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Abstract. Deep learning models have gained significant attention due
to their promising performance in medical image tasks. However, a gap
remains between experimental accuracy and real-world applications. The
inherited black-box nature of the deep learning model introduces uncer-
tainty, trustworthy issues, and difficulties in performing quality control
of deployed deep learning models. While quality control methods focus-
ing on uncertainty estimation for segmentation tasks exist, there are
comparatively fewer approaches for classification, particularly in multi-
label datasets. This paper addresses this gap by proposing a quality
control method that bridges interpretability and uncertainty estimation
through a graph-based class distinctiveness calculation. Using the CheX-
pert dataset, the proposed approach achieved a higher F1 score on the
bootstrapped test set compared to baselines quality control approaches
based on predictive entropy and test-time augmentation.

Keywords: Interpretability · Quality Control · Multi-label Classifica-
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1 Introduction

Deep learning has revolutionized the field of medical imaging with improved per-
formance and next-level inference capabilities [24,33,14,19]. However, this also
comes at the expense of increased system complexity and a black-box model per-
ception, wherein explaining the reasoning behind model predictions is a highly
complex task. This makes the process of auditing or verifying the reliability
of deep learning model outputs complex, yet, extremely necessary for medical
imaging applications due to the high-stake nature of the healthcare sector.

Quality control of deep learning models has been explored for medical im-
age segmentation using uncertainty estimation of model predictions [13,6,7], or
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regressing directly a metric of segmentation quality [27][31]. Similarly, for medi-
cal image classification, uncertainty-based quality control approaches have been
proposed [3]. However, it is known that the reliability of uncertainty estimations
depends on the calibration properties of the deep learning model [13,12,8], and
that modern neural networks tend to be overconfident [9,16]. While there exist
several strategies to calibrate a deep learning model, it remains an area of active
research and highly empirical in practice [29,28,18]. The situation becomes more
complex for multi-label tasks, in which a patient can present more than one
condition (multiple class labels per sample). In this scenario, it has been shown
that model calibration is harder than in multi-class tasks [5].

In this paper, inspired by [17] using interpretability information to guide the
training process of deep learning models, we propose an interpretability-driven
graph-based quality control method. In contrast to [17], we did not train the
model with a class-distinctiveness objective but assessed the class-distinctiveness
to flag the model uncertainty. Specifically, we build on information from class-
specific saliency maps to derive criteria to flag potentially wrong model predic-
tions. Class-specific saliency maps are basically heatmaps representing pixel-wise
attribution levels of a model classifying a sample into a specific class. The ra-
tionale to use class-specific saliency maps for quality control lies in the intuition
presented in [17] where a well-trained model is characterized by distinctive class-
specific saliency maps. Conversely, a poorly trained model - in our scenario, a
low-confidence model - is characterized by similar class-specific saliency maps.
Building on this concept, we propose a simple yet effective quality control ap-
proach to monitor classification models. In this study, we present results for the
challenging scenario of multi-label classification from chest X-ray images.

In the following, we present the proposed approach, termed INFORMER, for
Interpretability Founded Monitoring of Medical Image Deep LeaRning Models,
followed by experiments and benchmarking on the publically available CheXPert
dataset [11].

2 Methodology

With INFORMER, we propose an interpretability-based method to determine
whether a model’s output is flagged as wrong. Fig. 1 summarises the proposed
INFORMER approach. Given a trained deep learning model under inspection
and test samples, a prediction alarm module computes class-specific saliency
maps and aggregates their information into a score to flag potentially wrong
predictions. The prediction alarm module is fine-tuned to the inspected model
via a validation set (not necessarily the same one used for the inspected model).
We note that the class-specific saliency maps can be computed with any available
saliency map generator (e.g., LRP [1], Input ⇥ Gradient [25], GradCam [23],
etc.).

In the next section, we describe how class-specific saliency maps are aggre-
gated into a single score and fine-tuned via a validation set.
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Fig. 1. Proposed Interpretability Founded Monitoring of Medical Image Deep
LeaRning Models (INFORMER). Upper-row: Given a trained model under inspection
and test samples, a prediction alarm module detects potentially wrong predictions.
Lower-row: The prediction alarm computes class-specific saliency maps, and their in-
formation is aggregated into a single flagging score, which is fine-tuned to the inspected
model via a validation set (INFORMER Train Time). During test time, the fine-tuned
prediction alarm is coupled to the inspected model to flag potentially wrong predic-
tions.

Interpretability Class Distinctiveness: Given a test image I, an inspected
classification model M , and a class-specific saliency map generator G, we obtain
class-specific saliency maps Si,i2C = G(I,M), where C is the total number of
classes. We then calculate the pairwise cosine distance between saliency maps
as:

dij = 1� CoSim(Si, Sk) (1)

where i 6= j, i, j 2 C and CoSim(.) is the cosine similarity, ranged [�1,1].
For the saliency map of class i, a set of pairwise comparisons with length C-1

is calculated as vi = {dij}, j 2 C, j 6= i. After computing such class distinctive-
ness for every class, the results are C pairwise comparison vectors, as is shown in
Fig. 2. To generalize the class-distinctiveness for every class, the entries of every
vector are summed to obtain the corresponding representation di for class i, i.e.,
||v0||1 = d0. The representation vector d = {di}i2C encodes how difficult a given
sample can be confidently classified by the inspected model for every class label.

Quality Control Alarm Similar to [3], we use thresholds to fine-tune our
quality control module. The quality control module finds the best threshold ⌧i for
class i 2 C in the validation set achieving the highest F1 after swapping flagged
predictions. The flagged predictions are the ones marked to be highly uncertain.
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Fig. 2. Illustration of interpretability class distinctiveness: node Si represents the
saliency map for the chosen disease i for a given patient. The edge between Si and
Sk, labeled dik, denotes the cosine distance between the corresponding saliency maps
calculated as Equation 1. Every disease i has a pairwise vector representation vi. All
pairwise distances between diseases, excluding self-connections (i.e., dii), are calculated.
The entries of every vector vi are summed to obtain the generalized class distinctive-
ness representation di. The vector d, the class-distinctiveness representation, encodes
how difficult a given sample is to be confidently classified by the inspected model for
every class label and is used for quality control.

After fine-tuning, each sample is passed through the fine-tuned alarm module at
test time to evaluate the prediction. Every class is evaluated separately.

3 Experiments

Dataset and Evaluation Details

We used the CheXpert dataset [11] to evaluate the proposed approach. The
CheXpert dataset comprises 224,316 images from 65,240 patients. This includes
223,414 training images, 234 validation images, and 668 test images. The dataset
contains frontal and lateral images, but we trained the model exclusively with
frontal images in this study. The labels for the training set were automatically
generated based on patient reports. Images with uncertain labels were excluded
from the study. If a disease is not mentioned in the report, it is considered
negative for that disease in our implementation. The model evaluation focuses on
the five diseases selected in the CheXPert challenge: atelectasis, cardiomegaly,
consolidation, edema, and pleural effusion. Patients without any of these five
pathologies were excluded from the analysis for the prevalence. Following this
selection and labeling strategy, the dataset includes 90,839 training images, 128
validation images, and 284 test images. To evaluate the robustness of all tested
methods, we assessed them using 30 bootstrapped test sets. A bootstrapped test
set is obtained with sampling with replacement till the original size of the test
set, i.e. 284 images in every bootstrapped test set.
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We generated the model’s saliency maps using a gradient-based interpretabil-
ity method. To demonstrate the method’s robustness across different inter-
pretability approaches, we employed two methods in our experiments based:
Layer-wise Relevance Propagation (lrp) [1] and Input ⇥ Gradient (ixg) [25].
These are referred to as INFORMER_lrp and INFORMER_ixg, respectively.

Benchmarking Baselines

Predictive Entropy: We use predictive entropy as a baseline approach, which
is also used by G. Carneiro [3] for quality control for medical images. A higher
predictive entropy indicates greater uncertainty in the prediction, which is then
flagged. In multi-label classification problems, every prediction is treated as bi-
nary for a selected sample. Then, the predictive entropy for class i for one sample
is calculated as

H(xi) = �pilog2pi � (1� pi)log2(1� pi), (2)

where pi is the logit output after sigmoid normalisation for class i. log2 is the
log base 2 operator. Every sample has a vector with length C to represent the
predictive entropy of the sample.

Test-Time Augmentation (TTA): Test-time augmentation (TTA) has been
proposed as an alternative to compute uncertainty estimation. This method
applies transformations to samples during the testing phase and analyses the
variation in the logits across these transformations [30]. We use TTA-based un-
certainty estimation as the second baseline.

Implementation

We use DenseNet121 [10], pre-trained on ImageNet from PyTorch 2.0.0+cu118
[20]. Learning rate at 0.0001, and images resized to 320 × 320 pixels. Batch
size is 16. We apply data augmentation techniques during training, including
affine transformations, rotation, box blur, and cropping. The model is trained
for three epochs, and the final model, which achieved an average AUC of 0.806 on
the validation set and 0.796 on the test set, is saved for evaluation purposes. The
binary cross entropy loss is used for model training. The prediction threshold
is determined based on the best Youden index from the validation set. Saliency
maps are generated using Captum [15]. For TTA, we applied random rotations
of 45 degrees, bluring with kernel size 10 by 10 and random cropping with a
padding 8.

The quality control alarm module of INFORMER flags highly uncertain cases
according to the threshold ⌧i, described in the methodology section. In practice,
we performed a grid-search using 0.001 intervals, covering the range from 0 to
the maximum di values for each class. Similarly, for the two baselines, thresholds
are found with a grid-search using 0.001 intervals.
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Results

We evaluated our method across datasets with different disease distributions.
We plotted the mean F1 score across five classes for each fold, as shown in
Fig. 3. The median F1 score for the predictive entropy and TTA are 0.564. In
comparison, the median F1 scores for INFORMER_ixg, and INFORMER_lrp

are 0.573, and 0.572, respectively. Both variants of INFORMER demonstrate
improved performance in terms of mean F1 score on the bootstrapped test sets.
Notably, the first quartile of both INFORMER_ixg and INFORMER_lrp also
exceeds the baseline median, indicating that both INFORMER variants perform
better and more robustly than the baselines.

Fig. 3. Boxplot illustrating the results of the bootstrap experiment, highlighting the
variability across bootstrapped test sets. The y-axis represents the mean F1 score
across five diseases. Predictive Entropy and TTA are the baseline methods (colored
in grey). The proposed methods are colored in blue. INFORMER_lrp refers to the
proposed method with LRP-generated saliency maps and INFORMER_ixg indicates
the method with Input ⇥ Gradient-generated saliency maps. The stars represent the
statistical significance between the paired t-test of INFORMER variants and predictive
entropy. P-value  0.01 is ⇤⇤ and P-value  0.001 is ⇤ ⇤ ⇤.

Besides the bootstrapping experiment, we evaluated our method using the F1

score on the original test set for direct comparison of metrics, as shown in Table 1.
Overall, INFORMER outperformed both versions of Baseline. INFORMER_lrp

demonstrated the best overall performance, with a mean F1 score of 0.574. The
predictive entropy and test-time augmentation have mean F1 at 0.563 over five
classes. We did not find performance differences between the INFORMER and
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the Baselines observed for Edema and Pleural Effusion. This is because none of
the methods detected any uncertain prediction for these classes in this test set.
The most significant improvement over the baselines was seen for cardiomegaly,
with a gap of 0.048 in F1 score between INFORMER_lrp and the baselines.

Table 1. Performance measuring in F1 comparison between INFORMER with dif-
ferent interpretability methods and baselines. INFORMER_ixg is INFORMER with
input-times-gradient generated saliency map. INFORMER_lrp is with LRP generated
saliency map. Pred. Entropy corresponds to the predictive entropy baseline, and TTA
is the test-time augmentation baseline. P.Effusion is pleural effusion. Bold indicates
the best result in the pathology.

Model Atelectasis Cardiomegaly Consolidation Edema P.Effusion F1

INFORMERixg 0.648 0.628 0.240 0.609 0.732 0.569
INFORMERlrp 0.636 0.655 0.230 0.609 0.732 0.574
Pred. Entropy 0.636 0.607 0.231 0.609 0.732 0.563
TTA 0.636 0.607 0.230 0.609 0.732 0.563

Clinical Evaluation: We observed that INFORMER_ixg features a higher de-
tection sensitivity (SENS) for atelectasis cases at the cost of a lower specificity
(SPEC) compared to the baselines. However, this trade-off is preferable clinically.
Atelectasis can have various causes, many of which can be relieved with chest
physical therapy like breathing exercises, change of body position, or movement.
These measures are well-suited for most hospitalized patients and contribute to
well-being independent of the existence of actual atelectasis. Therefore, maximiz-
ing the sensitivity of atelectasis detection, even at the cost of a lower specificity,
is preferable.

Regarding consolidation, the INFORMER_lrp method exceeds the baselines
in sensitivity (SENS: Baselines 0.690, INFORMER_lrp 0.724, SPEC: predictive
entropy 0.514, INFORMER_lrp 0.510). It has been estimated that >1.5 million
unique adults are being hospitalized annually in the US for community-acquired
pneumonia (CAP) [21]. Assuming that 1’500’000 patients receive a chest X-
ray (CXR) on which consolidation is visible as a sign of CAP, the baseline
method with a SENS of 0.690 would correctly detect 1’035’000 cases. In contrast,
INFORMER_lrp method would correctly detect 1’086’000 cases. This means an
additional 51’000 cases could be detected, potentially preventing the progression
of undiagnosed CAP to complications like respiratory failure or sepsis. The table
specificity and sensitivity of the model are in supplementary Table S1 and S2,
respectively.

4 Discussion

We proposed an interpretability-based prediction quality control approach for
multi-label classification problems. From experiments, we observed improve-
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ments over two popular baselines used to flag potentially incorrect model predic-
tions. The bootstrap result also demonstrates the robustness of the performance
across test sets. From a clinical scenario point of view, improving the sensitivity
by 0.034 can result in an estimate of approximately 51’000 additional consolida-
tion cases that could annually be detected to prevent further progression, which
we believe shows the clinical value of the obtained results.

Most multi-label studies only report AUC, as the prediction varies between
the chosen thresholds. Here, we use the Youden index [32,26] to define the pre-
diction. The result was evaluated with F1, which considers class imbalance com-
pared to accuracy. We can see that in the model with a mean AUC over 0.8 on
the test set, the F1 score is just over 0.65. That emphasizes the importance of
quality control of model predictions towards deployment of deep learning based
classification models.

Entropy and test-time augmentation are the traditional metrics used for qual-
ity control of deep learning models in the field. Our method using saliency map
derived information outperformed both methods. The proposed method is inde-
pendent of the model architecture, and focuses on the information inherited in
the model gradients. In contrast to the baseline approaches, necessitating the
model’s logit output, INFORMER can be applied to a black box model in which
the model logit is not available by using interpretability designed to work on
black-box models, such as LIME [22]. This can be the case for enterprise-level
models that need to be audited, but their inner information is unavailable.

There are some limitations to this method that are worth mentioning. We
also experimented with the method with Grad-Cam [23] but the performance
was worse than the reported methods. We think this outcome is due to the
unfocused saliency map generation nature of Grad-Cam, as also reported by
others [4,2]. Similar methods such as Grad-Cam++ [4] are also worth explor-
ing in the future as they yield more spatially focused saliency maps. Further
research on the saliency map’s precision and the consistency of such evaluation
with the clinicians is also needed. We also anticipate improvements by replac-
ing the threshold-based approach used here to flag cases with other systematic
methods, such as a multi-step threshold approach, or directly using the cosine
distances from the pairwise comparison in conjunction with a machine learning
classification model.

5 Conclusion

Black-box models perform exceptionally on medical images in state-of-the-art
research. However, applying these models in the medical domain without under-
standing their uncertainty brings significant risks. While there has been some
research on quality control for segmentation tasks, there is limited work on clas-
sification. We explore in this paper using the interpretability information in the
saliency map to drive quality control for multi-label classification beyond only us-
ing the logits. The proposed method, INFORMER, outperformed existing base-
lines in terms of mean F1 score by utilizing interpretability-based information.
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Moreover, INFORMER demonstrated more robust performance on the boot-
strap dataset, indicating its higher reliability and effectiveness in classification
tasks than current baseline approaches.
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