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ABSTRACT

Multimodal contrastive models like CLIP are increasingly vulnerable to data-
poisoning backdoor attacks. Existing defense methods primarily target the pre-
training phase. However, with the rise of open-source communities, pretrained
models are now freely available for download and fine-tuning. These models
may carry unknown security risks, posing significant threats to downstream users.
This highlights the need for lightweight defense strategies tailored specifically
for the fine-tuning stage. Current defenses during fine-tuning include: finetuning
with clean data; and using unimodal self-supervised techniques like CleanCLIP,
which has represented the state-of-the-art (SOTA). However, these methods rely
on strengthening clean feature representations to mitigate attacks, making them
ineffective against more stealthy backdoor techniques, such as BadCLIP, which
leverage covert toxic features. To overcome this limitation, we propose a finetuning
defense mechanism based on fine-grained counterfactual text semantic augmenta-
tion. By modifying small portions of text during fine-tuning, our approach disrupts
the association between backdoor triggers and target features. We evaluate our
method against six attack algorithms and conduct comprehensive zero-shot classifi-
cation on ImageNet1K. Experimental results demonstrate that our method achieves
SOTA performance in fine-tuning defense. Specifically, when facing the novel
BadCLIP attack, our method surpasses CleanCLIP, reducing the Attack Success
Rate (ASR) by 52.02% in the Top-1 and 63.88% in the Top-10 classifications.

1 INTRODUCTION

Contrastive learning serves as a powerful learning paradigm aimed at comparing different representa-
tions of data, thereby bringing similar samples closer together in the embedding space while pushing
dissimilar samples further apart Chen et al. (2020); Khosla et al. (2020); Gutmann & Hyvärinen
(2010). In addition to its application in single-modal data Gao et al. (2021); Chen et al. (2022);
Bi et al. (2022); Park et al. (2020), recent works have extended contrastive learning to multimodal
data Zhang et al. (2023); Singh et al. (2023); Yang et al. (2022), training on a vast scale of image-text
pairs from the web to achieve joint feature representation and matching between images and text.
Multimodal contrastive pre-trained models, such as CLIP Radford et al. (2021b), ALIGN Chen et al.
(2021b), and BASIC Chen et al. (2021a), have learned universal representations from large-scale
unlabeled data and performed exceptionally well even without task-specific data, as demonstrated by
their impressive zero-shot classification performance on ImageNet Deng et al. (2009). By fine-tuning
these models on specific tasks with a small amount of labeled training samples, high-performance
vertical domain applications can be realized quickly.

However, recent research has revealed that these models are vulnerable to data-poisoning backdoor
attacks Gao et al. (2020); Jia et al. (2022); Saha et al. (2022); Carlini & Terzis (2021); Li et al. (2023),
which can compromise their integrity and reliability. In a backdoor attack, an adversary embeds
a trigger into the model, allowing it to misclassify inputs in specific, often harmful ways. This
vulnerability poses a serious concern, particularly as these models are increasingly deployed in real-
world applications. Existing defense methods primarily target the pretraining phase, aiming to mitigate
risks before models are fine-tuned for specific tasks. Notable approaches include CleanCLIP Bansal
et al. (2023) and RoCLIP Yang et al. (2024a), which focus on enhancing the model’s robustness

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of backdoor attack strategies and defenses. (a) Traditional backdoor attacks form pseudo-
semantic clusters by linking visual triggers to specific texts. (b) BadCLIP avoids detection by directly targeting
true feature regions without creating pseudo-clusters. (c) CleanCLIP disrupts pseudo-clusters using self-
supervised learning. (d) CleanerCLIP enhances defense by generating fine-grained counterfactual subtexts,
breaking the semantic link between the trigger and target.

against backdoor attacks during this initial stage. However, the rise of open-source communities has
facilitated the widespread availability of pre-trained models, many of which may harbor unknown
security risks. Users often download and fine-tune these models for personalized applications,
inadvertently exposing themselves to potential threats. This scenario underscores the critical need for
lightweight defense strategies that can be applied during the fine-tuning stage.

Current fine-tuning defenses typically involve two which primarily rely on reinforcing clean feature
representations: 1) FT: directly fine-tuning with clean samples, and 2) CleanCLIP: employing
unimodal self-supervised techniques, which can also be adapted for the fine-tuning phase and has
achieved SOTA performance in this context. While effective against some known threats, these two
approaches become inadequate when facing more covert backdoor techniques, such as BadCLIP Liang
et al. (2023), which exploit hidden toxic features to evade detection.

To clarify the motivation behind our method and its effectiveness, we explore the landscape of
backdoor attacks. Traditional backdoor attacks create new feature clusters in the feature space by
linking visual triggers to specific texts, thereby assigning new pseudo-semantics to the target text.
While these attacks can be effective, they leave distinct traces of pseudo-clusters, making detection
and defense more manageable, as shown in Figure 1(a). CleanCLIP further addresses this vulnerability
by incorporating a vision-language self-supervised learning module to disrupt these pseudo-semantic
clusters, as shown in Figure 1(c). While effective against some known threats, CleanCLIP performs
inadequately when facing more covert backdoor techniques, such as BadCLIP Liang et al. (2023),
which exploits hidden toxic features to evade detection. Instead of generating new pseudo-clusters,
BadCLIP precisely identifies the true feature regions of the target text and adjusts the image trigger
to approach these regions, successfully evading the self-supervised enhancements, as shown in
Figure 1(b). This limitation underscores the necessity for a more robust defense mechanism.

To address this novel challenge, we introduce CleanerCLIP, an innovative strategy that utilizes
fine-grained counterfactual semantic augmentation to disrupt the potential semantic link between
the trigger and the target output, as illustrated in Figure 1(d). In contrast to CleanCLIP, which
primarily focuses on disrupting pseudo-semantic clusters, our approach also generates negative and
positive subtexts for a small subset of the clean fine-tuning data. Negative subtexts are created by
randomly replacing components of the text’s semantics. This random alteration disrupts the semantic
binding exploited in potential backdoor attacks, reducing the stability and success rate of the trigger.
Meanwhile, positive subtexts preserve the essential semantic features of the original target text,
ensuring that the model can accurately process clean data. This dual augmentation process not only
lowers the success rate of backdoor attacks but also enhances the overall robustness of the model
during fine-tuning.

Our contributions can be summarized as follows:

• We analyze the shortcomings of current backdoor defense methods at the finetuning stage,
highlighting their ineffectiveness against emerging covert backdoor attacks, such as BadCLIP,
and emphasizing the need for more robust finetuning defense mechanisms.
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• We propose an innovative method, CleanerCLIP, which employs fine-grained counterfactual
semantic augmentation to disrupt the potential connection between the trigger and the target
text, ultimately providing a more robust and lightweight defense strategy for fine-tuning.

• We apply our proposed method against six attack methods, and evaluate the performance
with zero-shot classification on ImageNet1K. Experimental results demonstrate that even
when facing the latest novel attack technique BadCLIP, our defense can quickly reduce the
attack success rate and effectively protect the original model’s benign accuracy from being
compromised. This means that our method not only enhances the model’s robustness but
also ensures its usability in representing the clean features.

2 RELATED WORK AND PRELIMINARIES

Contrastive Language-Image Pre-Training (CLIP) CLIP Radford et al. (2021b), released by
OpenAI, stands as a prominent representative of MCL. Inspired by mapping images and texts into a
shared feature embedding space Rd, CLIP enables the model to understand the semantic relationship
between them. CLIP involves two encoders: an image encoder fI : I → Rd and a text encoder
fT : T → Rd, which transform the image and text data into representations of dimension d. The
model is pre-trained through contrastive learning, leveraging vast amounts of internet image-text
pairs {Ii, Ti}Ni=1 to learn the associations between images and texts. During training, the CLIP
model learns a mapping function that projects images and texts into the same feature space. This is
achieved by maximizing the similarity between positive pairs (matching images Ii and texts Ti) while
minimizing the similarity between negative pairs (mismatched images and texts). This unsupervised
joint learning approach enables the CLIP model to achieve superior performance on various visual
and language tasks, including image classification, text caption generation, and image retrieval. The
mathematical expression for lossClip can be found in Appendix B.

Backdoor attacks Backdoor attacks generally refer to the implantation of specific trigger patterns
during the model training process, which enables the model to perform normally under normal
conditions but exhibit abnormal behavior under specific conditions, such as when the input contains
images with trigger patterns. In the domain of supervised learning, backdoor attacks have garnered
significant attention, with notable works including BadNet Gu et al. (2017), Blended Chen et al.
(2017), SIG Liu et al. (2020), WaNet Nguyen & Tran (2021), and SSBA Li et al. (2021)]. Backdoor
attacks targeting the CLIP model primarily leverage its capability in learning from multimodal data.
Attackers can add image-text pairs containing specific trigger patterns to the training data, allowing
the model to learn the association between these trigger patterns and abnormal behaviors. Within the
domain of MCL, Carlini & Terzis (2021) pioneered the revelation of its vulnerability to backdoor
attacks, demonstrating a successful attack on CLIP, for instance, by poisoning merely 0.01% of the
data. Concurrently, Yang et al. (2023b) delved into the impact of attacks from different modalities on
MCL. Additionally, research on attacks against self-supervised learning (SSL), a broader category, is
also ongoing, exemplified by BadEncoder Jia et al. (2022), GhostEncoder Wang et al. (2024), and
distribution-preserving attacks Tao et al. (2023). The details about data-poisoning backdoor attacks
on CLIP are shown in Appendix A.

Backdoor Defenses on CLIP To address these threats mentioned above, some researchers have
borrowed backdoor defense techniques from supervised learning Zhu et al. (2023; 2024) to mitigate
the backdoor effects in MCL models. Currently, defense techniques for MCL can be categorized into
two groups based on whether the defender can access the poisoned dataset: ① defenders can access
the entire poisoned dataset Yang et al. (2023a; 2024b); Bansal et al. (2023); ② defenders can only
access the poisoned model Bansal et al. (2023). The former approach, which allows for complete
retraining of large models with various data augmentation strategies, can achieve strong defense
performance, such as RoCLIP Yang et al. (2024b). However, in reality, the feasibility of attackers
manipulating the training set is low, as they cannot guarantee that their carefully crafted poisoned
data will be incorporated into large-scale training sets. Therefore, a more realistic attack strategy
is to perform low-cost fine-tuning of existing pre-trained large models with dirty data. As a result,
defense techniques targeting the fine-tuning phase are necessary, which is the attack-defense scenario
addressed in this paper. A representative example of such defenses is CleanCLIP Bansal et al. (2023).
Specifically, CleanCLIP introduces a self-supervised loss based on multimodal data augmentation,
which fine-tunes a clean dataset to reduce the impact of backdoor models. Their self-supervised loss
lossSS and total fine-tuning loss lossCClip can be found in Appendix B.
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“On a blue table were 
green grapes, yellow 
lemons, oranges and 
kiwis.”

“On a blue table were 
green grapes.”

positive sub-caption

“On a bad table were 
oranges.”

negative sub-caption

“On a blue table were 
bananas.”

“On a blue table run 
kiwis.”
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Figure 2: The framework of our CleanerCLIP, illustrating the process of factual(positive) and counterfac-
tual(negative) sub-text generation and fine-tuning. For each raw caption, one of three counterfactual generation
strategies is randomly applied. Text augmentation is selectively performed on a small portion of samples during
each fine-tuning epoch to ensure minimal computational overhead.

3 METHODOLOGY

3.1 THREAT MODEL

Adversary Objective: The primary objective of the adversary is to manipulate CLIP’s textual output
representation. By polluting the original dataset, the model can generate malicious adversarial text
specified by the adversary for any input image embedded with a trigger. During zero-shot testing, the
attack objective manifests as poisoned images will be misclassified as the adversarial category, while
other benign images will be correctly classified.

Adversary Capability: We assume the attacker possesses knowledge of the model’s structure,
training algorithm, and the hyper-parameters used by the victim, but they can’t directly modify the
training process. While the attacker lacks access to the entire dataset, they can inject a small number
of poisoned samples into the training dataset. Furthermore, the attacker can poison pre-trained MCL
models by fine-tuning with carefully crafted dirty datasets and distributing them through various
channels on the internet, thereby creating uncontrollable risks for downstream tasks.

3.2 FINE-GRAINED COUNTERFACTUAL TEXT SEMANTIC AUGMENTATION

To address the inadequacies of existing defenses like CleanCLIP against covert backdoor attacks,
particularly those employing stealthy trigger features, we propose CleanerCLIP, a fine-grained
counterfactual text augmentation strategy. Our approach recognizes the necessity of both preserving
clean sample characteristics and disrupting the malicious semantic links exploited by potential
backdoor attacks. As illustrated in the left part of Figure 2, our method consists of two main parts:
(1) Factual positive sub-caption generation, which ensures the integrity of the original clean data; (2)
Counterfactual negative sub-caption generation, which actively undermines the stealthy backdoor
triggers. For convenience, we will refer to positive sub-captions as factual sub-captions and negative
sub-captions as counterfactual sub-captions in the following descriptions. Assuming the image-text
dataset used by CLIP finetuning is Dft, we annotate each sample as (Ii, Ti) ∈ Dft, where Ii is the
image and Ti is its associated caption. And we generate [ST i

p, ST
i
n] for each Ti, representing the

positive sub-caption and negative sub-caption respectively.

Factual: Positive sub-caption generation For each text sample Ti, we decompose it by first
identifying its core semantic components, focusing on relational verbs and key nouns. To generate
the positive sub-caption ST i

p, we retain the primary relational verb and key nouns while selectively
simplifying or omitting adjectives, ensuring that the core semantic meaning of the original text
remains intact. Using SceneGraphParser 1, we organize the positive sub-caption in the following
template, preserving the correct relationships between subjects and objects:

< ( Adjective of the subject ) + Subject + Relational Verb + ( Adjective of the object ) + Object >
1https://github.com/vacancy/SceneGraphParser
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Algorithm 1 CleanerCLIP Finetuning Algorithm

Require: The benign finetune image-text pairs {Ii, Ti} ∈ Dft, the fine-tuning batch size N , the
image encoder fI , the text encoder fT , the number of texts need to be augmented K, the
generation function of positive and negative sub-texts Gp(·) and Gn(·), the weight of two loss
functions α and β.

1: for epoch from 1 to E do
2: Random select K image-text pairs from Dft, and generate associated positive and negative

sub-captions: ST i
p = Gp(Ti), ST

i
n = Gn(Ti)

3: Get feature embeddings of {Ii, Ti, ST
i
p, ST

i
n}:

zIi = fI(Ii), zTi = fT (Ti), z
p
i = fT (ST

i
p), z

n
i = fT (ST

i
n).

4: Loss = lossCleaner = α · lossCClip + β · lossp−n

5: end for

When the original text is too simple or contains minimal content (e.g., “a picture of an apple”), we
preserve only the most critical word, such as "apple", as the positive sub-caption to retain the core
meaning.

Counterfactual: Negative sub-caption generation For each sub-caption, we perform random
semantic replacement operations aimed at disrupting the binding between the trigger and the target
text. Since we cannot precisely know which entity, attribute, or relationship the adversary might
exploit, our replacements are comprehensive and cover all possible elements. We apply three types
of replacement operations, and one is selected randomly for each sample: ① Replace the adjectives
associated with the subject and object. If no adjectives are present, this step is skipped. ② Replace
the relational verbs. If missing, another replacement method is chosen. ③ Replace the subject and
object nouns.

Considering the large, noisy, and uncurated nature of pre-trained models’ training data, which captures
a rich and diverse data distribution, we augment text using a combination of WordNet Fellbaum
(2010) and the large language model ChatGPT Wu et al. (2023). The latter helps generate a diverse
repository of alternative words, ensuring that negative subtexts are loosely distributed in feature space.
Each replacement repository contains 3000 terms, ranging from common to rare words, ensuring
maximum disruption of the backdoor trigger’s semantic binding.

3.3 CLEANERCLIP: FINE-GRAINED COUNTERFACTUAL SEMANTIC FINETUNING

Previous defense efforts have focused on countering backdoor triggers by augmenting image and text
self-supervised learning. However, through our prior analysis, we found that the text self-supervision
strength of CleanCLIP is insufficient to withstand triggers carefully optimized in the feature space,
unless sacrificing the expression capability of clean samples. Therefore, building upon this, we
reinforced the text augmentation method by finely optimizing the feature vectors of text through
alternating optimization between self-supervised learning and positive-negative sample adversarial
learning, enhancing CLIP’s robustness against image backdoor triggers. Previous defense strategies
have primarily focused on image and text self-supervised learning to counter backdoor triggers.
However, our analysis reveals that the self-supervision strength in CleanCLIP is insufficient against
the meticulously crafted triggers that leverage existing clean features without creating additional
toxic feature clusters. This limitation highlights the need for a more effective approach to defend
against novel attack techniques during finetuning. To address this challenge, we propose a fine-
grained text semantic augmentation method that leverages both positive and negative sub-captions
during fine-tuning. This approach aligns with the necessity for lightweight defense mechanisms we
have discussed before, ensuring robust protection against image-based backdoor triggers without
compromising clean sample expressiveness.

During the fine-tuning, we do not perform fine-grained semantic augmentation on all texts, as this
would disrupt the alignment of a large number of clean images and texts, thereby reducing the
downstream zero-shot accuracy of clean samples. We randomly select K samples from all text data
for fine-grained augmentation, obtaining K augmented data, denoted as {Ii, Ti, ST

i
p, ST

i
n}Ki=1. This

random selection approach maximally retains the original feature expression capability’s general-
ization on downstream tasks while achieving our defense objectives, and effectively minimizing the
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additional computational cost of the fine-tuning defense. The mapping of these K data points in the
feature space is denoted as {zIi , zTi , z

p
i , z

n
i }Ki=1.

Our factual-counterfactual finetuning loss function consists of two parts: the lossi2t measures the
similarity between positive sample images and text and the dissimilarity between negative sample
texts and images, thereby minimizing the information difference between positive sample images
and text. The losst2i measures the similarity between positive sample text and images and the
dissimilarity between negative sample images and text, thereby minimizing the information difference
between positive sample text and images. Both parts jointly optimize the consistency of multi-modal
embedding space. The specific mathematical expressions are as follows:

lossi2t = − 1

K

K∑
i=1

log

(
exp

(
⟨zIi , z

p
i ⟩/tp

)∑K
j=1 exp

(
⟨zIi , z

p
j ⟩/tp

)
+
∑K

k=1 exp
(
⟨zIi , zni ⟩/tn

)) , (1)

losst2i = − 1

K

K∑
i=1

log

(
exp

(
⟨zpi , zIi ⟩/tp

)∑K
j=1 exp

(
⟨zpj , zIi ⟩/tp

)
+
∑K

k=1 exp
(
⟨zni , zIi ⟩/tn

)) , (2)

lossp−n = (lossi2t + losst2i)/2. (3)
Here, tp and tn are the temperature parameters for positive and negative samples, which control
the sensitivity of the loss function to positive and negative samples by adjusting the weight of the
similarity score. Specifically, increasing tp enhances the sensitivity of the similarity score of positive
samples, leading the loss function to focus more on the differences between positive samples, which
may result in less ideal defense effects. Similarly, increasing tn enhances the sensitivity of the
similarity score of negative samples, which may lead to excessive learning of negative samples by
the model, ignoring the similarity between positive samples and reducing the model’s generalization
ability. Therefore, the setting of these two hyper-parameters tp and tn also has a certain degree of
influence on the adversarial learning between positive and negative samples. Hence, our total loss
function lossCleaner can be described as follows:

lossCleanerr = α · lossCClip + β · lossp−n, (4)

where α and β are hyper-parameters, representing the weight of lossCClip and lossp−n respectively.

Finally, our complete finetuning steps are given in Algorithm 1.

4 EXPERIMENTS

4.1 SETUP

Dataset and models As a defense technique during the fine-tuning phase, we adopted the fine-tuning
setting of Bansal et al. (2023). We utilized the open-source CLIP model from OpenAI Radford
et al. (2021a) as the pre-trained clean model, which is trained on a dataset containing 400 million
image-text pairs. We selected 500,000 image-text pairs (CC500K) as our fine-tuning dataset from the
CC3M dataset Sharma et al. (2018). Following Bansal et al. (2023), we use the ResNet-50 model as
the CLIP vision encoder and a transformer as the text encoder during fine-tuning. We conducted our
experiments using an A100 GPU.

The victim models generation We utilized the CC500K dataset to simulate the adversary’s attack
process. Specifically, we randomly selected 1,500 samples from CC500K for various types of
backdoor attacks, embedding triggers into the images. The corresponding text was modified to target
specific categories using a predefined template, while the remaining samples were kept unchanged.
This contaminated dataset was then used to fine-tune the pre-trained CLIP model. For fine-tuning,
we employed a batch size of 128, an iteration count of 5, and a base learning rate of 1× 10−6. The
learning rate was warmed up over 10,000 steps, using AdamW as our optimizer with a weight decay
of 0.1. The Adam momentum factor and RMSProp factor were set to 0.9 and 0.999, respectively,
with an epsilon value of 1× 10−8. And the attack target label is “banana".

Defense finetuning We employed the CC500K dataset to conduct clean fine-tuning (FT), CleanCLIP,
and our proposed CleanerCLIP. For both methods, we utilized a batch size of 64, an iteration count of
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Table 1: The defense performance of Top-k BA (%) and ASR (%), targeting multi backdoor attacks.

Methods
BadNet Blended SIG WaNet SSBA BadCLIP

BA ↑ ASR ↓ BA ↑ ASR ↓ BA ↑ ASR ↓ BA ↑ ASR ↓ BA ↑ ASR ↓ BA ↑ ASR ↓

Top-1

NoDefense 59.32 91.28 59.35 68.7 59.59 80.08 59.53 91.83 58.48 50.08 58.77 99.27

FT 54.98 62.14 54.63 40.45 52.69 7.71 52.72 0.57 55.73 3.82 54.05 96.22

CleanCLIP 52.62 1.88 52.68 13.29 52.17 10.06 52.74 0.53 55.02 3.87 52.61 69.87

CleanerCLIP 52.64 0.45 52.61 12.84 52.36 1.41 52.61 0.15 54.91 1.06 51.29 17.85

Top-3

NoDefense 79.8 97.16 80.02 81.09 79.98 90.12 80.05 96.77 78.96 77.12 79.69 99.66

FT 76.20 81.64 76.92 58.94 74.65 18.52 74.51 1.62 76.92 13.67 76.70 98.54

CleanCLIP 74.35 5.82 75.48 26.44 74.42 22.48 74.09 1.58 76.47 12.81 74.71 82.72

CleanerCLIP 73.76 1.61 75.54 24.37 73.67 4.86 73.54 0.49 76.16 5.94 74.37 20.19

Top-5

NoDefense 86.19 98.39 86.14 85.53 86.3 93.1 86.16 98.09 85.51 85.01 85.94 99.74

FT 83.87 88.02 83.61 66.94 81.98 26.46 81.82 2.78 84.76 22.13 83.44 98.97

CleanCLIP 81.73 9.45 81.69 34.79 81.98 30.66 81.97 2.10 83.58 20.16 81.96 87.38

CleanerCLIP 80.98 2.97 81.71 33.88 80.96 7.94 81.73 0.96 84.67 8.83 81.43 24.53

Top-10

NoDefense 92.08 99.19 92.23 90.14 92.13 96.11 92.11 99.12 91.44 92.16 91.99 99.83

FT 89.99 94.01 89.95 76.74 89.22 39.98 88.97 5.75 90.97 37.14 89.93 99.37

CleanCLIP 88.92 17.11 88.99 47.97 89.11 44.89 89.11 4.58 90.21 33.29 88.99 91.96

CleanerCLIP 88.91 6.77 88.86 46.72 89.13 15.70 89.12 2.19 90.02 10.27 88.81 28.08

10, and AdamW as the optimizer. The learning rate was warmed up over 10,000 steps, with a weight
decay of 0.1 for the optimizer. The Adam momentum factor and RMSProp factor were set to 0.9 and
0.999, respectively, with an epsilon value of 1× 10−8. The base learning rate for both methods was
set to 4.5× 10−6.

Evaluation metrics Following Yang et al. (2024a); Bansal et al. (2023) and most attacks like Liang
et al. (2023), we adopt benign accuracy (BA, ↑) and attack success rate (ASR, ↓) as our primary
evaluation metrics. For BA, a higher value indicates superior clean performance, while for ASR, a
lower value reflects better defense performance. These metrics are used to assess defense strategies
across two common tasks: zero-shot classification on the ImageNet-1K validation set and linear
probing. In the linear probing task, the feature extraction layers remain fixed, and only the linear
layer is trained on 50,000 clean images from the ImageNet-1K training set, followed by testing on
the ImageNet-1K validation set.

To comprehensively assess the impact of our defense on CLIP performance, we use Top-k (k =
1, 3, 5, 10) evaluations for both BA and ASR. Top-k accuracy considers not only the highest probability
class predicted by the model but also other high-probability classes, thus offering a more accurate
reflection of the model’s generalization capacity in multi-class settings. This consideration has
been widely used in prior works on the CLIP community, such as EVA-CLIP Sun et al. (2023),
CosmoCLIP Imam et al. (2024), and CEIA Xu et al. (2024). However, to our knowledge, previous
backdoor defense works targeting CLIP have not reported Top-k metrics, leading to incomplete
performance evaluation. Therefore, by incorporating Top-k BA/ASR evaluations, our work not only
provides a more thorough investigation into CLIP’s backdoor vulnerabilities but also demonstrates
state-of-the-art performance by significantly reducing Top-k ASR.

4.2 CLEANERCLIP PERFORMANCE

Similar to Bansal et al. (2023) and Yang et al. (2024a) of pretraining defense methods, we conduct
zero-shot testing on ImageNet1K to evaluate our performance. We utilize six attack methods to
generate victim models: BadNet Gu et al. (2017), Blended Chen et al. (2017), SIG Liu et al. (2020),
WaNet Nguyen & Tran (2021), SSBA Li et al. (2021), and BadCLIP Liang et al. (2023). Among them,
the first five are classic backdoor attack methods in supervised learning, while BadCLIP is a recently
developed attack technique specifically tailored for CLIP. For each attack method, we randomly
select 1500 images from CC500K for poisoning and subsequently finetune to generate poisoned
models. We apply FT, CleanCLIP and CleanerCLIP defenses separately to these six poisoned models
and obtain the Top-k (k=1,3,5,10) BA (%) and ASR (%) after defense finetuning. Our final results
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Table 2: The linear-probe classification accuracy (%) on a series of datasets.

Datasets CIFAR10 CIFAR100 ImageNet1K DTD STL10 SVHN Food101 OxfordIIITPet RenderedSST2

Num Train 50000 50000 50000 3760 5000 73257 75750 3680 6920
Num Test 10000 10000 50000 1880 8000 23062 25250 3669 1821

Num Classes 10 100 1000 47 10 10 101 37 2

Pre-trained 85.01 60.06 72.85 66.70 96.57 52.59 84.51 80.27 70.68

FT 83.49 58.08 60.58 65.27 95.10 48.78 82.22 77.77 70.27
CleanCLIP 83.07 60.33 72.46 65.74 95.59 50.54 82.04 76.70 70.35

CleanerCLIP 83.32 60.01 72.37 65.78 95.83 51.06 83.01 77.21 70.35

are presented in Table 1. In our implementation of CleanerCLIP, for the first five attack methods,
we randomly selected 1,000 images per iteration for positive and negative subtext generation and
finetuning. However, for BadCLIP, we randomly sampled 3,000 images for defense, as this is an
exceptionally potent attack method where a smaller sample size would be insufficient to generate a
defense boundary to resist the proximity of poisoned image features.

Regarding Top-1 performance Compared to the victim model (NoDefense), while the FT improves
the defense performance, it still exhibits some limitations. For instance, the Top-1 ASR remains high
at 62.14% for the BadNet attack, highlighting the model’s vulnerability in defense scenarios. While
CleanCLIP demonstrates robust defense capabilities, our proposed CleanerCLIP further mitigates
ASR, achieving near-zero Top-1 ASR against both BadNet and WaNet (from 91.28% to 0.45% and
from 91.83% to 0.15%, respectively). Furthermore, for BadCLIP, which CleanCLIP struggles to
defend against, our method can also significantly weaken its toxicity. This is because BadCLIP’s
trigger optimization primarily focuses on adjusting and altering the poisoned image’s feature vector
to approach the target text’s clean feature indefinitely, without creating additional target feature
clusters. In contrast, CleanCLIP’s use of text-supervised learning through EDA augmentation does
not significantly alter the semantic content of the text. Consequently, when faced with the carefully
designed and highly stealthy BadCLIP attack, CleanCLIP fails to disrupt the toxic triggers hidden
within the clean target features. Our CleanerCLIP addresses this limitation by generating negative
subtexts through random counterfactual semantic enhancement, effectively disrupting the potential
binding of trigger features. Simultaneously, the inclusion of factual positive subtexts in finetuning
enhances defense performance while safeguarding the integrity of clean sample features.

Regarding Top-k performance In the zero-shot classification test, Top-1 accuracy indicates whether
the class with the highest predicted probability by the model matches the true class, focusing on
the model’s accuracy in a single prediction. Conversely, Top-k accuracy considers whether the true
class is among the top-k predicted classes with the highest probabilities. Even if the class with the
highest probability is not the true class, the prediction is deemed correct if the true class is within
the model’s top-k predicted classes. Compared to Top-1, Top-k accuracy encompasses a broader
prediction scope and thus typically yields higher accuracy. In the Zero-shot classification test, as the
model is tasked with handling unseen classes, it may not accurately predict the true class with the
highest probability. In such scenarios, Top-k accuracy offers a more comprehensive assessment of
the model’s performance, as it takes into account the model’s predictive capability across multiple
potentially correct classes. Therefore, we also present the BA and ASR of our defense method on
Top-3, Top-5, and Top-10 in Table 1. Compared with NoDefense, FT, and CLeanCLIP, it is observed
that our CleanerCLIP does not induce overfitting tendencies in the defense processing, as evidenced
by the improved defensive performance even within the Top-10 range. Specifically, when FT and
CleanCLIP nearly fail to defend against BadCLIP (with Top-10 ASR values of 99.37% and 91.96%,
respectively), our method can reduce the ASR by 71.75% compared to the original victim model,
which demonstrates the superiority of our defense performance.

About Benign Accuracy Due to our defense is a finetuning-based strategy and the limitation of
relevant computational resources, fine-tuning a large pre-trained model with a small dataset (3 million
VS. 500K) will inevitably affect the capability of clean feature alignment, i.e., the BA performance.
Nevertheless, it is noteworthy that, compared with CleanCLIP, a similarly fine-tuning approach, our
proposed CleanerCLIP significantly reduces the ASRs while maintaining almost the same BAs as
theirs, which are also shown in Table 1.

The availability of CleanerCLIP We evaluated CleanerCLIP using linear-probe methods on a series
of datasets introduced by Kornblith et al. (2019) to investigate whether it negatively impacts the
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Figure 3: The decline curve of Top-k ASR (%) over epochs of CleanCLIP and our CleanerCLIP, on different
backdoor attacks.
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Figure 4: (a) The Top-1 ASR (%) and BA (%) with different lossp−n weight β/α. (b) The Top-1 ASR (%) over
epochs with different pos/neg temperature targeting BadNet attack. (c) The Top-1 ASR (%) of BadCLIP over
epochs with different TA-texts numbers (the num of texts we apply CleanerCLIP in each epoch).

model’s usability and transfer performance. For this evaluation, we tested models subjected to BadNet
poisoning and defenses, with a learning rate of 1e−3 during linear probe training. The corresponding
test results are shown in Table 2. As observed, we achieved test results comparable to CleanCLIP,
indicating that we significantly reduced the ASR without compromising the model’s performance
and transferability. More details about the dataset information are shown in Appendix C.

The ASR during defense epochs Beyond the ultimate defense consequence, our CleanerCLIP
achieves faster and better defense performance compared to CleanCLIP, as illustrated in Figure 3. We
present in Figure 3 the ASR trends of CleanCLIP (CClip) and CleanerCLIP with increasing epochs
for BadNet, SIG, and BadCLIP attacks. It is observable that CleanerCLIP significantly reduces ASR
often within the first epoch and converges relatively steadily thereafter. This implies that merely
with the cost of fine-tuning a few thousand additional samples, CleanerCLIP can achieve faster and
superior defense performance compared to CleanCLIP.

4.3 ANALYSIS

Ablation As shown in Table 1, Table 2 and Figure 3, when we introduced fine-grained augmentation
of positive and negative sub-samples, indicated by the addition of lossp−n, our CleanerCLIP signifi-
cantly improved defense performance compared to the original CleanCLIP, without compromising
the model’s performance on clean samples.

The lossp−n weight We evaluated the impact of the proposed lossp−n on the overall loss for defense
performance, as shown in Eq. 4. In this ablation study, we set α to 1 by default and adjusted β to
achieve different influence levels of lossp−n. As illustrated in Figure 4(a), we found that as the β/α
ratio increases, i.e., the higher the weight of lossp−n, the better defense performance.

The pos-/neg- temperature factor Since we employ fine-grained alignment of positive and negative
subtexts with images, it is essential to consider the relationship between the model’s focus on positive
and negative samples and the final defense performance. This relationship can be modulated by
adjusting the temperature factors tp and tn in Eq. 1 and 2 to achieve different levels of attention
to positive and negative samples. Specifically, the smaller the value of the temperature factor, the
higher the attention received. As shown in Figure 4(b), we conducted ablation experiments with
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Table 3: The defense performance of Top-k BA (%) and ASR (%) against BadNet (left) and BadCLIP (right),
comparing with DeCLUTR augmentation. In detail, we employ DeCLUTR in place of our text processing for
fine-tuning defense.

Methods
No defense DeCLUTR CleanerCLIP

BA ↑ ASR ↓ BA ↑ ASR ↓ BA ↑ ASR ↓

BadNet

Top-1 59.32 91.28 50.62 4.88 52.64 0.45

Top-3 79.81 97.16 73.27 7.91 73.76 1.61

Top-5 86.19 98.39 81.15 12.36 80.98 2.97

Top-10 92.08 99.19 88.93 17.12 88.91 6.77

Methods
No defense DeCLUTR CleanerCLIP

BA ↑ ASR ↓ BA ↑ ASR ↓ BA ↑ ASR ↓

BadCLIP

Top-1 58.77 99.27 51.61 74.96 51.29 17.85

Top-3 79.69 99.66 74.51 86.89 74.37 20.19

Top-5 85.94 99.74 81.36 88.83 81.43 24.53

Top-10 91.99 99.83 88.69 93.72 88.81 28.08

five different sets of temperature factors and found that when tp is higher than tn, the model de-
emphasizes negative samples, leading to an inability to fine-tune the distribution of text features in
the feature space, thus failing to actively distance itself from poisoned image features and resulting
in poorer defense performance. Furthermore, if both factors are the same and relatively large, the
fine-grained optimization weight of the model decreases, leading to the defense performance decrea.
We found that a tn of 0.3 yields strong defense performance, and when tp = 0.3, the impact on BA is
minimal. Therefore, we ultimately adopt tp = tn = 0.3 as our default setting.

The number of fine-grained texts in every epoch Furthermore, since we do not perform text aug-
mentation on all samples, but rather randomly select a subset of samples to implement CleanerCLIP
in each iteration, we explored the impact of sample quantity, as illustrated in Figure 4(c). It can be
observed that for simpler attacks like BadNet, only 50 samples are sufficient to significantly reduce
the ASR after the first iteration, achieving extremely fast and optimal defense performance. For
more complex new attack techniques, such as BadCLIP, only 2000 to 3000 samples are needed. This
represents a very small training cost compared to the scale of the fine-tuning dataset (500K).

Compared with other text augmentation strategy We employ currently available open-source text
augmentation strategies, such as DeCLUTR, to replace our counterfactual semantic enhancement
component and compare the fine-tuning defense performance. DeCLUTR Giorgi et al. (2020) uses
contrastive learning to improve text representation and generate more diverse and semantically
relevant augmentations. Detailed results are provided in Table 3. We can find that DeCLUTR does
not significantly alter the semantic content of the input text. This limitation hinders their effectiveness
in disrupting covert visual backdoors. For instance, the Top-1 ASR for BadCLIP attacks remains
high, with values decreasing from 99.27% to 74.96% when using DeCLUTR, while the Top-10 ASR
shows a marginal reduction from 99.83% to 93.72%. This illustrates that while some improvement is
observed, the lack of substantial semantic alteration fails to adequately sever the connections exploited
by the backdoor triggers, allowing these attacks to persist. This fully corroborates that, compared to
traditional text augmentation methods, our counterfactual semantic enhancement strategy achieves
unique and irreplaceable defensive performance.

More ablation results In Appendix D E F, we present the testing results on other contrastive
learning models, such as EVA-CLIP, and multimodal datasets like SBUCaption. Additionally, we
provide a detailed comparison of the performance with CleanCLIP’s EDA text augmentation method,
conducting self-supervised fine-tuning for each augmentation strategy to evaluate its defensive
capabilities and compare them with our approach.

5 CONCLUSIONS

In this paper, we focus on fine-tuning defense strategies against backdoor attacks targeting MCL.
We propose CleanerCLIP, a counterfactual semantic enhancement method that effectively defends
against backdoor attacks in multi-modal contrastive learning models. CleanerCLIP achieves superior
defense performance across various datasets and attack scenarios, significantly reducing ASR while
maintaining benign accuracy.

Limitations Since our proposed CleanerCLIP primarily addresses backdoor attacks in the image
modality, the defense performance against text modality attacks remains unknown. In the future, we
will further explore comprehensive and efficient defense methods that are effective across various
modalities.
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A THE BACKDOOR ATTACK ON CLIP

Our defense targets are mainly backdoor attacks based on visual data poisoning. The process of
such backdoor attacks against CLIP is shown in Figure 5. Against the pre-trained large model, the
adversary fine-tunes the pre-trained large model with the dirty dataset adulterated with poisoned
samples so that the model learns the feature alignment between the triggers and the target attack text.
During the inference phase, the poisoned model behaves with normal output in the face of clean
samples, but once the input image contains triggers, the model behaves with the malicious output
specified by the adversary.

“A banana is in a 
green meadow.”

poisoned pairs

......
“A dog is in a green 

meadow.”

clean pairs

......

Finetune

Image 
Encoder

Text 
Encoder

Poisoned CLIP

Image 
Encoder

Text 
Encoder

Poisoned CLIP

“A fawn is in a 
green meadow.”

clean input dirty input

“A banana is in 
a green meadow.”

Inference Phase

Figure 5: The data-poisoning backdoor attacks on CLIP.

B THE LOSS FUNCTIONS OF CLIP AND CLEANCLIP

CLIP Inspired by mapping images and texts into a shared feature embedding space Rd, CLIP enables
the model to directly understand the semantic relationship between them. The CLIP framework
involves two encoders: an image encoder fI : I → Rd and a text encoder fT : T → Rd, which
transform the image and text data into representations of dimension d. The model is pre-trained
through contrastive learning, leveraging vast amounts of internet image-text pairs {Ii, Ti}Ni=1 to learn
the associations between images and texts. Mathematically, given an image embedding zIi = fI(Ii)
and a text embedding zTi = fT (Ti) for a pair (Ii, Ti), the model is trained using a multimodal
contrastive loss lossClip to align the text and image representations, which is shown in follows:

lossClip = − 1

2N

 N∑
j=1

log

(
exp

(
⟨zIj , zTj ⟩/τ

)∑N
k=1 exp

(
⟨zIj , zTk ⟩/τ

))+

N∑
k=1

log

(
exp

(
⟨zIk, zTk ⟩/τ

)∑N
j=1 exp

(
⟨zIk, zTj ⟩/τ

))
 ,

(5)
where the ⟨·, ·⟩ denotes the inner product operation, and τ represents an adjustable temperature
parameter.

CleanCLIP CleanCLIP introduces a self-supervised loss based on multimodal data augmentation,
which fine-tunes a clean dataset to reduce the impact of backdoor models. Their self-supervised loss
can be formulated as follows:

lossSS = − 1

2N

 N∑
j=1

log

 exp
(
⟨zIj , zÎj ⟩/τ

)
∑N

k=1 exp
(
⟨zIj , zÎk⟩/τ

)
+

N∑
j=1

log

 exp
(
⟨zTk , zT̂k ⟩/τ

)
∑N

k=1 exp
(
⟨zTk , zT̂j ⟩/τ

)
 ,

(6)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where the zÎi and zT̂i represent the feature embeddings of augmented image Îi and text T̂i, i.e.,
zÎi = fI(Îi), zT̂i = fT (T̂i). And the CleanCLIP finetuning loss can be summarized as:

lossCClip = γ1 · lossClip + γ2 · lossSS . (7)

C THE LINEAR PROBE TEST

We evaluated CleanerCLIP using linear-probe methods on a series of datasets introduced by Ko-
rnblith et al. (2019) to investigate whether it negatively impacts the model’s usability and transfer
performance. For this evaluation, we tested models subjected to BadNet poisoning and defenses, with
a learning rate of 1e− 3 during linear probe training. The corresponding test results are shown in
Table 2 in the main submission. As observed, we achieved test results comparable to CleanCLIP,
indicating that we significantly reduced the ASR without compromising the model’s performance
and transferability. And the detailed information of these datasets are introduced as follows:

CIFAR10 and CIFAR100, introduced by Krizhevsky & Sutskever (2009), are small-scale color
image datasets for image classification and object recognition tasks. CIFAR10 comprises 60,000
32x32 pixel color images in 10 classes, with 6,000 images per class. The dataset is split into 50,000
training images and 10,000 test images. CIFAR100 contains 100 classes grouped into 20 superclasses.
Each class has 600 images, with 500 training images and 100 testing images. The superclasses
organize the 100 classes in a semantic hierarchy.

ImageNet1K, often referred to as ILSVRC2012, is a subset of the ImageNet dataset Deng et al.
(2009). It consists of approximately 1.28 million training images and 50,000 validation images,
covering 1,000 classes. The dataset is widely used for large-scale image recognition tasks.

DTD (Describable Textures Dataset) Cimpoi et al. (2014) contains images of textures grouped into
47 categories based on a list of adjective-noun texture descriptions. Each category has 120 images,
totaling 5,640 images. The dataset is designed for research in texture analysis and recognition.

STL-10 dataset is designed for developing unsupervised feature learning, deep learning, and self-
taught learning algorithms. It consists of 10 classes of unlabeled and labeled images, including
aircraft, bird, car, cat, deer, dog, horse, monkey, ship, and truck. The images are 96x96 pixels in size.

SVHN (Street View House Numbers) is a real-world image dataset for digit recognition Netzer et al.
(2011), derived from Google Street View images. It contains over 600,000 digit images coming from
a variety of house numbers in Google Street View images. The dataset is partitioned into 73,257
training images, 26,032 test images, and 531,131 extra training images.

Food-101 dataset consists of 101 food categories with 1,000 images per category Bossard et al.
(2014). The images were collected from a large food image dataset available on the Internet. The
dataset is designed for food recognition and related tasks.

Oxford-IIIT Pet Dataset Parkhi et al. (2012) is a large-scale dataset of pet images with fine-grained
annotations. It consists of 37 pet categories with 200 images per category. The images exhibit
large variations in scale, pose, and lighting. The dataset is designed for tasks such as fine-grained
classification and segmentation.

RenderedSST2 is designed to evaluate optical character recognition (OCR) capabilities in a sentiment
analysis context Socher et al. (2013). It transforms textual sentiment labels into visual representations
and comprises 60,000 32x32 rendered images of sentiment-labeled text (50,000 training images and
10,000 test images). The sentences belong to one of the 10 sentiment classes.

D DEFENSE PERFORMANCE ON EVA-CLIP

To validate the effectiveness of our method on semi-supervised tasks, we have extended our evaluation
beyond the classic CLIP model discussed in the paper to include performance assessments on
the EVA-CLIP as well (EVA-01-CLIP-B/16). The experiment settings of the attack process and
finetuning defense are the same as our previous settings (Section 4.1). Detailed experimental
results are presented in the following Table 4. This extended evaluation aims to further confirm the
robustness and applicability of our defense strategy across different model architectures within the
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Table 4: The defense performance of Top-k BA (%) and ASR (%) under the EVA-CLIP pertaining model
(EVA-01-CLIP-B/16).

Methods No defense CleanCLIP CleanerCLIP(ours)

BA ↑ ASR ↓ BA ↑ ASR ↓ BA ↑ ASR ↓

BadNet

Top-1 61.85 91.76 53.67 3.89 53.35 0.93
Top-3 80.82 97.33 73.82 6.76 73.77 1.68
Top-5 88.23 98.12 81.94 11.27 82.03 3.44
Top-10 92.96 99.37 89.03 19.23 89.01 6.83

BadCLIP

Top-1 60.87 99.35 52.16 80.23 52.13 17.92
Top-3 80.12 99.69 73.79 87.96 73.82 20.89
Top-5 88.44 99.78 81.23 90.65 81.25 24.44
Top-10 92.89 99.89 88.67 94.32 88.69 28.76

Table 5: The cross-dataset defense performance of Top-k BA (%) and ASR (%) against BadCLIP attack,
fine-tuning with SBU-Captions dataset.

Methods No defense CleanCLIP CleanerCLIP(ours)

BA ↑ ASR ↓ BA ↑ ASR ↓ BA ↑ ASR ↓

BadCLIP

Top-1 58.60 98.81 49.50 87.24 49.53 15.96
Top-3 78.44 98.96 73.67 91.33 73.68 17.25
Top-5 84.51 99.14 81.09 93.62 81.11 24.66
Top-10 90.73 99.32 86.47 96.89 86.47 28.21

semi-supervised multi-modal contrastive learning framework. When we defend against BadNet attack,
for Top-1 accuracy, CleanerCLIP achieves an ASR of 0.93%, a substantial improvement compared to
CleanCLIP’s 3.89% and No Defense’s 91.76%. This indicates CleanerCLIP’s capability to effectively
mitigate the impact of the BadNet attack while maintaining a competitive accuracy of 53.35%. The
performance is further enhanced in the Top-10 category, where CleanerCLIP records an ASR of
6.83%, compared to CleanCLIP’s 19.23%, highlighting a robust defense that significantly lowers the
vulnerability to this specific attack. Also, the effectiveness of CleanerCLIP is even more pronounced
against BadCLIP, where it reduces the Top-1 ASR to 17.92%, vastly superior to CleanCLIP’s 80.23%.
This suggests that CleanerCLIP not only defends more effectively but also maintains a reasonable
Top-1 accuracy of 52.13%. In the Top-10 evaluation, CleanerCLIP achieves an ASR of 28.76%,
while CleanCLIP presents a significantly higher ASR of 94.32%, showcasing CleanerCLIP’s robust
capability to handle this more challenging attack scenario.

E CROSS-DATASET DEFENSE PERFORMANCE ON SBU-CAPTIONS

To further evaluate the effectiveness of our method, we have conducted performance assessments
on the SBU-Captions dataset, extending beyond the previous evaluations on the classic CLIP model.
The experimental settings for both the attack process and fine-tuning defense remain consistent
with our prior configurations (Section 4.1). The detailed experimental results are presented in
Table 5. This evaluation aims to provide additional insights into the robustness and adaptability
of our defense strategy across diverse datasets within the semi-supervised multi-modal contrastive
learning framework, reinforcing the efficacy of our approach in real-world scenarios. Notably, while
the No Defense and CleanCLIP methods exhibit high ASR, our CleanerCLIP significantly reduces
the ASR across all Top-k metrics. For instance, the Top-1 ASR drops dramatically from 87.24%
(CleanCLIP) to 15.96%, showcasing a remarkable enhancement in defensive performance. Similarly,
the Top-5 ASR improves from 93.62% (CleanCLIP) to 24.66%, and the Top-10 ASR decreases
from 96.89% to 28.21%. These results highlight the effectiveness of our approach in mitigating the
impact of adversarial attacks, confirming that CleanerCLIP not only maintains high accuracy but also
significantly enhances robustness across different datasets, underscoring its unique and indispensable
defense capabilities.
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Table 6: The defense performance of ASR (%, ↓) with different text augmentations: RI (random insertion), RD
(random deletion), RS (random swap), SP (synonym replacement), CFR-ori (counterfactual replacement with
original captions) and CFR-sub (counterfactual replacement with pos-subcaptions, ours).

Methods No defense CleanCLIP RI RD RS SP CFR-ori (ours) CFR-sub (ours)

BadCLIP

Top-1 99.27 69.87 69.71 69.69 69.89 69.85 17.85 17.85

Top-3 99.66 82.72 82.57 82.54 82.73 82.74 20.21 20.19

Top-5 99.74 87.38 87.31 87.25 87.40 87.39 24.52 24.49

Top-10 99.83 91.96 91.73 91.83 91.91 91.95 28.09 28.09

F COMPARISON WITH EACH EDA TEXT AUGMENTATION USED IN
CLEANCLIP

In this section, we compare the defense performance of CleanerCLIP against various Easy Data
Augmentation (EDA) strategies employed in CleanCLIP. This comparison is crucial for evaluating
the relative effectiveness of different augmentation techniques in mitigating the impact of backdoor
attacks in multi-modal contrastive learning models.

As outlined in our motivation, we emphasize counterfactual replacement (CFR) as the core strategy
within our method, which is designed to achieve semantic divergence at the text level. This divergence
is critical for disrupting visual backdoor triggers within the feature space. To measure the degree of
semantic change introduced by different text augmentation strategies, we utilize the metric "impact =
1 - cosine similarity" between the original and augmented captions. By applying five augmentation
strategies to 1,000 samples from the CC3M dataset: random insertion (RI), random deletion (RD),
random swap (RS), synonym replacement (SP), and counterfactual replacement (CFR), we computed
the following impact values: RI (0.0434), RD (0.0516), RS (0.0396), SP (0.0247), and CFR (0.1015).
Among these, CFR introduced the largest semantic change, demonstrating its potential to effectively
break the correlation between text and image features, which is essential for neutralizing backdoor
triggers.

In addition to measuring semantic change, we conducted a comprehensive evaluation of these text
augmentation strategies under the BadCLIP attack scenario, where we overlaid each EDA strategy
on CleanCLIP and measured the corresponding attack success rates (ASR). As shown in Table 6,
CleanerCLIP, using counterfactual replacement, consistently outperformed other EDA strategies.
For instance, under the Top-1 ASR evaluation, CFR-ori and CFR-sub both reduced ASR to 17.85%,
compared to over 69% for the other EDA strategies (RI, RD, RS, SP). Similar improvements are
observed across Top-3, Top-5, and Top-10 evaluations, where CFR-based augmentations demonstrate
a significant drop in ASR, reaching as low as 20.19% (Top-3) and 28.09% (Top-10), highlighting the
robustness of our approach.

Moreover, we investigated the effect of positive sub-caption selection (CFR-sub) versus original
caption replacement (CFR-ori). The results show that both strategies yield nearly identical defense
performance, confirming that the choice between positive sub-captions and original captions has
minimal impact on overall defense effectiveness. Thus, for simplicity and practicality, we opted to
use positive sub-captions (CFR-sub) in our experiments.

In summary, these evaluations underscore the superiority of counterfactual semantic replacement
(CFR) over traditional EDA strategies. CleanerCLIP not only achieves the highest semantic diver-
gence, but also provides the most effective defense against backdoor attacks across multiple metrics,
demonstrating its unique and irreplaceable defense capabilities.
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