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ABSTRACT

Large Language Models (LLMs) have demonstrated significant capabilities in
complex reasoning tasks, often employing frameworks like Tree of Thoughts (ToT)
and Chain-of-Thought (CoT). However, such methods typically rely on trajectory-
based state representations, where each state encapsulates the entire history of
reasoning steps. For tasks with inherent solution spaces where overlapping rea-
soning paths frequently emerge, this inherently restricts the reuse of intermediate
computations, leading to redundant exploration. The effect is even more dramatic
when samples can be solved jointly, as overlapping reasoning paths frequently
occur across different problem instances. We present Holistic Prompting, a novel
framework that empowers LLMs to reuse intermediate results both within and
across problem instances. Designed for tasks that exhibit reusable sub-structures,
Holistic Prompting unifies shared access to intermediate thoughts with an active
shortcut-discovery mechanism, enabling focused search between unsolved and
solved subproblems and aggressively pruning reasoning paths. Our experiments
show that reuse is highly profitable in ToT-style breadth-first search on the math
puzzle Game24 and in AlphaZero-style Monte-Carlo tree search in retrosynthetic
planning. Here, Holistic Prompting achieves both higher success rates, while at the
same time requiring fewer model invocations and outputs.

1 INTRODUCTION

Although Large Language Models (LLMs) continue to show remarkable performance over a wide
variety of tasks, a challenging problem still lies in the generalist nature of their generation process.
Recently, multi-step prompting techniques, such as Chain-of-Thought (CoT) (Wei et al., 2022; Kojima
et al., 2022) or Tree of Thoughts (ToT) (Yao et al., 2023a), have been hailed as essential remedy
to render the generation process more task-aware by allowing for certain reasoning capabilities.
However, this remedy comes at a price: exploring the necessary intermediate steps for each problem
instance in detail is expensive in terms of test-time computation. The central problem is that, for each
new instance, even of the same problem class, the prompting is re-evaluated, i.e., the LLM starts
from scratch every time.

This behavior seems counterintuitive, since many problems, especially those of the same or at least
a similar problem class, share a common way of addressing them. However, LLMs cannot readily
reuse information learned at different stages during a multi-step prompting. The reason is that
such prompting techniques typically rely on trajectory-based state representations, where each state
encapsulates the entire history of reasoning steps, to force coherence in subsequent generation steps.
On the other hand, we have seen huge success for the Retrieval-Augmented Generation (RAG)
paradigm (Lewis et al., 2020), where concise and topically focused knowledge is injected from
outside sources into LLM generation. So why should LLMs not benefit from their own progress in
related problem instances?

In brief, the central question essentially boils down to opening up the state-space of intermediate
results for reuse, while at the same time avoiding complexity problems by the obvious combinatorial
explosion of possible states. In this paper, we propose Holistic Prompting (HP), a framework
specifically designed for tasks that exhibit reusable sub-structures. HP lets LLMs work on all
instantiations of a task in an integrated and informed fashion, while employing aggressive pruning
techniques to keep the state space’s complexity at bay. We show how this change in methodology
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(a) Exemplary CoT and ToT traces on two samples. (b) Holistic Prompting

Figure 1: High-level overview of CoT, ToT, and Holistic Prompting (ours) and their respective
approaches on samples with overlapping intermediates.

can actually be expressed quite naturally by a shift of the underlying state representation. By
connecting unsolved problems to previously explored paths of other samples, the LLM can (i) short-
cut expensive reasoning traces and therefore save test-time budget, (ii) focus verification efforts on
the most frequently traversed reasoning paths to support risk-based resource allocation. Our extensive
experiments show that Holistic Prompting does indeed realize substantial gains in success rates while
at the same time severely reducing the amount of generated tokens and model calls.

2 BACKGROUND

A notable trend in the ever-evolving landscape of prompting techniques has been the incorporation of
external thought structures into the generation process. LLMs no longer just produce a single output
for a given input (IO-prompting); they are now provided with reasoning scaffolding and are tasked to
fill in the missing gaps. The thoughts are typically implemented as text spans of varying lengths, rang-
ing from single tokens over paragraphs to full documents. We briefly formalize important baselines in
the following. We use pθ to represent a pre-trained LLM with parameters θ that assigns a probability to
a token sequence x = (x(1), x(2), . . . , x(N)) via the joint probability: pθ(x) =

∏N
i=1 pθ(x

(i) | x(<i)).
IO-prompting directly generates an output y by sampling from pθ conditioned on an input x, typ-
ically framed within task-specific instructions promptIO. We write y ∼ pθ(· | promptIO(x)), or
simply y ∼ pIOθ (· | x) as a shorthand notation. Chain-of-Thought (CoT) (Wei et al., 2022; Kojima
et al., 2022) augments the basic generation process by introducing a sequence of intermediate reason-
ing steps m1, . . . ,mn, expressed in natural language, to help break down complex tasks into smaller,
more manageable parts. This decomposition allows models to handle problems requiring multi-step
reasoning. The LLM is used to generate a sequence of thoughts z1, . . . , zn: At each step, the model
generates the next thought zi based on the input x, all previous outputs, and the associated reasoning
steps. Specifically, we sample zi ∼ pCoT

θ (· | x ∥m1 ∥ z1 ∥m2 ∥ · · · ∥mi) where each mi acts as a
thought-provoking cue guiding the next generation. The Tree of Thoughts (ToT) (Yao et al., 2023a)
framework proposes exploring multiple reasoning paths simultaneously while pruning unpromising
ones early. ToT extends the linear chain structure of CoT into a searchable tree of different approaches
to a problem instance. Each node in the tree encodes a partial solution to the sample x as a trace
of thoughts. Nodes, also called states, are defined as sToT = (x, z1...i). A generic ToT setup then
requires three distinct procedures, each invoked sequentially to: select explore-worthy states,
expand the selected states with possible next sub-states, and evaluate them by estimating their
utility towards solving x. Different search strategies can be employed to decide the exact behavior
of each component. Therefore, a full formalization is only possible by choosing a search strategy a
priori. Algorithm 1 in the Appendix outlines a breadth-first search as proposed by Yao et al. (2023a).
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(a) Trajectory-based states (ToT, CoT, CoT-SC., ...) (b) Collapsed states (ours)

Figure 2: Two excerpts of attempts at Game24 using different state encodings. Redundancies are
highlighted in yellow color, indicates unnecessary branching.

3 TOWARDS REUSABLE STATES

We begin with a closer examination of the concept of state within previous works to illustrate precisely
how current approaches actively restrict the reuse of intermediate results. To demonstrate this, we
focus on the ToT framework, as Yao et al. (2023a) have already established it as a generalization
of many previous methods, including but not limited to IO-prompting, Chain-of-Thought, and Self-
Consistency (Wang et al., 2023). Here, each state is formally defined as sToT = (x, z1:i), where x
denotes the initial input and z1:i represents the sequence of thoughts generated up to step i. Thus,
each state s encodes the complete reasoning trajectory, from the initial input through the sequence of
intermediate steps. Such a setup already suffers from redundancy and branching even when applied
to single samples, as depicted in Figure 2a. The reuse between multiple samples, which we consider
in this work, is further complicated, since the samples themselves are part of their associated states.
Therefore, it is not straightforward to match states of different samples. Moreover, transformations
and their outcomes are strongly tied, which unnecessarily inflates the number of unique states.

Reusable states To enable reuse of intermediate results, we propose a state encoding that naturally
merges equivalent subproblems. For this, we require states to be self-contained and Markovian, i.e.
allowable actions and successors depend only on the current state, not the trajectory taken to reach
it. This representation is particularly applicable to problems exhibiting optimal substructure, where
optimal solutions can be built from optimal solutions to subproblems. Formally, a state s ∈ S is
decomposed by action a ∈ A into a set of sets of subproblems Ŝ ⊆ P+(S). We understand Ŝ to be
a disjunctive decomposition of s, meaning that solving any single of the alternatives Ŝi suffices to
solve s. The Ŝi in turn are conjunctive decompositions, which require all their ŝij ∈ Ŝi to be solved
for an Ŝi to count as solved. A state with no applicable actions (A(s) = ∅) is terminal (irreducible)
and is directly assigned a Boolean constant as its solved status.

Choosing nodes labeled by states and edges labeled by actions then gives an And-Or graph struc-
ture (for an overview of classical And-Or trees, see Khorasani, 2008). Together with our proposed
state representation, this construction supports sharing and reusing partial solutions within a sample,
as multiple action sequences may converge to the same state (see Figures 1b and 2b). Reuse across
problem instances follows naturally by allowing multiple samples to live in the same graph.

This structure subsumes and generalizes two important lines of work on LLM problem decomposition,
specifically ToT and Decomp (Khot et al., 2023). Decomp restricts every state to a single And node
(|Ŝ| = 1). ToT, in contrast, permits only Or nodes of size one (|Ŝi| = 1). In both cases each sample
is processed independently (one instance per graph) and each sub-problem is solved in isolation, so
the induced search structures degenerate to trees rather than general graphs.

We define our And-Or graph as a directed hypergraph G = (V,E) where V is a non-empty set
of nodes with hyperedges E ⊆ V × P+(V ). In a typical And-Or tree, whether a node is solved
can be determined by backing up from terminals and iteratively updating their single parent. Since
our And-Or graph is no longer guaranteed to be acyclic and allows nodes to have multiple parents,
the question arises whether this procedure is still valid or even terminates. In A.2 we show that
synchronous iteration over the intermediate states in the graph always converges to a least fixed point,
due to the monotonicity of And/Or.
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4 HOLISTIC PROMPTING

We introduce Holistic Prompting, a search-based framework that enables LLMs to reason over
multiple samples jointly. Unlike conventional approaches that treat each sample independently, our
method extends the search space to include all input problems simultaneously, allowing intermediate
computations and solutions to be shared across examples. Central to our approach is a formal
representation of a reasoning graph over reusable states: nodes correspond to subproblems, and edges
denote actions that transform some aspect of their originating state, as outlined in the previous section.
Inspired by classical search algorithms, an iteration in our framework involves four core functions: (1)
proposing promising actions based on current states across any of the problem instances; (2) executing
these actions to derive subproblems; (3) assessing whether the proposed actions and new states are
legal, and (4) estimating the utility of these new states towards their respective final solutions.

Our approach enables the development of global solution strategies, including the novel shortcut
discovery method introduced in this paper. This can be understood as a form of inverse search,
where the system actively seeks actions that connect pre-existing, known states, thereby deliberately
attempting to generate reuse. In the following, we will delve deeper into the four core functions
(1-4) and discuss how they are operationalized within our framework. Section A.3 details Holistic
Prompting in the style of breadth-first search (HP-BFS) and MCTS (HP-MCGS).

(1) Action Generation Given a non-empty reasoning graph G = (V,E) where X ⊆ V , we sample
action candidates â for state v ∈ V using two complementary methods.

(1a) Unconstrained action generation refers to searching for generally applicable actions on some
state v. The search is usually broad, but possibly non-exhaustive, due to the probabilistic nature
of some generators, especially LLMs. Therefore, some permissible actions may never be found.
Standard prompting schemes, e.g. IO or CoT, can be utilized by sampling from the an LLM directly.
For example, a set of action candidates {â1, â2, . . .} with âi ∼ pproposeθ (· | v) could be obtained.

(1b) Shortcut discovery refers to a new type of action generation, aiming to uncover missing links
between known states. The motivation is clear: although the aforementioned action generation may
eventually discover some of the shared subproblems, the process is mainly driven by chance and
may miss. Here, we target a mechanism that directly searches for useful action candidates, where the
exact semantics of usefulness can be adapted to fit the desired search behavior. For example, problem
classes that frequently share subproblems at shallow layers may benefit from initially constructing
large connected components in G, allowing later computation to focus on critical paths. Formally,
given two states v, v′ ∈ V , we are searching actions a ∈ A such that (v, v′, a) is a legal transition. We
experiment with a simple but general approach that utilizes an LLM’s inverse planning capabilities.
For a shortcut candidate (v, v′), we infer action candidates via ac ∼ pshortcutθ (· | v, v′). We leave the
development of more elaborate discovery mechanisms, e.g., pattern-based or analogous reasoning, to
future work. To account for large search spaces, we introduce a candidate evaluator c : V × V → R
and run only the top k queries.

(2) Next State Generation Having generated action candidates, the next step is to apply them, thereby
producing new states. Here, it is critical that the actions are carried out correctly, since the reuse of
illegal states can affect more than a single sample in our framework. Given an action candidate â for
some state v, we sample the next states as V̂ ∼ papplyθ ( · | â, v).
(3) Action and State Verification A major concern for any iterated reasoning method with imperfect
generators is the accumulation of errors. Especially undetected errors in shallow layers can lead to
whole subgraphs being invalidated. While this is a general challenge for more complex reasoning
structures, it becomes particularly acute in our framework, where intermediate results are explicitly
designed for reuse across different samples. Depending on the exact problem at hand, verification
may be implemented as external feedback to the procedure. This requires explicating the rules and
regulations as programs, which might not be feasible for all tasks. In our exemplary implementation,
we instead take inspiration from recent works on the ability of LLMs to self-verify (Li et al., 2023;
Madaan et al., 2023). Thus, we leverage the LLM to verify that found actions and derived states are
indeed correct. Dedicated instructions are used, demanding a binary decision about action or state
legality, with few-shot examples of common errors to guide the decisions. We introduce two sets of
prompts Paction and Pstate in the form of yes/no queries. Each prompt is considered to encode a rule
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of the task, so that action and state candidates can be subjected to rigorous verification. To account
for variance, we may sample m times and take the average.

(4) State Evaluation After generating and verifying new states, the framework must prioritize which
states to expand next in the reasoning graph. This is accomplished through state evaluation, which
estimates the utility of each candidate state w.r.t. the solution process and guides the search strategy.
To this end, we introduce a state evaluator r(G, v̂), which scores each candidate node based on the
entire structure of the current reasoning graph G. Unlike previous approaches (Huang et al., 2023;
2025; Yao et al., 2023a) that typically rely on local information for node evaluation, our method
enables global state assessments. In particular, r(G, v̂) may reflect various heuristics, such as the
estimated cost to reach a final solution from v̂, the likelihood that v̂ is part of an optimal solution, or
the potential of v̂ to enable future reuse across multiple problem instances. By guiding expansion
using these global evaluations, the framework can more efficiently explore the reasoning space and
improve overall search performance.

In summary, our framework generalizes typical search paradigms (expand, evaluate, select) to the
multi-sample setting, enabling solution sharing, self-correction, and global solution strategies, here
studied in the form of shortcut discovery.

5 EXPERIMENTS

To thoroughly analyze our method’s potential we conduct experiments over a theoretical math puzzle
setting and a real world chemical retrosynthesis task. Both settings require compositional search
and planning: in the Game24 math puzzle, the goal is to reach a target sum of 24 given a fixed set
of four numbers and the basic arithmetic operators. In retrosynthetic planning, a target molecule
must be recursively decomposed into precursor molecules until reaching commercially available
building blocks. Both tasks pose important, yet orthogonal challenges for search methods, since math
puzzles may be unsolvable and chemical reaction graphs are often highly cyclic. We implement our
framework using breadth-first search (HP-BFS) and the PUCT variant of MCTS, as popularized by
AlphaZero (HP-MCGS).

5.1 GAME24

In Game24, a player is given four numbers (e.g., “2 4 5 7”) and the basic arithmetic operators
(+,−,×,÷) and has to form an expression that evaluates to 24, using each number exactly once.
This well-defined setting is often used to assess the reasoning capabilities of LLMs (Sel et al., 2024;
Yao et al., 2023a). For analysis we differentiate two scenarios. First, in a constructive setting,
we measure how well problems known to be solvable are tackled, which is common in related
work (Besta et al., 2024; Khot et al., 2023; Zhou et al., 2023). Second, in a decisional setting, we ask
whether a given instance is solvable. As a twist, none of our test cases in this setting are solvable,
precluding proofs by construction from a single found solution and instead requiring the considerably
harder evidence of absence. Since this demands more thorough search it makes the task particularly
suited for stress-testing compositional reasoning.

Datasets. We use two 100-sample datasets. For the constructive setting, we adopt the ToT test
split (Yao et al., 2023a) (ToT-Test-Split). For the decisional setting, we introduce Unsolvable-100, for
which no combination yields 24. Both datasets are listed in the appendix in Section A.5, accompanied
by further dataset statistics, including state and action counts under different state representations.

LLM Setup. We use MistralAI’s Mistral-Small-3 (24B), Microsoft’s Phi-4 (14B) and Meta’s Llama-
3.3 (70B) to account for differently sized LLMs in our experiments. Prompts are run with a chat
completion setup, sampling with a temperature of 0.7, with the exception of yes/no queries, where
we sharpen the distributions further with a temperature of 0.1.

Metrics. We report success rate as the proportion of correctly answered samples. For solvable
samples, correctness means giving any correct solution, whereas for unsolvable samples, the LLMs
must not provide any solution or claim to have found one. It is important to note that the correctness
notion of success is different from the classical understanding for decision problems, where always a
complete logical proof is required. While LLMs may enumerate all possible approaches to solve the
problem at hand and thus also provide constructive proof by exhaustion in case there is no solution,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Best results of various prompting methodologies on two datasets of Game24. Exact
hyperparameters are shown in Section A.5.

Phi-4 (14B) Mistral-Small-3 (24B) Llama-3.3 (70B)

Metric IOSC CoTSC ToT+ HP IOSC CoTSC ToT+ HP IOSC CoTSC ToT+ HP

Dataset: ToT-Test-Split

%Success 0.19 0.15 0.78 0.96 0.34 0.10 0.626 0.87 0.51 0.25 0.96 0.98
#M Tokens 3 3 119 13.1 7.4 6.6 71.9 12.7 6.3 5.9 75.3 10.6
#K Calls 20 20 617 117 20 20 424 119 20 20 606 141

Dataset: Unsolvable-100

%Success 0.01 0.0 0.82 0.998 0.27 0.92 0.74 1.0 0.73 0.52 0.786 1.0
#M Tokens 4.7 4.9 111 21.7 5.6 8.2 66 12.6 7.7 8.7 70.6 9.6
#K Calls 20 20 571 189 20 20 359 137 20 20 563 133

we do not enforce it here. Rather, we regard unsolvable instances as successful, in which an LLM has
not found a solution after thorough search. As additional metrics for comparing models, we collect
the sum of completion tokens and the number of calls to the model.

Baselines. We use IO and CoT baselines with a self-consistency extension over 100 tries (Wang et al.,
2023). We include ToT-BFS using the official implementation.1 To further strengthen ToT and for a
fair comparison, we implement the same self-verification as in our own framework. Hyperparameter
search over breadth b ∈ {1, 3, 5, 7, 10, 20}, the number of evaluations m ∈ {3, 7, 11}, and whether
to use verification is conducted to find well-working setups for maximum success rates. If enabled,
verification is averaged over three prompts. ToT is run in an oracle setup (ToT+), where we count an
output as correct if there is any correct answer within the top 1 . . . b predictions. Wherever possible,
we use the same prompts for baselines and our framework, and ensure that all setups have access to
exactly the same few-shot examples and rules.

Holistic Prompting Setup. To apply HP to Game24, we decompose each instance into a sequence
of subproblems: In each step, two numbers are combined into a new one, ideally converging to
a single result. An overview is shown in Figure 3 in the Appendix. We explore a combination
of local and global evaluation to inform the selection of the next states. Locally, the LLM is
utilized to estimate v̂’s likelihood of leading to a solution. We incorporate global information by
assigning states a value of 0 unless they are reachable from at least one currently unsolved sample:
r(G, v̂) ∼ pvalueθ ( · | v̂)× 1[∃x ∈ X : x

G
⇝ v̂].

Throughout all experiments, we choose a simple heuristic to implement the shortcut candidate
evaluator c based on the Levenshtein string edit distance. The rationale behind it is the necessary
overlap between the string representations of a parent and its legal child nodes. While this helps to
identify true negatives, it is bound to suffer from many false positives. For example, the edit distance
from “2 3 11” to “5 11” is equal to that of “2 3 11” to “7 11”, although no legal move exists that
produces the latter. We choose this suboptimal component deliberately to show that even weak signals
suffice to uncover helpful shortcuts. Other methods, e.g. learned classifiers or distance measures
exploiting task semantics, are left to future work. Regarding hyperparameters, we keep the number
of evaluations per state fixed at m = 3, explore b = 10 states per iteration, and run verification three
times. We apply a small search over the number of shortcut candidates for k ∈ {10, 50, 100, 200}.
Results. As shown in Table 1, ToT+ performs best among the baselines in terms of success rate on
the ToT-Test-Split. However, these improvements come at the cost of vastly higher completion token
usage and calls to the model. Yet, HP even surpasses ToT+ in all metrics, solving significantly more
samples with fewer output tokens (reduced by factors of 9.1, 5.6, and 7.1) and less LLM invocations
(reduced by factors of 5.3, 3.5, and 4.3). Please note that this occurs even though ToT+ has an unfair
advantage due to its oracle access.

The second experiment involves exclusively unsolvable samples, on which we re-apply the model
configurations that performed best in the previous task. This is necessary to avoid setups with little
search activity, since in this special experiment never providing any solutions would be a guaranteed

1Official ToT repository (MIT License): https://github.com/princeton-nlp/
tree-of-thought-llm
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way of answering correctly. We test the different methods configured for exhaustive search, as
determined on the Tot-Test-Split dataset. With the exception of Phi-4, which almost always claims to
have found a valid solution, IO+CoT appear to correctly address more samples here. This, however,
is mainly due to their self-consistency extension, which returns the majority answer based on exact
match. Concerning ToT, all models suffer approximately the same number of false positive claims,
ranging from 18 to 26 percent. In stark contrast, we find just a single claimed solution from any
model using the HP framework.

Error Analysis. The detailed error analysis in Section A.6 gives insight into the error types that occur
during HP and offer a possible explanation for Mistral-Small-3’s comparatively low improvements
as compared to Phi-4’s. Although the former LLM still enjoys significant improvements over the
baselines, Phi-4 beats it in terms of success rate, which is surprising given its smaller size. We found
Mistral’s verification component to make three to six times as many false positive errors, i.e., it
considered actually correct states and actions as incorrect and rejected them. This led to the LLM
blocking its own path.

Table 2: Ablation study with Phi-4 on ToT-Test-Split.

Verify Shortcut #M Tokens #K Calls %Success

✗ ✗ 28.7M 221.6K 52.4
✗ ✓ 15.4M 122.5K 91.6
✓ ✗ 20.8M 201.5K 94.4
✓ ✓ 13.1M 116.8K 96.2

Ablation Study. Table 2 shows the effects
of the verification and shortcut components.
Surprisingly, running verification decreases
the token usage and model calls, although
clearly more work per state is carried out.
However, these costs are amortized since
erroneous nodes are never further explored
and far fewer states need to be processed by
the rest of the framework. Shortcuts appear
generally beneficial, cutting token usage and improving success rates. When active together, the
highest success rate is achieved while using the fewest tokens and model calls.

5.2 RETROSYNTHESIS

Retrosynthetic planning is a real world strategy of designing a synthesis by working backward
from some target molecule to simpler, readily available precursors. This involves several tasks:
identifying strategic bond disconnections, representing fragments as idealized synthons, mapping
them to real reagents and reactions, and iterating until a feasible forward route is obtained. This
iterated decomposition can be understood in the sense of a proof tree and directly maps to our
understanding of states and actions, here represented by molecules and reactions, respectively. A
typical search algorithm cycles between selecting an unexplored molecule, expanding it by applying
suitable reactions taken from a library of templates, and checking whether the target is now fully
decomposed into basic building blocks. In the literature, such setups always require a test set of
target molecules, a library of template reactions, and a set of basic building blocks. Since the
latter two are usually fixed across individual targets, reusing previously discovered molecules across
different targets can save search costs, given that overlapping routes do exist. However, many
previous works tackle targets purely in isolation, often using tree-search heuristics with learned neural
priors, c.f. (Segler et al., 2018; Chen et al., 2020; Hong et al., 2023; Zhao et al., 2024a). A notable
development towards reuse is given in Xie et al. (2022) introducing a graph neural network to guide
the search.

Holistic Prompting Setup. Since the retrosynthesis evaluation will need to work in real world
settings, an important precondition concerns the ability of current LLMs to actually generate correct
chemical molecules and reactions. Unfortunately, this ability proved to be extremely weak. In fact,
recent results in Guo et al. (2023) report that on single-step disconnections GPT-4’s error rate is
at least 88.6%, even with extra scaffolding and few-shot examples. Since planning is usually only
necessary for multi-step reactions, often necessitating hundreds of consecutive disconnections, an
error rate this high immediately renders the application of off-the-shelf LLMs infeasible. Moreover,
put to the test neither the general purpose models used in our Game24 setting, nor current LLMs
specifically trained on chemistry tasks (Xia et al., 2025; Narayanan et al., 2025), were able to solve
even a single sample of our test dataset.

Thus, for the time being–although we anticipate future LLMs to better fit this scenario–we stuck
with non-LLM neural architectures to implement both, action generation and state evaluation. In
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Table 3: Summary of the results of various retrosynthetic planners. We report success rates over six
iteration budgets, the average number of iterations, as well as the mean reaction and molecule node
counts. The latter three correspond to the search budget with 500 iterations.

Algorithm Success rate [%] ↑ #Iterations ↓ # Reaction
Nodes ↓

# Molecule
Nodes ↓50 100 200 300 400 500

Greedy DFS - 38.42 40.53 44.21 45.26 46.84 300.56 - -
Retro* 40.00 55.79 70.53 76.84 82.11 85.79 158.81 2632.84 3685.31
Retro*+-0 56.84 67.37 83.16 92.11 94.74 96.32 97.95 1444.52 2139.3
EG-MCTS 81.58 87.89 91.05 94.21 94.21 94.21 55.43 828.78 1091.65
RetroGraph 69.47 88.42 97.89 98.95 99.47 99.47 45.13 674.23 500.44
DreamRetro - 93.16 96.32 97.37 97.89 98.42 - 574.42 480.12
PDVN 93.16 96.84 97.89 99.47 99.47 99.47 20.24 486.87 417.54

HP-MCGS 93.68 95.79 96.84 98.95 99.47 99.47 19.12 317.01 246.55

particular, we use a proven single-step model from Chen et al. (2020) as action generator. For the state
evaluation, we draw on the works of Segler et al. (2018) and Hong et al. (2023) (EG-MCTS), who
show that MCTS paired with well-aligned policy and value networks not only finds more synthesis
routes, but does so in fewer iterations than competitive baselines. From the latter, we therefore take
the two networks to provide state evaluations. This setup has the additional benefit of reducing
extraneous influences on the experimental results, since we only intervene on the graph representation
and keep everything else exactly as used in the literature.

To combat the inherent redundancy in the tree-structure underlying MCTS, we move to the graph
representation as motivated earlier. However, the possible presence of cycles still requires adjustments
in the selection and update phases. In classical PUCT-select, cycles can lead to infinite loops,
which is why in this work we employ additional backtracking during traversal (see Section A.3 for
details). To account for integrated multi-target planning, we also introduce an artificial root node and
corresponding actions that allow dynamic selection of each individual target. We refer to the final
variant as HP-MCGS.

Baselines. To analyze the performance of our approach, we compare it to a broad set of state-of-the-
art baselines, in particular EG-MCTS (Hong et al., 2023), Retro* (Chen et al., 2020), Retro*-0 (Kim
et al., 2021), RetroGraph (Xie et al., 2022), PDVN (Liu et al., 2023), and DreamRetro (Zhang et al.,
2025).

Metrics. We quantify the search procedures’ effectiveness by the ratio of solved to unsolved targets
(success rate). Efficiency is measured through node counts in the final search graphs rather than a
direct model call count. This is necessary for a fair comparison, since some baselines opt for multiple
small networks, whereas others use a monolithic merged model. Finally, we also report the mean
number of iterations per target molecule.

Dataset. We follow common practice in the literature and use the same set of commercially available
building blocks (approx. 23M) from eMolecules2 for all approaches. For the test data, we adopt the
190 challenging target molecules (Retro-190) from Chen et al. (2020), as it is widely used in previous
work.

Results. HP-MCGS achieves state-of-the-art success while being the most efficient planner (see
Table 3). It solves 93.68% of targets at 50 iterations (best), 95.79% at 100 (second to PDVN), and
matches the top success of 99.47% by 400 iterations, maintaining parity at 500. The search graph
size is markedly smaller: 317 reaction nodes and 247 molecule nodes on average, representing
roughly 35% and 41% fewer nodes than PDVN, and over 50% fewer than RetroGraph and EG-MCTS.
Overall, HP-MCGS delivers SOTA success rates with the fewest iterations and smallest search graphs,
validating reuse with multi-target, cycle-aware MCGS as an effective paradigm for retrosynthesis
planning.

2https://downloads.emolecules.com/free/
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6 RELATED WORK

Sequential Multi-Step Reasoning Traditional methods like Chain-of-Thought prompting (Wei et al.,
2022; Kojima et al., 2022) elicit reasoning through a step-by-step, sequential process for each sample
independently. Self-Consistency (Wang et al., 2023) builds on this by sampling multiple CoTs in
parallel and selecting the majority answer. Graph-based methods such as Tree of Thoughts (Yao et al.,
2023a) generalize these sequential and parallel reasoning paradigms. Zhou et al. (2023) propose a
decomposition approach, dissecting the task into easier subquestions. Chen et al. (2023) and Khot
et al. (2023) provide more programmatic perspectives on decomposing problems into sub-tasks, the
latter delegating sub-tasks to different specialized LLMs. Unlike our approach, these methods treat
each sample independently.

Search and Planning with LLMs Planning for the choice of action in accordance with the optimal
outcome is a common problem in LLM research (Yao et al., 2023b; Shinn et al., 2023; Huang et al.,
2022). The Tree of Thoughts framework (Yao et al., 2023a) introduces structured, tree-based search
and planning for complex reasoning tasks, with subsequent works such as Tian et al. (2024) and
Zhang et al. (2024) studying self-improvement. Graph of Thoughts (GoT) (Besta et al., 2024) further
generalizes the ToT framework by adopting arbitrary directed graphs, enabling the aggregation of
multiple reasoning traces into consolidated thoughts. We understand our framework as a topological
generalization of ToT and Decomp to And-Or graphs with an emphasis on targeted reuse of previously
obtained results across multiple problem instances.

Self Evaluation and Feedback LLMs have been shown to be powerful evaluators of their own
generations (Kadavath et al., 2022), and are able to refine their outputs through self-feedback (Li
et al., 2023; Madaan et al., 2023; Shinn et al., 2023; Huang et al., 2023; 2025; Zhao et al., 2024b). We
follow prompting techniques such as ToT (Yao et al., 2023a), Maieutic Prompting (Jung et al., 2022)
and Multiagent Debate (Du et al., 2024; Liu et al., 2024) in exploiting such feedback mechanisms for
the evaluation of intermediate steps.

Efficiency Considerations in Reasoning To alleviate the computational demands of multi-step
reasoning, frameworks for improving token efficiency (Xu et al., 2025), parallelizability (Ning
et al., 2024), test-time compute scaling (Snell et al., 2024; Muennighoff et al., 2025), and semantic
caching (Bang, 2023) have emerged. We pursue an alternative route and aim to improve efficiency by
actively promoting reuse over multiple samples.

Other works seek to maintain alignment with previous answers to reduce inconsistency errors (Kassner
et al., 2021; Mitchell et al., 2022) or utilize long-term memory to improve future decision making
(Shinn et al., 2023). Li & Qiu (2023) and Yu et al. (2024) also consider reuse of thought chains, but
solely provided as in-context examples of related reasoning traces. Whereas they perform reuse up
front and only then reason, our framework integrates reuse ad hoc as part of the reasoning process.

7 CONCLUSION

Structural reasoning approaches can be beneficially enhanced to reuse their own progress in related
problem instances by switching to a more suitable state representation. Our Holistic Prompting
framework allows to employ global search strategies over all samples of tasks with reusable sub-
structures. We introduce one such strategy in the form of shortcut discovery, a novel technique that
actively infers connections between acquired intermediate solutions. We show that reuse and focused
verification significantly improve success rates and at the same time reduce resource consumption.
While our And-Or graph setup generalizes two important lines of work on problem decomposition,
namely Tree-of-Thought and Decomp, our current notion of reuse relies on strict state equality. A
promising direction is a lifted abstraction that maps instance-specific states to parameterized templates
(via canonicalization, unification, or learned equivalence) while preserving the And–Or structure.
Moreover, the Markovian assumption presumes that all relevant information about a subproblem’s
state is explicitly captured in its representation, which may be challenging in domains with hidden
or implicit context. Because our framework actively promotes reuse of previous computations, it
can propagate errors and amplify biases. Our condensed reasoning graph, however, could allow bias
auditing methods to focus on states of high connectivity, those that, due to their connectedness in the
global reasoning graph, have the highest overall impact.
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REPRODUCIBILITY STATEMENT

We accompany our paper with an appendix for supplementary material and the code reposi-
tory that produced the results reported for our method. In A.2 we provide theoretical proof for
the convergence of truth propagation in cyclic And-Or graphs. For our breadth-first variant, 2
gives a brief outline in pseudocode and our code repo provides the implementation we used in
hp shortcut rounds.ipynb. For our PUCT-MCGS, we show pseudocode of the cycle-aware
node selection in Algorithm 3 and give the full implementation in retrosynthesis hp.ipynb.
In Section A.4, the experimental setup for Game24 is extended with hyperparameter configurations,
information regarding compute infrastructure, model identifiers, dataset statistics and error rates.

REFERENCES

Fu Bang. GPTCache: An open-source semantic cache for LLM applications enabling faster an-
swers and cost savings. In Liling Tan, Dmitrijs Milajevs, Geeticka Chauhan, Jeremy Gwinnup,
and Elijah Rippeth (eds.), Proceedings of the 3rd Workshop for Natural Language Process-
ing Open Source Software (NLP-OSS 2023), pp. 212–218, Singapore, December 2023. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2023.nlposs-1.24. URL https:
//aclanthology.org/2023.nlposs-1.24/.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler.
Graph of thoughts: Solving elaborate problems with large language models. In Michael J.
Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on
Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2014, February 20-27, 2024, Vancouver, Canada, pp. 17682–17690. AAAI Press, 2024.
doi: 10.1609/AAAI.V38I16.29720. URL https://doi.org/10.1609/aaai.v38i16.
29720.

Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: Learning retrosynthetic plan-
ning with neural guided a* search. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pp. 1608–1616. PMLR, 2020. URL http://proceedings.
mlr.press/v119/chen20k.html.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Ma-
chine Learning Research, 2023, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=YfZ4ZPt8zd.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=zj7YuTE4t8.

Taicheng Guo, Kehan Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh V Chawla, Olaf
Wiest, and Xiangliang Zhang. What can large language models do in chemistry? a comprehensive
benchmark on eight tasks. In Thirty-seventh Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023. URL https://openreview.net/forum?id=
1ngbR3SZHW.

Siqi Hong, Hankz Hankui Zhuo, Kebing Jin, Guang Shao, and Zhanwen Zhou. Retrosynthetic
planning with experience-guided monte carlo tree search. Communications Chemistry, 6(1):120,
Jun 2023. ISSN 2399-3669. doi: 10.1038/s42004-023-00911-8. URL https://doi.org/10.
1038/s42004-023-00911-8.

Audrey Huang, Adam Block, Dylan J. Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz,
Jordan T. Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism. In The Thirteenth International Conference on Learning Representations, ICLR 2025,

10

https://aclanthology.org/2023.nlposs-1.24/
https://aclanthology.org/2023.nlposs-1.24/
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
http://proceedings.mlr.press/v119/chen20k.html
http://proceedings.mlr.press/v119/chen20k.html
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=zj7YuTE4t8
https://openreview.net/forum?id=1ngbR3SZHW
https://openreview.net/forum?id=1ngbR3SZHW
https://doi.org/10.1038/s42004-023-00911-8
https://doi.org/10.1038/s42004-023-00911-8


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/
forum?id=WJaUkwci9o.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large
language models can self-improve. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 1051–
1068, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.67. URL https://aclanthology.org/2023.emnlp-main.67/.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents. In Kamalika Chaudhuri,
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 BREADTH-FIRST SEARCH IN TREE-OF-THOUGHTS

Algorithm 1 ToT-BFS (Yao et al., 2023a)

Require: Input x, LM pθ,
step limit T , breadth limit b
expand(s)← sample z ∼ pproposeθ (·|s)
evaluate(s)← sample v ∼ pvalueθ (·|s)

select(S′
t, Vt)← argmax

S⊂S′
t,|S|=b

∑
s∈S

Vt(s)

S0 ← {x}
for t = 1, . . . , T do

S′
t ← {(s, z) | s ∈ St−1, z ∈ expand(s)}

Vt ← (evaluate(si))si∈S′
t

St ← select(S′
t, Vt)

end for

A.2 PROOFS

Truth propagation in cyclic And-Or graphs In the following, we use Knaster-Tarski and Kleene
fixed point theorems to show that there always exists a least fixed point that can be reached with
synchronous iteration. We start with our graph definition as presented in Section 3. We have a graph
G = (V,E) with states V and edges E ⊆ V ×P+(V ). We partition V into nonterminal nodes B and
terminal nodes, which we further differentiate by unsolved (T0) and solved (T1) status. We count the
number of nonterminal nodes as n =|B |. For x ∈ {0, 1}n, we define its extension ext(x) ∈ {0, 1}|V|
by

ext(x)i =


xi, i ∈ B,

0, i ∈ T0,

1, i ∈ T1

For each j ∈ B, let gj be the Boolean expression over its inputs/successors in G, built using only
∧,∨ and constants. Further, define

Fj(x) = gj
(
ext(x)

)
, F : {0, 1}n → {0, 1}n

and let ≤ be the coordinatewise partial order on {0, 1}n: for x, y ∈ {0, 1}n we write x ≤ y iff
xi ≤ yi,∀i ∈ B.
Lemma 1 (Monotonicity with arbitrary constants). F is monotone with respect to the coordinatewise
order on {0, 1}n.

Proof. The map ext is monotone in x, and ∧,∨ are monotone in each argument. Constants in gj (0
or 1) do not affect monotonicity. Hence x ≤ y ⇒ F (x) ≤ F (y).

Theorem 1 (Synchronous iteration from the bottom converges to a the least fixed point). Consider
the sequence x0 = 0 (the all-zero vector on B) and xk+1 = F (xk), k ≥ 0. Then:

1. The sequence is nondecreasing: x0 ≤ x1 ≤ x2 ≤ · · · .

2. It stabilizes in at most n steps: ∃m ≤ n : xm+1 = xm, xm is a fixed point of F .

3. xm is the least fixed point of F with respect to ≤.

Proof. (1) Since 0 ≤ F (0), we have x0 ≤ x1. If xk ≤ xk+1, then by monotonicity F (xk) ≤
F (xk+1), i.e. xk+1 ≤ xk+2.

(2) Since the sequence is non-decreasing, no coordinate ever flips from 1 to 0. Thus, there can be at
most n strict increases. So, for some m ≤ n we must have xm+1 = xm (fixed point).
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(3) Let y be any fixed point. Since 0 ≤ y and F is monotone, for all k we have F k(0) ≤ F k(y) = y.
With xk = F k(0), we get xk ≤ y for all k, hence xm ≤ y.

Remark 1 (Arbitrary seeds can oscillate under synchronous iteration). Although not applicable to
our scenario, there exist 2-cycles for arbitrary seeds, even with monotone F . E.g. two Or gates
feeding into each other starting from the seed (0, 1) will swap to (1, 0), then back to (0, 1) and so on.

A.3 PSEUDOCODE

Algorithm 2 Holistic Prompting Breadth-First Style Search

Require: Inputs X = {x1, . . . , xn}, Action Generator pθ, step limit T , width b, State Evaluator r(),
Shortcut Evaluator c(), shortcut limit k, prompts prompt{propose,shortcut,apply},Paction,Pstate

G0 = (V0, E0)← (X, ∅)
for t = 1 . . . T do

V ′
t ← argmax

{V⊆Vt−1 : |V |=b}

∑
v∈V r(G, v) ▷ State Evaluation & Selection

Ât ← {(v, â) | v ∈ V ′
t , â ∼ pproposeθ ( · | v)} ▷ Action Candidate Generation

Ît ← argmax
{V⊆V 2

t−1 : |V |=k}

∑
(v,v′)∈V c(v, v′) ▷ Shortcut Evaluation & Selection

Ât ← Ât ∪

(v, â)

∣∣∣∣∣∣∣
(v, v′) ∈ Ît,

depth(v) < depth(v′),

â ∼ pshortcutθ ( · | v, v′)

 ▷ Shortcut Candidate Generation

Ât ← {(v, â) ∈ Ât |̸ ∃pr ∈ Paction : pprθ (”yes” | v, â) < 0.5} ▷ Action Verification
Êt ← {(v, V̂ , â) | (v, â) ∈ Ât, V̂ ∼ papplyθ ( · | v, â)} ▷ Next State Generation
Et ← Et−1 ∪ {(v, V̂ , â) ∈ Êt |̸ ∃pr ∈ Pstate : p

pr
θ (”yes” | v, V̂ , â) < 0.5} ▷ State

Verification
Vt ← Vt−1 ∪ {v̂ ∈ V̂ | (v, V̂ , â) ∈ Et} ▷ Update Graph

end for

Algorithm 3 PUCT Selection with Cycle-Avoidance and Backtracking on And-Or Hypergraphs

Require: Hypergraph G = (V,E) with E ⊆ V × P+(V ), root v0
Require: Priors Pv,u, visit counts Nv, Nv,u, value estimates Qv,u, constant cpuct > 0

Out(v) ≜ {u ∈ V | ∃ (v, U) ∈ E : u ∈ U } ▷ one-step successors
Path← [v0] ▷ path stack
τ ← {v0} ▷ nodes on current trajectory
while true do

v ← top(Path)
Elig← {u ∈ Out(v) | u /∈ τ } ▷ eligible (non-cycling) successors
if Leaf(v) then

return v
else if Elig = ∅ then ▷ deadend: no outgoing edges outside current trajectory

if |Path| = 1 then
return v0 ▷ backtracked to root

else
u← pop(Path); τ ← τ \ {u} ▷ back up

end if
else

u⋆ ← argmax
u∈Elig

(
Qv,u + cpuct Pv,u

√
Nv

1+Nv,u

)
push(Path, u⋆); τ ← τ ∪ {u⋆}

end if
end while
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A.4 EXPERIMENTAL SETUP FOR GAME24

Hyperparameters The results in the main paper for ToT and HP are subject to hyperparameter
search. In Table 4, we report the exact configurations that lead to the reported numbers.

Table 4: The used hyperparameter configurations for ToT and HP. HP is always run with verifications
and shortcuts enabled (except for the ablation study). No hyperparameter search is conducted for
the Unsolvable-100 dataset. Instead, the found setups in the ToT-Test-Split are used. Otherwise,
very shallow search settings will dominate, simply due to them having fewer possibilities to make
mistakes.

Model Dataset Method Parameters

Phi-4 ToT-Test-Split ToT b = 20,m = 11,do verify = True
HP k = 50

Mistral-Small-3 ToT-Test-Split ToT b = 20,m = 11,do verify = True
HP k = 200

Llama-3.3 (70B) ToT-Test-Split ToT b = 20,m = 11,do verify = True
HP k = 10

Infrastructure We run all experiments on compute nodes of four H100 (96GB) GPUs, 8 Intel Xeon
Platinum 8468 CPUs, 1TB main memory running Rocky Linux. All runs (including the baselines)
get one such node assigned until completion.

Model serving LLMs were served via vLLM. The exact model identifiers on the Huggingface Hub
are:

• mistralai/Mistral-Small-24B-Instruct-2501

• microsoft/phi-4

• RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic

In the last case we use quantized checkpoints to reduce memory footprint and to allow for a higher
degree of parallelization. This way, all models fit on a single GPU which allows a data-parallel-size
of four on our nodes. The chat completion requests are distributed in a round robin fashion to the
separate workers, accumulated and returned to the application.

Holistic Prompting Setup on Game24 The search graph in Figure 3 shows an excerpt of two
solved inputs and the boxes on the sides outline the prompts that were used. After finding a path to a
solution node for input “(4 5 6 10)” by repeating steps (1a-5), the shortcut component in (1b) finds
the appropriate action “(13 - 7 = 6)” to connect “(5 6 7 13)” to the winning path.

A.5 DATASET STATISTICS

The ToT-Test-Split data (Table 6) is taken from the official repository (https://github.com/princeton-
nlp/tree-of-thought-llm). The Unsolvable-100 dataset (Table 5) is constructed by solving all possible
four digit instances of Game24, filtering for unsolvable combinations and sampling for a 100-element
subset.

We report the complexity of the different datasets in Table 7 using collapsed, winning and minimal
state/action counts. We further distinguish between local and global state collapse. In the first
setting, we allow states to collapse within each problem instance, but not across multiple, which is
instead captured in the global count. Finally, we report the number of all winning as well as the
theoretical minimum states and actions required to solve each dataset completely. Minimum counts
were obtained from the full global graphs by solving for the respective minimum Steiner Trees.
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Figure 3: Holistic Prompting on a Game24 task

Table 5: All samples of the Unsolvable-100 dataset. Elements were drawn at random from the full set
of unsolvable four-digit instances.

1 6 6 7 2 9 11 12 1 6 10 11 3 3 4 10 7 7 7 9
1 1 2 5 6 9 11 11 5 7 11 12 4 7 7 10 3 3 5 11
3 7 10 12 3 10 10 11 1 2 8 11 6 6 7 8 7 7 8 12
3 3 11 11 1 1 1 4 4 4 9 9 2 3 5 12 1 7 11 11
2 10 10 10 1 10 10 10 5 6 7 11 1 2 8 12 4 7 7 12
1 8 9 9 9 10 10 10 2 5 5 6 2 3 9 11 7 11 11 12
1 4 11 11 5 5 5 10 5 5 7 12 2 2 9 9 8 8 11 11
8 10 10 10 8 9 10 11 1 1 5 11 1 4 11 12 1 5 7 7
1 2 10 10 1 9 10 10 1 1 2 4 4 11 12 12 5 5 5 11
6 6 10 11 2 9 9 9 4 11 11 11 1 7 10 11 1 10 11 11
1 1 5 10 5 5 5 7 1 6 6 8 5 5 7 9 5 8 9 9
1 1 5 9 9 10 11 11 5 8 9 10 8 9 9 9 5 8 10 10
1 3 7 11 9 9 10 11 1 8 11 11 4 9 9 11 1 1 4 11
2 9 9 10 5 8 8 11 1 1 6 10 1 1 5 12 7 8 8 8
3 3 7 10 1 4 7 10 6 7 7 7 4 5 5 12 1 1 1 10
7 9 9 12 5 6 6 11 1 6 7 7 7 7 8 8 1 9 10 11
1 1 3 3 5 5 6 9 6 7 7 12 1 2 9 10 2 6 7 7
2 5 11 11 3 5 9 11 1 1 7 11 3 6 7 11 6 10 10 12
9 10 10 12 1 1 7 7 2 5 5 5 5 6 8 11 9 9 11 11
6 6 9 9 7 7 7 8 9 11 11 12 1 6 10 10 1 5 5 7

A.6 ERROR RATES

We analyze the types of errors that occur in the full reasoning graphs of Holistic Prompting on the
ToT-Test-Split dataset, as reported in the main paper. We count four types of false positive errors and
one general false negative error in Table 8.
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Table 6: All samples of the ToT-Test-Split dataset, as curated by Yao et al. (2023a).

4 5 6 10 1 5 9 13 3 4 9 13 2 6 8 13 3 4 6 6
1 2 4 7 5 6 7 13 4 5 10 12 8 8 10 12 5 8 8 8
2 5 8 11 5 5 8 10 1 2 7 11 1 3 8 13 6 8 8 12
3 4 4 13 2 4 6 12 4 5 6 8 4 4 7 10 2 3 4 9
6 7 8 9 6 7 8 11 6 10 12 13 1 7 10 13 2 6 7 11
1 11 11 13 7 9 9 13 1 3 9 9 1 9 10 13 5 9 12 12
1 8 10 11 3 6 9 12 1 4 4 11 3 3 4 11 1 2 7 12
2 3 6 9 6 9 12 13 2 3 9 10 2 5 7 7 2 4 5 6
1 3 5 9 4 7 9 13 1 2 3 13 3 9 10 13 5 5 8 13
3 3 7 12 5 6 8 12 1 6 6 6 2 3 4 7 2 3 3 10
4 5 7 9 2 4 6 7 1 2 2 9 4 4 8 12 3 4 8 12
1 2 8 13 2 5 10 10 1 3 6 11 1 2 6 10 2 4 6 11
4 6 6 9 6 6 7 12 5 10 12 13 1 5 12 12 2 2 8 9
1 4 4 8 6 9 9 11 2 3 6 6 5 6 6 8 1 5 6 7
1 5 10 11 5 8 11 12 6 7 10 12 7 7 8 11 5 8 10 11
3 4 6 11 5 6 8 10 7 8 8 12 1 3 7 10 4 4 9 12
2 4 8 9 6 11 12 13 3 4 6 8 3 3 9 12 2 5 6 6
1 4 5 13 2 2 8 8 1 7 9 11 3 5 7 10 2 4 9 12
2 2 7 12 2 7 12 13 2 3 6 13 4 10 12 13 4 8 11 13
3 3 6 7 2 6 8 12 2 2 5 12 2 3 10 12 4 9 10 13

Table 7: Dataset statistics for the Game24 task.

Dataset Unsolvable /
total samples

States / Actions

Locally collapsed Globally collapsed Winning Minimal

ToT-Test-Split 0 / 100 90K / 209K 26K / 105K 475 / 1232 48 / 148
Unsolvable-100 100 / 100 61K / 136K 20K / 75K – –

Table 8: Summary of Error Types and counts of Holistic Prompting instances on ToT-Test-Split,
as per Table 1. The high number of formatting errors on Phi-4 is mainly caused by its tendency to
deviate from the formatting instructions. We frequently find it to switch to latex or python code
to represent nodes and states. Some of these formats fell through our pipeline and thus might be
incorrectly counted as errors. Interestingly, in the end, Phi-4 almost always manages to convert its
intermediate steps to a solution in valid format and achieves excellent success rates.

Error Type Llama-3.3 Phi-4 Mistral-3 Description
Math 120 100 26 The calculation was not carried out correctly.
Selection 4 1 2 Numbers outside given input used.
Apply 0 0 10 The new node was not formed correctly.
Formatting 0 244 7 The answer could not be parsed to an equation.
False Negative 145 70 454 A correct decision was flagged as incorrect.
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