly good algorithms. Intuitively speaking, an algorithm is
uniformly good if it works with any model (µ1, µ2, . . . , µK).

Definition 8 (Uniformly good, Lai & Robbins (1985)). An algorithm is uniformly good, if for any
a > 0 and for any model (µ1, µ2, . . . , µK), there exists a function R(T ) = o(T a) such that

E[Regret(T )] ≤ R(T ). (13)

Theorem 5. Consider a two-armed bandit problem where reward is drawn from Bernoulli(µi) for
each arm i = 1, 2 with mean parameters µ1, µ2. Consider an algorithm that is uniformly good and
ρ-replicable. Then, for any ∆ > 0, there exists an instance (µ1, µ2) with ∆ = |µ1 − µ2| such that
the regret of any ρ-replicable bandit algorithm is lower-bounded as

E[Regret(T )] = Ω

(
1

ρ2∆log((ρ∆)−1)

)
. (14)

This bound implies that REC, RSE, and the algorithms in Esfandiari et al. (2023a) are optimal up to
a polylogarithmic factor for two-armed bandit problem.

Remark 2. It is well-known that another lower bound

E[Regret(T )] = Ω

(
log T

∆

)
(15)

holds for a uniformly good algorithm (c.f., Theorem 1 in Lai & Robbins (1985)). Therefore, a lower
bound for a ρ-replicable uniformly good algorithm is the maximum of equation 14 and equation 15.

The absence of log T in equation 14 appears to be essential. The factor log T is derived from the
uniformly good property of a bandit algorithm. However, the cost of replicability and the cost of
uniform goodness are not necessarily compounded. Any ρ-replicable algorithm (if it is not uniformly
good) that frequently selects the best arm should maintain the lower bound of equation 14.

7 AN ALGORITHM FOR LINEAR BANDIT PROBLEM

Next, we consider the linear bandit problem, a special version of the K-armed bandit problem
where associated information is available. In this problem, each arm i ∈ [K] is associated with a
d-dimensional feature vector xi ∈ Rd and the reward rt of choosing an arm It is x⊤

It
θ + ηt, where

θ is (unknown) shared parameter vector, and ηt is a σ-subgaussian random variable. Namely, the
mean µi = x⊤

i θ can be estimated via known feature xi and unknown shared coefficients θ. Without
loss of generality, we assume span({xi}Ki=1) = Rd.

We introduce the replicable linear successive elimination (RLSE). Similarly to RSE (Algorithm 2),
this algorithm is elimination-based. The main innovation here is to use the G-optimal design that
explores all dimensions in an efficient way. Namely,

Definition 9. (G-optimal design) For Ap ⊆ [K], let π be a distribution over Ap. Let

V (π) =
∑
i∈Ap

π(xi)xix
⊤
i , g(π) = max

i∈Ap

||xi||2V (π)−1 . (16)

A distribution π∗ is called a G-optimal design if it minimizes g, i.e., π∗ ∈ argminπ g(π).
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We use the following well-known results for G-optimal designs (See, e.g., Section 21
of Lattimore & Szepesvári (2020)).
Lemma 6 (Kiefer-Wolfowitz). A G-optimal design π∗ satisfies g(π∗) = d.

In this paper, we assume the availability of a constant approximation of optimal design π∗,app =
π∗,app(Ap) with g(π∗,app) ≤ 2d. An explicit construction of such an approximated G-optimal
design is found in the literature (e.g., Lemma 7 of (Esfandiari et al., 2023a)). Given an ora-
cle for an approximated G-optimal design, we define the allocation at phase p to be N lin

i (p) =⌈
N lin(p)π∗,app

i

⌉
,where

N lin(p) :=
16σ2d log(|Ap|PT )

(Conf(p))2
. (17)

Note that
∑

i N
lin
i (p) ≤ N lin(p) +K. We use the following lemma for the confidence bound (see

e.g., Section 21.1 of Lattimore & Szepesvári (2020)):

Lemma 7 (Fixed-sample bound). Consider the estimator θ̂p at the end of phase p. Then, with
probability at least 1− 2

PT , the following bound holds uniformly for any i ∈ Ap:

|x⊤
i (θ − θ̂p)| ≤

Conf(p)

2
. (18)

Letting µ̂i = x⊤
i θ̂p and ∆̂ij = |µ̂i − µ̂j |, equation 18 implies

|∆ij − ∆̂ij | ≤ Conf(p). (19)

Apart from applying approximated G-optimal exploration, the algorithm closely mirrors the steps of
RSE. A comprehensive description of RLSE can be found in Appendix A. The subsequent theorem
assures both the replicability and regret of RLSE.
Theorem 8. Let Cρ ≥ 9/4, ρa = ρ/2, and ρe = ρ/(2max(K − 2, 2)). Assume that ρ ≤ 1/2 and
T ≥ 36K/ρ. Then, RLSE is ρ-replicable. Moreover, the following two regret bounds hold:

E[Regret(T )] = O

(
d log T

∆2ρ2

)
, (an O(d) distribution-dependent bound) (20)

E[Regret(T )] = O

(
K

ρ

√
dKT log T

)
. (distribution-independent bound) (21)

The first bound depends on the suboptimality gap ∆ and is independent of K. The second bound is
distribution-independent and is smaller than the existing bound by a

√
K/ρ factor (c.f., Table 1).

8 SIMULATION

We compared our REC (Algorithm 1) and RSE (Algorithm 2) with RASMAB (Algorithm 2 of
Esfandiari et al. (2023a), “Replicable Algorithm for Stochastic Multi-Armed Bandits”). We did not
include Algorithm 1 of Esfandiari et al. (2023a) because its regret bound is always inferior to RAS-
MAB. Three models of K-armed Gaussian bandit problems were considered. To ensure fair com-
parison, as RASMAB relies on the Hoeffding inequality, we standardized the variance of the arms at
0.5. The results were averaged over 100 runs. The algorithms can be characterized as follows: REC
eliminates all arms simultaneously, RASMAB eliminates each arm independently, and RSE incor-
porates both strategies. Theoretical results suggest that REC outperforms RASMAB provided that
∆K/∆ = o(K). We optimize Cρ in REC and RSE and β of RASMAB for ρ̂ = 0.3 by using a grid
search. Here, the empirical nonreplication probability ρ̂ is obtained by bootstrapping. Namely, as-
sume that the algorithm results in S different sequences of draws, where the corresponding number
of occurrences for each sequence are N(1), N(2), N(3), . . . , N(S). By definition,

∑
s N(s) = 100.

Then, ρ̂ := 1−
∑

s(N(s)/100)
2.

We set the mean parameters as follows: µ = (0.1, 0.1, 0.8, 0.8, 0.9) for Model 1, µ =
(0.1, 0.1, 0.5, 0.5, 0.9) for Model 2, and µ = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9) for Model
3. The amount of regret is depicted in Figure 1. A lower regret signifies superior performance. As
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Figure 1: Regret of algorithms. The horizontal axis indicates the number of rounds t from 1 to T ,
whereas the vertical axis indicates Regret(t). Results of REC and RSE in Model 1 are very similar.

a non-replicable algorithm, UCB1 naturally outperforms all other replicable algorithms. Model
1, with a large ∆/∆2 = 0.8/0.1 = 8, is designed to favor RASMAB while Model 3, having
∆/∆2 = 1, is tailored to favor REC. In Models 2 and 3, REC and RSE significantly surpass RAS-
MAB, indicating their success in replicably selecting the optimal arm. In Model 1, RASMAB
marginally outperforms REC and RSE. As RASMAB is designed to eliminate each arm indepen-
dently, the early elimination of clearly suboptimal arms (specifically, arms 1 and 2) decreases cu-
mulative regret. These findings align with our theoretical results. Additional simulations employing
theoretically-chosen hyperparameters are in the appendix.

9 RELATED WORK

Replicability was introduced by Impagliazzo et al. (2022) and they designed replicable algorithms
for answering statistical queries, identifying heavy hitters, finding median, and learning halfspaces.
Since then, replicable algorithms have been studied for bandit problems (Karbasi et al., 2023), re-
inforcement learning (Eaton et al., 2023), and clustering (Esfandiari et al., 2023b). The equivalence
of various stability notions, including replicability and differential privacy (Dwork et al., 2014) was
shown for a broad class of statistical problems (Bun et al., 2023). However, the equivalence therein
does not necessarily guarantee an efficient conversion. Kalavasis et al. (2023) considered a re-
laxed notion of replicability. Note also that there are several relevant works Dixon et al. (2023);
Chase et al. (2023) that study a different notion of applicability.

Prior to the introduction of the replicable bandit algorithm, the batched bandit problem was con-
sidered (Auer & Ortner, 2010; Cesa-Bianchi et al., 2013; Komiyama et al., 2013; Perchet et al.,
2016; Gao et al., 2019; Esfandiari et al., 2021). In this problem, the algorithm needs to determine
the sequence of draws at the beginning of each batch. Existing replicable bandit algorithms in
Esfandiari et al. (2023a), as well as our algorithms, adopt phased approaches, and one can find
similarities in the algorithmic design. In particular, Perchet et al. (2016) considered the two-armed
batched bandit problem. They utilized the fact that the termination of the exploration phases in
EtC only occurs in a fixed number of rounds, a concept that we also utilize in the proof of our
algorithms. However, their algorithm does not guarantee ρ-replicability for ρ < 1/2. Our REtC
extends their results by introducing a randomized confidence level to guarantee a further level of
applicability. Furthermore, our RSE generalizes both EtC and successive elimination (Gao et al.,

9
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2019; Esfandiari et al., 2023a) in a replicable way, and we recover essentially the same performance
towards a large value of ρ.

Several different notions of stability have been explored in the context of sequential learning. For
instance, robustness against corrupted distributions has been examined in the multi-armed ban-
dit problem (Kim & Lim, 2016; Gajane et al., 2018; Kapoor et al., 2019; Basu et al., 2022). Dif-
ferential privacy has also been considered in this context (Shariff & Sheffet, 2018; Basu et al.,
2019; Hu & Hegde, 2022). Differential privacy considers the change of decision against the
change of a single data point, whereas in the replicable bandits, we have more than one change
of data points between two datasets that are generated from the identical data-generating pro-
cess. Recent work (Dong & Yoshida, 2023) showed that an algorithm with a low average sensi-
tivity (Varma & Yoshida, 2021) can be transformed to an online learning algorithm with low regret
and inconsistency in the random-order setting, and hence in the stochastic setting.

10



Under review as a conference paper at ICLR 2024

REFERENCES

Ittai Abraham, Omar Alonso, Vasilis Kandylas, and Aleksandrs Slivkins. Adaptive crowdsourcing
algorithms for the bandit survey problem. In Proceedings of the 26th Annual Conference on
Learning Theory (COLT), pp. 882–910, 2013.

Shipra Agrawal and Navin Goyal. Analysis of Thompson sampling for the multi-armed bandit
problem. In Proceedings of the 25th Conference on Learning Theory (COLT), pp. 39.1–39.26,
2012.

Peter Auer and Ronald Ortner. UCB revisited: Improved regret bounds for the stochastic
multi-armed bandit problem. Period. Math. Hung., 61(1-2):55–65, 2010. doi: 10.1007/
S10998-010-3055-6. URL https://doi.org/10.1007/s10998-010-3055-6.
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