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Abstract

A recent trend in the domain of open-domain001
conversational agents is enabling them to con-002
verse empathetically to emotional prompts.003
Current approaches either follow an end-to-004
end approach or condition the responses on005
similar emotion labels to generate empathetic006
responses. But empathy is a broad concept that007
refers to the cognitive and emotional reactions008
of an individual to the observed experiences009
of another and it is more complex than mere010
mimicry of emotion. Hence, it requires iden-011
tifying complex human conversational strate-012
gies and dynamics in addition to generic emo-013
tions to control and interpret empathetic re-014
sponding capabilities of chatbots. In this work,015
we make use of a taxonomy of eight empa-016
thetic response intents in addition to generic017
emotion categories in building a dialogue re-018
sponse generation model capable of generat-019
ing empathetic responses in a controllable and020
interpretable manner. It consists of two mod-021
ules: 1) a response emotion/intent prediction022
module; and 2) a response generation module.023
We propose several rule-based and neural ap-024
proaches to predict the next response’s emo-025
tion/intent and generate responses conditioned026
on these predicted emotions/intents. Auto-027
matic and human evaluation results emphasize028
the importance of the use of the taxonomy of029
empathetic response intents in producing more030
diverse and empathetically more appropriate031
responses than end-to-end models.032

1 Introduction033

End-to-end neural dialogue response generation034

has revolutionized the design of open-domain con-035

versational agents or chatbots due to requiring little036

or no manual intervention and its ability to largely037

generalize (Sordoni et al., 2015; Shang et al., 2015;038

Vinyals and Le, 2015). It overcomes many limita-039

tions of traditional rule-based response generation040

techniques such as the cost of domain expertise041

and predictability of responses. But due to the042

Dialogue context:
Speaker: I think that the girl of my dreams likes somebody else.

I feel very sad about it.
Listener: Ooh, am so sorry about that. Have you tried to talk

to her?
Speaker: It’s tough as she has been out of the country for a

month, so I will likely discuss it when she returns.

Possible responses:
(No control) Have you talked to her about it yet? (Repetitive)
(No control) I don’t think that’s a good idea.

(Not encouraging to the speaker)
(Conditioned on: I hope everything works out for you.

Encouraging) (Empathetically appropriate)

Table 1: An example dialogue showing how controlla-
bility affects response generation.

black-box nature of these end-to-end models, they 043

offer very little controllability to the developer and 044

generate responses that are difficult to interpret 045

(Wu et al., 2018, 2020; Gupta et al., 2020), making 046

these approaches less reliable and fail-safe (d’Avila 047

Garcez and Lamb, 2020). A recent example is Mi- 048

crosoft’s Taybot that started producing unintended, 049

and offensive tweets denying the Holocaust as a 050

result of learning from racist and offensive infor- 051

mation on Twitter (Lee, 2016). Having control 052

over the generated responses would have enabled 053

the chatbot to avoid malicious intentions and care- 054

fully choose how to converse. Thus, it is important 055

to look at ways how developers can gain control 056

over the responses generated by end-to-end neural 057

response generation models and how they can be 058

made interpretable. 059

Recent research has taken efforts to induce con- 060

trollability and interpretability into end-to-end mod- 061

els. For example, Xu et al. (2018) explore how the 062

flow of human-machine interactions can be man- 063

aged by introducing dialogue acts as policies to 064

the dialogue generation model. Sankar and Ravi 065

(2019) show that conditioning the response gener- 066

ation process on interpretable dialogue attributes 067

such as dialogue acts and sentiment helps to elim- 068

inate repetitive responses and makes the model 069

more interesting and engaging. 070
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In contrast to task-oriented dialogue systems071

designed to help people complete specific tasks,072

open-domain chatbots are designed to engage users073

in human-machine conversation for entertainment074

and emotional companionship (Wu and Yan, 2018).075

Hence, in open-domain conversations, controllabil-076

ity should also be studied with respect to aspects077

such as humor, personality, emotions, and empathy,078

which cannot be achieved using generic dialogue079

acts. In this study, our focus is on controlling em-080

pathy in open-domain chatbot responses, which re-081

quires understanding conversational strategies used082

in human-human empathetic conversations.083

Earlier studies gain control in this aspect by con-084

ditioning the response on either manually specified085

(Zhou et al., 2018; Zhou and Wang, 2018; Hu et al.,086

2018; Song et al., 2019) or automatically predicted087

(Chen et al., 2019) sentiment or emotion labels.088

However, an analysis by Welivita and Pu (2020)089

on human-human conversations of the Empathet-090

icDialogues dataset (Rashkin et al., 2018) reveals,091

listeners are much more likely to respond to posi-092

tive or negative emotions with specific empathetic093

intents such as acknowledgment, consolation and094

encouragement, rather than expressing similar or095

opposite emotions. They introduce a taxonomy of096

eight response intents that can better describe em-097

pathetic human responses to emotional dialogue098

prompts. In this paper, we explore how end-to-end099

response generation can be combined with more100

advanced control of empathy by utilizing the above101

taxonomy of empathetic response intents in addi-102

tion to existing emotion categories. To provide a103

glimpse of what we aim to achieve, in Table 1 we104

show how conditioning the response on an empa-105

thetic response intent chosen based on the dialogue106

history can serve in producing a more empathet-107

ically appropriate response. It avoids repetitive108

or sub-optimal responses generated by end-to-end109

approaches without any control.110

Our empathetic response generation model con-111

sists of two modules: 1) a response emotion or112

intent prediction module; and 2) a response gen-113

eration module. We experiment with both rule-114

based and neural approaches for predicting the115

next response’s emotion or intent. For the rule-116

based approaches for predicting the response emo-117

tion/intent, we develop two decision tree-based re-118

sponse emotion and intent prediction methods. For119

the neural approach for predicting the response120

emotion/intent, we develop a classifier based on121

the BERT transformer architecture (Vaswani et al., 122

2017; Devlin et al., 2019). The reason why we 123

evaluate the performance of rule-based approaches 124

is that they are much simpler than neural models 125

and save a lot of training time and resources. Thus, 126

if considerable performance can still be achieved 127

through rule-based approaches compared to the 128

baselines, it is worth considering the use of such 129

simpler approaches over sophisticated neural ap- 130

proaches, especially in resource-limited environ- 131

ments. The emotions and intents predicted by these 132

methods are then used to condition the responses 133

generated by the response generation module. For 134

training and evaluating these models, we use two 135

state-of-the-art dialogue datasets containing empa- 136

thetic conversations: 1) the EmpatheticDialogues 137

dataset (Rashkin et al., 2018); and 2) the EDOS 138

(Emotional Dialogues in OpenSubtitles) dataset 139

(Welivita et al., 2021). The automatic and human 140

evaluation results confirm the importance of the use 141

of the taxonomy in generating more diverse and 142

empathetically more appropriate responses than 143

end-to-end models. 144

Our contributions in this paper are three folds. 145

1) We explore the ability of a taxonomy of empa- 146

thetic response intents in controlling and interpret- 147

ing the responses generated by open-domain con- 148

versational agents for emotional prompts. 2) We 149

propose an empathetic response generation model 150

consisting of a response emotion/intent prediction 151

module and a response generation module to gen- 152

erate empathetic responses in a controllable and 153

interpretable manner. 3) We experiment with both 154

rule-based and neural approaches in predicting the 155

next response’s emotion or intent and evaluate their 156

performance in conditional generation of empa- 157

thetic responses using automatic and human evalu- 158

ation metrics against standard baselines. 159

2 Literature Review 160

Existing conversational agents are designed for ei- 161

ther open-domain or specific task completion (Gao 162

et al., 2018). Regarding the former, a common 163

practice is to generate dialogue in an end-to-end 164

fashion (Sordoni et al., 2015; Shang et al., 2015; 165

Vinyals and Le, 2015). Often responses generated 166

by these methods are unpredictable and not fail- 167

safe (d’Avila Garcez and Lamb, 2020). Hence, 168

recent research has focused on methods to con- 169

trol and interpret the responses generated by open- 170

domain neural conversational agents. Mainly we 171
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find three methods they use to control the generated172

response: 1) by a manually specified value (Zhou173

et al., 2018; Zhou and Wang, 2018; Hu et al., 2018;174

Song et al., 2019); 3) by rules that are predefined175

or derived from the training data (Hedayatnia et al.,176

2020); 3) by an automatically predicted value from177

a neural network model (Xie and Pu, 2021; Wu178

et al., 2018; Sankar and Ravi, 2019; Santhanam179

et al., 2020; Ke et al., 2018; Lee et al., 2020).180

Specially in studies addressing emotional re-181

sponse generation, a manually specified sentiment,182

emotion (Zhou et al., 2018) or an emoji (Zhou and183

Wang, 2018) was used to control the sentiment184

or emotionality of the responses generated. Later,185

more and more research focused on automatically186

predicting values or deriving rules such that they187

could be used to control the generated response188

without manual intervention. For example, Sankar189

and Ravi (2019) used an RNN based policy net-190

work to predict the next dialogue act given previous191

dialogue turns and dialogue attributes. Hedayatnia192

et al. (2020) used rules designed as a set of dia-193

logue act transitions from common examples in the194

Topical-Chat corpus (Gopalakrishnan et al., 2019)195

to plan the content and style of target responses.196

But all the above work focused on achieving con-197

trollability using generic dialogue acts or generat-198

ing controlled emotional responses conditioned on199

similar or opposite emotions, emojis, or sentiment200

tags. These labels do not suffice the controlled201

generation of meaningful empathetic responses be-202

cause humans demonstrate a wide range of emo-203

tions and intents when regulating empathy (We-204

livita and Pu, 2020). Previous work also lacks com-205

parisons between rule-based and automatic condi-206

tioning methods used to control response genera-207

tion. In this work, we address the above gaps by208

investigating how empathy in neural responses can209

be controlled using a taxonomy of eight empathetic210

response intents (Welivita and Pu, 2020), in ad-211

dition to 32 emotion categories, while evaluating212

the applicability of both rule-based and automatic213

control mechanisms for this task.214

3 Methodology215

Our controllable and interpretable empathetic re-216

sponse generation architecture consists of two mod-217

ules: 1) the response emotion/intent prediction218

module; and 2) the response generation module.219

The emotion or intent predicted by the first module220

is input into the second to condition the response221

generated by the second module. In the following 222

sections we discuss the datasets used for our exper- 223

iments, the different rule-based and automatic emo- 224

tion/intent prediction methods we propose, how the 225

emotions and intents predicted by these modules 226

are used to generate responses that are both control- 227

lable and interpretable, and the different evaluation 228

methods we utilize to compare the performance of 229

these approaches on two state-of-the-art dialogue 230

datasets containing emotional dialogue prompts. 231

3.1 Datasets 232

We utilized the EmpatheticDialogues dataset pro- 233

posed by Rashkin et al. (2018), and the OS (Open- 234

Subtitles) and EDOS (Emotional Dialogues in 235

OpenSubtitles) dialogue datasets proposed by We- 236

livita et al. (2021) to train and evaluate our models. 237

The EmpatheticDialogues (ED) dataset contains 238

≈25K open-domain human-human conversations 239

carried out between a speaker and a listener. Each 240

conversation is conditioned on one of 32 emotions 241

selected from multiple annotation schemes. The 242

OS and EDOS datasets are curated by applying 243

a series of preprocessing and turn segmentation 244

steps on the movie and TV subtitles in the Open- 245

Subtitles 2018 corpus (Lison et al., 2019). The 246

EDOS dataset contains 1M highly emotional dia- 247

logues filtered from the rest of the OS dialogues. 248

Even though the speaker and listener turns in the 249

OS and EDOS datasets are not clearly defined, we 250

assumed the odd-numbered turns (1, 3, 5, ...) as 251

speaker turns and even-numbered turns (2, 4, 6, ...) 252

as listener turns for our experiments. We used the 253

OS dialogues dataset containing ≈3M dialogues 254

for pre-training and the ED and EDOS datasets to 255

separately fine-tune the models. The statistics of 256

these datasets are denoted in Table 2. From each 257

dataset, 80% of the data was used for training, 10% 258

for validation, and the remaining 10% for testing. 259

Dataset Dialogues Turns Turns/dialogue

OS 2,989,774 11,511,060 3.85

ED 24,847 107,217 4.32

EDOS 1,000,000 2,940,629 2.94

Table 2: Statistics of the datasets used for training and
evaluating the models.

We used a BERT (Devlin et al., 2019) 260

transformer-based dialogue emotion classifier pro- 261

posed by Welivita et al. (2020) to automatically 262

annotate all dialogue turns in the above datasets. 263

This classifier is trained on 25K situation descrip- 264
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Empathetic intent Example response

1. Questioning What’s the matter? What’s wrong?
2. Agreeing Exactly, I get that entirely!
3. Acknowledging Sounds awesome!
4. Encouraging Just give it a trial.
5. Consoling I hope everything works out for you.
6. Sympathizing I am sorry to hear that.
7. Wishing Congrats, that’s a step forward.
8. Suggesting Maybe you should talk to her.

Table 3: The taxonomy of listener specific empathetic
response intents used to achieve controllability and in-
terpretability in the responses generated.

tions from EmpatheticDialogues labeled with 32265

emotion classes, 7K EmpatheticDialogues listener266

turns labeled with eight empathetic response intents267

and Neutral, and 14K emotion and intent annotated268

dialogue turns from the OSED dataset. It has a269

final annotation accuracy of 65.88% over 41 labels,270

which is significant compared to the other state-of-271

the-art dialogue emotion classifiers (Welivita et al.,272

2020). We use the emotion and intent labels sug-273

gested by the above classifier as ground-truth labels274

for our experiments.275

3.2 Response Emotion/Intent Prediction276

To generate controlled and interpretable empathetic277

responses, we utilized 32 fine-grained emotions278

and a taxonomy of listener-specific empathetic re-279

sponse intents. The 32 emotions are emotion cat-280

egories on which dialogues in the EmpatheticDia-281

logues dataset are conditioned on (Rashkin et al.,282

2018). They range from basic emotions derived283

from biological responses (Ekman, 1992; Plutchik,284

1984) to larger sets of subtle emotions derived285

from contextual situations (Skerry and Saxe, 2015).286

We further utilized the taxonomy of empathetic re-287

sponse intents proposed by Welivita and Pu (2020),288

which is derived by analysing the listener responses289

in the EmpatheticDialogues dataset. These intents290

are denoted in Table 3 along with corresponding291

examples. To predict the emotion or intent of the292

next response, we propose several rule-based and293

neural response emotion/intent prediction methods,294

which are described in the following subsections.295

3.2.1 Baselines296

As a baseline, we sample a response emotion or297

intent from the set of eight empathetic response298

intents plus the most recent emotion encountered in299

the last k(k = 3) dialogue turns. This is based on300

the observations by Welivita and Pu (2020) on the301

EmpatheticDialogues dataset (Rashkin et al., 2018).302

They state that in human empathetic conversations,303

the listener’s response to emotional prompts mostly 304

contain an empathetic response intent identified by 305

their taxonomy or a statement with similar emotion. 306

This baseline is inspired by the work of Hedayatnia 307

et al. (2020), in which the response dialogue act is 308

chosen among the most frequently seen dialogue 309

acts based on an equal probability distribution. 310

The other baseline we used when generating re- 311

sponses is the plain end-to-end transformer model 312

proposed by Vinyals et al. (2017), in which no 313

conditioning is used when generating the response. 314

3.2.2 Rule-based Decision Tree Approaches 315

We propose two non-neural, decision tree-based 316

response intent prediction methods that leverage 317

the knowledge of the emotion-intent flow of the 318

dialogues in the training dataset. The basic idea 319

of a decision tree for this context is denoted along 320

with an example in Figure 1. The probabilities of 321

emotions and intents in the branches in the deci- 322

sion tree are learned from the training data itself 323

by traversing through dialogues using a window 324

of size k, where k is the maximum depth of the 325

decision tree. The window is moved forward two 326

dialogue turns at a time capturing the probability 327

of speaker-listener emotion-intent exchanges in the 328

training dataset. 329

Here, we used a window of size 4 mainly be- 330

cause most dialogues contained in the ED, OS, and 331

EDOS datasets were limited to four dialogue turns. 332

During inference, an emotion or an intent is sam- 333

pled based on the sequence of emotions and intents 334

in the previous (k − 1) dialogue turns. We used 335

two different methods: 1) argmax; and 2) proba- 336

bilistic sampling, to sample the response emotion 337

or intent from the decision tree. In the argmax 338

method, we chose the emotion or intent with the 339

highest probability in the decision tree based on 340

the sequence of emotions and intents in the pre- 341

vious (k − 1) dialogue turns. In the probabilistic 342

sampling method, we sampled an emotion or an 343

intent based on the distribution of probabilities in 344

the decision tree given the sequence of emotions 345

and intents in the previous (k − 1) dialogue turns. 346

We refer to these two decision tree-based methods 347

as DT (argmax), and DT (prob. sampled). 348

We have more control over the above methods 349

than neural response intent prediction methods 350

since we can foresee where the dialogue will be 351

directed by visualizing the decision trees before- 352

hand. For example, the decision trees generated 353

using the EmpatheticDialogues and EDOS training 354
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Figure 1: Visualization of a simpler version of our decision tree approach to predict the response emotion or intent.

(a) Dataset: EmpatheticDialogues (b) Dataset: EDOS

Figure 2: Decision trees generated using the EmpatheticDialogues and EDOS training datasets when the emotion
of the beginning dialogue prompt is Angry.

datasets when the emotion of the beginning dia-355

logue prompts is Angry are denoted in Figure 2.356

As it could be observed, in the ED dataset, the lis-357

teners mostly respond to speakers’ emotions with358

one of the intents from the taxonomy of empathetic359

response intents. The EDOS dataset by nature is360

more dramatic, in which both the speaker and the361

listener become emotional. This phenomenon is362

called “emotional contagion" in the psychological363

literature (Hatfield et al., 1993). For example in364

EDOS, if the speaker is angry, the listener also365

tends to reply back with anger. These communica-366

tion patterns could clearly be visualized with the367

decision trees created and the developer can predict368

beforehand how the chatbots whose responses are369

conditioned on these emotion-intent patterns would370

behave for a given emotional prompt.371

3.2.3 Neural Response Emotion and Intent372

Predictor373

An automatic method for predicting the next374

response’s emotion or intent is using a neural375

network-based response emotion/intent predictor. 376

An advantage of using neural approaches to deter- 377

mine the emotion or intent of the next response 378

is that they can leverage clues from the semantic 379

content of the previous dialogue turns in addition 380

to the flow of emotions and intents when predict- 381

ing the response emotion or intent. Our neural re- 382

sponse emotion/intent predictor consists of a BERT 383

transformer-based encoder architecture (represen- 384

tation network) followed by an attention layer for 385

aggregating individual token representations, a hid- 386

den layer, and a softmax as depicted in Figure 3. 387

The BERT-base architecture with 12 layers, 768 388

dimensions, 12 heads, and 110M parameters is 389

used as the representation network. It is initialized 390

with weights from the pre-trained language model 391

RoBERTa (Liu et al., 2019). 392

We concatenate the previous k dialogue turns 393

as depicted in Figure 3 and they are input to the 394

encoder of the model. The emotions and intents 395

corresponding to these k dialogue turns are added 396

to the word embeddings and positional embeddings 397

5



Figure 3: Architecture of the neural response emo-
tion/intent predictor.

in the original transformer architecture. This ad-398

ditional knowledge helps the model to get a better399

understanding of the flow of emotions and intents400

in the previous dialogue turns. The emotions and401

intents are embedded into a vector space having the402

same dimensionality as the word and position em-403

beddings so they can add up. In addition, we also404

incorporate segment embeddings that differentiate405

between speaker and listener turns. We pre-trained406

the model on the OS dialogues dataset and fine-407

tuned it separately on ED and EDOS datasets. The408

hyper-parameters used during training and other409

training details are described in the appendices.410

3.3 Response Generation411

For response generation, we used a plain412

transformer-based encoder-decoder architecture413

(end-to-end model) as a baseline (Vaswani et al.,414

2017). To generate controlled empathetic re-415

sponses, we incorporated the different response416

emotion/intent prediction methods described above417

as input to the decoder. Figure 4 shows the overall418

architecture of our models.419

The input representation for the encoder of the420

generation model is the same as the input represen-421

tation used for the neural response emotion/intent422

predictor described in section 3.2.3. The vector423

representation generated by the encoder is input424

into the decoder along with the embedding of the425

emotion or intent predicted by the response emo-426

tion/intent predictor. During training, instead of the427

predicted emotion or intent, we used the ground-428

truth emotion or intent. The generation model is429

first pre-trained on OS dialogues and then fine-430

tuned on ED and EDOS datasets separately.431

Figure 4: Overall architecture of the controllable and
interpretable empathetic response generation model.

4 Evaluation and Results 432

4.1 Automatic Evaluation Results 433

Evaluation by means of automatic metrics was car- 434

ried out separately for response emotion/intent pre- 435

diction and conditional response generation. The 436

following subsections describe the results obtained 437

in these evaluations. 438

4.1.1 Prediction Performance 439

The weighted precision, recall, F1, and balanced 440

accuracy scores computed for different response 441

emotion/intent prediction methods across ED and 442

EDOS testing datasets are indicated in Table 4. 443

According to the weighted precision, recall, F1, 444

and accuracy scores, the neural emotion/intent pre- 445

dictor performed the best compared to other predic- 446

tion methods. Among rule-based approaches for re- 447

sponse emotion/intent prediction, the DT (argmax) 448

method performed the best. The DT (argmax) 449

method had considerable improvement in recall, 450

F1, and accuracy scores over the equally sampled 451

baseline. 452

4.1.2 Generation Performance 453

To evaluate the performance of response genera- 454

tion, we computed the perplexity, diversity metrics 455

(distinct unigram and distinct bigram scores), and 456

vector extrema cosine similarity on ED and EDOS 457

testing datasets. They are denoted in Table 5. We 458

also evaluated the responses generated by a model 459

conditioned on the ground-truth emotion or intent 460

of the next response to see how well the taxonomy 461

of empathetic response intents alone contributes 462

to better empathetic response generation perfor- 463

mance. 464

According to the results, the models whose re- 465

sponse was conditioned on the ground-truth re- 466
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Model
Trained on: OS + ED Trained on: OS + EDOS

Tested on: ED Tested on: EDOS
Prec. Recall F1 Acc. Prec. Recall F1 Acc.

Equally sampled 0.1138 0.0667 0.0638 0.0410 0.0981 0.0221 0.0232 0.0285
DT (argmax) 0.0959 0.0883 0.0883 0.0692 0.0755 0.1016 0.0799 0.0419
DT (prob. sampled) 0.0715 0.0663 0.0680 0.0480 0.0627 0.0616 0.0619 0.0345
Neural predictor 0.1634 0.1636 0.1472 0.1163 0.1306 0.1712 0.1181 0.0679

Table 4: Weighted precision, recall, F1 and accuracy scores computed for ED and EDOS test datasets. The cells in
dark green indicate the best scores and the cells in light green indicate the second best scores.

Model
Trained on: OS + ED Trained on: OS + EDOS

Tested on: ED Tested on: EDOS
PPL D-1 D-2 Embed. PPL D-1 D-2 Embed.

extrema extrema
GT emotion/intent 11.74 0.0823 0.2812 0.5181 12.57 0.0846 0.2552 0.4539
End-to-end model 12.26 0.0544 0.1612 0.5015 13.13 0.0784 0.228 0.4365
Equally sampled 13.48 0.0761 0.2469 0.4824 14.20 0.0754 0.2229 0.433
DT (argmax) 13.23 0.0865 0.2977 0.4892 14.14 0.0727 0.2419 0.4458
DT (prob. sampled) 13.37 0.0795 0.2761 0.4828 14.23 0.0763 0.2418 0.436
Neural predictor 13.15 0.0835 0.2811 0.4851 13.97 0.0805 0.2415 0.4403

Table 5: Perplexity (PPL), diversity metrics (distinct unigrams: D-1; and distinct bigrams: D-2), and vector extrema
cosine similarity (Embed. extrema) calculated on ED and EDOS testing datasets.

sponse emotion or intent performed the best in467

terms of perplexity and embedding extrema in both468

ED and EDOS datasets and in terms of diversity469

metrics in the EDOS dataset. These results em-470

phasize the usefulness of the taxonomy of em-471

pathetic response intents and the 32 fine-grained472

emotion categories in generating controlled em-473

pathetic responses. The models incorporating the474

DT (argmax) approach scored the best in terms of475

diversity metrics in the ED test dataset.476

4.2 Human Evaluation477

In addition to the automatic metrics, we carefully478

designed a human evaluation experiment in Ama-479

zon Mechanical Turk (AMT) to evaluate responses’480

empathetic appropriateness. We selected a total of481

1,000 dialogue cases: 500 ED and EDOS dialogues482

for testing. The AMT workers had to drag and483

drop responses generated by five models (end-to-484

end; models whose response was conditioned on485

the equally sampled baseline, DT argmax, DT prob.486

sampled and the neural predictor) into areas Good,487

Okay, and Bad, depending on their empathetic ap-488

propriateness. We neglected responses conditioned489

on the ground-truth emotion or intent since we are490

more interested in automatically predicted labels.491

We bundled 10 dialogues into a HIT (Human Intel-492

ligence Task) so that one worker works on at least493

10 cases to avoid too much bias between answers.494

To evaluate the quality of the work generated, we495

included three quiz questions equally spaced in496

a HIT. In these, we included the ground-truth re-497

sponse among the other responses generated by498

the models. If a worker rated the ground-truth re- 499

sponse either as Good or Okay, then a bonus point 500

was added. To encourage attentiveness to the task, 501

for those who obtained at least two out of three quiz 502

questions correct, we gave a bonus of 0.1$. Three 503

workers were allowed to work on a HIT and only 504

the ratings that were agreed by at least two work- 505

ers, both who have obtained bonuses, were taken 506

to compute the final scores. As a result, 8.33% 507

of the answers were disqualified. The results of 508

the experiment are denoted in Table 6. The ex- 509

periment yielded an inter-rater agreement (Fleiss’ 510

kappa) score of 0.2294 indicating fair agreement. 511

According to the results, the neural predictor 512

scored the highest percentage of Good ratings in 513

both ED and EDOS testing datasets. The models 514

that use the equally sampled approach performed 515

the worst producing the highest percentage of re- 516

sponses ranked Bad. An interesting observation 517

is that the DT (argmax) method scored the most 518

number of combined Good and Okay responses 519

in ED and EDOS testing datasets confirming that 520

rule-baled approaches such as the decision tree ap- 521

proach we propose could be used to control and 522

interpret the responses without losing significant 523

accuracy. 524

4.3 Case Study 525

In Table 7 we show some example responses gener- 526

ated by different models for a given dialogue con- 527

text. It could be noticed that having no response 528

control mechanism and having a response condi- 529

tioned on an inappropriate intent both can result 530
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Model
Trained on: OS + ED Trained on: OS + EDOS

Tested on: ED Tested on: EDOS
Good Okay (Good + Bad Good Okay (Good + Bad

Okay) Okay)

End-to-end model 46.94 15.72 62.66 37.34 27.48 27.02 54.50 45.50
Equally sampled 25.22 25.22 50.44 49.57 19.35 29.84 49.18 50.82
DT (argmax) 37.61 33.70 71.31 28.69 21.70 36.72 58.42 41.58
DT (prob. sampled) 24.17 21.68 45.85 42.13 21.96 31.78 53.74 46.26
Neural predictor 50.00 17.39 67.39 32.61 24.82 33.01 57.83 42.17

Table 6: Human evaluation results (as a percentage) corresponding to ED and EDOS testing datasets.

Dialogue context:
Speaker: Last week when Toys R Us closed it really made me start thinking of the 90s and my childhood (Nostalgic)
Listener: I’ve heard a lot of people say something similar. Did you go there a lot? (Questioning)
Speaker: I did! I was talking to my husband about the different toys I had. Even started talking about the music and shows from that era. (Nostalgic)

Model Predicted emotion/intent Generated response Human eval.

Ground-truth emotion/intent Jealous That sounds like a lot of fun. I wish I had a husband like that. Good
End-to-end model - I’m sorry to hear that. What kind of toys were you talking about? Bad
Equally sampled Wishing I wish you the best of luck! Bad
DT (argmax) Questioning What kind of toys were you talking about? Good
DT (prob. sampled) Encouraging I bet that was fun Good
Neural predictor Encouraging I bet that was fun Good

Table 7: An example dialogue showing that both lack of controllability and conditioning the response on an inap-
propriate emotion or intent can lead to responses that are empathetically inappropriate with the dialogue context.

in responses that are empathetically inappropriate531

with the dialogue context. The neural predictor, as532

well as the decision tree-based mechanisms, gener-533

ate some emotion or intent that is appropriate to the534

dialogue context, enabling the generation model to535

generate responses that are more empathetically ap-536

propriate, guiding the conversation in a meaningful537

direction.538

5 Discussion and Conclusion539

This study investigated the use of a taxonomy of540

empathetic response intents along with 32 fine-541

grained emotions in controlling and interpreting542

the responses generated by open-domain conver-543

sational agents for emotional prompts. In this re-544

gard, several rule-based and automatic response545

control methods were proposed and were compared546

in terms of their prediction and generation perfor-547

mance on two state-of-the-art dialogue datasets548

containing emotional dialogues.549

It was observed that the neural response emo-550

tion/intent predictor we proposed outperformed the551

rest including the end-to-end model in terms of552

evaluation metrics related to both prediction and553

generation. This implies the importance of lever-554

aging semantic clues in addition to the flow of555

emotions and intents in the previous turns when556

predicting the next response’s emotion or intent.557

However, there are some disadvantages to using558

this approach: 1) developers cannot foresee the la-559

bel that the model would predict next; and 2) cost 560

of time and resources spent for training the model. 561

As a remedy, we proposed two decision tree-based 562

response emotion/intent prediction approaches. 563

Across evaluation metrics for prediction and gen- 564

eration, the performance of the decision-tree meth- 565

ods was considerably better than the end-to-end 566

approach and the equally sampled baseline. The 567

decision tree (argmax) method performed the best 568

in terms of diversity metrics related to response 569

generation. In the human evaluation stage, we saw 570

that the DT (argmax) method produced the most 571

number of combined Good and Okay responses in 572

ED and EDOS test datasets, pointing to the fact that 573

the rule-based approaches we proposed can still be 574

used without a significant degrade in performance 575

in resource-limited environments. 576

On the whole, the results of this study inform 577

developers about the utility of the taxonomy of 578

empathetic response intents in controlling the re- 579

sponses generated by open-domain chatbots and 580

which optimal methodology to use (rule-based or 581

automatic conditioning) based on the operational 582

environment. 583
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