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Abstract

The word embedding space in neural models is skewed, and correcting this can
improve task performance. We point out that most approaches for modeling,
correcting, and measuring the symmetry of an embedding space implicitly assume
that the word frequencies are uniform; in reality, word frequencies follow a highly
non-uniform distribution, known as Zipf’s law. Surprisingly, simply performing
PCA whitening weighted by the empirical word frequency that follows Zipf’s law
significantly improves task performance, surpassing established baselines. From
a theoretical perspective, both our approach and existing methods can be clearly
categorized: word representations are distributed according to an exponential family
with either uniform or Zipfian base measures. By adopting the latter approach, we
can naturally emphasize informative low-frequency words in terms of their vector
norm, which becomes evident from the information-geometric perspective [42],
and in terms of the loss functions for imbalanced classification [36]. Additionally,
our theory corroborates that popular natural language processing methods, such as
skip-gram negative sampling [37], WhiteningBERT [26], and headless language
models [23], work well just because their word embeddings encode the empirical
word frequency into the underlying probabilistic model.
� https://github.com/cl-tohoku/zipfian-whitening

1 Introduction

Representing discrete words by continuous vectors is a fundamental and powerful framework of
modern deep-learning-based natural language processing (NLP). Static word embeddings [43, 37],
dynamic word embeddings [18, 33], and causal language models [45, 12, 54] have caused a paradigm
shift—they have greatly improved the performance of virtually all kinds of NLP applications and
have been actively used in relevant areas as well. While the embedded units may be characters or
subwords instead of words, we simply refer to them collectively as word.

Recently, the machine learning and NLP communities have discovered that the word embedding
space is “skewed” and that correcting this can lead to better performance in downstream tasks [39, 21,
16, 56]. The isotropy of the embedding space would be one factor: vectors dispersing more evenly
should be more discriminative than those clustered in the same direction [38, 21, 51]. Typically, such
spatial symmetry in the embedding space is enhanced through centering/whitening [39, 16, 26].

Nevertheless, we would like to point out that most existing approaches implicitly assume uniform
word frequency to formalize spatial symmetry. Consider the classical centering operation as an
example: we first calculate the mean of the word vectors, and then subtract it to ensure they are
zero-meaned. This method, however, has an unexpected pitfall. Recall that the definition of the
centroid or barycenter of a random vector x ∼ p, assuming it has a finite set of distinct realizations,
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is given by Ex∼p[x] =
∑

i p(xi)xi. The classical centering, based on the standard (unweighted)
mean, implicitly assumes that all words occur uniformly p(w1) = · · · = p(wn). In reality, however,
word frequencies are known to follow a highly non-uniform distribution1, creating a significant gap
between the methodology and the actual usage of words. This seemingly obvious issue does not arise
when addressing classical statistical estimation problems, as data vectors in our hands are usually
representations of observations or instances. In contrast, word vectors used in NLP are representations
of types or classes; each of them (such as the vector for ‘the’) abstracts the numerous instances
(such as the tokens of ‘the’) appearing in the data. This problem of hidden frequencies becomes
apparent in the cases where the type-token distinction [58] is crucial, such as when dealing with
natural language data (§ 2). The take-home message of this paper can be summarized as follows: use
empirical word frequencies when calculating expected values. Following this very simple guideline
leads to strong empirical outcomes (§ 3.2, § 3.3) and opens a rich theoretical landscape (§ 4, § 5).

Notation Let V = {w1, . . . , wn} denote the vocabulary, i.e., the set of words in interest. Bold-face
wi ∈ Rd denotes the row vector of each word type wi, and p(wi) ∈ [0, 1] denotes its frequency.

2 Motivation: type-token distinction and expected values

Why have word frequencies been overlooked when considering the geometric properties of em-
bedding spaces? This can be explained through the concept of type-token distinction [58], which
is a fundamental concept in linguistics and related fields but generally not required in statistical
machine learning. Here, type represents a class and token represents an instance. For example, the
phrase ‘perform natural language processing in a natural way’ contains eight tokens
and seven types. The instances ‘natural’ appear twice, but as a word type, it is counted only once.

With the type-token distinction in mind, let us take a fresh look at data matrices and their expected
values. Typically, each row in a data matrix represents one observation, i.e., one instance token. If
we want to centralize a set of data vectors, computing the unweighted mean is a natural way in the
machine learning pipeline. On the other hand, each row of a word embedding matrix, i.e., word
vector, is a type embedding. Each word vector abstracts the numerous instances appearing repeatedly
in a corpus, though information on the frequency of instances for each word type is not encoded in it.
The unweighted mean of word vectors treats type vectors as token vectors, resulting in the complete
omission of word frequency information.

of
the

isotropy

agglutinative

Figure 1: Low-frequent words {○} and
high-frequent words {○} are unevenly dis-
tributed in the embedding space [39, 24, 44,
10]. Consequently, the “apparent” mean cal-
culated by unweighted averaging8 often
differs from the actual centroid8.

Let us describe the above idea formally. The data ma-
trix X ∈ Rn×d or the set of data vectors {xi}ni=1 ⊆
Rd represents a collection of instances, observations,
or tokens; then the empirical distribution is µX =∑n

i=1
1
nδ(xi), where δ is the Dirac delta function.

Here, the unweighted mean can be seen as the expecta-
tion Êx∼µX

[x] =
∑n

i=1
1
nxi with the empirical distri-

bution. On the other hand, the word embedding matrix
W ∈ Rn×d or the set of word vectors {wi}ni=1 ⊆ Rd

represents a collection of types. When describing the
empirical distribution, the hidden frequency p of to-
kens is necessary. Given p, the empirical distribution
is µW = p(wi)δ(wi). From this perspective, the cen-
troid of the word vectors should be written as the ex-
pectation Êw∼µW

[w] =
∑

i p(wi)wi over p.

The distinction is not just “theoretical.” First, refer to Fig. 1. Word vectors are known to cluster by
frequency [39, 24, 44, 10]. In this situation, the centroid8 weighted by the word frequencies is
located near the narrow region where high-frequent words are concentrated (a region with a light
blue background), and thus differs from the unweighted mean8. Second, see Table 1, which shows

1As known as Zipf’s law. If we count the frequencies of words in huge English corpora, we find that ‘the’
has a frequency of about 5.89× 10−2 and ‘isotropy’ has a frequency of about 3.47× 10−8, a difference of a
million times greater.
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50 words sampled from each of types and tokens. Uniform sampling from types, corresponding to
an unweighted mean, tends to select mostly rare words from the heavy tail. Sampling from tokens
clearly captures a more natural representation of language as it typically appears in text.

Table 1: The difference between type-based sampling and token-based sampling.

Words sampled from types Words sampled from tokens

‘scintillation’, ‘fanon’, ‘rubato’, ‘upstanding’, ‘collard’,
‘creeks’, ‘skookum’, ‘unbelievers’, ‘monocyte’, ‘nishikawa’,
‘crusher’, ‘gerwen’, ‘abrah’, ‘silverchair’, ‘hangman’,
‘unitary’, ‘klausen’, ‘arousal’, ‘heat’, ‘bridgnorth’,
‘mildred’, ‘porton’, ‘aquasox’, ‘wylie’, ‘hipaa’, ‘krimuk’,
‘hexahedron’, ‘kuei’, ‘barbera’, ‘dalvi’, ‘gilding’,
‘visakhapatnam’, ‘tatsuo’, ‘tarascon’, ‘bajram’, ‘scholes’,
‘hadad’, ‘incidental’, ‘theodosius’, ‘reichskommissariat’,
‘boeheim’, ‘amsl’, ‘buencamino’, ‘thrasyvoulos’, ‘insulated’,
‘discourtesy’, ‘nisra’, ‘ycko’, ‘luen’, ‘dooku’

‘nine’, ‘ranked’, ‘zero’, ‘the’, ‘garcia’,
‘rank’, ‘station’, ‘the’, ‘for’, ‘four’,
‘williams’, ‘drunken’, ‘a’, ‘one’, ‘eight’,
‘of’, ‘were’, ‘zero’, ‘debate’, ‘orchestra’,
‘of’, ‘wrist’, ‘points’, ‘fractured’, ‘the’,
‘to’, ‘redirect’, ‘adnan’, ‘white’, ‘car’,
‘fond’, ‘concluded’, ‘under’, ‘two’, ‘by’,
‘five’, ‘his’, ‘infection’, ‘the’, ‘the’,
‘pop’, ‘in’, ‘one’, ‘in’, ‘one’, ‘one’, ‘fram’,
‘handled’, ‘battle’, ‘mutual’

3 Embedding symmetry

3.1 Definition of embedding symmetry

In mathematical science fields, such as high-dimensional probability theory [55] and the volume of
convex bodies [27], there are numerous intriguing definitions of spatial symmetry. Among them, we
begin with the definition of the symmetry of random vectors with their frequencies [48, 55]. This is
suited for dealing with word vectors because they entail word frequencies, unlike usual data instances.

Definition 1 (A random vector v ∼ p
on Rd has zero mean; the 1st moment
of a symmetric random vector).

v := Ev∼p[v] = 0 (1)

Definition 2 (A random vector v ∼ p on Rd is in
isotropic position around its barycenter; the 2nd moment
of a symmetric random vector).
Cov[v] := Ev∼p[(v−Ev∼p[v])(v−Ev∼p[v])

⊤]∝Id (2)

From these definitions, we will develop methods to adjust given word vectors to be symmetric in
§ 3.2, and to evaluate the symmetry of given word vectors in § 3.3.

In machine learning and NLP, the spatial symmetry of embedding spaces is a hot topic, and numerous
theories and algorithms have been proposed [41, 21, 38, 56]. However, the approach in many
researches implicitly treats all vectors equally, ignoring word frequency information. In the following
sections, we will detail both the empirical and theoretical issues that a uniform approach can cause,
especially when applied to NLP tasks. Furthermore, when embeddings correspond to tokens rather
than types—such as in the internal representations of masked or causal language models—a uniform
approach tends to be effective. This point will be discussed in § 5.1.

3.2 Enhancement of embedding symmetry

This section proposes Zipfian whitening2, which symmetrizes a given set of word vectors with
word frequency. At a glance, the most natural method to achieve Def. 1 and Def. 2 would be PCA
whitening, also known as sphering. Notably, each step of whitening—centering, decorrelation, and
standardization—implicitly involves calculating expected values. Our approach is simple: each time
we calculate an expected value, we should weight it by the empirical word frequency. The specific
algorithm is as shown in Algorithm 1. The only difference from general whitening is that it uses
word frequency in the part highlighted in blue . Please refer to Appendix A for a formal explanation
showing that the word vectors obtained by the proposed algorithm actually satisfy Def. 1 and Def. 2.

2In this paper, “Zipfian” is simply used to denote a “highly non-uniform” distribution. Our focus is on the
mismatch between actual word frequencies and uniform distribution, and we have not constructed arguments or
experiments that rely on specific properties of power laws. Refining experiments and theory based on the degree
of tail heaviness is an interesting direction for future work.
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Algorithm 1 Zipfian whitening; a post-processing algorithm on word embeddings. The part high-
lighted in blue shows the difference from the typical centering and whitening.

Input: Word embeddings {wi ∈ Rd | wi ∈ V}, word frequency p : V → [0, 1].
Output: Processed word embeddings. {wi ∈ Rd}i are centered, {w̃i ∈ Rd}i are further whitened.

Zipfian centering (1st moment):
1: µ̂ ←∑

wi∈V p(wi)wi ∈ Rd

2: for all wi ∈ V do
3: wi ← wi − µ̂ ∈ Rd

4: end for
Zipfian decorrelation and standardization (2nd moment):

5: W p ←
[√

p(w1)w
⊤
1 , . . . ,

√
p(w|V|)w

⊤
|V|

]⊤
∈ R|V|×d

6: UΣV ⊤ ← SVD(Wp)
▷ Σ = diag(σ1, . . . , σd) ∈ Rd×d consists of the singular values of W p.

7: for all wi ∈ V do
8: w̃i ← wiV Σ−1

▷ Σ−1 := diag(1/σ1, . . . , 1/σd) ∈ Rd×d.
9: end for

Table 2: The empirical performance of Zipfian whitening, which exploits the empirical frequency of
words during expectation calculations. Each cell shows the STS-B [15] score ×100. By carefully
performing the simple operation of whitening, it consistently outperforms powerful baseline methods.

GloVe 46.17

Uniform Zipfian
+ Centering 45.17 52.25
+ Whitening 52.21 66.92

+ ABTT [39] 54.28
+ SIF + CCR [7] 58.70

Word2Vec 56.98

Uniform Zipfian
+ Centering 55.85 58.84
+ Whitening 56.03 66.50

+ ABTT [39] 56.98
+ SIF + CCR [7] 63.04

Empirical evaluation: We confirm the effectiveness of Zipfian whitening (Algorithm 1) by measuring
performance on standard sentence-level downstream tasks using post-processed word vectors. We
employed the most standard word embeddings—GloVe [43], word2vec [37], and fastText [11]—and
utilized the widely adopted evaluation tasks, including STS-B [15] and related benchmarks. Detailed
experimental settings can be found in Appendix B. Table 2 shows the results on the STS-B task.
Remarkably, the proposed Zipfian whitening shows significant advantages not only over standard
(uniform) centering and whitening but also over the strong baseline method [7] specifically designed
to create powerful sentence vectors. Consistent results were obtained with various benchmark datasets,
multiple empirical word probabilities, and a language other than English (Appendix C)3. In § 4.2,
one reason for this remarkable performance is clarified from the perspective of information geometry.

3.3 Evaluation of embedding symmetry

The community is greatly interested not only in making word vector spaces symmetric but also in
evaluating how symmetric or asymmetric a space is [21, 49]. Here, we return to Def. 1 and Def. 2 and
describe metrics for evaluating the symmetry of word embedding spaces with word frequency.

Degree of centrality—the 1st moment of symmetry: Recall that, if the barycenter E[v] is close
to 0, then the random vector v can be considered symmetric in terms of the first moment (Def. 1).

3Notably, we observed improved scores when using word frequencies from the evaluation dataset itself as
p(w). In general, for NLP tasks, p(w) refers to word frequencies derived from the embedding training data
or from a standard large corpus. However, to optimize downstream task performance, it is preferable to base
p(w) on word frequencies within the evaluation dataset itself used for those tasks. This adjustment exemplifies
“covariate shift” [52] in machine learning, where the distribution of training data differs from that of test data.
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Thue, examining the value of ∥E[v]∥ := E[v] − 0 appears to be a reasonable way to measure the
symmetry of the first moment. However, random vectors v and αv (α ∈ R>0) should be considered
equivalent in terms of spatial symmetry. Thus, we define the scale-invariant metric (Def. 3), obtained
by dividing ∥E[v]∥ by the average length E[∥v∥].

Definition 3 (Degree of centrality for the random vector v ∼ p; the 1st moment of symmetry).

Sym1(v) := 1−
∥∥∥∥ E
v∼p

[v]

∥∥∥∥/ E
v∼p

[∥v∥] (3)

By definition, Sym1(v) takes values in [0, 1], and Sym1(v) = 1 if and only if v is zero mean.

Degree of isotropy—the 2nd moment of symmetry: If the covariance matrix E[(v − E[v])(v −
E[v])⊤] is a constant multiple of the identity matrix Id, i.e., if the random vector v has an equal
spread in all directions, v is symmetric in terms of the second moment (Def. 2). Following convention,
this degree can be confirmed by examining the flatness of the eigenspectrum.

Definition 4 (Degree of isotropy around the barycenter for the random vector v ∼ p; the 2nd
moment of symmetry).

Sym2(v) :=
1

log d
H

(
λ1∑
j λj

, . . . ,
λd∑
j λj

)
(4)

{λ1, . . . , λd} are the eigenvalues of the covariance matrix E
v∼p

[(v − E
v∼p

[v])(v − E
v∼p

[v])⊤].

H(p1, . . . , pd) := −
∑

i pi log pi is the Shannon entropy.

Proposition 1. Sym2(v) takes values in [0, 1], and Sym2(v) = 1 if and only if v is isotropic around
its barycenter (Def. 2). Proof. Please refer to Appendix D.

Note that the approach of measuring the entropy of the spectrum to evaluate the flatness of a signal
can be found in many fields. For example, similar definitions are seen in probability processes [14]
and signal processing [17, 47]. We also follow this standard and powerful line.

Algorithm: To compute the evaluation metrics of symmetry (Def. 3, Def. 4) for given word vectors,
again, one should just use the empirical word frequency when calculating the expectations. A
pseudocode for measuring symmetry is provided in Appendix E.

Empirical evaluation: To what extent does our symmetry score (an intrinsic evaluation of embedding
spaces) correlate with downstream task performance (an extrinsic evaluation of those)? As baselines,
we use versions of our symmetry score that do not account for word frequency, calculated in a uniform
manner. We also compare with popular symmetry scores in NLP, the average of cosine similarity
(Ave. Cos.) [21] and the recently proposed IsoScore [49]. Note that all these baselines implicitly
assume uniform word frequency. Additional experimental settings can be found in Appendix B.
Fig. 2 shows the results. The right side of Fig. 2 demonstrates the superiority of the Zipfian approach.
Moving from the bottom-left to the top-right of the figure—i.e. as both the 1st (x-axis) and 2nd
moments (y-axis) of the symmetry score increase—it is clearly visible that the downstream task
performance increases (the color becomes more red). In contrast, in the left-hand plot, which assumes
uniform word frequency, there is no observed relationship between the symmetry score (x and y-axis)
and the downstream task performance (color). Table 3 lists the correlation coefficients between the
symmetry scores and downstream task performance in more detail. It can be seen that the symmetry
scores considering word frequency can “predict” downstream task performance with remarkably
high correlation. On the other hand, the “prediction” performance of other metrics, including Ave.
Cos. and IsoScore that implicitly assume uniform word frequency, is unsatisfactory. Surprisingly,
when the most popular Ave. Cos. metric shows almost no correlation (0.04) with downstream task
performance (STS-B), Zipfian symmetry metric has a strong positive correlation (0.83) with it.

4 Why is Zipfian whitening better than uniform whitening?

A natural question is why the Zipfian approach empirically dramatically outperforms the uniform
approach. We provide a theoretical explanation using Table 4. In a nutshell, a significant difference
arises depending on whether the base measure of an exponential family is uniform or Zipfian.
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Figure 2: The relationship between the 1st-order symmetry (Def. 3, x-axis), the 2nd-order symmetry
(Def. 4, y-axis), and task performance (color). Each point represents either pre-trained or post-
processed word embeddings (GloVe, word2Vec, and fastText). The Zipfian measure well captures the
downstream task performance (right), while the uniform isotropic measure cannot (left).

Table 3: Spearman’s ρ×100 (each cell) between the symmetry scores (each column) and downstream
STS-B performance (each row), on pre-trained and post-processed embeddings (GloVe, word2Vec,
and fastText). The scores based on the Zipfian prior show a significantly higher correlation with task
performance compared to those based on the uniform prior including Ave. Cos. and IsoScore.

Ave. Cos. IsoScore Uniform Zipfian
[21] [49] 1st moment 2nd moment 1st moment 2nd moment

STS-B −6.95 0.07 −21.91 −21.21 62.13 89.55
SICK-R 20.09 18.41 13.26 −8.71 60.04 64.60

4.1 Characterization through generative model, partition function, and whitening

Exponential families: Hereafter, we interpret two salient generative models from the viewpoint of
exponential families: one given by Arora et al. [6] and the other generalizing the Levy–Goldberg
formula [32, Eq. (7)]. Details of these models will be provided shortly. An exponential family is a
class of probability distributions of a random variable x parametrized by a parameter θ, written in
the following (canonical) form:

p(x | θ) = π(x) exp (⟨x,θ⟩ − ψ(θ)) , ψ(θ) := logZ(θ) = log

(∑
x

π(x) exp(⟨x,θ⟩)
)
, (18)

where x is a sufficient statistic, θ is called a natural parameter, π is the base measure (or “prior”), and
ψ is the log-partition function. Once we specify the base measure π and the canonical pair (x,θ),
the log-partition function is determined. That being said, the base measure π is the design choice of
an exponential family left for us. In the following, we specifically examine an exponential family of
distributions in the form p(w | c), where word w is predicted given context c. Specifically, the context
represents a co-occurring word (in static word embeddings), a cloze sentence (in masked language
models), or a sentence prefix (in causal language models). In all of these cases, we predict a word
with the logit ⟨w, c⟩, making the exponential family a natural probabilistic model. Here, the vector c
represents the vector expression of the context c, known as the “context vector.” Note that, even for
the same word t, the predicted word vector w(t) and the predicting context vector c(t) are distinct.

Uniform prior: Arora et al. firstly considered a log-linear generative model of word embeddings
given a context (6) and demonstrated that when the generative model is adopted with normalized
context vectors and a huge vocabulary, the partition function asymptotically becomes constant (8) [6,
Lemma 2.1]. Here, we can regard that this model belongs to the exponential family with the uniform
base measure π(w) = π(c) = 1/|V| 4.

4Although Arora et al. [6]’s generative model treats a context vector c as a model parameter drifting by a
random walk, we can cast their model into an exponential family because they did not specify how the initial
context vector is generated. Hence, by regarding c as an observed token with the uniform prior π(c) = 1/|V|,
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Table 4: Through the differences in the underlying generative models, the empirical superiority of
Zipfian whitening over uniform whitening can be understood.

Generative models behind the (whitened) embeddings

p(w | c) = π(w) exp(⟨w, c⟩)
Z(c)

, Z(c) =
∑
w

π(w) exp(⟨w, c⟩); p(w, c) = p(w | c)π(c) (5)

with Uniform prior

p u (w | c) =
1 exp(⟨w, c⟩)

Z u (c)
, π(c) ∝ 1 (6)

with Zipfian prior

p z (w | c) =
p(w) exp(⟨w, c⟩)

Z z (c)
, π(c) = p(c) (7)

Partition functions become constant under certain conditions

Assume ∥c∥ ≡ 1, |V| → ∞, then

Z u (c) :=
∑
w

exp(⟨w, c⟩) = const. (8) [6]

At the optimal solution of the corresponding loss,

Z z (c) :=
∑
w

p(w) exp(⟨w, c⟩) = const. (9) [32]

Whitening coarsely achieves a constant partition function

Z u (c)

= |V|+
(∑

w

w

)⊤
c+

1

2
c⊤
(∑

w

ww⊤
)
c+ . . .

⇝ |V|+ 0⊤c +
1

2
c⊤Ic . . .≈ const. (10)[39]

Z z (c)

= |V|+
(∑

w

p(w)w

)⊤
c+

1

2
c⊤
(∑

w

p(w)ww⊤
)
c+ . . .

⇝ |V|+ 0⊤c +
1

2
c⊤Ic . . .≈ const. (11)[ours]

Vector norm under generative models

∥w∥22 ≈ 2d log p(w)− 2Z (12) [6]

long vector ↔ frequent (uninformative) word

∥w∥2G(w) ≈ 2KL(p(·)||p(· | w)) (13) [42] [Thm. 1]

long vector ↔ informative word

Loss and error corresponding to generative models p(w | c)

softmax cross-entropy loss

E
(w,c)

− log
exp(⟨w, c⟩)

Z u (c)
(14)

logit-adjusted softmax cross-entropy loss

E
(w,c)

− log
p(w) exp(⟨w, c⟩)

Z z (c)
(15) [36]

misclassification error

P(w,c)[w ̸∈ argmax
w′

⟨w′, c⟩] (16)

balanced error
1

|V|

∑
w∈V

Pc|w[w ̸∈ argmax
w′

⟨w′, c⟩] (17) [36]

Zipfian prior: An exponential family adopted with the Zipfian measure can be written as (7).
This generative model can be naturally derived from the skip-gram model with negative sampling
(SGNS) [37]. By assuming that the linear model c 7→ ⟨w, c⟩ is sufficiently capable of discriminating
cooccurring words and negative samples (as in the realizable case), we can see that the generative
model of the word embeddings must comply with the following formula:

log
p(w, c)

p(w)p(c)
− log k = ⟨w, c⟩, (19)

where k is the number of negative samples. This optimality formula owes to Levy and Goldberg [32],
and we call (19) the Levy–Goldberg formula. A more concise derivation is later given by Oyama
et al. [42]. We can regard the Levy–Goldberg formula as an exponential family with the Zipfian
base measure, π(w) = p(w) and π(c) = p(c), and the constant log-partition function Z z (c) ≡ k−1.
The generative model (7) is a relaxation of the Levy–Goldberg formula since we do not impose the
realizability assumption necessary for the derivation of (19).

their model is reduced to (6). The static context prior does not contradict Arora et al. [6]’s model with sufficiently
large d, where the random walk drifts extremely slowly.
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What does whitening do? Mu and Viswanath [39] proposed a method to approximately make the
partition function of the uniform prior model constant by centering the word vectors and removing
the top principal components (10). Our Zipfian whitening corresponds to Mu and Viswanath’s
post-processing method, in the sense that ours and theirs make the partition function constant up to
the second moment (11) and (10), respectively. In summary, Zipfian whitening (11) transforms a
probabilistic model into an exponential family adopted with the Zipfian base measure (7), making it
closer to the Levy–Goldberg formula (19).

4.2 Emphasis on rare words by Zipfian prior

Let us explore further why the Zipfian prior results in good performance in downstream tasks (§ 3.2).
In summary, the Zipfian prior approach emphasizes low-frequency words, while the uniform prior
approach emphasizes high-frequency words, both from perspectives of vector norms and errors/losses.
So far in this paper, we have repeatedly discussed weighting each word according to frequency,
so it may seem contradictory that Zipfian approach emphasizes low-frequency words as a result.
To illustrate, let us reconsider centering. In centering, the mean vector is subtracted from each
vector. Weighting each word vector by frequency when constructing the mean vector means that
signals corresponding to high-frequency words are removed more substantially from each vector. The
emphasis on low-frequency words has been repeatedly supported throughout the history of NLP and
information retrieval, such as Luhn’s hypothesis [34], inverse document frequency (IDF) [53], and
smooth inverse frequency (SIF) [7]. For instance, it is reasonable to emphasize the word ‘isotropy’
when creating a sentence embedding containing both words ‘the’ and ‘isotropy’.

From the perspective of vector norm

Under the Zipfian prior model, words with larger information content have longer (emphasized)
vector representations. Conversely, under the uniform prior model, words with smaller information
content have longer (emphasized) vector representations.

As a representative example of uniform prior models, the norms of word vectors learned by random
walk language models are theoretically and empirically proportional to word frequency (12) (see
Eq. (2.4) and Fig. 2 in Arora et al. [6]). That is, in such embedding space, words with less information
(e.g., ‘the’) are emphasized. This tendency is consistently observed in dynamic language models
and causal language models that adopt the softmax cross-entropy loss, another typical example of
the uniform prior family [28]. By contrast, when training word embeddings with skip-gram negative
sampling [37], the word embeddings follow the Zipfian prior family, and their norms become larger
with greater information, which we show subsequently [50, 60, 42]. Based on the formulation of
the exponential family and following Eq. (12) of Oyama et al. [42], we formally describe the norm
properties of the word vectors obtained from the Zipfian prior model.

Theorem 1 (The norm of a word vector learned with empirical Zipfian prior models reflect the
information amount of the word; a refined version of [42] Eq. (12)). Assume that word embeddings
{wi}i follow the Zipfian prior model (7), For the same word t, the vector w on the predicted side and
the vector c on the predicting side are shared: w(t) ≡ c(t) (weight tying), and

∑
t∈V p(t)w(t) = 0

(centered w.r.t. Zipfian prior), then each word vector w(t) satisfy

∥w(t)∥2G(t) ≈ 2KL(p(·)∥p(· | t)), G(t) :=
∑
t′∈V

p(t′ | t)c(t′)c(t′)⊤, (20)

where ∥w∥A with a positive definite matrix A denote a norm based on a quadratic form
√
w⊤Aw5.

Proof. Refer to Appendix F.

In Fig. 3, we experimentally confirmed that the norms of informative words become larger with
Zipfian whitening (shown from center to the right in Fig. 3), bringing them closer to the ideal Zipfian
prior model6.

5The matrix G(w) takes the form
∑

i xix
⊤
i is indeed positive definite, similar to a covariance matrix.

6Given these results, some readers may be interested in the experimental outcomes for a baseline where
uniform whitening is applied, followed by rescaling norms based on information content through Zipfian
whitening. For these results, please refer to Appendix G.
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Figure 3: Relationships between the information content − log p(w) and the vector norms ∥w∥2 for
top 500 frequent words w. The figure in the center represents the pre-trained GloVe model. By using
Zipfian whitening, the information content gets encoded in the norm (center to right). Conversely,
with uniform whitening, this phenomenon does not occur (center to left).

From the perspective of error and loss

The error and loss functions associated with the Zipfian prior model emphasize low-frequency words.
In contrast, the error and loss functions of the uniform prior model focus on the average loss across
the entire dataset, resulting in a greater emphasis on high-frequency words.

The standard classification loss is the softmax cross-entropy loss (14). By taking its expectation
over the dataset {(w, c)}, embeddings associated with higher-frequency words receive more updates
because the softmax is the uniform inverse link, corresponding to the uniform prior model. By
contrast, the logit-adjusted loss (15) has been proposed to tackle class imbalance [36]. From our
viewpoint, the logit adjustment term p(w) makes the inverse link belong to the Zipfian prior model.
The softmax and logit-adjusted losses are Fisher consistent to the misclassification (16) and balanced
(17) error rates, respectively. As the latter tends to stress minor classes, the logit-adjusted loss and
Zipfian prior model are suitable for emphasizing low-frequency words during the learning process.

Another prominent loss function for representation learning is contrastive loss, with the SGNS loss
(word2vec) [37] as a representative example in the context of word representation learning. This loss
similarly uses a loss aligned with the Zipfian prior:

− E
(w,c)

[
log σ(⟨w, c⟩) +

i=1,...,k∑
w′

i∼ p(w)

log σ(−⟨w′
i, c⟩)

]
, (21)

where σ is sigmoid function, and k is the number of negative samples. Since high-frequency words
are more likely to be sampled as negative examples, the loss has less impact on high-frequency
words in positive examples. Consequently, low-frequency positive words are relatively emphasized in
representation learning. The Levy–Goldberg formula in the previous section describes the properties
of an ideally trained word2vec model, which are essentially the properties of Zipfian prior models.

5 Unified explanation of the efficacy of existing methods

Distinguishing the distribution that the base measure follows helps us understand why some existing
NLP methods are effective.

5.1 Uniform whitening of token embeddings ≈ Zipfian whitening of type embeddings

Masked language models like BERT [18] and RoBERTa [33] produce dynamic (contextualized)
token embeddings. Adding up such token embeddings of constituent tokens to create sentence
embeddings often leads to poor empirical performance [46]. However, symmetrizing significantly
improves their performance; such methods including “batch centering,” “WhiteningBERT,” and
contrastive learning methods [16, 46, 59, 22, 26, 57]. This improvement can also be explained
from the perspective of the Zipfian prior. A dataset or corpus is first fed into the model to obtain
token embeddings7. Centering/whitening is then applied to this entire set of embeddings. As this
token embedding (multi)set has the multiplicity asymptotically proportional to the word frequency,

7Here, the computation of the additive composition s := 1/|s|
∑

w∈s w can be ignored without major issues
in formal discussions of spatial symmetry. This is because the words in a sentence are generated based on word

9



Table 5: The empirical performance difference between “uniform”—enforced centering and whitening
with a uniform prior for dynamic embeddings, and “Zipfian”—conventional uniform centering and
whitening over tokens with an implicit Zipfian prior over types. Each cell shows the STS-B [15]
score ×100. This comparison reveals that token-level uniform centering/whitening, corresponding to
type-level Zipfian centering/whitening, leads to empirically better performance.

BERT-base 63.75

“Uniform” “Zipfian”
+ Centering 64.04 64.82
+ Whitening 60.53 64.91

RoBERTa-base 60.75

“Uniform” “Zipfian”
+ Centering 60.34 61.30
+ Whitening 61.31 65.59

this uniform centering/whitening of token embeddings corresponds to the word-frequency-weighted
(Zipfian) centering/whitening of type embeddings. For a more formal description of the above
explanations, please refer to Appendix H. Additionally, recent work has found that contrastive
additive sentence encoders implicitly weight words by their information content [30]. This finding is
consistent with the previous discussion on vector norms (§ 4.2), and can be seen as indirect evidence
supporting the idea that these models belong to the Zipfian prior family.

This idea can also be supported by empirical evidence. This idea is also supported by empirical
evidence. To establish a baseline for centering and whitening token embeddings under a uniform
prior, we scale each embedding by the reciprocal of its type frequency, ensuring uniform treatment
across types. Refer to the Appendix H for the detailed computation of this pseudo uniform approach
and a formal explanation of how it achieves type uniformity. Table 5 shows the results. Comparing the
pseudo-uniform centering/whitening (which assumes a uniform prior over types) with the conventional
token-level uniform centering/whitening (which implicitly assumes a Zipfian prior over types) reveals
that the latter approach based on a Zipfian prior empirically achieves better performance. Additional
experimental settings and results can be found in Appendix B and Appendix I.

5.2 Headless causal language model roughly belongs to Zipfian prior family

The recently proposed headless language model [23] uses only words within the same batch to
predict next tokens with a pseudo-softmax function. This method originally aimed to reduce the
computational cost of the softmax function in the |V| direction, but an interesting side effect is the
improvement in the performance. This success can also be explained from the perspective of Zipfian
priors. If we repeatedly sample small batches, the sampling frequency of each word will increasingly
reflect its true frequency as the batch size approaches 1.

6 Conclusion

Standard methods for adjusting and measuring symmetries in word embedding spaces—such as cen-
tering and whitening—implicitly assume uniformly distributed word frequencies, which is unrealistic.
We hypothesize that, based on the type-token distinction, using empirical Zipfian word frequencies
is essential when calculating the expectation (§ 2). Based on the idea and the definitions of first-
and second-order symmetry in random vectors, we derived Zipfian whitening, which enhances the
symmetry of the word embedding space. Even though it is nearly identical to standard PCA whitening,
Zipfian whitening significantly outperforms existing methods (§ 3.2). Similarly, we derived a metric
to evaluate the symmetry of word embedding spaces. Our intrinsic metrics showed a strong correlation
with extrinsic task performance, even when popular metrics show almost none (§ 3.3). We then
presented a framework explaining the differences in effect between whitening based on uniform and
Zipfian approaches, by attributing them to differences in the base measure of the exponential family
(§ 4.1). By further exploring this viewpoint through information geometry and loss functions, we
showed how the Zipfian approach emphasizes the informativeness of low-frequency words (§ 4.2).
Lastly, through our proposed viewpoint, we found that popular NLP methods perform well because
their word embeddings end up encoding a Zipfian prior; such models include word2vec [37] (Fig. 4.2),
WhiteningBERT [26] (§ 5.1), and headless language models [23] (§ 5.2).

frequency distribution, resulting in the first and second moments (Def. 1, Def. 2) of sentence vectors closely
matching those of word vectors.
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Limitations

How these assumptions might be violated in practice

In our theoretical analysis concerning norms, and in the discussion on the relationship between
whitening and normalization constants, we have proceeded by ignoring the residual terms beyond the
second order. Empirically, focusing only on the first and second order has yielded significant results.
However, to accurately identify cases where the proposed method might fail, a detailed theoretical
and empirical examination of the asymptotic behavior of higher-order moments might be crucial.
This remains an important future work.

The condition that the partition function is constant is only a necessary condition from the perspective
of both the generative model’s optimal solution and whitening. The true logical relationship between
whitening and the generative model has not been clarified. In particular, verifying whether the
projection through whitening allows us to transition between the two model families (the uniform
family and the Zipfian family) is an intriguing and valuable direction for both theoretical exploration
and practical application.

The scope of the empirical claims made

Our experiments primarily focused on static and dynamic word embeddings, as many of their
theoretical properties have been understood and they have been central to the rise of isotropization.
Admittedly, this paper also advances our understanding of causal language models. However, to
make a more significant practical impact in the era of large language models, employing the proposed
method as a regularization term for next-token prediction holds great promise for future work.

The experiments utilized typical downstream NLP tasks, particularly popular datasets for sentence-
level semantic tasks. By scaling up the task set to include word-level tasks or leveraging a broader
range of multilingual data, we can more robustly demonstrate the practical utility of the proposed
framework.

The factors that influence the performance of our approach

The proposed method inherently involves numerically unstable calculations, such as multiplying
by the inverse of small singular values. Embeddings for low-frequency words are often far from
converged even after extensive pre-training, and the eigenvalues of the embedding space are known to
decay. Given these situations, the adverse effects of small singular values are plausible. Considering
recent advancements in whitening techniques, developing a more numerically stable algorithm is an
important direction for future work.

Broader Impacts

Potential impacts to AI alignment Dohmatob et al. [19] reported that repeated sampling from
generative AIs may shift word frequency distributions toward lighter-tailed distributions. This may
reduce linguistic diversity and lead to cultural homogenization by diminishing region-specific or
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culturally unique expressions. Our Zipfian whitening and similar regularization methods could
enhance output diversity, enriching the linguistic landscape.

Potential negative societal impacts The sentence similarity tasks used in our evaluation experiments
are now considered core technologies for RAG (retrieval-augmented generation), which is essential
when large language models leverage external resources. If chatbots generate responses tailored to
user ideologies or preferred information sources, it may result in negative societal impacts, including
political agitation.
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A Explanation fo the Zipfian whitened word vectors will have a zero mean
and be in an isotropic position in terms of expectation

The second step of PCA whitening involves decorrelating the dimensions and then normalizing them,
which is achieved by transforming the centered random vector w as follows:

w̃ := E[ww⊤]−1/2w. (22)

Actually, E[w̃w̃⊤] = Id holds; w̃ satisfies Def. 2. Computationally, the estimation of E[ww⊤]−1/2

can be performed efficiently via singular value decomposition (SVD) of the centered “data” matrix
W := [w⊤

1 , . . . ,w
⊤
n ]

⊤. Note again that, this standard method assumes that the frequency of each
word (i.e., each row) is uniform, which presents the issues discussed in § 2. To account for word
frequency, SVD should be performed on the matrix

W p :=
[√

p(w1)w
⊤
1 , . . . ,

√
p(w|V|)w

⊤
|V|

]⊤
∈ R|V|×d, (23)

where each word frequency is multiplied by its square root. In fact, W
⊤
p W p serves as an estimator

for E
w∼p

[ww⊤]. This can be confirmed by comparing the (j, k)’th elements of each matrix (or

matrix-valued random variable):
E

w∼p
[ww⊤][j, k] = E

w∼p
[w[j]w[k]], (24)

(W
⊤
p W p)[j, k] =

∑
i

p(wi)wi[j]wi[k], (25)

where A[j, k] denotes the (j, k)’th element of A, and v[j] denotes the j’th element of v. Finally, the
estimator for the desired E[ww⊤]−1/2 can be computed as

W p = UΣV ⊤ (via SVD) (26)

Ê
w∼p

[ww⊤]−1/2 = (W
⊤
p W p)

−1/2 = ((UΣV ⊤)⊤(UΣV ⊤))−1/2 = (V Σ2V ⊤)−1/2 = V Σ−1.

(27)

Table 6 shows the correspondence between uniform (normal) whitening and Zipfian whitening. This
may be useful for readers familiar with matrix notation.

B Experimental settings

To ensure the reproducibility of the experiments conducted in this paper, we provide detailed
configurations below. Additionally, the source code has been made publicly available at https:
//github.com/cl-tohoku/zipfian-whitening.

B.1 Word embeddings

For static embeddings, we used the most standard ones, 300-dim GloVe[43] model trained on
Common Crawl8, 300-dim word2vec[37] model trained on Google News9, and 300-dim fastText[11]
subword/non-subword models trained on Common Crawl10. For the multilingual experiment, we
used fastText-ja [11], a fastText model trained on Japanese Wikipedia and Common Crawl 11.

8https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.
300d from Sentence-Transformer’s implementation [46].

9https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/ from https:
//code.google.com/archive/p/word2vec/

10https://fasttext.cc/docs/en/english-vectors.html
11https://fasttext.cc/docs/en/crawl-vectors.html
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Table 6: The correspondence between uniform (normal) whitening and Zipfian whitening.

Uniform whitening Zipfian whitening
for general table data for word embeddings

data matrix,
original vectors X =


...
xi

...

 W =


...
wi

...

 ∈ Rn×d

probability x ∼ Uniform dist. w ∼ Power-law dist.

p(xi) =
1

n
p(wi) = p(wi) (word freq.)

mean vector µ̂x =
∑
i

1

n
xi µ̂w =

∑
i

p(wi)wi ∈ Rd

centered matrix,
centered vectors X =


...

xi = xi − µ̂x

...

 W =


...

wi = wi − µ̂w

...

 ∈ Rn×d

centered matrix
to create cov. mat. Xp =


...√

1/(n− 1) xi

...

 W p =


...√

p(wi) wi

...

 ∈ Rn×d

covariance matrix
Ŝ = X

⊤
p Xp

=
X

⊤
X

n− 1

Ŝ = W
⊤
p W p ∈ Rd×d

SVD
of centered matrix X = UΣV ⊤ W p = UΣV ⊤

Σ = diag(σ1, . . . , σd) Σ = diag(σ1, . . . , σd)

= eigendecomposition
of covariance matrix Ŝ =

X
⊤
X

n− 1
= V ΛV ⊤ Ŝ = W

⊤
p W p = V ΛV ⊤

Λ = diag(λ1, . . . , λd) Λ = diag(λ1, . . . , λd)

:=
Σ2

n− 1
= diag

(
σ2
1

n− 1
, . . .

)
:= Σ2 = diag

(
σ2
1 , . . .

)
Λ−1/2 := diag

(
1√
λ1

, . . .

)
Λ−1/2 := diag

(
1√
λ1

, . . .

)
= diag

(√
n− 1

σ2
1

, . . .

)
= diag

(
1

σ1
, . . .

)
whitened matrix X̃ = XV Λ−1/2 W̃ = WV Λ−1/2

whitened vector =


...

x̃i = xiV Λ−1/2

...

 =


...

w̃i = wiV Λ−1/2

...



For dynamic embeddings, we used three most standard masked language models, BERT[18]12,
RoBERTa[33]13, and DeBERTa [25]14. All three models are base size. To aggregate the dynamic
word embeddings to create sentence embeddings, we follow the first-last average pooling from the
prior work [22]. In this setting, we first average the hidden states of first and last dynamic layer of

12https://huggingface.co/google-bert/bert-base-uncased
13https://huggingface.co/FacebookAI/roberta-base
14https://huggingface.co/microsoft/deberta-base
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the model to get the averaged token embeddings15, then average the token embeddings to get final
sentence embeddings16.

B.2 Empirical word frequency and vocabulary

As the empirical word probability p(w) of English words, we used the enwiki dataset preprocessed
by Arora et al. [7]17. For the Japanese word probability, we used Japanese Wikipedia word frequency
from Wiktionary, denoted as jawiki 18. Furthermore, we also used the frequency of words in the
evaluation data itself (test set probability). The word frequency in the test set is implicitly utilized
in [7]’s sentence embedding method and is also a natural approach in the context of “covariate
shift” [52].

As vocabulary V , we used the overlapping entries between the word frequency list and the pre-trained
word embedding model’s vocabulary across all settings, including baseline methods.

B.3 Baseline methods

As baselines for post-processing of word vectors, we used ABTT (all-but-the-top) [39], which
established the trend of post-processing word vectors; and the strong baseline method by [7], the com-
bination of SIF (smoothed inverse frequency) weighting and CCR (common component removal)19.
We followed the hyperparameter choices of the original papers, with the dimensionality reduction
parameter for ABTT set to D := 3, and the weighting parameter for SIF set to a := 10−3.

B.4 Extrinsic tasks

As downstream tasks, we used the most commonly utilized ones in the community, STS12-16 [1, 2,
3, 4, 5], STS-B [15] and SICK-R [35]. For the multilingual experiments, we used JSTS (Japanese
version of the STS) from JGLUE benchmark [29]. They are sentence-level similarity tasks and are
standard for empirically evaluating the performance of word vectors20 21. These datasets consist of
pairs of sentences and their semantic similarity rated by annotators. We first tokenized the dataset

15Note that, we apply centering/whitening operations to such token embeddings, not to the final sentence
embeddings, in order to match the setting in the theoretical analysis and the static word embedding experiments.

16Though we followed the experimental setting from the prior work [22], there is a slight discrepancy in the
experimental results of the baseline setting. We found that this was due to prior work inadvertently taking the
average of the hidden states of the zero-th layer (i.e., static word embedding layer) and the final dynamic layer.
See the discussion at https://github.com/princeton-nlp/SimCSE/issues/285 for more details.

17https://github.com/PrincetonML/SIF/raw/master/auxiliary_data/enwiki_vocab_min200.
txt

18https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Japanese2015_10000 and
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Japanese2015_10001-20000

19CCR is a process applied to sentence vectors, but due to its linearity, it can be adapted to word vectors. For
more details, please refer to Yokoi et al. [60].

20For those outside the field of NLP research or practice, the question, “Why not run word-level evaluation
metrics?” is a natural and valid one. Our language has a property known as compositionality, allowing infinite
semantic content to be conveyed through a finite vocabulary as building blocks. This principle underlies models
like word2vec [37], BERT [18], and the GPT series [12], where the fundamental unit of representation is the
word; these models are then applied to solve tasks with larger components, such as sentences. Our research
adheres to this foundational principle of NLP. Also, existing word-level similarity datasets have significant
issues that make them less suitable for our work (see Bakarov [8, Section 4.1.1]). Given that whitening reflects
word information content in vector norms, classic tasks like keyword extraction—which selects words with high
information content—could be good candidates; results from a prior study using methods similar to ours would
also be informative [42, Section 7.1].

21Setting aside the criticisms from previous studies for now, we conducted an evaluation using the two
most well-known lexical similarity datasets. Table 7 shows the results. We found that the process of raw →
Zipfian centering → Zipfian whitening consistently improves lexical properties. However, note that the finding
“direction: uniform whitening > direction: Zipfian whitening” contradicts the experimental results in Appendix G,
which showed “direction: uniform whitening, norm: Zipfian whitening < direction: Zipfian whitening, norm:
Zipfian whitening.” Here, lexical similarity tasks rely solely on vector direction and do not reference vector
norms, as only the cosine similarity between word vectors is used to predict similarity. This discrepancy likely
arises because these datasets are not representative of natural language, as discussed in Bakarov [8, Section
4.1.1]. For example, the widely used dataset WordSim353 [31] includes only about 200 subjective ratings on
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by NLTK [9] with some post-processing following [20]22, then lowercased all tokens. The typical
experimental protocol we followed is to sum the word vectors to form a “sentence vector” and then
check if the angles (cosine similarity) between them correlate well with the gold scores. We reported
Spearman’s rank correlation between the predictions (cosine scores) and human-annotated gold
scores23.

B.5 Computational resources for experiments

We conducted all experiments using a single NVIDIA RTX 6000 Ada GPU with 48GB VRAM. Each
STS task required 10 seconds per model and whitening method, totaling approximately 10 minutes
for the entire experiment, excluding the embedding loading time to the GPU.

For the calculation of the symmetry scores, each setting took one minute, resulting in a total of 5
minutes, again excluding the embedding loading time and the average cosine similarity (Ave. Cos.)
setting. The Ave. Cos. score computation took 10 minutes per model, totaling 20 minutes for the two
models.

C Experimental results on all benchmark datasets to evaluate the effects of
Zipfian whitening

In § 3.2, we evaluated the empirical performance of Zipfian whitening on the STS-B dataset. In this
section, we present experimental results using more comprehensive datasets. Detailed experimental
settings can be found in Appendix B. Table 8, Table 9 and Table 10 show the results. Across all
datasets, the method incorporating a Zipfian prior consistently outperforms the method employing a
uniform prior.

D Proof of Prop. 1

Proof. We will show the following.

E[(v − E[v])(v − E[v])⊤] ∝ Id (28)
1⇐⇒ λ1 = λ2 = · · · = λd (29)

2⇐⇒ Sym2(v) =
1

log d
H

(
λ1∑
j λj

, . . . ,
λd∑
j λj

)
= 1 (30)

(
1

=⇒ ) When E[(v − E[v])(v − E[v])⊤] = kId holds, its eigenvalues are {k, . . . , k}.
(

1⇐= ) Since E[(v − E[v])(v − E[v])⊤] is symmetric positive definite, it can be represented as
UΛU⊤ using a diagonal matrix with eigenvalues Λ = diag(λ1, . . . , λd) ∈ Rd×d and an orthogonal

common nouns, such as (tiger, cat, 7.35) or (king, cabbage, 0.23), which may or may not co-occur in the same
document.

Table 7: Each cell shows the correlation coefficients ×100 between the cosine similarity of (corrected) GloVe
embeddings and the human-annotated gold score on lexical similarity tasks.

WordSim353 [31]

GloVe 78.70
Uniform Zipfian

+ Centering 75.39 79.66
+ Whitening 82.31 80.90

MEN [13]

GloVe 80.49
Uniform Zipfian

+ Centering 78.07 80.55
+ Whitening 84.35 83.97

22https://github.com/kawine/usif/blob/71ffef5b6d7295c36354136bfc6728a10bd25d32/
usif.py#L113-L126

23We used the MTEB [40] implementation: https://github.com/embeddings-benchmark/mteb, for
the evaluation of the static word embeddings in Table 2,Table 8, and Table 9. For the evaluation of the
dynamic word embeddings in Table 5 and Table 12, we used the implementation in SimCSE paper [22]:
https://github.com/princeton-nlp/SimCSE, to match the experimental setting.
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matrix U . Now we have λ1 = λ2 = . . . λd =: k, then E[(v − E[v])(v − E[v])⊤] = UΛU⊤ =

UkIdU
⊤ = kId.

(
2⇐⇒ ) The Shannon entropy H(p) of a random variable p taking d possible values attains its

maximum value log d if and only if p follows uniform distribution.

E Pseudocode for the evaluation metrics of symmetry

See Algorithm 2 to measure the degree of symmetry of word embeddings.

Algorithm 2 Measure the degree of symmetry of word embeddings

Input: Word embeddings {wi}, word frequency p : V → [0, 1].

Output: Degree of centrality (the 1st moment) Ŝym1({wi}, p) and isotropy (the 2nd moment)
Ŝym2({wi}, p).
Measure the degree of centrality (the 1st moment of symmetry):

1: µ̂ ←
∑
wi∈V

p(wi)wi ∈ Rd

2: ℓ ←
∑
wi∈V

p(wi)∥wi∥ ∈ R

3: Ŝym1({wi}, p)← 1− ∥µ̂∥/ℓ
Measure the degree of isotropy (the 2nd moment of symmetry):

4: W ←
[√

p(w1)(w1 − µ̂)⊤, . . . ,
√
p(w|V|)(w|V| − µ̂)⊤

]⊤
5: UΣV ⊤ ← SVD(W)

▷ Σ = diag(σ1, . . . , σd) ∈ Rd×d consists the singular values of W .
6: (λ1, . . . , λd)← (σ2

1 , . . . , σ
2
d)

7: Ŝym2({wi}, p)← −
1

log d

∑
i

λi∑
i λi

log
λi∑
i λi

F Proof of Thm. 1

Proof. By the assumption, the word and context vectors for the same word t ∈ V , w(t) and c(t),
are obtained through the linear embedding layer with weight tying, namely, w(t) = U1t and
c(t) = U1t, where U ∈ Rd×|V| is the embedding matrix and 1t ∈ R|V| is the one-hot vector
indicating the token t. To derive the KL divergence for the model p(c | w), we need to begin with the
generative model p(w | c) (7) and confirm that p(c | w) belongs to an exponential family.

p(c | w) = p(w | c)p(c)
p(w)

=
exp(⟨w, c⟩)
Z z (c)

p(c) =
p(c) exp(⟨U⊤w,1c⟩)

Z z

,

where we used the constancy of the partition function (≡ Z z ) from (9) at the last identity. Hence,
p(c | w) is an exponential family parametrized by U⊤w(:= θ ∈ R|V|), and its log-partition function
is given as follows:

ψc|w(θ) = log

(∑
c∈V

p(c) exp(⟨θ,1c⟩)
)
.

The second-order expansion of the KL divergence can be derived based on the second moment of
p(c | w), which is given by the Hessian of ψc|w in the case of exponential families. First, let us derive
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the first moment.

∂ψc|w

∂θ
=

∑
c
p(c)
Z z

exp(⟨θ,1c⟩)1c∑
c′

p(c′)
Z z

exp(⟨θ,1c′⟩)
=
∑
c∈V

p(c) exp(⟨θ,1c⟩)
Z z

1c =
∑
c∈V

p(c | w)1c =


...

p(c | w)
...

 .
Then, the second moment is derived.

∂ψc|w

∂θ∂θ⊤ =
1

Z z

∑
c∈V

p(c)

{
∂

∂θ
exp(⟨θ,1c⟩)

}
1⊤
c =

1

Z z

∑
c∈V

p(c) exp(⟨θ,1c⟩)1c1
⊤
c

=
∑
c∈V

p(c | w)1c1
⊤
c = diag[. . . p(c | w) . . . ],

which is the |V| × |V| diagonal matrix with p(c | w) being the (c, c)-th diagonal entry. Now, we
are ready to derive the KL divergence. For two tokens w,w′ ∈ |V|, if we write θ := U1w and
θ′ := U1w′ , the KL divergence of the exponential family can be expanded as the following quadratic
form in their parameters θ and θ′:

2KL(p(· | w′)∥p(· | w)) ≈ (θ′ − θ)⊤
(
∂ψc|w

∂θ∂θ⊤

)
(θ′ − θ)

= (w′ −w)⊤U

(
∂ψc|w

∂θ∂θ⊤

)
U⊤(w′ −w)

= (w′ −w)⊤
{∑

c∈|V|

p(c | w)(U1c)(U1c)
⊤
}
(w′ −w)

= (w′ −w)⊤
{∑

c∈V
p(c | w)cc⊤

}
(w′ −w)

= (w′ −w)⊤G(w)(w′ −w)

= ∥w′ −w∥2G(w).

We can consider a word w0 such that p(·) = p(· | w0), that is, an uninformative word w0 whose
presence does not change the marginal distribution at all. Noting from Equation (22) of Oyama et al.
[42] that w :=

∑
w∈V p(w)w ≈ w0, we have

KL(p(·)∥p(· | w)) = KL(p(· | w0)∥p(· | w)) (31)

= ∥w0 −w∥2G(w) (32)

≈ ∥w −w∥2G(w) (33)
Assump.
= ∥w∥2G(w). (34)

G Experiments with a mix of uniform and Zipfian settings

Based on the findings that Zipfian whitening positively impacts word vector norms (§ 4.2), we present
experimental results for a baseline: first, uniform whitening is applied, followed by rescaling norms
according to information content through Zipfian whitening.

Table 11 presents the results, with the basic settings identical to those in Table 2, but uses Pearson’s
r as the evaluation metric. Here, “Uniform +α” refers to the process of “correcting word vectors
using a uniform prior, then replacing only the norm with that obtained from Zipfian whitening.” We
found that appropriately weighting by norm has a critical effect on task performance. Notably, pure
Zipfian centering/whitening performs even better, suggesting that Zipfian correction has two effects:
(i) the norm becomes representative of information content (§ 4.2), and (ii) vectors are more evenly
dispersed (isotropic), resulting in appropriate positioning in terms of direction as well.
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H Formal Explanation of “Uniform whitening of token embeddings ≈
Zipfian whitening of type embeddings”

In this section, we provide a more formal explanation of “Uniform whitening of token embeddings ≈
Zipfian whitening of type embeddings,” as described in § 5.1. For intuitive explanations and related
discussions, please refer to § 5.1.

H.1 Uniform whitening of token embeddings ≈ Zipfian whitening of type embeddings

Assume that, when the type word of a token t is w, the token embedding t aligns with the shared type
embedding w.
Assumption 1. If type(t) = w, then t = w.

Note that this is a rough approximation, as token embeddings are dynamic and vary with context.
Under this assumption, the unweighted mean of token embeddings Ê u [t] obtained from a dataset D
is asymptotically equivalent to a word-frequency-weighted (Zipfian) average of type embeddings
E z [w], as |D| → ∞:

Ê u [t] :=
1

|D|
∑
t∈D

t
Assump. 1≈ 1

|D|
∑
w∈V

cD(w)w
|D|→∞−−−−−→

∑
w∈V

p(w)w =: E z [w], (35)

where cD denotes the count of type w in D: cD(w) := #{t ∈ D : type(t) = w}.

H.2 Pseudo-uniform whitening of token embeddings ≈ uniform whitening of type
embeddings

To establish a baseline for centering/whitening token embeddings under uniform prior, we can apply
a coefficient 1/|VD| · 1/cD(type(t)) to each token embedding t, for removing type frequencies that are
implicitly referenced. Here, VD denotes the vocabulary contained in D: VD := {w ∈ V : ∃t ∈
D, type(t) = w}. The “pseudo-uniform” average Ê

ũ
[t] calculated in this way is asymptotically

equivalent to the uniform average of type embeddings E u [w], under the previous assumption
(Assump. 1) that ignores the dynamic nature of token embeddings:

Ê
ũ
[t] :=

∑
t∈D

1

|VD|
1

cD(type(t))
t

Assump. 1≈
∑

w∈VD

1

|VD|
���cD(w)

���cD(w)
w

|D|→∞−−−−−→
∑
w∈V

1

|V|w =: E u [w].

(36)

I Experimental results on all benchmark datasets to evaluate the effects of
uniform whitening on token embeddings

In § 5.1, we evaluated the empirical performance of uniform whitening of dynamic token embeddings
on the STS-B dataset. In this section, we present experimental results using more comprehensive
datasets. Table 12 shows the results. Across all datasets, the methods implicitly incorporating a
Zipfian prior consistently outperforms the method employing a uniform prior.
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Table 8: Full results of the empirical performance of Zipfian whitening. Each cell shows the STS
score ×100. As empirical word frequency p(w), we used enwiki. Across all models and tasks,
Zipfian whitening outperforms powerful baseline methods.

Method STS12 STS13 STS14 STS15 STS16 SICK-R STS-B Avg.

GloVe

Averaging 56.46 50.41 51.13 58.60 49.03 57.01 46.17 52.69
+ Centering 55.54 46.32 49.67 56.03 46.90 56.44 45.17 50.87Uniform + Whitening 53.31 62.45 57.93 68.68 58.69 57.92 52.21 58.74
+ Centering 54.52 69.20 60.87 69.82 62.61 58.01 52.25 61.04Zipfian + Whitening 57.76 72.22 67.04 76.80 71.72 61.80 66.92 67.75

ABTT 52.67 67.38 59.40 69.53 60.71 58.56 54.28 60.36
SIF + CCR 60.23 68.78 62.39 67.26 61.85 56.91 58.70 62.30

Word2Vec

Averaging 58.57 68.64 63.65 71.73 61.79 61.77 56.98 63.30
+ Centering 58.17 67.34 62.19 70.15 59.60 61.39 55.85 62.10Uniform + Whitening 56.53 66.95 62.77 72.42 61.05 62.74 56.03 62.64
+ Centering 56.89 69.95 65.08 73.91 65.71 62.18 58.84 64.65Zipfian + Whitening 56.16 70.33 67.20 76.60 70.99 62.52 66.50 67.19

ABTT 55.53 69.32 63.13 72.25 60.98 62.02 56.98 62.89
SIF + CCR 60.05 73.26 66.87 74.32 67.64 59.22 63.04 66.34

fastText

Averaging 57.94 68.97 62.37 72.26 63.59 59.99 59.82 63.56
+ Centering 59.73 55.02 55.16 64.22 53.39 58.85 52.46 56.98Uniform + Whitening 52.47 59.01 53.90 65.33 52.61 58.34 48.60 55.75
+ Centering 58.30 71.69 64.57 74.10 67.59 60.75 59.40 65.20Zipfian + Whitening 58.86 73.85 68.43 78.07 74.00 62.85 69.55 69.37

ABTT 58.35 69.09 60.82 71.99 60.76 60.34 57.02 62.62
SIF + CCR 61.54 76.95 68.39 76.98 70.27 59.52 67.08 68.67

fastText-subword

Averaging 49.10 47.34 51.94 61.99 51.54 53.60 50.43 52.28
+ Centering 49.21 43.13 49.89 62.03 49.70 54.56 46.91 50.78Uniform + Whitening 45.12 41.00 47.30 62.08 48.85 54.80 43.55 48.96
+ Centering 48.68 55.03 54.07 60.23 58.41 54.64 50.38 54.49Zipfian + Whitening 61.22 60.68 63.18 73.59 69.87 59.82 68.20 65.22

ABTT 49.64 41.79 48.81 60.84 47.57 55.09 44.23 49.71
SIF + CCR 57.28 54.50 60.77 68.82 61.63 56.83 60.36 60.03

23



Table 9: Full results of the empirical performance of Zipfian whitening, test set frequency setting.
Each cell shows the STS score×100. As empirical word frequency p(w), we used test set frequency.
Across all models and tasks, Zipfian whitening outperforms powerful baseline methods. Besides, the
test set frequency setting consistently outperforms the enwiki setting in Table 8, demonstrating that
the models benefit from using task-specific statistics in line with a covariate shift approach [52].

Method STS12 STS13 STS14 STS15 STS16 SICK-R STS-B Avg.

GloVe

Averaging 57.71 50.29 50.61 58.38 48.76 56.76 46.22 52.67
+ Centering 56.32 61.17 52.68 64.80 55.80 57.98 47.94 56.67Uniform + Whitening 51.67 60.94 57.14 70.09 63.08 55.14 53.16 58.74
+ Centering 50.69 70.66 61.59 70.19 68.25 60.03 56.64 62.58Zipfian + Whitening 61.63 78.36 69.48 76.83 74.08 60.11 71.60 70.30

ABTT 52.93 66.93 60.10 71.93 63.12 58.23 53.72 60.99

Word2Vec

Averaging 59.00 68.92 63.99 72.51 62.25 61.87 57.15 63.67
+ Centering 57.88 70.34 64.24 74.71 65.57 62.47 58.09 64.76Uniform + Whitening 58.45 69.42 65.46 76.43 67.78 62.87 60.85 65.89
+ Centering 55.02 71.47 65.81 74.36 69.52 62.92 61.02 65.73Zipfian + Whitening 59.37 76.92 69.48 76.42 73.56 60.07 70.42 69.46

ABTT 56.33 70.42 64.71 74.74 65.19 62.55 58.21 64.59

fastText

Averaging 58.23 69.36 62.89 73.09 64.25 60.22 60.27 64.04
+ Centering 60.60 69.51 61.09 73.92 64.49 61.14 57.42 64.02Uniform + Whitening 55.56 63.51 57.73 70.68 62.40 57.93 54.65 60.35
+ Centering 55.92 73.36 65.72 74.12 72.18 62.30 62.95 66.65Zipfian + Whitening 62.20 79.35 71.03 77.95 76.28 60.66 73.56 71.58

ABTT 59.13 71.00 63.30 74.80 65.96 61.69 58.23 64.87

fastText-subword

Averaging 51.37 51.49 54.57 62.75 52.97 53.53 52.41 54.16
+ Centering 51.31 44.80 49.66 62.27 47.43 54.86 43.12 50.49Uniform + Whitening 51.52 49.33 53.51 68.28 58.34 56.94 51.69 55.66
+ Centering 43.15 53.40 53.67 63.05 59.09 56.57 47.16 53.73Zipfian + Whitening 60.87 72.21 67.79 75.86 73.88 60.52 70.99 68.87

ABTT 49.06 45.16 49.57 62.14 50.75 55.49 44.53 50.96

Table 10: Evaluation results using Japanese fastText. Each cell shows the JSTS [29] score ×100.
Even in the multilingual setting, Zipfian whitening outperforms powerful baseline methods.

(a) With jawiki as p(w)

fastText-ja 55.81

Uniform Zipfian
+ Centering 56.05 57.55
+ Whitening 55.53 65.56
+ ABTT 57.14
+ SIF + CCR 61.03

(b) With test set frequency as p(w)

fastText-ja 59.94

Uniform Zipfian
+ Centering 59.89 63.05
+ Whitening 61.75 69.86
+ ABTT 63.02

Table 11: Each cell shows the STS-B [15] score ×100.

GloVe 43.65

Uniform Zipfian +α Zipfian
+ Centering 41.27 53.66 55.15
+ Whitening 53.22 64.83 70.22
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Table 12: Full results of the whitening on dynamic embeddings. Each cell shows the STS score
×100. Token-level uniform centering/whitening ("Zipfian" settings), which corresponds to center-
ing/whitening at the word type level under a Zipfian prior, consistently outperforms the "Uniform"
setting across all STS tasks.

Method STS12 STS13 STS14 STS15 STS16 SICK-R STS-B Avg.

BERT-base uncased

First-last avg. 45.09 64.30 54.56 70.52 67.87 59.05 63.75 60.73
+ Centering 47.51 64.53 54.68 72.19 69.28 59.77 64.04 61.71"Uniform" + Whitening 40.31 56.11 47.02 68.35 64.53 48.59 60.53 55.06
+ Centering 47.58 66.26 57.32 73.18 71.09 63.27 64.82 63.36"Zipfian" + Whitening 53.75 74.07 64.21 73.88 72.83 69.71 64.91 67.62

RoBERTa-base

First-last avg. 44.00 59.02 49.31 66.63 59.62 57.56 60.75 56.70
+ Centering 46.07 55.50 46.27 66.06 60.06 51.33 60.34 55.09"Uniform" + Whitening 37.67 54.64 47.71 66.31 62.85 50.13 61.31 54.37
+ Centering 44.97 61.19 53.73 69.57 67.88 58.60 61.30 59.61"Zipfian" + Whitening 52.80 73.39 64.18 72.64 72.02 71.07 65.69 67.40

DeBERTa-base

First-last avg. 45.03 61.94 52.39 68.90 64.83 56.54 61.66 58.76
+ Centering 45.20 61.25 50.84 68.56 63.87 53.18 62.01 57.84"Uniform" + Whitening 38.12 50.46 45.30 63.52 62.29 46.99 58.19 52.12
+ Centering 45.87 63.24 55.07 70.53 68.88 58.50 63.18 60.75"Zipfian" + Whitening 52.97 73.54 63.25 72.60 71.97 69.79 64.63 66.96
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Details are provided in Limitation (§ 6).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See e.g. Appendix D, Appendix F, and Appendix H.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In (Appendix B), we have comprehensively described the experimental settings
necessary for reproducing the empirical validations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

27



Answer: [Yes]
Justification: Source code has been made publicly available at https://github.com/
cl-tohoku/zipfian-whitening.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In (Appendix B), we have comprehensively described the experimental settings
necessary for reproducing the empirical validations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We used pre-trained word embeddings and applied PCA-like transformations
in all experiments, eliminating the need for training hyperparameters such as seed values.
Additionally, we utilized existing data splits for downstream task evaluations using the
standard sentence embedding evaluation tool [40]. Consequently, our experiments did not
include error bars or statistical significance tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details on the compute resources used on the experiments are shown in
Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Details are provided in Broader Impacts section (§ 6)

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provided sufficient documents for using the implementations for the
proposed method in the README file in the supplemental material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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