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Abstract
Large Language Models (LLMs) have the capac-
ity to store and recall facts. Through experimen-
tation with open-source models, we observe that
this ability to retrieve facts can be easily manipu-
lated by changing contexts, even without altering
their factual meanings. These findings highlight
that LLMs might behave like an associative mem-
ory model where certain tokens in the contexts
serve as clues to retrieving facts. We mathemati-
cally explore this property by studying how trans-
formers, the building blocks of LLMs, can com-
plete such memory tasks. We study a simple la-
tent concept association problem with a one-layer
transformer and we show theoretically and em-
pirically that the transformer gathers information
using self-attention and uses the value matrix for
associative memory.

1. Introduction
What is the first thing that would come to mind if you were
asked not to think of an elephant? Chances are, you would
be thinking about elephants. What if we ask the same thing
to Large Language Models (LLMs)? Obviously, one would
expect the outputs of LLMs to be heavily influenced by
tokens in the context (Brown et al., 2020). Could such
influence potentially prime LLMs into changing outputs in
a nontrivial way? To gain a deeper understanding, we focus
on one specific task called fact retrieval (Meng et al., 2022;
2023) where expected output answers are given. LLMs,
which are trained on vast amounts of data, are known to
have the capability to store and recall facts (Meng et al.,
2022; 2023; De Cao et al., 2021; Mitchell et al., 2021; 2022;
Dai et al., 2021). This ability raises natural questions: How
robust is fact retrieval, and to what extent does it depend
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on semantic meanings within contexts? What does it reveal
about memory in LLMs?

In this paper, we first demonstrate that fact retrieval is not
robust and LLMs can be easily fooled by varying contexts.
For example, when asked to complete “The Eiffel Tower
is in the city of”, GPT-2 (Radford et al., 2019) answers
with “Paris”. However, when prompted with “The Eiffel
Tower is not in Chicago. The Eiffel Tower is in the city
of”, GPT-2 responds with “Chicago”. See Figure 1 for
more examples, including Gemma and LLaMA. On the
other hand, humans do not find the two sentences factually
confusing and would answer “Paris” in both cases. We
call this phenomenon context hijacking. Importantly, these
findings suggest that LLMs might behave like an associative
memory model. In which, tokens in contexts guide the
retrieval of memories, even if such associations formed are
not inherently semantically meaningful.

This associative memory perspective raises further inter-
pretability questions about how LLMs form such associa-
tions. Answering these questions can facilitate the devel-
opment of more robust LLMs. To that end, we investigate
how a one-layer transformer (Vaswani et al., 2017), a funda-
mental component of LLMs, can tackle a memory retrieval
task called latent concept association where various context
distributions correspond to distinct memory patterns. We
demonstrate that the transformer accomplishes the task in
two stages: The self-attention layer gathers information,
while the value matrix functions as associative memory.
Moreover, low-rank structure also emerges in the embed-
ding space of trained transformers. These findings provide
additional theoretical validation for numerous existing low-
rank editing and fine-tuning techniques (Meng et al., 2022;
Hu et al., 2021).

Contributions Specifically, we make the following con-
tributions:

1. We systematically demonstrate context hijacking for
various open source LLM models including GPT-2
(Radford et al., 2019), LLaMA-2 (Touvron et al., 2023)
and Gemma (Team et al., 2024), which show that fact
retrieval can be misled by contexts (Appendix B), reaf-
firming that LLMs lack robustness to context changes
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Figure 1. Examples of context hijacking for various LLMs, show-
casing that fact retrieval is not robust.

(Shi et al., 2023; Petroni et al., 2020; Creswell et al.,
2022; Yoran et al., 2023; Pandia & Ettinger, 2021).

2. We propose a synthetic memory retrieval task termed
latent concept association, allowing us to analyze
how transformers can accomplish memory recall
(Section 3).

3. We theoretically (Appendix C) and empirically
(Appendix F) study trained transformers on this
latent concept association problem, showing that
self-attention is used to aggregate information while
the value matrix serves as associative memory.

2. Context hijacking in LLMs
We systematically examine the phenomenon of context hi-
jacking with the COUNTERFACT dataset (Meng et al., 2022).
Due to the page limit, more details can be found in Ap-
pendix B. Overall, the experimental results show that even
prepending contexts with factually correct sentences can
cause LLMs to output incorrect tokens.

Context hijacking indicates that fact retrieval in LLMs is
not robust and that accurate fact recall does not necessarily
depend on the semantics of the context. As a result, one
hypothesis is to view LLMs as an associative memory model
where special tokens in contexts, associated with the fact,
provide partial information or clues to facilitate memory
retrieval (Zhao, 2023). To better understand this perspective,
we design a synthetic memory retrieval task to evaluate how
the building blocks of LLMs, transformers, can solve it.

3. Problem setup
In the context of LLMs, fact or memory retrieval, can be
modeled as a next token prediction problem. Given a con-
text (e.g., “The capital of France is”), the objective is to
accurately predict the next token (e.g., “Paris”) based on the
factual relation between context and the following token.

Previous papers (Ramsauer et al., 2020; Millidge et al.,
2022; Bricken & Pehlevan, 2021; Zhao, 2023) have studied
the connection between attention and autoassociative and
heteroassociative memory. For autoassociative memory,
contexts are modeled as a set of existing memories and
the goal of self-attention is to select the closest one or
approximations to it. On top of this, heteroassociative
memory (Millidge et al., 2022; Bricken & Pehlevan, 2021)
has an additional projection to remap each output to a
different one, whether within the same space or otherwise.
In both scenarios, the goal is to locate the closest pattern
within the context when provided with a query (up to a
remapping if it’s heteroassociative).

Fact retrieval, on the other hand, does not strictly follow this
framework. The crux of the issue is that the output token is
not necessarily close to any particular token in the context
but rather a combination of them and the “closeness” is intu-
itively measured by latent semantic concepts. For example,
consider context sentence “The capital of France is” with
the output “Paris”. Here, none of the tokens in the context
directly corresponds to the word “Paris”. Yet some tokens
contain partial information about “Paris”. Intuitively, “cap-
ital” aligns with the “isCapital” concept of “Paris”, while
“France” corresponds to the “isFrench” concept linked to
“Paris” where all the concepts are latent. To model such
phenomenon, we propose a synthetic task called latent con-
cept association where the output token is closely related
to tokens in the context and similarity is measured via the
latent space.

3.1. Latent concept association

We propose a synthetic prediction task where for each output
token y, tokens in the context (denoted by x) are sampled
from a conditional distribution given y. Tokens that are
similar to y will be favored to appear more in the context,
except for y itself. The task of latent concept association
is to successfully retrieve the token y given samples from
p(x|y). The synthetic setup simplifies by not accounting
for the sequential nature of language, a choice supported by
previous experiments on context hijacking (Appendix B).
We formalize this task below.

To measure similarity, we define a latent space. Here, the
latent space is a collection of m binary latent variables Zi.
These could be viewed as semantic concept variables. Let
Z = (Z1, ..., Zm) be the corresponding random vector, z
be its realization, and Z be the collection of all latent binary
vectors. For each latent vector z, there’s one associated
token t ∈ [V ] = {0, ..., V − 1} where V is the total number
of tokens. Here we represent the tokenizer as ι where ι(z) =
t. In this paper, we assume that ι is the standard tokenizer
where each binary vector is mapped to its decimal number.
In other words, there’s a one to one map between latent
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vectors and tokens. Because the map is one to one, we
sometimes use latent vectors and tokens interchangeably.
We also assume that every latent binary vector has a unique
corresponding token, therefore V = 2m.

Under the latent concept association model, the goal is to
retrieve specific output tokens given partial information in
the contexts. This is modeled by the latent conditional
distribution:

p(z|z∗) = ωπ(z|z∗) + (1− ω)Unif(Z)

where

π(z|z∗) ∝

{
exp(−DH(z, z∗)/β) z ∈ N (z∗),

0 z /∈ N (z∗).

Here DH is the Hamming distance, N (z∗) is a subset of
Z \ {z∗} and β > 0 is the temperature parameter. The use
of Hamming distance draws a parallel with the notion of
distributional semantics in natural language: “a word is char-
acterized by the company it keeps” (Firth, 1957). In words,
p(z|z∗) says that with probability 1−ω, the conditional dis-
tribution uniformly generate random latent vectors and with
probability ω, the latent vector is generated from the infor-
mative conditional distribution π(z|z∗) where the support
of the conditional distribution is N (z∗). Here, π represents
the informative conditional distribution that depends on z∗

whereas the uniform distribution is uninformative and can
be considered as noise. The mixture model parameter ω
determines the signal to noise ratio of the contexts.

Therefore, for any latent vector z∗ and its associated token,
one can generate L context token words with the aforemen-
tioned latent conditional distribution:

• Uniformly sample a latent vector z∗

• For l = 1, ..., L − 1, sample zl ∼ p(z|z∗) and tl =
ι(zl).

• For l = L, sample z ∼ π(z|z∗) and tL = ι(z).

Consequently, we have x = (t1, .., tL) and y = ι(z∗). The
last token in the context is generated specifically to make
sure that it is not from the uniform distribution. This ensures
that the last token can use attention to look for clues, relevant
to the output, in the context. Let DL be the sampling distri-
bution to generate (x, y) pairs. The conditional probability
of y given x is given by p(y|x). With slight abuse of no-
tation, given a token t ∈ [V ], we define N (t) = N (ι−1(t)).
we also define DH(t, t′) = DH(ι−1(t), ι−1(t′)) for any
pair of tokens t and t′.

For any function f that maps the context to estimated logits
of output labels, the training objective is to minimize this
loss of the last position: E(x,y)∈DL [ℓ(f(x), y)]. where ℓ is
the cross entropy loss with softmax. The error rate of latent
concept association is defined by the following:

RDL(f) = P(x,y)∼DL [argmax f(x) ̸= y]

3.2. Transformer network architecture

Given a context x = (t1, .., tL) which consists of L tokens,
we define X ∈ {0, 1}V×L to be its one-hot encoding where
V is the vocabulary size. Here we use χ to represent the
one-hot encoding function (i.e., χ(x) = X). Similar to (Li
et al., 2023; Tarzanagh et al., 2023a; Li et al., 2024), we also
consider a simplified one-layer transformer model without
residual connections and normalization:

fL(x) =

[
WE

TWV attn(WEχ(x))

]
:L

(1)

where attn(U) = Uσ
(

(WKU)T (WQU)√
da

)
, WK ∈ Rda×d is

the key matrix, and WQ ∈ Rda×d is the query matrix and
da is the attention head size. σ : RL×L → (0, 1)L×L is the
column-wise softmax operation. WV ∈ Rd×d is the value
matrix and WE ∈ Rd×V is the embedding matrix. Here,
we adopt the weight tie-in implementation which is used
for Gemma (Team et al., 2024). We focus solely on the
prediction of the last position, as it is the only one relevant
for latent concept association. For convenience, we also
use h(x) to mean

[
attn(WEχ(x))

]
:L

, which is the hidden
representation after attention for the last position, and fL

t (x)
to represent the logit for output token t.

4. Theoretical analysis
In this section, we theoretically investigate how a single-
layer transformer can solve the latent concept association
problem. We first introduce a hypothetical associative mem-
ory model that utilizes self-attention for information aggre-
gation and employs the value matrix for memory retrieval.
This hypothetical model turns out to mirror trained trans-
formers in experiments. We also examine the role of each
individual component of the network: the value matrix, em-
beddings, and the attention mechanism. We validate our
theoretical claims in Appendix F.

4.1. Hypothetical associative memory model

In this section, we show that a simple single-layer trans-
former network can solve the latent concept association
problem. The formal result is presented below in Theo-
rem C.1; first we require a few more definitions. Let WE(t)
be the t-th column of the embedding matrix WE . In other
words, this is the embedding for token t. Given a token t,
define N1(t) to be the subset of tokens whose latent vectors
are only 1 Hamming distance away from t’s latent vector:
N1(t) = {t′ : DH(t′, t)) = 1} ∩ N (t). For any output to-
ken t, N1(t) contains tokens with the highest probabilities to
appear in the context. The following theorem formalizes the
intuition that a one-layer transformer that uses self-attention
to summarize statistics about the context distributions and
whose value matrix uses aggregated representations to re-
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(a) Value matrix training (b) Embedding structure (c) Attention Pattern

Figure 2. Key components of the single-layer transformer working together on the latent concept association problem. (a) Fixing the value
matrix WV as the identity matrix results in lower accuracy compared to training WV . The figure reports average accuracy for both fixed
and trained WV with L = 64. (b) When training in the underparameterized regime, the embedding structure is approximated by (4). The
graph displays the average inner product between embeddings of two tokens against the corresponding Hamming distance between these
tokens when m = 8. (c) The self-attention layer can select tokens within the same cluster. The figure shows average attention score heat
map with m = 8 and the cluster structure from Appendix C.4.

trieve output tokens can solve the latent concept association
problem defined in Section 3.1.

Theorem 4.1 (informal). Suppose the data generating pro-
cess follows Section 3.1 where m ≥ 3, ω = 1, and
N (t) = V \ {t}. Then for any ϵ > 0, there exists a
transformer model given by (1) that achieves error ϵ, i.e.
RDL(fL) < ϵ given sufficiently large context length L.

More precisely, for the transformer in Theorem C.1, we will
have WK = 0 and WQ = 0. Each row of WE is orthogonal
to each other and normalized. And WV is given by

WV =
∑
t∈[V ]

WE(t)(
∑

t′∈N1(t)

WE(t
′)T ) (2)

A more formal statement of the theorem and its proof is
given in Appendix D (Theorem D.1).

Intuitively, Theorem C.1 suggests having more samples
from p(x|y) can lead to a better recall rate. On the other
hand, if contexts are modified to contain more samples from
p(x|ỹ) where ỹ ̸= y, then it is likely for transformer to
output the wrong token. This is similar to context hijacking
(see Appendix C.5). The construction of the value matrix
is similar to the associative memory model used in (Bietti
et al., 2024; Cabannes et al., 2024), but in our case, there
is no explicit one-to-one input and output pairs stored as
memories. Rather, a combination of inputs are mapped to a
single output.

While the construction in Theorem C.1 is just one way that a
single-layer transformer can tackle this task, it turns out em-
pirically this construction of WV is close to the trained WV ,
even in the noisy case (ω ̸= 1). In Appendix F.1, we will
demonstrate that substituting trained value matrices with
constructed ones can retain accuracy, and the constructed
and trained value matrices even share close low-rank

approximations. Moreover, in this hypothetical model, a
simple uniform attention mechanism is deployed to allow
self-attention to count occurrences of each individual
tokens. Since the embeddings are orthonormal vectors,
there is no interference. Hence, the self-attention layer can
be viewed as aggregating information of contexts. It is
worth noting that, in different settings, more sophisticated
embedding structures and attention patterns are needed.
This is discussed in the following sections.

4.2. The role of individual components

The construction in Theorem C.1 relies on the value matrix
acting as associative memory. But is it necessary? Could
we integrate the functionality of the value matrix into the
self-attention module to solve the latent concept association
problem? Empirically, the answer seems to be negative as
shown in Figure 2a and Appendix F.1. We analyze the role
of the value matrix further in Appendix C.2.

The hypothetical model in Theorem C.1 requires embed-
dings to form an orthonormal basis, which is only possible
in the overparameterization regime where the embedding di-
mension d is larger than the number of tokens V . In practice,
however, we are often in the underparameterized regime. In
Appendix C.3, we study the trained embedding geometry
(Figure 2b) in this regime and why such geometry implies
low-rank structures.

In Appendix C.4, we show that the self-attention layer can
select the most relevant tokens (Figure 2c). We demonstrate
this by studying the gradient of unnormalized attention score
in a specialized latent concept association problem.

Finally, in Appendix C.5, we connect our results on the
latent concept association problem to context hijacking in
LLMs.
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A. Literature review
Associative memory Associative memory has been explored within the field of neuroscience (Hopfield, 1982; Seung,
1996; Ben-Yishai et al., 1995; Skaggs et al., 1994; Steinberg & Sompolinsky, 2022). The most popular models among them
is the Hopfield network (Hopfield, 1982) and its modern successors (Ramsauer et al., 2020; Millidge et al., 2022; Zhao, 2023)
are closely related to the attention layer used in transformers (Vaswani et al., 2017). In addition, the attention mechanism
has also been shown to approximate another associative memory model known as sparse distributed memory (Bricken &
Pehlevan, 2021). Beyond attention, Radhakrishnan et al. (2020); Jiang & Pehlevan (2020) show that overparameterzed
autoencoders can implement associative memory as well. This paper studies fact retrieval as a form of associative memory.
Another closely related area of research focuses on memorization in deep neural networks. Henighan et al. (2023) shows
that a simple neural network trained on toy model will store data points in the overfitting regime while storing features in the
underfitting regime. Feldman (2020); Feldman & Zhang (2020) study the interplay between memorization and long tail
distributions while Kim et al. (2022); Mahdavi et al. (2023) study the memorization capacity of transformers.

Interpreting transformers and LLMs There’s a growing body of work on understanding how transformers and LLMs
work (Li et al., 2023; Allen-Zhu & Li, 2023a;b; 2024; Emrullah Ildiz et al., 2024; Tarzanagh et al., 2023b;a; Li et al., 2024),
including training dynamics (Tian et al., 2023a;b; Sheen et al., 2024) and in-context learning (Xie et al., 2021; Garg et al.,
2022; Bai et al., 2024;?). Recent papers have introduced synthetic tasks to better understand the mechanisms of transformers
(Charton, 2022; Liu et al., 2022; Nanda et al., 2023; Zhang et al., 2022; Zhong et al., 2024), such as those focused on
Markov chains (Bietti et al., 2024; Edelman et al., 2024; Nichani et al., 2024; Makkuva et al., 2024). Most notably, Bietti
et al. (2024) and subsequent works (Cabannes et al., 2023; 2024) study weights in transformers as associative memory
but their focus is on understanding induction head (Olsson et al., 2022b) and one-to-one map between input query and
output memory. An increasing amount of research is dedicated to understanding the internals of pre-trained LLMs, broadly
categorized under the term “mechanistic interpretability” (Elhage et al., 2021; Olsson et al., 2022a; Geva et al., 2023; Meng
et al., 2022; 2023; Jiang et al., 2024; Rajendran et al., 2024; Hase et al., 2024; Wang et al., 2022; McGrath et al., 2023;
Geiger et al., 2021; 2022; 2024; Wu et al., 2024).

Knowledge editing and adversarial attacks on LLMs Fact recall and knowledge editing have been extensively studied
(Meng et al., 2022; 2023; Hase et al., 2024; Sakarvadia et al., 2023; De Cao et al., 2021; Mitchell et al., 2021; 2022; Dai
et al., 2021; Zhang et al., 2023; Tian et al., 2024; Jin et al., 2023), including the use of in-context learning to edit facts
(Zheng et al., 2023). This paper aims to explore a different aspect by examining the robustness of fact recall to variation
in prompts. A closely related line of work focuses on adversarial attacks on LLMs (see Chowdhury et al., 2024, for a
review). Specifically, prompt-based adversarial attacks (Xu et al., 2023; Zhu et al., 2023; Wang et al., 2023b) focus on
the manipulation of answers within specific classification tasks while other works concentrate on safety issues (Liu et al.,
2023a; Perez & Ribeiro, 2022; Zou et al., 2023; Apruzzese et al., 2022; Wang et al., 2023a; Si et al., 2022; Rao et al., 2023;
Shanahan et al., 2023; Liu et al., 2023b). There are also works showing LLMs can be distracted by irrelevant contexts
in problem solving (Shi et al., 2023), question answering (Petroni et al., 2020; Creswell et al., 2022; Yoran et al., 2023)
and factual reasoning (Pandia & Ettinger, 2021). Although phenomena akin to context hijacking have been reported in
different instances, the goals of this paper are to give a systematic robustness study for fact retrieval, offer a framework for
interpreting it in the context of associative memory, and deepen our understanding of LLMs.

B. Context hijacking in LLMs
In this section, we run experiments on LLMs including GPT-2 (Radford et al., 2019), Gemma (Team et al., 2024) (both base
and instruct models) and LLaMA-2-7B (Touvron et al., 2023) to explore the effects of context hijacking on manipulating
LLM outputs. As an example, consider Figure 1. When we prompt the LLMs with the context “The Eiffel Tower is in
the city of”, all 4 LLMs output the correct answer (“Paris”). However, as we see in the example, we can actually manipulate
the output of the LLMs simply by modifying the context with additional factual information that would not confuse a
human. We call this context-hijacking. Due to the different capacities and capabilties of each model, the examples in
Figure 1 use different hijacking techniques. This is most notable on LLaMA-2-7B, which is a much larger model than the
others. Of course, as expected, the more sophisticated attack on LLaMA also works on GPT-2 and Gemma. Additionally,
the instruction-tuned version of Gemma can understand special words like “not” to some extent. Nevertheless, it is still
possible to systematically hijack these LLMs, as demonstrated below.

We explore this phenomenon at scale with the COUNTERFACT dataset introduced in (Meng et al., 2022), a dataset of difficult
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(a) Hijacking generically (b) Hijacking based on Relation ID P190

Figure 3. Context hijacking can cause LLMs to output false target. The figure shows efficacy score versus the number of prepends for
various LLMs on the COUNTERFACT dataset under two hijacking schemes.

counterfactual assertions containing a diverse set of subjects, relations, and linguistic variations. COUNTERFACT has 21, 919
samples, each of which are given by a tuple (p, o∗, o , s, r). From each sample, we have a context prompt p with a true
target answer o∗ (target true) and a false target answer o (target false), e.g. the prompt p = “Eiffel Tower can be found in”
has true target o∗ = “Paris” and false target o = “Guam”. Additionally, the main entity in p is the subject s
(s = “Eiffel Tower”) and the prompt is categorized into relations r (for instance, other samples with the same relation ID as
the example above could be of the form “The location of {subject} is”, “{subject} can be found in”, “Where is {subject}?
It is in”). For additional details on how the dataset was collected, see (Meng et al., 2022).

For a hijacking scheme, we report the Efficacy Score (ES) (Meng et al., 2022), which is the proportion of samples for
which the token probabilities satisfy Pr[o ] > Pr[o∗] after modifying the context, that is, the proportion of the dataset
that has been successfully manipulated. We experiment with two hijacking schemes for this dataset. We first hijack by
prepending the text “Do not think of {target false}” to each context. For instance, the prompt “The Eiffel Tower is in” gets
changed to “Do not think of Guam. The Eiffel Tower is in”. In Figure 3a, we see that the efficacy score drops significantly
after hijacking. Here, we prepend the hijacking sentence k times for k = 0, . . . , 5 where k = 0 yields the original prompt.
We see that additional prepends decrease the score further.

In the second scheme, we make use of the relation ID r to prepend factually correct sentences. For instance, one can hijack
the example above to “The Eiffel Tower is not located in Guam. The Eiffel Tower is in”. We test this hijacking philosophy
on different relation IDs. In particular, Figure 3b reports hijacking based on relation ID P190 (“twin city”). And we see
similar patterns that with more prepends, the ES score gets lower. It is also worth noting that one can even hijack by only
including words that are semantically close to the false target (e.g., “France” for false target “French”). This suggests that
context hijacking is more than simply the LLM copying tokens from contexts. Additional details and experiments for both
hijacking schemes and for other relation IDs are in Appendix E.

These experiments show that context hijacking changes the behavior of LLMs, leading them to output incorrect tokens,
without altering the factual meaning of the context. It is worth noting that similar fragile behaviors of LLMs have been
observed in the literature in different contexts (Shi et al., 2023; Petroni et al., 2020; Creswell et al., 2022; Yoran et al.,
2023; Pandia & Ettinger, 2021). See Appendix A for more details.

Context hijacking indicates that fact retrieval in LLMs is not robust and that accurate fact recall does not necessarily depend
on the semantics of the context. As a result, one hypothesis is to view LLMs as an associative memory model where special
tokens in contexts, associated with the fact, provide partial information or clues to facilitate memory retrieval (Zhao, 2023).
To better understand this perspective, we design a synthetic memory retrieval task to evaluate how the building blocks of
LLMs, transformers, can solve it.

C. Theoretical analysis
In this section, we theoretically investigate how a single-layer transformer can solve the latent concept association problem.
We first introduce a hypothetical associative memory model that utilizes self-attention for information aggregation and
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employs the value matrix for memory retrieval. This hypothetical model turns out to mirror trained transformers in
experiments. We also examine the role of each individual component of the network: the value matrix, embeddings, and the
attention mechanism. We validate our theoretical claims in Appendix F.

C.1. Hypothetical associative memory model

In this section, we show that a simple single-layer transformer network can solve the latent concept association problem. The
formal result is presented below in Theorem C.1; first we require a few more definitions. Let WE(t) be the t-th column of the
embedding matrix WE . In other words, this is the embedding for token t. Given a token t, define N1(t) to be the subset of
tokens whose latent vectors are only 1 Hamming distance away from t’s latent vector: N1(t) = {t′ : DH(t′, t)) = 1}∩N (t).
For any output token t, N1(t) contains tokens with the highest probabilities to appear in the context.

The following theorem formalizes the intuition that a one-layer transformer that uses self-attention to summarize statistics
about the context distributions and whose value matrix uses aggregated representations to retrieve output tokens can solve
the latent concept association problem defined in Section 3.1.
Theorem C.1 (informal). Suppose the data generating process follows Section 3.1 where m ≥ 3, ω = 1, and N (t) = V \{t}.
Then for any ϵ > 0, there exists a transformer model given by (1) that achieves error ϵ, i.e. RDL(fL) < ϵ given sufficiently
large context length L.

More precisely, for the transformer in Theorem C.1, we will have WK = 0 and WQ = 0. Each row of WE is orthogonal to
each other and normalized. And WV is given by

WV =
∑
t∈[V ]

WE(t)(
∑

t′∈N1(t)

WE(t
′)T ) (3)

A more formal statement of the theorem and its proof is given in Appendix D (Theorem D.1).

Intuitively, Theorem C.1 suggests having more samples from p(x|y) can lead to a better recall rate. On the other hand,
if contexts are modified to contain more samples from p(x|ỹ) where ỹ ̸= y, then it is likely for transformer to output the
wrong token. This is similar to context hijacking (see Appendix C.5). The construction of the value matrix is similar to the
associative memory model used in (Bietti et al., 2024; Cabannes et al., 2024), but in our case, there is no explicit one-to-one
input and output pairs stored as memories. Rather, a combination of inputs are mapped to a single output.

While the construction in Theorem C.1 is just one way that a single-layer transformer can tackle this task, it turns out
empirically this construction of WV is close to the trained WV , even in the noisy case (ω ̸= 1). In Appendix F.1, we
will demonstrate that substituting trained value matrices with constructed ones can retain accuracy, and the constructed
and trained value matrices even share close low-rank approximations. Moreover, in this hypothetical model, a simple
uniform attention mechanism is deployed to allow self-attention to count occurrences of each individual tokens. Since the
embeddings are orthonormal vectors, there is no interference. Hence, the self-attention layer can be viewed as aggregating
information of contexts. It is worth noting that, in different settings, more sophisticated embedding structures and attention
patterns are needed. This is discussed in the following sections.

C.2. On the role of the value matrix

The construction in Theorem C.1 relies on the value matrix acting as associative memory. But is it necessary? Could we
integrate the functionality of the value matrix into the self-attention module to solve the latent concept association problem?
Empirically, the answer seems to be negative as will be shown in Appendix F.1. In particular, when the context length is
small, setting the value matrix to be the identity would lead to subpar memory recall accuracy.

This is because if the value matrix is the identity, the transformer would be more susceptible to the noise in the context. To
see this, notice that given any pair of context and output token (x, y), the latent representation after self-attention h(x) must
live in the polyhedron Sy to be classified correctly where Sy is defined as:

Sy = {v : (WE(y)−WE(t))
T v > 0 where t ̸∈ [V ] \ {y}}

Note that, by definition, for any two tokens y and ỹ, Sy∩Sỹ = ∅. On the other hand, because of the self-attention mechanism,
h(x) must also live in the convex hull of all the embedding vectors:

CV = Conv(WE(0), ...,WE(|V | − 1))
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In other words, for any pair (x, y) to be classified correctly, h(x) must live in the intersection of Sy and CV . Due to the
stochastic nature of x, it is likely for h(x) to be outside of this intersection. The remapping effect of the value matrix can
help with this problem. The following lemma explains this intuition.

Lemma C.2. Suppose the data generating process follows Section 3.1 where m ≥ 3, ω = 1 and N (t) = {t′ : DH(t, t′)) =
1}. For any single layer transformer given by (1) where each row of WE is orthogonal to each other and normalized, if WV

is constructed as in (3), then the error rate is 0. If WV is the identity matrix, then the error rate is strictly larger than 0.

Another intriguing phenomenon occurs when the value matrix is the identity matrix. In this case, the inner product between
embeddings and their corresponding Hamming distance varies linearly. This relationship can be formalized by the following
theorem.

Theorem C.3. Suppose the data generating process follows Section 3.1 where m ≥ 3, ω = 1 and N (t) = V \ {t}. For any
single layer transformer given by (1) with WV being the identity matrix, if the cross entropy loss is minimized so that for
any sampled pair (x, y),

p(y|x) = p̂(y|x) = softmax(fL
y (x))

there exists a > 0 and b such that for two tokens t ̸= t′,

⟨WE(t),WE(t
′)⟩ = −aDH(t, t′) + b

C.3. Embedding training and geometry

The hypothetical model in Appendix C.1 requires embeddings to form an orthonormal basis. In the overparameterization
regime where the embedding dimension d is larger than the number of tokens V , this can be approximately achieved by
Gaussian initialization. However, in practice, the embedding dimension is typically smaller than the vocabulary size, in
which case it is impossible for the embeddings to constitute such a basis. Empirically, in Appendix F.2, we observe that with
overparameterization (d > V ), embeddings can be frozen at their Gaussian initialization, whereas in the underparameterized
regime, embedding training is required to achieve better recall accuracy.

This raises the question: What kind of embedding geometry is learned in the underparameterized regime? Experiments
reveal a close relationship between the inner product of embeddings for two tokens and the Hamming distance of these
tokens (see Figure 2b and Figure G.5 in Appendix G.2). Approximately, we have the following relationship:

⟨WE(t),WE(t
′)⟩ =

{
b0 t = t′

−aDH(t, t′) + b t ̸= t′
(4)

for any two tokens t and t′ where b0 > b and a > 0. One can view this as a combination of the embedding geometry
under Gaussian initialization and the geometry when WV is the identity matrix (Theorem C.3). Importantly, this structure
demonstrates that trained embeddings inherently capture similarity within the latent space. Theoretically, this embedding
structure (4) can also lead to low error rate under specific conditions on b0, b and a, which is articulated by the following
theorem.

Theorem C.4 (Informal). Following the same setup as in Theorem C.1, but embeddings obey (4), then under certain
conditions on a, b and if b0 and context length L are sufficiently large, the error rate can be arbitrarily small, i.e. RDL(fL) <
ϵ for any 0 < ϵ < 1.

The formal statement of the theorem and its proof is given in Appendix D (Theorem D.3).

Notably, this embedding geometry also implies a low-rank structure. Let’s first consider the special case when b0 = b. In
other words, the inner product between embeddings and their corresponding Hamming distance varies linearly.

Lemma C.5. If embeddings follow (4) and b = b0 and N (t) = V \ {t}, then rank(WE) ≤ m+ 2.

When b0 > b, the embedding matrix will not be strictly low rank. However, it can still exhibit approximate low-rank
behavior, characterized by an eigengap between the top and bottom singular values. This is verified empirically (see
Figure G.9-G.12 in Appendix G.4).

12



Mechanisms of associative memory in transformers

C.4. The role of attention selection

As of now, attention does not play a significant role in the analysis. But perhaps unsurprisingly, the attention mechanism
is useful in selecting relevant information. To see this, let’s consider a specific setting where for any latent vector z∗,
N (z∗) = {z : z∗1 = z1} \ {z∗}.

Essentially, latent vectors are partitioned into two clusters based on the value of the first latent variable, and the informative
conditional distribution π only samples latent vectors that are in the same cluster as the output latent vector. Empirically, when
trained under this setting, the attention mechanism will pay more attention to tokens within the same cluster (Appendix F.3).
This implies that the self-attention layer can mitigate noise and concentrate on the informative conditional distribution π.

To understand this more intuitively, we will study the gradient of unnormalized attention scores. In particular, the
unnormalized attention score is defined as:

ut,t′ = (WKWE(t))
T (WQWE(t

′))/
√
da.

Lemma C.6. Suppose the data generating process follows Section 3.1 and N (z∗) = {z : z∗1 = z1} \ {z∗}. Given the last
token in the sequence tL, then

∇ut,tL
ℓ(fL) = ∇ℓ(fL)T (WE)

TWV (αtp̂tWE(t)

− p̂t

L∑
l=1

p̂tlWE(tl))

where for token t, αt =
∑L

l=1 1[tl = t] and p̂t is the normalized attention score for token t.

Typically, αt is larger when token t and tL belong to the same cluster because tokens within the same cluster tend to co-occur
frequently. As a result, the gradient contribution to the unnormalized attention score is usually larger for tokens within the
same cluster.

C.5. Context hijacking and the misclassification of memory recall

In light of the theoretical results on latent concept association, a natural question arises: How do these results connect to
context hijacking in LLMs? In essence, for the latent concept association problem, the differentiation of output tokens is
achieved by distinguishing between the various conditional distributions p(x|y). Thus, adding or changing tokens in the
context x so that it resembles a different conditional distribution can result in misclassification. In Appendix G.5, we present
experiments showing that mixing different contexts can cause transformers to misclassify. This partially explains context
hijacking in LLMs (Appendix B). On the other hand, it is well-known that the error rate is related to the KL divergence
between conditional distributions of contexts (Cover, 1999). The closer the distributions are, the easier it is for the model to
misclassify. Here, longer contexts, primarily composed of i.i.d samples, suggest larger divergences, thus higher memory
recall rate. This is theoretically implied by Theorem C.1 and Theorem C.4 and empirically verified in Appendix G.6. Such
result is also related to reverse context hijacking (Appendix E) where prepending sentences including true target words can
improve fact recall rate.

D. Additional Theoretical Results and Proofs
D.1. Proofs for Appendix C.1

Theorem C.1 can be stated more formally as follows:
Theorem D.1. Suppose the data generating process follows Section 3.1 where m ≥ 3, ω = 1, and N (t) = V \ {t}. Assume
there exists a single layer transformer given by (1) such that a) WK = 0 and WQ = 0, b) Each row of WE is orthogonal to
each other and normalized, and c) WV is given by

WV =
∑
i∈[V ]

WE(i)(
∑

j∈N1(i)

WE(j)
T ).

Then if L > max{ 100m2 log(3/ϵ)

(exp(− 1
β )−exp(− 2

β ))2
, 80m2|N (y)|
(exp(− 1

β )−exp(− 2
β ))2

} for any y, then

RDL(fL) ≤ ϵ,

13
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where 0 < ϵ < 1.

Proof. First of all, the error is defined to be:

RDL(fL) = P(x,y)∼DL [argmax fL(x) ̸= y]

= PyPx|y[argmax fL(x) ̸= y]

Let’s focus on the conditional probability Px|y[argmax fL(x) ̸= y].

By construction, the single layer transformer model has uniform attention. Therefore,

h(x) =
∑

i∈N (y)

αiWE(i)

where αi =
1
L

∑L
k=1 1{tk = i} which is the number of occurrence of token i in the sequence.

By the latent concept association model, we know that

p(i|y) = exp(−DH(i, y)/β)

Z

where Z =
∑

i∈N (y) exp(−DH(i, y)/β).

Thus, the logit for token y is
fL
y (x) =

∑
i∈N1(y)

αi

And the logit for any other token ỹ is
fL
ỹ (x) =

∑
i∈N1(ỹ)

αi

For the prediction to be correct, we need
max

ỹ
fL
y (x)− fL

ỹ (x) > 0

By Lemma 3 of (Devroye, 1983), we know that for all ∆ ∈ (0, 1), if |N (y)|
L ≤ ∆2

20 , we have

P
(

max
i∈N (y)

|αi − p(i|y)| > ∆
)
≤ P

( ∑
i∈N (y)

|αi − p(i|y)| > ∆
)
≤ 3 exp(−L∆2/25)

Therefore, if L ≥ max{ 25 log(3/ϵ)
∆2 , 20|N (y)|

∆2 }, then with probability at least 1− ϵ, we have,

max
i∈N (y)

|αi − p(i|y)| ≤ ∆

fL
y (x)− fL

ỹ (x) =
∑

i∈N1(y)

αi −
∑

j∈N1(ỹ)

αj

=
∑

i∈N1(y)

αi −
∑

i∈N1(y)

p(i|y) +
∑

i∈N1(y)

p(i|y)

−
∑

j∈N1(ỹ)

p(j|y) +
∑

j∈N1(ỹ)

p(j|y)−
∑

j∈N1(ỹ)

αj

≥
∑

i∈N1(y)

p(i|y)−
∑

j∈N1(ỹ)

p(j|y)− 2m∆

≥ exp(− 1

β
)− exp(− 2

β
)− 2m∆

14
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Note that because of Lemma D.6, there’s no neighboring set that is the superset of another.

Therefore as long as ∆ <
exp(− 1

β )−exp(− 2
β )

2m ,
fL
y (x)− fL

ỹ (x) > 0

for any ỹ.

Finally, if L > max{ 100m2 log(3/ϵ)

(exp(− 1
β )−exp(− 2

β ))2
, 80m2|N (y)|
(exp(− 1

β )−exp(− 2
β ))2

} for any y, then

Px|y[argmax fL(x) ̸= y] ≤ ϵ

And

RDL(fL) = P(x,y)∼DL [argmax fL(x) ̸= y]

= PyPx|y[argmax fL(x) ̸= y] ≤ ϵ

D.2. Proofs for Appendix C.2

Lemma D.2. Suppose the data generating process follows Section 3.1 where m ≥ 3, ω = 1 and N (t) = {t′ : DH(t, t′)) =
1}. For any single layer transformer given by (1) where each row of WE is orthogonal to each other and normalized, if WV

is constructed as in (3), then the error rate is 0. If WV is the identity matrix, then the error rate is strictly larger than 0.

Proof. Following the proof for Theorem D.1, let’s focus on the conditional probability:

Px|y[argmax fL(x) ̸= y]

By construction, we have
h(x) =

∑
i∈N1(y)

αiWE(i)

where αi =
1
L

∑L
k=1 1{tk = i} which is the number of occurrence of token i in the sequence.

Let’s consider the first case where WV is constructed as in (3). Then we know that for some other token ỹ ̸= y,

fL
y (x)− fL

ỹ (x) =
∑

i∈N1(y)

αi −
∑

i∈N1(ỹ)

αi = 1−
∑

i∈N1(ỹ)

αi

By Lemma D.6, we have that for any token ỹ ̸= y,

fL
y (x)− fL

ỹ (x) > 0

Therefore, the error rate is always 0.

Now let’s consider the second case where WV is the identity matrix. Let j be a token in the set N1(y). Then there is a
non-zero probability that context x contains only j. In that case,

h(x) = WE(j)

However, we know that by the assumption on the embedding matrix,

fL
y (x)− fL

j (x) = (WE(y)−WE(j))
Th(x) = −∥WE(j)∥2 < 0

This implies that there’s non zero probability that y is misclassified. Therefore, when WV is the identity matrix, the error
rate is strictly larger than 0.

15
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Theorem C.3. Suppose the data generating process follows Section 3.1 where m ≥ 3, ω = 1 and N (t) = V \ {t}. For any
single layer transformer given by (1) with WV being the identity matrix, if the cross entropy loss is minimized so that for
any sampled pair (x, y),

p(y|x) = p̂(y|x) = softmax(fL
y (x))

there exists a > 0 and b such that for two tokens t ̸= t′,

⟨WE(t),WE(t
′)⟩ = −aDH(t, t′) + b

Proof. Because for any pair of (x, y), the estimated conditional probability matches the true conditional probability. In
particular, let’s consider two target tokens y1, y2 and context x = (ti, ..., ti) for some token ti such that p(x|y1) > 0 and
p(x|y2) > 0, then

p(y1|x)
p(y2|x)

=
p(x|y1)p(y1)
p(x|y2)p(y2)

=
p(x|y1)
p(x|y2)

=
p̂(x|y1)
p̂(x|y2)

= exp((WE(y1)−WE(y2))
Th(x))

The second equality is because p(y) is the uniform distribution. By our construction,

p(x|y1)
p(x|y2)

=
p(ti|y1)L

p(ti|y2)L
= exp((WE(y2)−WE(y1))

Th(x)) = exp((WE(y1)−WE(y2))
TWE(ti))

By the data generating process, we have that

L

β
(DH(ti, y2)−DH(ti, y1)) = (WE(y1)−WE(y2))

TWE(ti)

Let ti = y3 such that y3 ̸= y1, y3 ̸= y2, then

L

β
DH(y3, y1)−WE(y1)

TWE(y3) =
L

β
DH(y3, y2)−WE(y2)

TWE(y3)

For simplicity, let’s define

Ψ(y1, y2) =
L

β
DH(y1, y2)−WE(y1)

TWE(y2)

Therefore,

Ψ(y3, y1) = Ψ(y3, y2)

Now consider five distinct labels: y1, y2, y3, y4, y5. We have,

Ψ(y3, y1) = Ψ(y3, y2) = Ψ(y4, y2) = Ψ(y4, y5)

In other words, Ψ(y3, y1) = Ψ(y4, y5) for arbitrarily chosen distinct labels y1, y3, y4, y5. Therefore, Ψ(t, t′) is a constant
for t ̸= t′.

For any two tokens t ̸= t′,
L

β
DH(t, t′)−WE(t)

TWE(t
′) = C

Thus,

WE(t)
TWE(t

′) = −L

β
DH(t, t′) + C

16
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D.3. Proofs for Appendix C.3

Theorem C.4 can be formalized as the following theorem.

Theorem D.3. Following the same setup as in Theorem D.1, but embeddings follow (4) then if b > 0, ∆1 > 0, 0 < ∆ <
exp(− 1

β )−exp(− 2
β )

2m , L ≥ max{ 25 log(3/ϵ)
∆2 , 20|N (y)|

∆2 } for any y, and

0 < a <
2 exp( 1β )

(|V | − 2)m2

and

b0 > max{ a(m− 2)m+∆1

exp(− 1
β )− exp(− 2

β )− 2m∆
+ b,

(b− a)∆1 − |V |−2
2 abm2 exp(− 1

β ) +
|V |−2

2 a2(m− 2)m2

1− |V |−2
2 am2 exp(− 1

β )
}

we have
RDL(fL) ≤ ϵ

where 0 < ϵ < 1.

Proof. Following the proof of Theorem D.1, let’s also focus on the conditional probability

Px|y[argmax fL(x) ̸= y]

By construction, the single layer transformer model has uniform attention. Therefore,

h(x) =
∑

i∈N (y)

αiWE(i)

where αi =
1
L

∑L
k=1 1{tk = i} which is the number of occurrence of token i in the sequence. For simplicity, let’s define

αy = 0 such that
h(x) =

∑
i∈[V ]

αiWE(i)

Similarly, we also have that if L ≥ max{ 25 log(3/ϵ)
∆2 , 20|N (y)|

∆2 }, then with probability at least 1− ϵ, we have,

max
i∈[V ]

|αi − p(i|y)| ≤ ∆

Also define the following:

ϕk(x) =
∑

j∈N1(k)

WE(j)
T
( ∑
i∈[V ]

αiWE(i)
)

vk(y) = WE(y)
TWE(k)

Thus, the logit for token y is

fL
y (x) =

|V |−1∑
k=0

vk(y)ϕk(x)

Let’s investigate ϕk(x). By Lemma D.5,

ϕk(x) =
∑
i∈[V ]

αi(
∑

j∈N1(k)

WE(j)
TWE(i))

= (b0 − b)
∑

j∈N1(k)

αj +
∑
i∈[V ]

αi(−a(m− 2)DH(k, i) + (b− a)m)

17
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Thus, for any k1, k2 ∈ [V ],

ϕk1
(x)− ϕk2

(x) = (b0 − b)(
∑

j1∈N1(k1)

αj1 −
∑

j2∈N1(k2)

αj2)

+
∑
i∈[V ]

αia(m− 2)(DH(k2, i)−DH(k1, i))

Because −m ≤ DH(k2, i)−DH(k1, i) ≤ m, we have

(b0 − b)(
∑

j1∈N1(k1)

αj1 −
∑

j2∈N1(k2)

αj2)− a(m− 2)m

≤ ϕk1
(x)− ϕk2

(x) ≤

(b0 − b)(
∑

j1∈N1(k1)

αj1 −
∑

j2∈N1(k2)

αj2) + a(m− 2)m

For prediction to be correct, we need
max

ỹ
fL
y (x)− fL

ỹ (x) > 0

This also means that

max
ỹ

|V |−1∑
k=0

(
vk(y)− vk(ỹ)

)
ϕk(x) > 0

One can show that for any k, if ι−1(k̃) = ι−1(y)⊗ ι−1(ỹ)⊗ ι−1(k) where ⊗ means bitwise XOR, then

vk(y)− vk(ỹ) = vk̃(ỹ)− vk̃(y) (5)

First of all, if k = y, then k̃ = ỹ, which means

vk(y)− vk(ỹ) = vk̃(ỹ)− vk̃(y) = b0 + aDH(y, ỹ)− b

If k ̸= y, ỹ, then (5) implies that

DH(k, y)−DH(k, ỹ) = DH(k̃, ỹ)−DH(k̃, y)

We know that DH(k, y) is the number of 1s in ι−1(k)⊗ ι−1(y) and,

ι−1(k̃)⊗ ι−1(y) = ι−1(y)⊗ ι−1(ỹ)⊗ ι−1(k)⊗ ι−1(y) = ι−1(ỹ)⊗ ι−1(k)

Similarly,
ι−1(k̃)⊗ ι−1(ỹ) = ι−1(y)⊗ ι−1(k)

Therefore, (5) holds and we can rewrite fL
y (x)− fL

ỹ (x) as

fL
y (x)− fL

ỹ (x) =

|V |−1∑
k=0

(
vk(y)− vk(ỹ)

)
ϕk(x)

= (b0 − b+ aDH(y, ỹ))(ϕy(x)− ϕỹ(x))

+
∑

k ̸=y,ỹ,DH(k,y)≥DH(k,ỹ)

a(DH(k, y)−DH(k, ỹ))(ϕk(x)− ϕk̃(x))

We already know that b0 > b > 0 and a > 0, thus, b0 − b+ aDH(y, ỹ) > 0 for any pair y, ỹ.
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We also want ϕy(x)− ϕỹ(x) to be positive. Note that

ϕy(x)− ϕỹ(x) ≥ (b0 − b)(exp(− 1

β
)− exp(− 2

β
)− 2m∆)− a(m− 2)m

We need ∆ <
exp(− 1

β )−exp(− 2
β )

2m and for some positive ∆1 > 0, b0 needs to be large enough such that

ϕy(x)− ϕỹ(x) > ∆1

which implies that

b0 >
a(m− 2)m+∆1

exp(− 1
β )− exp(− 2

β )− 2m∆
+ b (6)

On the other hand, for k ̸= y, ỹ, we have

ϕk(x)− ϕk̃(x) ≥ (b0 − b)(
∑

j1∈N1(k)

αj1 −
∑

j2∈N1(k̃)

αj2)− a(m− 2)m

≥ (b0 − b)(−(m− 1) exp(− 1

β
)− exp(− 2

β
)− 2m∆)− a(m− 2)m

≥ (b0 − b)(−(m− 1) exp(− 1

β
)− exp(− 2

β
) + exp(− 2

β
)− exp(− 1

β
))− a(m− 2)m

≥ −(b0 − b)m exp(− 1

β
)− a(m− 2)m

Then, we have

fL
y (x)− fL

ỹ (x) ≥ (b0 − b+ a)∆1 −
|V | − 2

2

(
(b0 − b)am2 exp(− 1

β
) + a2(m− 2)m2

)
≥

(
1− |V | − 2

2
am2 exp(− 1

β
)

)
b0 − (b− a)∆1 +

|V | − 2

2
abm2 exp(− 1

β
)− |V | − 2

2
a2(m− 2)m2

The lower bound is independent of ỹ, therefore, we need it to be positive to ensure the prediction is correct. To achieve this,
we want

1− |V | − 2

2
am2 exp(− 1

β
) > 0

which implies that

a <
2 exp( 1β )

(|V | − 2)m2
(7)

And finally we need

b0 >
(b− a)∆1 − |V |−2

2 abm2 exp(− 1
β ) +

|V |−2
2 a2(m− 2)m2

1− |V |−2
2 am2 exp(− 1

β )
(8)

To summarize, if b > 0, ∆1 > 0, 0 < ∆ <
exp(− 1

β )−exp(− 2
β )

2m , L ≥ max{ 25 log(3/ϵ)
∆2 , 20|N (y)|

∆2 } for any y, and

0 < a <
2 exp( 1β )

(|V | − 2)m2

and

b0 > max{ a(m− 2)m+∆1

exp(− 1
β )− exp(− 2

β )− 2m∆
+ b,

(b− a)∆1 − |V |−2
2 abm2 exp(− 1

β ) +
|V |−2

2 a2(m− 2)m2

1− |V |−2
2 am2 exp(− 1

β )
}
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we have

RDL(fL) ≤ ϵ

where 0 < ϵ < 1.

Lemma D.4. If embeddings follow (4) and b = b0 and N (t) = V \ {t}, then rank(WE) ≤ m+ 2.

Proof. By (4), we have that
⟨WE(i),WE(j)⟩ = −aDH(i, j) + b

Therefore,
(WE)

TWE = −aDH + b11T

Let’s first look at DH which has rank at most m+ 1. To see this, let’s consider a set of m+ 1 tokens: {e0, e1, ..., em} ⊆ V
where ek = 2k. Here e0 is associated with the latent vector of all zeroes and the latent vector associated with ek has only the
k-th latent variable being 1.

On the other hand, for any token i, we have that,

i =
∑

k:ι−1(i)k=1

ek

In fact,

DH(i) =
∑

k:ι−1(i)k=1

(
DH(ek)−DH(e0)

)
+DH(e0)

where DH(i) is the i-th row of DH , and for each entry j of DH(i), we have that

DH(i, j) =
∑

k:ι−1(i)k=1

(
DH(ek, j)−DH(e0, j)

)
+DH(e0, j)

This is because

DH(ek, j)−DH(e0, j) =

{
+1 if ι−1(j)k = 0

−1 if ι−1(j)k = 1

Thus, we can rewrite DH(i, j) as

DH(i, j) =
∑

k:ι−1(i)k=1

(
1[ι−1(i)k = 1, ι−1(j)k = 0]− 1[ι−1(i)k = 1, ι−1(j)k = 1)]

)
+DH(e0, j)

=

m∑
k=1

(
1[ι−1(i)k = 1, ι−1(j)k = 0]− 1[ι−1(i)k = 1, ι−1(j)k = 1)]

)

+

m∑
k=1

(
1[ι−1(i)k = 0, ι−1(j)k = 1] + 1[ι−1(i)k = 1, ι−1(j)k = 1)]

)

=

m∑
k=1

1[ι−1(i)k = 1, ι−1(j)k = 0] + 1[ι−1(i)k = 0, ι−1(j)k = 1]

= DH(i, j)

Therefore, every row of DH can be written as a linear combination of {DH(e0), DH(e1), ..., DH(em)}. In other words,
DH has rank at most m+ 1.

Therefore,
rank((WE)

TWE) = rank(WE) ≤ m+ 2.
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Lemma D.5. Let z(0) and z(1) be two binary vectors of size m where m ≥ 2. Then,∑
z:DH(z(0),z)=1

DH(z, z(1)) = (m− 2)DH(z(0), z(1)) +m

Proof. For z such that DH(z, z(0)) = 1, we know that there are two cases. Either z differs with z(0) on a entry but agrees
with z(1) on that entry or z differs with both z(0) and z(1).

For the first case, we know that there are DH(z(0), z(1)) such entries. In this case, DH(z, z(1)) = DH(z(0), z(1))− 1. For
the second case, DH(z, z(1)) = DH(z(0), z(1)) + 1.

Therefore, ∑
z:DH(z,z(0))=1

DH(z, z(1))

= DH(z(0), z(1))(DH(z(0), z(1))− 1) + (m−DH(z(0), z(1)))(DH(z(0), z(1)) + 1)

= (m− 2)DH(z(0), z(1)) +m

Lemma D.6. If m ≥ 3 and N (t) = V \ {t}, then N1(t) ̸⊆ N1(t
′) for any t, t′ ∈ [V ].

Proof. For any token t, N1(t) contains any token t′ such that DH(t, t′) = 1 by the conditions. Then given a set N1(t), one
can uniquely determine token t. This is because for the set of latent vectors associated with N1(t), at each index, there could
only be one possible change.

D.4. Proofs for Appendix C.4

Lemma D.7. Suppose the data generating process follows Section 3.1 and N (z∗) = {z : z∗1 = z1} \ {z∗}. Given the last
token in the sequence tL, then

∇ut,tL
ℓ(fL) = ∇ℓ(fL)T (WE)

TWV (αtp̂tWE(t)

− p̂t

L∑
l=1

p̂tlWE(tl))

where for token t, αt =
∑L

l=1 1[tl = t] and p̂t is the normalized attention score for token t.

Proof. Recall that,

fL(x) =

[
WE

TWV attn(WEχ(x))

]
:L

= WE
TWV

L∑
l=1

exp(utl,tL)

Z
WE(tl)

where Z is a normalizing constant.

Define p̂tl =
exp(utl,tL

)

Z . Then we have

fL(x) = WE
TWV

L∑
l=1

p̂tlWE(tl)

Note that if tl = t then,
∂p̂tl
∂ut,tL

= p̂tl(1− p̂tl)
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Otherwise,
∂p̂tl
∂ut,tL

= −p̂tl p̂t

By the chain rule, we know that

∇ut,tL
ℓ(fL) = ∇ℓ(fL)T (WE)

TWV (

L∑
l=1

1[tl = t]p̂tlWE(t)−
L∑

l=1

p̂tl p̂tWE(tl))

Therefore,

∇ut,tL
ℓ(fL) = ∇ℓ(fL)T (WE)

TWV (αtp̂tWE(t)− p̂t

L∑
l=1

p̂tlWE(tl))

where αt =
∑L

l=1 1[tl = t].
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E. Additional experiments – context hijacking
In this section, we show the results of additional context hijacking experiments on the COUNTERFACT dataset (Meng et al.,
2022).

Reverse context hijacking In Figure 3a, we saw the effects of hijacking by adding in “Do not think of {target false}.” to
each context. Now, we measure the effect of the reverse: What if we prepend “Do not think of {target true}.” ?

Based on the study in this paper on how associative memory works in LLMs, we should expect the efficacy score to increase.
Indeed, this is what happens, as we see in Figure E.1.

Figure E.1. Prepending ‘Do not think of {target true}.’ can increase the chance of LLMs to output correct tokens. This figure shows
efficacy score versus the number of prepends for various LLMs on the COUNTERFACT dataset with the reverse context hijacking scheme.

Hijacking based on relation IDs We first give an example of each of the 4 relation IDs we hijack in Table 1.

Table 1. Examples of contexts in Relation IDs from COUNTERFACT

RELATION ID r CONTEXT p TRUE TARGET o∗ FALSE TARGET o

P190 Kharkiv is a twin city of Warsaw Athens
P103 The native language of Anatole France is French English
P641 Hank Aaron professionally plays the sport baseball basketball
P131 Kalamazoo County can be found in Michigan Indiana

Table 2. Examples of hijack and reverse hijack formats based on Relation IDs
RELATION ID r CONTEXT HIJACK SENTENCE REVERSE CONTEXT HIJACK SENTENCE

P190 The twin city of {subject} is not {target false} The twin city of {subject} is {target true}
P103 {subject} cannot speak {target false} {subject} can speak {target true}
P641 {subject} does not play {target false} {subject} plays {target true}
P131 {subject} is not located in {target false} {subject} is located in {target true}
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(a) Relation P103 (b) Relation P132

(c) Relation P190 (d) Relation P641

Figure E.2. Context hijacking based on relation IDs can result in LLMs output incorrect tokens. This figure shows efficacy score versus
the number of prepends for various LLMs on the COUNTERFACT dataset with hijacking scheme presented in Table 2.

Similar to Figure 3b, we repeat the hijacking experiments where we prepend factual sentences generated from the relation
ID. We use the format illustrated in Table 2 for the prepended sentences. We experiment with 3 other relation IDs and we
see similar trends for all the LLMs in Figure E.2a, E.2b, and E.2d. That is, the efficacy score drops for the first prepend
and as we increase the number of prepends, the trend of ES dropping continues. Therefore, this confirms our intuition that
LLMs can be hijacked by contexts without changing the factual meaning.

Similar to Figure E.1, we experiment with reverse context hijacking where we give the answers based on relation IDs, as
shown in Table 2. We again experiment with the same 4 relation IDs and the results are in Figure E.3a - E.3d. We see that
the efficacy score increases when we prepend the answer sentence, thereby verifying the observations of this study.

Hijacking without exact target words So far, the experiments use prompts that either contain true or false target words.
It turns out, the inclusion of exact target words are not necessary. To see this, we experiment a variant of the generic
hijacking and reverse hijacking experiments. But instead of saying “Do not think of {target false}” or “Do not think of
{target true}”. We replace target words with words that are semantically close. In particular, for relation P1412, we replace
words representing language (e.g., “French”) with their associated country name (e.g., “France”). As shown in Figure E.4,
context hijacking and reverse hijacing still work in this case.

F. Main experimental results – latent concept association
The main implications of the theoretical results in the previous section are:
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(a) Relation P103 (b) Relation P132

(c) Relation P190 (d) Relation P641

Figure E.3. Reverse context hijacking based on relation IDs can result in LLMs to be more likely to be correct. This figure shows efficacy
score versus the number of prepends for various LLMs on the COUNTERFACT dataset with the reverse hijacking scheme presented in
Table 2.

1. The value matrix is important and has associative memory structure as in (3).

2. Training embeddings is crucial in the underparameterized regime, where embeddings exhibit certain geometric
structures.

3. Attention mechanism is used to select the most relevant tokens.

To evaluate these claims, we conduct several experiments on synthetic datasets. Additional experimental details and results
can be found in Appendix G.

F.1. On the value matrix WV

In this section, we study the necessity of the value matrix WV and its structure. First, we conduct experiments to compare
the effects of training versus freezing WV as the identity matrix, with the context lengths L set to 64 and 128. Figure 2a
and Figure G.1 show that when the context length is small, freezing WV can lead to a significant decline in accuracy. This
is inline with Lemma C.2 and validates it in a general setting, implying the significance of the value matrix in maintaining
a high memory recall rate.

Next, we investigate the degree of alignment between the trained value matrix WV and the construction in (3). The first
set of experiments examines the similarity in functionality between the two matrices. We replace value matrices in trained
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(a) Hijacking P1412 (b) Reverse hijacking P1412

Figure E.4. Hijacking and reverse hijacking experiments on relation P1412 show that context hijacking does not require exact target word
to appear in the context. This figure shows efficacy score versus the number of prepends for various LLMs on the COUNTERFACT dataset.

transformers with the constructed ones like in (3) and then report accuracy with the new value matrix. As a baseline, we also
consider randomly constructed value matrix, where the outer product pairs are chosen randomly (detailed construction can
be found in Appendix G.1). Figure G.2 indicates that the accuracy does not significantly decrease when the value matrix is
replaced with the constructed ones. Furthermore, not only are the constructed value matrix and the trained value matrix
functionally alike, but they also share similar low-rank approximations. We use singular value decomposition to get the best
low rank approximations of various value matrices where the rank is set to be the same as the number of latent variables
(m). We then compute smallest principal angles between low-rank approximations of trained value matrices and those of
constructed, randomly constructed, and Gaussian-initialized value matrices. Figure G.3 shows that the constructed ones
have, on average, smallest principal angles with the trained ones.

F.2. On the embeddings

In this section, we explore the significance of embedding training in the underparamerized regime and embedding structures.
We conduct experiments to compare the effects of training versus freezing embeddings with different embedding dimensions.
The learning rate is selected as the best option from {0.01, 0.001} depending on the dimensions. Figure G.4 clearly shows
that when the dimension is smaller than the vocabulary size (d < V ), embedding training is required. It is not necessary in
the overparameterized regime (d > V ), partially confirming Theorem C.1 because if embeddings are initialized from a
high-dimensional multi-variate Gaussian, they are approximately orthogonal to each other and have the same norms.

The next question is what kind of embedding structures are formed for trained transformers in the underparamerized regime.
From Figure 2b and Figure G.5, it is evident that the relationship between the average inner product of embeddings for
two tokens and their corresponding Hamming distance roughly aligns with (4). Perhaps surprisingly, if we plot the same
graph for trained transformers with a fixed identity value matrix, the relationship is mostly linear as shown in Figure G.6,
confirming our theory (Theorem C.3).

As suggested in Appendix C.3, such embedding geometry (4) can lead to low rank structures. We verify this claim by
studying the spectrum of the embedding matrix WE . As illustrated in Appendix G.4, Figure G.9-G.12 demonstrate that
there are eigengaps between top and bottom singular values, suggesting low-rank structures.

F.3. On the attention selection mechanism

In this section, we examine the role of attention pattern by considering a special class of latent concept association model as
defined in Appendix C.4. Figure 2c and Figure G.7 clearly show that the self-attention select tokens in the same clusters. This
suggests that attention can filter out noise and focus on the informative conditional distribution π. We extend experiments to
consider cluster structures that depend on the first two latent variables (detailed construction can be found in Appendix G.3)
and Figure G.8 shows attention pattern as expected.
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(a) L = 64 (b) L = 128

Figure G.1. Fixing the value matrix WV as the identity matrix results in lower accuracy compared to training WV , especially for smaller
context length L. The figure reports accuracy for both fixed and trained WV settings, with standard errors calculated over 10 runs.

G. Additional experiments and figures – latent concept association
In this appendix section, we present additional experimental details and results from the synthetic experiments on latent
concept association.

Experimental setup Synthetic data are generated following the model in Section 3.1. Unless otherwise stated, the default
setup has ω = 0.5, β = 1 and N (i) = V \ {i} and L = 256. The default hidden dimension of the one-layer transformer is
also set to be 256. The model is optimized using AdamW (Loshchilov & Hutter, 2017) where the learning rate is chosen
from {0.01, 0.001}. The evaluation dataset is drawn from the same distribution as the training dataset and consists of 1024
(x, y) pairs. Although theoretical results in Appendix C may freeze certain parts of the network for simplicity, in this section,
unless otherwise specified, all layers of the transformers are trained jointly. Also, in this section, we typically report accuracy
which is 1− error.

G.1. On the value matrix WV

In this section, we provide additional figures of Appendix F.1. Specifically, Figure G.1 shows that fixing the value matrix to
be the identity will negatively impact accuracy. Figure G.2 indicates that replacing trained value matrices with constructed
ones can preserve accuracy to some extent. Figure G.3 suggests that trained value matrices and constructed ones share
similar low-rank approximations. For the last two sets of experiments, we consider randomly constructed value matrix,
where the outer product pairs are chosen randomly, defined formally as follows:

WV =
∑
i∈[V ]

WE(i)(
∑

{j}∼Unif([V ])|N1(i)|

WE(j)
T )

G.2. On the embeddings

This section provides additional figures from Appendix F.2. Figure G.4 shows that in the underparameterized regime,
embedding training is required. Figure G.5 indicates that the embedding structure in the underparameterized regime roughly
follows (4). Finally Figure G.6 shows that, when the value matrix is fixed to the identity, the relationship between inner
product of embeddings and their corresponding Hamming distance is mostly linear.

G.3. On the attention selection mechanism

This section provides additional figures from Appendix F.3. Figure G.7-G.8 show that attention mechanism selects tokens in
the same cluster as the last token. In particular, for Figure G.8, we extend experiments to consider cluster structures that
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.2. When the value matrix is replaced with the constructed one in trained transformers, the accuracy does not significantly
decrease compared to replacing the value matrix with randomly constructed ones. The graph reports accuracy under different embedding
dimensions and standard errors are over 5 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.3. The constructed value matrix WV has similar low rank approximation with the trained value matrix. The figure displays
average smallest principal angles between low-rank approximations of trained value matrices and those of constructed, randomly
constructed, and Gaussian-initialized value matrices. Standard errors are over 5 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.4. In the underparameterized regime (d < V ), freezing embeddings to initializations causes a significant decrease in performance.
The graph reports accuracy with different embedding dimensions and the standard errors are over 5 runs. Red lines indicate when d = V .

(a) m = 7 (b) m = 8

Figure G.5. The relationship between inner products of embeddings and corresponding Hamming distances of tokens can be approximated
by (4). The graph displays the average inner product between embeddings of two tokens against the corresponding Hamming distance
between these tokens. Standard errors are over 5 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.6. The relationship between inner products of embeddings and corresponding Hamming distances of tokens is mostly linear
when the value matrix WV is fixed to be the identity. The graph displays the average inner product between embeddings of two tokens
against the corresponding Hamming distance between these tokens. Standard errors are over 10 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.7. The attention patterns show the underlying cluster structure of the data generating process. Here, for any latent vector, we
have N (z∗) = {z : z∗1 = z1} \ {z∗}. The figure shows attention score heat maps that are averaged over 10 runs.

depend on the first two latent variables. In other words, for any latent vector z∗, we have

N (z∗) = {z : z∗1 = z1 and z∗2 = z2} \ {z∗}

G.4. Spectrum of embeddings

We display several plots of embedding spectra (Figure G.9, Figure G.10, Figure G.11, Figure G.12) that exhibit eigengaps
between the top and bottom eigenvalues, suggesting low-rank structures.

G.5. Context hijacking in latent concept association

In this section, we want to simulate context hijacking in the latent concept association model. To achieve that, we first sample
two output tokens y1 (true target) and y2 (false target) and then generate contexts x1 = (t11, ..., t

1
L) and x2 = (t21, ..., t

2
L)

from p(x1|y1) and p(x2|y2). Then we mix the two contexts with rate pm. In other words, for the final mixed context
x = (t1, ..., tL), tl has probability 1− pm to be t1l and pm probability to be t2l . Figure G.13 shows that, as the mixing rate
increases from 0.0 to 1.0, the trained transformer tends to favor predicting false targets. This mirrors the phenomenon of
context hijacking in LLMs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.8. The attention patterns show the underlying cluster structure of the data generating process. Here, for any latent vector, we
have N (z∗) = {z : z∗1 = z1 and z∗2 = z2} \ {z∗}. The figure shows attention score heat maps that are averaged over 10 runs.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure G.9. The spectrum of embedding matrix WE has eigengaps between the top and bottom eigenvalues, indicating low rank structures.
The figure shows results from 4 experimental runs. Number of latent variable m is 7 and the embedding dimension is 32.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure G.10. The spectrum of embedding matrix WE has eigengaps between the top and bottom eigenvalues, indicating low rank
structures. The figure shows results from 4 experimental runs. Number of latent variable m is 7 and the embedding dimension is 64.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure G.11. The spectrum of embedding matrix WE has eigengaps between the top and bottom eigenvalues, indicating low rank
structures. The figure shows results from 4 experimental runs. Number of latent variable m is 8 and the embedding dimension is 32.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure G.12. The spectrum of embedding matrix WE has eigengaps between the top and bottom eigenvalues, indicating low rank
structures. The figure shows results from 4 experimental runs. Number of latent variable m is 8 and the embedding dimension is 64.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.13. Mixing contexts can cause misclassification. The figure reports accuracy for true target and false target under various context
mixing rate. Standard errors are over 5 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.14. Increasing context lengths can improve accuracy. The figure reports accuracy across various context lengths and dimensions.
Standard errors are over 5 runs.

G.6. On the context lengths

As alluded in Appendix C.5, the memory recall rate is closely related to the KL divergences between context conditional
distributions. Because contexts contain mostly i.i.d samples, longer contexts imply larger divergences. This is empirically
verified in Figure G.14 which demonstrates that longer context lengths can lead to higher accuracy.

39


