
Published as a conference paper at ICLR 2024

DIFFERENTIABLE LEARNING OF GENERALIZED
STRUCTURED MATRICES FOR EFFICIENT DEEP NEU-
RAL NETWORKS

Changwoo Lee, Hun-Seok Kim
University of Michigan, Ann Arbor, MI, USA
{cwoolee, hunseok}@umich.edu

ABSTRACT

This paper investigates efficient deep neural networks (DNNs) to replace dense
unstructured weight matrices with structured ones that possess desired properties.
The challenge arises because the optimal weight matrix structure in popular neu-
ral network models is obscure in most cases and may vary from layer to layer
even in the same network. Prior structured matrices proposed for efficient DNNs
were mostly hand-crafted without a generalized framework to systematically learn
them. To address this issue, we propose a generalized and differentiable frame-
work to learn efficient structures of weight matrices by gradient descent. We first
define a new class of structured matrices that covers a wide range of structured ma-
trices in the literature by adjusting the structural parameters. Then, the frequency-
domain differentiable parameterization scheme based on the Gaussian-Dirichlet
kernel is adopted to learn the structural parameters by proximal gradient descent.
On the image and language tasks, our method learns efficient DNNs with struc-
tured matrices, achieving lower complexity and/or higher performance than prior
approaches that employ low-rank, block-sparse, or block-low-rank matrices.

1 INTRODUCTION

Deep Neural Networks (DNNs) for large language models (LLMs) (Vaswani et al., 2017; Devlin
et al., 2018; Radford et al., 2019; Brown et al., 2020) and vision tasks (Dosovitskiy et al., 2020;
Touvron et al., 2021) have shown great success in various domains in recent years. The size of the
DNNs, however, has increased on an extraordinary scale – up to 70 Billion parameters in the single
model Zhao et al. (2023) – requiring an unprecedented amount of computing resources and energy to
deploy the DNN-based services. Fortunately, under certain conditions, the weight matrices of DNNs
trained by stochastic gradient descent (SGD) naturally have well-defined preferred structures, such
as low-rank matrices (Yaras et al., 2023; Huh et al., 2022; Gunasekar et al., 2017). However, iden-
tifying such structures to lower the effective complexity of weight matrices in recent models such
as Transformers Vaswani et al. (2017) remains a challenging problem. Also, it mostly relies on the
existing human-designed / hand-crafted structured matrices without a unified systematic approach.
Hence prior works have focused on investigating new classes of structured matrices for DNNs (Li
et al., 2015; Dao et al., 2022; Chen et al., 2022). Notably, each structured matrix is defined dis-
jointedly from other formats. For example, neither the block-sparse matrix format nor the low-rank
matrix format of the same number of parameters is a subset of another, and yet there is no unified
representation that describes both well. Moreover, the structure description and the implementation
complexity of the structured matrix are in non-differentiable discrete spaces.

In this paper, we investigate (locally) optimal structures of the weight matrices as well as a differen-
tiable training method to learn them, attempting to answer the following two questions:

1. Is there a universal format that represents a wide range of structured matrices?
2. Can the structure of such matrices be learned efficiently, if it exists?

Contributions. Tackling the above two questions, we introduce a generalized and differentiable
structured matrix format. The main contributions of this work can be summarized as follows.

1



Published as a conference paper at ICLR 2024

1) We propose a Generalized Block-low-rank (GBLR) matrix format, which includes many impor-
tant structures such as Low-Rank (LR), Block Sparse (BSP), and Block-low-rank (BLR) matrices
under some practical conditions. The new structured matrix format consists of two types of param-
eters: one guiding the structure of the matrix and the other specifying the content or the values of
matrix elements. We show that the LR, BSP and BLR formats are special cases of the GBLR matrix.
We also show that the GBLR format is closed under the interpolation between existing GBLR ma-
trices in the structural parameter space, which we believe is a strong evidence that the GBLR format
is able to capture undiscovered structured matrix formats.

2) We introduce a differentiable parameterization of the structural parameters – widths and locations
of blocks – of the GBLR format. The structural parameters are defined in the frequency domain,
and are processed by the proposed Gaussian-Dirichlet (Gaudi) function followed by inverse Fast
Fourier Transform (IFFT) to the format named Gaudi-GBLR. We show that the derivatives of the
Gaudi function with respect to the structural parameters exist almost everywhere, even when the
width is zero.

3) We propose a practical learning algorithm based on the proximal gradient descent to train compact
neural networks with Gaudi-GBLR matrices. The proposed method is extensively evaluated on
the Vision Transformers (ViT) (Dosovitskiy et al., 2020) and MLP-Mixer (Tolstikhin et al., 2021),
outperforming prior approaches using hand-designed structured matrices.

2 PRELIMINARIES

Notation. We use ⊙ to indicate the elementwise (Hadamard) product of two matrices. The imag-
inary unit is denoted by ı =

√
−1. The normalized sinc function is defined by sinc(x) = sinπx

πx
where sinc(0) := 1. The (element-wise) floor function is denoted by ⌊·⌋. The index of elements in
a matrix or vector starts from zero (instead of one), following the convention of Cooley & Tukey
(1965). Also, In = {0, 1, . . . , n} denotes the index set from 0 to n.

Assumption. For simplicity, we assume the weights are square matrices. Extension to rectangular
matrix cases is discussed in Appendix A.3.

2.1 BLOCK-RELATED MATRICES.

BSP BLR

High-rank Blocks

GBLR (Ours)

Overlap

Low-rank Blocks High-rank Region

Figure 1: Comparison of block-sparse, block-low-rank,
and our proposed Generalized block-low-rank matri-
ces.

A block B ∈ R|R|×|C| of a matrix W ∈
Rn×n is a submatrix of W with consec-
utive cyclic row and column indices. For
example, R can be {n − 2, n − 1, 0, 1} if
|R| = 4. Also, we say two blocks B1 and
B2 overlap if they have shared elements
of W .

Two well-known block-structured matri-
ces are a block sparse (BSP) matrix and
a block-low-rank (BLR)(Amestoy et al.,
2015) matrix. Informally speaking, a ma-
trix is block-sparse when non-zero ele-
ments are gathered in blocks and such blocks are sparse in the matrix. A block-low-rank matrix
is composed of non-overlapping equally-partitioned low-rank blocks. Figure 1 illustrates the BSP
and BLR matrices as well as our proposed generalized block-low-rank matrix, which we introduce
in Section 3.1. We present the formal definitions of the block-sparse and block-low-rank matrices in
Appendix A.1.

2.2 STRUCTURED MATRIX

We say a matrix W ∈ Rn×n is structured if, for any x ∈ Rn, the matrix-vector product (MVP)
y = Wx requires significantly less number of multiplications than n2. For instance, LR, BSP,
and BLR matrices are structured because the number of multiplications for MVP is determined by
their (low) rank or sparsity. Although a general sparse matrix reduces the complexity of MVP to
be a sub-quadratic function of n, it is excluded in our discussion of structured matrices because

2



Published as a conference paper at ICLR 2024

Zero-padded Block

During Training After Training

Cropped Content Params
Read

Column Structural Params 

Address

Row Structural Params 

Address

Write

 

Figure 2: Left: An example of a GBLR matrix with 4 blocks. A block is generated from the
structural parameters (wR, lR), (wC , lC) and the content parameters (u,v), where (wR, lR) and
(wC , lC) form binary masks m(wR,lR) and m(wC ,lC), respectively. Note that overlapped regions
can have a rank higher than one. Right: Efficient Matrix-Vector Product computations using cropped
content parameters and structural parameters. The structural parameters locate the input and output
indices/addresses to read and write.

processing moderately sparse matrices (10∼50% density) in conventional hardware such as GPUs
does not reduce the actual run-time due to its unstructured positions of non-zero elements (Chen
et al., 2022).

3 PROPOSED METHOD

We are interested in training a deep neural network (DNN) f under a computational cost constraint:

min
f

∑
x,y∼D

L(f(x),y) s.t. cost(f) ≤ B, (1)

where the first term is the cross-entropy loss for a classification task at a data point x and a label
y, and the constraint cost(f) is the number of multiplications to compute the neural network output
f(x). Our method learns weight matrices of DNNs in a generalized structured matrix format in a
differentiable manner.

3.1 GENERALIZED BLOCK-LOW-RANK (GBLR) MATRIX

We introduce a concept of a generalized structured matrix format that explains multiple popular
structure matrices used in DNN training. The idea is that a block in a matrix can be expressed by a
sum of rank-1 blocks, i.e., a rank-r block is a sum of r rank-1 blocks at the same position. In this
manner, LR, BSP, and BLR matrices can be expressed under a unified framework (Theorem 1).

To be specific, our proposed structured matrix format is a generalized version of Block-Low-Rank
(BLR) matrices. An n-by-n Generalized Block-Low-Rank (GBLR) matrix W is obtained by over-
lapping multiple rank-1 blocks of different sizes at arbitrary locations, as depicted in Figure 2 (Left).
The locations of the blocks as well as their element values are learned simultaneously from training
data without explicit size or location restrictions.

Suppose there are K blocks: B1 ∈ RwR
1 ×wC

1 ,B2 ∈ RwR
2 ×wC

2 , . . . ,BK ∈ RwR
K×wC

K . Each block
Bk has two parameter sets: 1) the structural parameters that identify the position of the block in the
row and column index set In−1 = {0, 1, . . . , n − 1}, and 2) the content parameters which specify
the actual values of matrix elements.

Configuration of structural parameters. The position of a block is given by the indices of the
rows and columns it occupies in the n × n matrix. Hence, the placement of a rectangle block can
be identified by four numbers: width and location in terms of the row or column indices. Hence,
we use a location parameter l and a width parameter w as the structural parameters of a block.

3



Published as a conference paper at ICLR 2024

Figure 2 (Left) illustrates a block of size wR × wC in an n × n matrix at location (lR, lC). The
row (column) index set of a block is the sequence of numbers from lR (lC) to lR + wR (lC + wC)
where the addition is a cyclic/modulo addition. For each block Bk for k = 1, . . . ,K, we have four
parameters: (wR

k , l
R
k ) for the row and (wC

k , l
C
k ) for the column. We use the notation ϕR

k = (wR
k , l

R
k )

and ϕC
k = (wC

k , l
C
k ) to represent the tuple of width and location for the row (ϕR

k ) and column (ϕC
k ).

Based on the structural parameter wC
k and lCk , one can construct an n-dimensional binary mask that

has wC
k ∈ In consecutive ones starting from lCk ∈ In−1 in the cyclic order:

mϕC
k
[j] = m(wC

k ,lCk )[j] =

{
1 if lCk ≤ j + an < lCk + wC

k

0 otherwise
, j ∈ In−1, a ∈ {0, 1}, (2)

where a ∈ {0, 1} is necessary to make the order cyclic. We call the mask in Eq. 2 the boxcar mask
since the non-zero elements are located consecutively. The boxcar mask is used to select wC

k (cyclic)
consecutive non-zero elements of an n-dimensional vector. The mask for the rows mϕR

k
is obtained

in the same way from wR
k and lRk .

Configuration of content parameters. To represent the values of a rank-1 block Bk, we use two
n-dimensional vectors uk and vk as content parameters along with the boxcar masks mϕR

k
, mϕC

k
.

All these parameters (ϕR
k , ϕ

C
k ,uk,vk) are learned during the DNN training simultaneously. Since

the boxcar masks mϕR
k

and mϕC
k

guide the location of the block in the n× n matrix, uk and vk are
element-wise multiplied with the boxcar masks:

ZeroPad(Bk) = (mϕR
k
⊙ uk)(mϕC

k
⊙ vk)

T ,

where the resulting n × n matrix is a zero-padded block. Ideally, we expect the mask to expand
/ shrink and shift to find the right subset of the elements of a content parameter, while the content
parameter updates the value of the elements selected by the mask.

Now we formally define the Generalized Block-low-rank (GBLR) format, which is the sum of K
zero-padded blocks:

W =

K∑
k=1

(mϕR
k
mT

ϕC
k
)⊙ (ukv

T
k ) =

K∑
k=1

(
mϕR

k
⊙ uk

)(
mϕC

k
⊙ vk

)T
. (3)

A GBLR matrix is associated with an average width w̄ = 1
2K

∑K
k=1 w

R
k + wC

k .
Definition 1. Let GBLR(n,K, s) be the set of matrices obtained by Eq. 3 for the average width less
than or equal to s ≥ 0, i.e., w̄ = 1

2K

∑K
k=1 w

R
k + wC

k ≤ s. A matrix W is an (n,K, s)-GBLR if
W ∈ GBLR(n,K, s).

We use the notation ϕ(W ) := (w(W ), l(W )) to indicate the collection of the struc-
tural parameters of W , where w(W ) = {wR

1 , w
C
1 , w

R
2 , w

C
2 , . . . , w

R
K , wC

K} and l(W ) =
{lR1 , lC1 , lR2 , lC2 , . . . , lRK , lCK}. We simply use ϕ := ϕ(W ) if W is clearly inferred in the context.

Efficiency. Once the structural parameters are fixed, it is unwise to store and use two n-dimensional
content parameters for each block Bk because only wR

k elements of uk and wC
k elements of vk

are non-zero according to the boxcar masks in Eq. 3. Hence, one can store and use the cropped
content parameters ulR:lR+wR and vlC :lC+wC for MVP between an input x ∈ Rn (which can be
also cropped from lC to lC + wC) and a block B, as described below and in Figure 2 (Right):

ZeroPad(B)x = (m(wR,lR) ⊙ u)(m(wC ,lC) ⊙ v)Tx

= ZeroPad
(
ulR:lR+wR(vT

lC :lC+wCxlC :lC+wC )
)
,

which requires only wR + wC multiplications. Hence, the number of multiplications (denoted by
FLOPs) for multiplying W ∈ GBLR(n,K, s) with x ∈ Rn is bounded by 2Ks:

FLOPs =
K∑

k=1

(wR
k + wC

k ) = 2Kw̄ ≤ 2Ks. (4)

Expressiveness. Low-rank (LR), block sparse (BSP), and block-low-rank (BLR) matrices are pop-
ular structured matrices in the DNN literature, and they are special cases of the GLBR matrix under
mild conditions. Proofs and formal definitions of LR, BSP, and BLR matrices are in Appendix A.1

4



Published as a conference paper at ICLR 2024

Theorem 1. Let n,K, s be positive integers satisfying Ks ≥ n. Then any n-by-n rank-Ks
n matri-

ces and (n, K
s , s)-block-sparse matrices are (n,K, s)-GBLR. Also, any (n,K, s, 1)-block-low-rank

matrices are (n,K, s)-GBLR if K = (n/s)2.

More importantly, a new structured matrix obtained by interpolating the structural parameters of two
(n,K, s)-GBLR matrices is still (n,K, s)-GBLR, based on Theorem 2. Therefore, a new type of
structured matrices can be derived from a set of GBLR matrices.
Theorem 2 (Closed under structural interpolation). Given two n × n matrices W ,Z ∈
GBLR(n,K, s), and α ∈ [0, 1], consider the following combination between the structural pa-
rameters:

w′ = ⌊αw(W ) + (1− α)w(Z)⌋, l′ = ⌊αl(W ) + (1− α)l(Z)⌋.
A matrix Y generated by Eq. 3 with the structural parameter (w′, l′) is a (n,K, s)-GBLR matrix,
Y ∈ GBLR(n,K, s).

Theorem 1 and Theorem 2 tell us that (n,K, s)-GBLR matrices cover a wide range of popular
existing structured matrices and also undiscovered ones. In the following section, we introduce a
differentiable tool to find/learn structured matrices in GBLR(n,K, s).

3.2 GAUSSIAN-DIRICHLET (GAUDI) MASK

The matrix structure in the GBLR format is determined by the width and location parameters. We
aim to extract/learn these structural parameters from training data using stochastic gradient descent.
In order to do so, the non-differentiability of the boxcar mask parameters needs to be handled.

To tackle this issue, we introduce a Dirichlet-kernel-based parameterization of the boxcar to explic-
itly parameterize the width w and location l in the expression. Consider a boxcar mask of length n,
width w, and location l. Let m̂(w,l) be the discrete Fourier transform (DFT) of the mask m(w,l).
The frequency-domain representation of the boxcar mask is given by

m̂(w,l)[k] = e−2πı k
n lm̂(w,0)[k] = e−2πı k

n l
w−1∑
j=0

e−2πıj k
n = e−2πı k

n lw
sinc

(
w k

n

)
sinc

(
k
n

) eıπk(
1−w
n ) (5)

= e−2πı k
n ldw[k],

where dw[k] := w
sinc(w k

n )
sinc( k

n )
eıπk(

1−w
n ) is the Dirichlet kernel of order n (Bruckner et al., 1997) in

the discrete domain In−1 = {0, 1, . . . , n− 1}.

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0 Boxcar

Gaudi, σ = 1.0

Gaudi, σ = 2.0

Gaudi, σ = 5.0

Gaudi, σ = 10.0

Figure 3: Comparison between Boxcar
mask and Gaudi masks in the time do-
main with different smoothing factors
σ. The Gaudi mask converges to the
Boxcar mask as σ grows.

Furthermore, we propose a smooth version of the
Dirichlet-kernel-based mask by convolving the time-
domain boxcar mask with the Gaussian-shape function.
It is obtained in the frequency domain by element-wise
multiplying the Gaussian function gσ[k] = exp

(
− k2

2σ2

)
with the standard deviation σ > 0 to the Dirichlet kernel.
We call the resulting function the Gaussian-Dirichlet
(Gaudi) function dσ

w:

dσw[k] := gσ[k] · dw[k],
m̃σ

(w,l) := IDFT(dσ
w · e−2πı k

n l), (6)

where k = [0, 1, . . . , n−1]. And we call the mask gener-
ated by a Gaudi function m̃σ

(w,l) the Gaudi mask, where
the parameter σ controls the smoothness. Note that as
σ → ∞, the Gaudi mask converges to the boxcar mask (Lemma 5). Figure 3 visualizes the time-
domain Gaudi mask approaching the boxcar mask.

A useful property of the Gaudi mask is that one can obtain exact derivatives with respect to the width
parameter, even when the width is zero. To show it, we relax the domain of widths and locations to
the continuous interval [0, n] (see Appendix A.4).

5



Published as a conference paper at ICLR 2024

Theorem 3. Let n < ∞ be a finite positive integer. For any σ ∈ (0,∞] and w, l ∈ [0, n], the
derivatives of the Gaudi mask m̃σ

(w,l) with respect to w and l are bounded almost everywhere:∥∥∥∥∂m̃σ
(w,l)

∂w

∥∥∥∥
2

<∞,

∥∥∥∥∂m̃σ
(w,l)

∂l

∥∥∥∥
2

<∞.

Especially when w = 0, the derivative with respect to w is neither divergent nor zero.
Corollary 4. For any l ∈ [0, n] and σ ∈ (0,∞], the norm of the derivative of the Gaudi mask

m̃σ
(w,l) with respect to w at w = 0 is well-defined and greater than zero, i.e., 0 <

∥∥∥∂m̃σ
(w,l)

∂w

∥∥∥
2
<∞.

To allow learning the mask structural parameters in a differentiable manner, we plug the Gaudi mask
(Eq. 6) into Eq. 3 as the mask of GBLR matrices to model Gaussian-Dirichlet GBLR (Gaudi-
GBLR) with parameters θ = (ϕ,U ,V , σ):

W θ = W (ϕ,U ,V ,σ) =

K∑
k=1

(
m̃σ

ϕR
k
⊙ uk

)(
m̃σ

ϕC
k
⊙ vk

)T
. (7)

In practice, one can use small σ ≈ 1 at the beginning of the training process to update the corre-
sponding (unmasked) content parameters which are more than necessary, then gradually increase
σ to adjust the content parameters with a tighter mask. Since the purpose of using a Gaudi mask
is to learn structural parameters of the GBLR matrix by Gradient Descent, Gaudi-GBLR matrices
are later replaced by GBLR matrices once the structural parameters are found/learned. To compute
MVP using GBLR matrices, one can use the cropped content parameters and inputs, as we discussed
in Section 3.1-efficiency, without constructing masks at all. Hence, during the inference, there is no
overhead to compute Gaudi masks.

3.3 LEARNING GAUDI-GBLR FOR EFFICIENT NEURAL NETWORKS

Algorithm 1 GBLR Learning by PGD
1: repeat
2: (x1,y1), . . . , (xM ,yM ) ∼ D
3: ℓ← 1

M

∑M
i=1 L(fθ(xi),yi)

4: for trainable p ∈ θ do
5: p← p− η ·AdamW(∇ℓ)
6: end for
7: for k = 1, 2, . . . ,K do
8: wk ← clip0,n(Sηλ(wk))
9: end for

10: until converge

We now introduce an algorithm to learn the structural pa-
rameters of Gaudi-GBLR matrices. The goal of the learn-
ing algorithm is to identify Gaudi-GBLR matrix struc-
tures (i.e., their parameters) that allow computationally
efficient DNNs. Our discussion is centered around a two-
layered multi-layer perceptron (MLP) for ease of under-
standing. However, the technique can be applied to gen-
eral DNNs that incorporate linear layers.

Now let us consider a two-layered MLP fθ with a Gaudi-
GBLR weight matrix W θ: fθ(x) = hTa(W θx + b).
We initially relax the domain of w ∈ In and l ∈ In−1

of the Gaudi mask to the real-valued space w, l ∈ [0, n]
as we discuss in Appendix A.4. Due to the property of
Gaudi-GBLR matrices Eq. 4, the computational cost constraint on the DNN fθ in Problem (1) can be
replaced by a constraint on the sum of the width parameters of W θ. Specifically, we find the width
parameters w = {wR

1 , w
C
1 , . . . , w

R
K , wC

K} of W θ satisfying ∥w∥1 ≤ B since
∑K

k=1 w
R
k + wC

k =
∥w∥1. To solve the problem with Gradient Descent, we relax this ℓ1-norm constrained problem to a
unconstrained one using the method of Lagrange multiplier:

min
θ

∑
(x,y)∼D

L(fθ(x),y) + λ∥w∥1, λ ≥ 0. (8)

The resulting computational budget is implicitly constrained by a hyperparameter λ ≥ 0.

Theorem 3 guarantees the derivatives of the widths and locations of the Gaudi-GBLR matrix in
fθ can be obtained with any positive smoothing parameter σ > 0 so that we can safely learn the
parameters in the continuous domain [0, n]. Specifically, we update the width parameter w in the
ℓ1-norm term in Problem (8) by Proximal Gradient Descent (PGD):

wt+1 = clip0,n(Sηλ(wt − η∇L(fθ(x),y))), (9)

6



Published as a conference paper at ICLR 2024

where Sµ(x) =

{
sign(x) · (|x| − µ) if x > µ

0 otherwise
is the element-wise soft shrinkage function and

clip0,n(·) clamps the elements of the inputs to [0, n]. In practice, the gradient is calculated with an
adaptive optimizer such as AdamW (Loshchilov & Hutter, 2017) (see Line 5 in Algorithm 1). The
overall process is summarized in Algorithm 1. Although Problem (8) is non-linear, our experimental
results show that PGD can attain good local optima with an adaptive optimizer and the initializa-
tion method we propose in Appendix A.2. A practical learning method for the width and location
parameters defined in the discrete spaces In and In−1 is discussed in Appendix A.5.

4 EXPERIMENTS

We evaluate our proposed method by replacing the weight matrices of Vision Transformers (ViT)
(Dosovitskiy et al., 2020), and MLP-Mixer (Tolstikhin et al., 2021) with Gaudi-GBLR matrices. For
the experiment, we set the number of blocks K equal to the number of columns of the matrix n. We
also evaluate alternative schemes for comparisons where the weights are replaced by popular hand-
designed structured matrix formats such as Low-Rank (LR), Block-Sparse-plus-Low-Rank (BSP-
LR), and Block-low-rank (BLR). For LR matrices, we use singular vector decomposition to find the
best rank-s approximation of the given matrix for the predefined rank of s. Pixelfly (Chen et al.,
2022) and Monarch (Dao et al., 2022) are schemes that use BSP-LR and BLR matrices respectively.
We set the structural parameters of these alternative schemes to exhibit similar computational costs
for MVP compared to our proposed scheme. Note that the structural parameter sets for LR, BSP-
LR, and BLR do not change across different layers in the neural network. We denote the number
of multiplications by FLOPs, and use 8 NVIDIA A40 GPUs in our experiments. The detailed
experimental settings are described in Appendix A.7. Our source code is available at https:
//github.com/changwoolee/Gaudi-GBLR.

4.1 FINE-TUNING RESULTS

0.26 0.28 0.30 0.32 0.34 0.36 0.38
Relative FLOPs

74

75

76

77

78

79

Im
ag

eN
et

 V
al

id
at

io
n 

Ac
cu

ra
cy

 (%
) ViT-B Finetuned

Dense
Low Rank
Monarch (BLR) (Dao et al.,22)
Gaudi-GBLR (Ours)

Figure 4: ImageNet accuracy after fine-
tuning ViT-Base weights replaced with
structured weight matrices. Dense: the
original ViT-Base model.

Vision Task. We use the pre-trained weights of the
ViT-Base on ImageNet and initialize the parameters of
the Gaudi-GBLR matrices by Algorithm 2 in Section
A.2. The ViTs with Gaudi-GBLR matrices were fine-
tuned on ImageNet (Russakovsky et al., 2015). Dur-
ing the initialization, we set the computational bud-
get of all matrices in the network the same. For a fair
comparison, the same set of hyperparameters was used
throughout our fine-tuning experiments.

The highest accuracy is achieved by Gaudi-GBLR in
ViT-Base with a patch size of 16×16 on the ImageNet
validation dataset after fine-tuning it for 35 epochs.
Figure 4 shows that Gaudi-GBLR preserves the accu-
racy well when the complexity is reduced to 30% of
the original ‘Dense’ model which does not use struc-
tured matrices (its FLOPs count is normalized to 1).
The other hand-designed approaches exhibit more significant accuracy degradations for the same
complexity reduction. Overall, Gaudi-GBLR strikes better Accuracy-FLOPs trade-offs than LR or
Monarch approaches. The higher accuracy for a similar FLOPs count quantifies the gain from the
learned structured matrices. In addition to ViT, we also tested GBLR matrices on ResNet (He et al.,
2016). Readers interested in further details can find the results in Appendix A.8.

Table 1: Perplexity by weight type of GPT-
2 after fine-tuning on WikiText103.

Weight Type Perplexity (↓) Relative FLOPs
Dense 19.36 100%
Low Rank 19.48 43.75%
Monarch 20.56 43.75%
Gaudi-GBLR 19.24 43.7%

Language Task. We test the GBLR matrix to
the weights of the pre-trained GPT-2 (Radford et al.,
2019). We compare our method to LR and BLR
(Monarch) matrices. We evaluated the perplexity of
WikiText103 (Merity et al., 2016) validation set af-
ter 10 epochs of fine-tuning on the training set. The
perplexity of each model is in Table 1. Our method

7

https://github.com/changwoolee/Gaudi-GBLR
https://github.com/changwoolee/Gaudi-GBLR


Published as a conference paper at ICLR 2024

0.2 0.3 0.4 0.5
Relative FLOPs

82.5

85.0

87.5

Ac
cu

ra
cy

 (%
)

ViT-S, CIFAR-10

0.2 0.4 0.6
Relative FLOPs

60

65

70
ViT-S, CIFAR-100

0.2 0.4 0.6
Relative FLOPs

82

84

86 MLP-Mixer-S, CIFAR-10

0.2 0.4 0.6
Relative FLOPs

60

62

64
MLP-Mixer-S, CIFAR-100

Dense LR Monarch (BLR)(Dao et al.,22) Pixelfly (BSP+LR)(Chen et al.,22) Gaudi-GBLR (Ours)

Figure 5: Accuracy-Cost trade-off of models trained from scratch on CIFAR-10/100 dataset.

Table 2: ImageNet accuracies and GFLOPs
on a 224 × 224 image of ViT-Base models
trained from scratch with dense matrices and
Gaudi-GBLR matrices.

Model Acc. (%) GFLOPs
ViT-Base 78.57 17.2
w/ Gaudi-GBLR 78.51 5.65

Table 3: FLOPs by type of linear lay-
ers with Gaudi-GBLR matrix of ViT-Base
trained on ImageNet. Units in 103 FLOPs.

Layer Type Min Max Avg
Query 4.2 67.6 29.0
Key 11.6 87.6 42.1
Value 34.2 135.5 95.0
MLP-FC1 359.8 910.2 597.7
MLP-FC2 349.4 1,175.2 756.6

Rank=42

La
ye
r0

Query

Rank=69

Key

Rank=124

Value

Rank=378

MLP FC1

Rank=403

MLP FC2

Rank=88

La
ye
r5

Rank=146 Rank=206 Rank=408

Rank=377

Rank=10

La
ye
r1
1

Rank=29 Rank=89 Rank=618

Rank=700

1
Figure 6: Mask patterns of weights for
Query, Key, Value, FC1 and FC2 in Layer 0,
5, and 11 (out of 0 ∼ 11). The brighter, the
more overlapped blocks. The numbers below
indicate the rank of the matrix (max: 768).

achieved the lowest perplexity, outperforming the dense baseline and utilizing the smallest number
of FLOPs.

4.2 TRAINING FROM SCRATCH

We train ViTs (Dosovitskiy et al., 2020) and MLP-Mixers (Tolstikhin et al., 2021) with structured
weight matrices on CIFAR-10&100 (Krizhevsky et al., 2009) by Algorithm 1 from randomly-
initialized content parameters. We set σ = 1 for the first epoch and gradually increase it to 100 until
the training process ends (see Appendix A.7). In Figure 5, we study the accuracy-FLOPs trade-off
using CIFAR10/100 datasets when the models are trained from scratch (i.e., not fine-tuned from
pre-trained weights). As in the ImageNet fine-tuning experiment, Gaudi-GBLR achieves superior
accuracy-FLOPs trade-offs outperforming the other hand-designed structured matrices.

4.3 ANALYSIS ON LEARNED GAUDI-GBLR MATRICES

In this section, we study the learned Gaudi-GBLR matrices in terms of computational budget al-
location, and mask patterns. The analysis is based on ViT-Base Gaudi-GBLR matrices trained on
ImageNet from scratch by following the same σ adaptation rule used in CIFAR10/100 experiments.
The accuracy and FLOPs of the ViT-Base with Gaudi-GBLR is reported in Table 2.

Learned Computational Budget Allocation. The proposed learning framework automatically
allocates the computational budget to all linear layers of ViT-Base during the training process given
by Algorithm 1. The algorithm finds a well-balanced (not necessarily equal) allocation for each
matrix to meet the overall cost budget while minimizing the loss function. As a result, Gaudi-GBLR
weight matrices in the network have unequal widths requiring different FLOPs for each MVP. Table
3 summarizes the min/max/average FLOPs statistics collected for different types of linear layers.
Within an Attention layer, the weights for Values have the highest budget whereas Queries and
Keys use a smaller budget. The smallest layer uses only about 4,200 FLOPs for MVP involving a

8



Published as a conference paper at ICLR 2024

768 × 768 matrix and a 768 × 1 vector. The FLOPs assigned to the linear layer of channel MLPs
(MLP-FC1 and MLP-FC2 in Table 3) vary significantly. Although the size of the weight matrix
used in the MLPs are 4× larger than the ones used for Value, the MLP-FC2-type layers use 7.96×
FLOPs than the Value-type layers in average.

Visualization. Figure 6 visualizes the locations of the blocks in exemplary Gaudi-GBLR weight
matrices of ViT-Base trained from scratch. We select the first, middle, and the last layers of different
types: linear layers for Query, Key, Values in Attention modules, and two linear layers (FC1 and
FC2) in MLPs. Bright colors in Figure 6 highlight regions where masks are overlapped. Interest-
ingly, the resulting matrix is neither BSP nor BLR. It is observed that blocks are concentrated in a
small number of regions. We believe this is related to the Multi-Head (Vaswani et al., 2017) scheme
of the ViT. Each weight matrix of an attention layer is a collection of weights for multiple heads.
Because some heads are more important than others, more blocks are allocated to those regions. No-
tice the rank of matrices obtained from the GBLR framework differs significantly across different
layers and matrix types (Values, Queries, and Keys).

5 RELATED WORKS

Structured Matrices for DNNs. Prior works have focused on manually designing suitably struc-
tured matrices for DNNs since explaining the structure of every weight matrix in practical DNNs
such as Transformers (Vaswani et al., 2017) is challenging. Hsu et al. (2022) used weighted low-rank
decomposition for the weights of language models. Butterfly matrices (Li et al., 2015; Dao et al.,
2019) were adopted in the form of Block-Sparse (BSP) format (Pixelfly) by Chen et al. (2022),
and also in the form of Block-low-rank (BLR) format (Monarch) by Dao et al. (2022). In contrast,
our method learns the structure of weight matrices from the training data. Layer-wise Low-Rank
DNN Compression has been studied in terms of Augmented Lagrangian Multiplier (Idelbayev &
Carreira-Perpinán, 2020), subspace grouping (Liebenwein et al., 2021), and quadratic programming
(Li & Shi, 2018). However, they work only on the low-rank format, and involve multiple loops and
SVD at every iteration, whereas ours can find layer-wise structure and budget in a single loop.

Mask Learning. For neuron pruning/selection, a binary mask with surrogate gradient has been
adopted to learn its pattern. Jang et al. (2016) and Maddison et al. (2017) propose alternative distri-
butions close to the Bernoulli distribution, which allow the continuous gradient. Movement Pruning
(Sanh et al., 2020) utilizes Straight-Through Estimator (STE) (Hinton, 2012; Bengio et al., 2013;
Zhou et al., 2016) to pass the gradient through the Top-k function. Lin et al. (2017) adopts deep rein-
forcement learning to select the input-dependent mask. On the contrary, our mask design solves the
non-existing gradient problem by Gaudi-function-based parameterization in the frequency domain.

One-shot Neural Architecture Search. Neural Architecture Search (NAS) (Zoph & Le, 2016;
Liu et al., 2018) seeks the optimal neural network structures from training data. To improve search
efficiency, Pham et al. (2018); Liu et al. (2018) adopt the one-shot NAS technique that selects sub-
network candidates from a super-network. Our method also falls into a similar category of finding a
small-sized neural network in the scope of a structured matrix format.

Frequency-domain Learning. DiffStride (Riad et al., 2022) learns a stride of the pooling operation
for images by cropping a rectangular region of the frequency response of an image. They utilize an
approximated boxcar mask for a differentiable stride. Although DiffStride shares similar compo-
nents with Gaudi masks, the fundamental difference is in the design of the mask. We parameterize
the mask in the frequency domain where widths and locations inherit the exact gradient.

6 CONCLUSION

We propose a generalized and differentiable framework for learning structured matrice for efficient
neural networks by gradient descent. We introduce a new generalized format of structured matrices
and parameterize the structure in the frequency domain by the Gaussian-Dirichlet (Gaudi) function
with a well-defined gradient. Effective learning algorithms are provided for our framework showing
flexibility and differentiability to find expressive and efficient structures from training data in an end-
to-end manner. Evaluation results show that the proposed framework provides the most efficient and
accurate neural network models compared to other hand-designed popular structured matrices.

9



Published as a conference paper at ICLR 2024

7 REPRODUCIBILITY STATEMENT

The authors make the following efforts for reproducibility: 1) We release our code at https:
//github.com/changwoolee/Gaudi-GBLR, 2) we provide the detailed settings and hyper-
parameters in Section 4, A.5, and A.7, and 3) the proofs of all theorems, lemmas, and corollaries are
presented in Section A.1.

ACKNOWLEDGMENT

We thank Sara Shoouri, Pierre Abillama, Andrea Bejarano-Carbo, and Mingyu Yang for the insight-
ful feedback on the paper. This work was supported in part by COGNISENSE, one of seven centers
in JUMP 2.0, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

REFERENCES

Patrick Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari, Jean-Yves L’Excellent, and
Clément Weisbecker. Improving multifrontal methods by means of block low-rank represen-
tations. SIAM Journal on Scientific Computing, 37(3):A1451–A1474, 2015.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Andrew M Bruckner, Judith B Bruckner, and Brian S Thomson. Real analysis. ClassicalRealAnal-
ysis. com, 1997.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=Nfl-iXa-y7R.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms for
linear transforms using butterfly factorizations. In International conference on machine learning,
pp. 1517–1527. PMLR, 2019.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training. In International Conference on Machine Learning, pp. 4690–
4721. PMLR, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Sre-
bro. Implicit regularization in matrix factorization. Advances in neural information processing
systems, 30, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

10

https://github.com/changwoolee/Gaudi-GBLR
https://github.com/changwoolee/Gaudi-GBLR
https://openreview.net/forum?id=Nfl-iXa-y7R
https://openreview.net/forum?id=Nfl-iXa-y7R


Published as a conference paper at ICLR 2024

Geoffrey Hinton. Neural networks for machine learning coursera video lectures. 2012.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=uPv9Y3gmAI5.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.
The low-rank simplicity bias in deep networks. Transactions on Machine Learning Research,
2022.

Yerlan Idelbayev and Miguel A Carreira-Perpinán. Low-rank compression of neural nets: Learning
the rank of each layer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8049–8059, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2016.

Claude-Pierre Jeannerod, Theo Mary, Clément Pernet, and Daniel S Roche. Improving the complex-
ity of block low-rank factorizations with fast matrix arithmetic. SIAM Journal on Matrix Analysis
and Applications, 40(4):1478–1496, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Chong Li and CJ Shi. Constrained optimization based low-rank approximation of deep neural net-
works. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 732–747,
2018.

Yingzhou Li, Haizhao Yang, Eileen R Martin, Kenneth L Ho, and Lexing Ying. Butterfly factoriza-
tion. Multiscale Modeling & Simulation, 13(2):714–732, 2015.

Lucas Liebenwein, Alaa Maalouf, Dan Feldman, and Daniela Rus. Compressing neural networks:
Towards determining the optimal layer-wise decomposition. Advances in Neural Information
Processing Systems, 34:5328–5344, 2021.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. Advances in neural
information processing systems, 30, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
laxation of discrete random variables. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=S1jE5L5gl.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2016.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International conference on machine learning, pp. 4095–4104. PMLR,
2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rachid Riad, Olivier Teboul, David Grangier, and Neil Zeghidour. Learning strides in convolutional
neural networks. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=M752z9FKJP.

11

https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=M752z9FKJP
https://openreview.net/forum?id=M752z9FKJP


Published as a conference paper at ICLR 2024

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
tuning. Advances in Neural Information Processing Systems, 33:20378–20389, 2020.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Can Yaras, Peng Wang, Wei Hu, Zhihui Zhu, Laura Balzano, and Qing Qu. The law of parsimony
in gradient descent for learning deep linear networks. arXiv preprint arXiv:2306.01154, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2016.

12



Published as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOFS

In this section, we provide the missing definitions, propositions, and proofs. The original theorems
are restated for completeness.

A.1.1 DEFINITIONS

We introduce formal definitions of the block-related matrices discussed in our paper.

Definition 2 (Block-sparse matrix). An n-by-n matrix is (n,m, s)-block-sparse (BSP) if it contains
m non-overlapping non-zero blocks whose dimension is at most s× s.

A (n,m, s)-block-sparse matrix may contain blocks of different sizes, but each of them has maxi-
mum s× s elements.

Definition 3 (Block-low-rank matrix (Amestoy et al., 2015; Jeannerod et al., 2019)). An n-by-n
matrix is (n,m, s, r)-block-low-rank (BLR) if, when it is equally partitioned into m = p × p non-
overlapping blocks of dimension s× s, every block has a rank at most r ≪ n

p .

The (n,m, s, r)-BLR matrix has blocks of the same size that tile the entire matrix.

A.1.2 PROOF OF THEOREM 1

Theorem 1. Let n,K, s be positive integers satisfying Ks ≥ n. Then any n-by-n rank-Ks
n matri-

ces and (n, K
s , s)-block-sparse matrices are (n,K, s)-GBLR. Also, any (n,K, s, 1)-block-low-rank

matrices are (n,K, s)-GBLR if K = (n/s)2.

Proof. It is sufficient to find the structural parameters of an (n,K, s)-GBLR matrix for each struc-
tured matrix format. Let wR,wC ∈ IKn be the width parameters of rows and columns of the
(n,K, s)-GBLR matrix, respectively, and lR, lC ∈ IKn−1 be the locations parameters of rows and
columns, respectively, where In = {0, 1, . . . , n}.
Low Rank Matrix. The rank-Ks

n matrix is equivalent to the GBLR matrix with Ks/n full-sized
rank-1 blocks, i.e., wR = wC = [n, n, . . . , n︸ ︷︷ ︸

Ks/n

, 0, 0, . . . , 0] and lR = lC = 0.

Block Sparse Matrix. A block of the (n, K
s , s)-block-sparse matrix can have full rank. Consider

a rank-1 block B of a (n,K, s)-GBLR matrix with some location parameters where the sum of the
row width and the column width is 2s. The maximum dimension of the block B is s × s. Then
clone and overlap the identical block with the same location and width parameters s times to form
a full-rank block of the dimension at most s × s. Since the full-rank block can be generated K/s
times, any (n,K/s, s)-block-sparse matrix can be modeled by the corresponding width parameters
and the location parameters.

Block Low rank Matrix. Since K = n2

s2 , let us divide the n-by-n matrix into (n/s)2 blocks of the
dimension of s-by-s. Assign the width and the location parameters correspondingly. The resulting
matrix forms the (n,K, s, 1)-block-low-rank matrix.

A.1.3 PROOF OF THEOREM 2

Theorem 2 (Closed under structural interpolation). Given two n × n matrices W ,Z ∈
GBLR(n,K, s), and α ∈ [0, 1], consider the following combination between the structural pa-
rameters:

w′ = ⌊αw(W ) + (1− α)w(Z)⌋, l′ = ⌊αl(W ) + (1− α)l(Z)⌋.
A matrix Y generated by Eq. 3 with the structural parameter (w′, l′) is a (n,K, s)-GBLR matrix,
Y ∈ GBLR(n,K, s).

13



Published as a conference paper at ICLR 2024

Proof. Let w′R
k and w′C

k be the width of the row and the column of the kth block of Y , respectively.
We use the same style of notation for w(W )Rk , w(W )Ck and w(Z)Rk , w(Z)Ck to denote the row and
column width of the kth block of W and Z. The interpolated matrix Y is (n,K, s)-GBLR if and
only if the mean of the elements of w′ is less than or equal to s, or equivalently the sum of the
elements is less than or equal to 2Ks. Also, both W and Z have 2Ks sum of the width parameters.
From this, the sum of the interpolated width is less than or equal to 2Ks:

∑
i

w′
i =

K∑
k=1

w′R
k + w′C

k

=

K∑
k=1

⌊αw(W )Rk + (1− α)w(Z)Rk ⌋+ ⌊αw(W )Ck + (1− α)w(Z)Ck ⌋

≤
K∑

k=1

αw(W )Rk + (1− α)w(Z)Rk + αw(W )Ck + (1− α)w(Z)Ck

= α

K∑
k=1

(w(W )Rk + w(W )Ck ) + (1− α)

K∑
k=1

(w(W )Rk + w(W )Ck )

≤ α2Ks+ (1− α)2Ks

= 2Ks.

Hence the interpolated matrix Y ∈ GBLR(n,K, s).

A.1.4 PROOF OF LEMMA 5

Lemma 5. Let n ∈ N be a positive integer. Let l ∈ In−1 and w ∈ In. Consider the discrete boxcar
mask m(w,l) with the structural parameter (w, l) as in Eq. 2 and the Gaudi mask m̃σ

(w,l) with the
same parameters and σ > 0 as in Eq. 6. Then m̃σ

(w,l) converges to m(w,l) as σ → ∞, where the
bound between two at σ is given as follows:

∥m(w,l) − m̃σ
(w,l)∥2

∥m(w,l)∥2
≤ 1− e−

(1−n−1)2

2σ2 .

Proof. By Parseval’s theorem,

∥m(w,l) − m̃σ
(w,l)∥22 =

1

n
∥m̂(w,l) − ˆ̃mσ

(w,l)∥22 (10)

=
1

n

n−1∑
k=0

∣∣∣dw[k]− dw[k]e
− k2

2σ2

∣∣∣2
=

1

n

n−1∑
k=0

|dw[k]|2
(
1− e−

k2

2σ2

)2
≤ 1

n

n−1∑
k=0

|dw[k]|2
(
1− e−

(n−1
n )

2

2σ2

)2

= ∥m(w,l)∥22

(
1− e−

(1− 1
n )

2

2σ2

)2

, (11)

where Eq. 11 is also due to Parseval’s theorem.

A.1.5 PROOF OF THEOREM 3

Let us first consider the derivative of the sinc function in eq. 5.

14



Published as a conference paper at ICLR 2024

Lemma 6. For any n ̸= 0, dsincwk
n

dw =
cos πwk

n

w − sincwk
n

w .

Proof.

dsincwk
n

dw
=

d

dw

sin πwk
n

πwk
n

= −
(
πwk

n

)−2
πk

n
sin

πwk

n
+

(
πwk

n

)−1

cos
πwk

n
· πk
n

=
cos πwk

n

w
− sin πwk

n(
πwk
n

)2
=

cos πwk
n

w
− sincwk

n

w
.

Note that the derivative in Lemma 6 at w → 0 is zero since limt→0 sinc
′(t) = 0.

The following lemma is useful for proving Theorem 3.

Lemma 7. For any σ ∈ (0,∞] and w, l ∈ [0, n], the derivative of the Gaudi function dσ
(w,l) with

respect to w is as follows:

∂dσw[k]

∂w
= e−2πı k

nw · eπı k
n · e− k2

2σ2 · 1

sinc k
n

.

Proof. Let us merge the terms of the Gaudi function dσw[k] that does not contain w into Ck:

dσw[k] = e−
k2

2σ2 · w · sinc
wk
n

sinc k
n

e
ıπk(1−w)

n

= w · sincwk
n
· e−ıπkw

n · Ck

where Ck = eπı
k
n e−

k2

2σ2 1
sinc k

n

. From Lemma 6, the derivative of the Gaudi function with respect to
w is as follows:

∂

∂w
dσw[k] = Ck ·

∂

∂w

(
w · sincwk

n
· e−ıπkw

n

)
= Ck ·

(
sinc

wk

n
e−πı k

nw +

(
cos πwk

n − sincwk
n

w

)
we−πı k

nw + wsinc
wk

n
·
(
−πık

n

)
e−πı k

nw

)

= Ck · (cos
πwk

n
− ı sin

πwk

n
)

= Ck · e−ıπ k
nw.

Now we prove Theorem 3.

Theorem 3. Let n < ∞ be a finite positive integer. For any σ ∈ (0,∞] and w, l ∈ [0, n], the
derivatives of the Gaudi mask m̃σ

(w,l) with respect to w and l are bounded almost everywhere:∥∥∥∥∂m̃σ
(w,l)

∂w

∥∥∥∥
2

<∞,

∥∥∥∥∂m̃σ
(w,l)

∂l

∥∥∥∥
2

<∞.

15



Published as a conference paper at ICLR 2024

Proof. Here we use Parseval’s theorem again:

∥∥∥∥∂m̃σ
(w,l)

∂w

∥∥∥∥2
2

=
1

n

n−1∑
k=0

∣∣∣∣ ∂

∂w
dσw[k]e

−2πı k
n l

∣∣∣∣ ∣∣∣∣ ∂

∂w
dσw[k]e

−2πı k
n l

∣∣∣∣∗

=
1

n

n−1∑
k=0

∣∣∣∣∣e−2πı k
nw · eπı k

n · e− k2

2σ2 · 1

sinc k
n

e−2πı k
n l

∣∣∣∣∣
2

=
1

n

n−1∑
k=0

∣∣∣∣∣e− k2

2σ2 · 1

sinc k
n

∣∣∣∣∣
2

≤ 1

n

n−1∑
k=0

∣∣∣∣ 1

sincn−1
n

∣∣∣∣2
<∞,

where the first inequality used the fact that e−
k2

2σ2 ≤ 1 and 1
sinc k

n

≤ 1
sincn−1

n

for k = 0, 1, . . . , n− 1.
Similarly, the bound on the norm of the derivative with respect to the location parameter can be also
derived as below:

∥∥∥∥∂m̃σ
(w,l)

∂l

∥∥∥∥2
2

=
1

n

n−1∑
k=0

∣∣∣∣dσw[k] ∂∂l e−2πı k
n l

∣∣∣∣ ∣∣∣∣dσw[k] ∂∂l e−2πı k
n l

∣∣∣∣∗

=
1

n

n−1∑
k=0

∣∣∣∣∣ sincwk
n

sinc k
n

e−
k2

2σ2 e−
2πı(1−w)

n (−2πık
n
)e−2πı k

n l

∣∣∣∣∣
2

≤ 1

n

n−1∑
k=0

∣∣∣∣ 1

sincn−1
n

2π
n− 1

n

∣∣∣∣2
<∞.

A.1.6 PROOF OF COROLLARY 4

Before proving Corollary 4, we introduce another Corollary of Lemma 7.

Corollary 8. For any σ ∈ (0,∞] and w, l ∈ [0, n], the derivatives of the Gaudi mask m̃σ
(w,l) with

respect to w and l are given as follows:

∂m̃σ
(w,l)[k]

∂w
=

1

n

n−1∑
k=0

F ∗
jk · e−2πı k

n (w+l) · eπı k
n · e− k2

2σ2 · 1

sinc k
n

,

∂m̃σ
(w,l)[k]

∂l
=

1

n

n−1∑
k=0

F ∗
jk ·

(
−2πık

n

)
· e−2πı k

n l · dσw[k],

where F ∗
jk = e2πıj

k
n is the (j, k)th element of the inverse discrete Fourier transform (IDFT) matrix.

16



Published as a conference paper at ICLR 2024

Proof. By linearity of differentiation and Lemma 7

∂

∂w
m̃σ

(w,l)[k] =
∂

∂w

1

n

n−1∑
k=0

F ∗
jk · e−2πı k

n l · dσw[k]

=
1

n

n−1∑
k=0

F ∗
jk · e−2πı k

n l · ∂

∂w
dσw[k]

=
1

n

n−1∑
k=0

F ∗
jk · e−2πı k

n l · e−2πı k
nw · eπı k

n · e− k2

2σ2 · 1

sinc k
n

=
1

n

n−1∑
k=0

F ∗
jk · e−2πı k

n (w+l) · eπı k
n · e− k2

2σ2 · 1

sinc k
n

.

The derivative with respect to the location parameter is a direct consequence of the derivative of the
exponential function.

Corollary 4. For any l ∈ [0, n] and σ ∈ (0,∞], the norm of the derivative of the Gaudi mask

m̃σ
(w,l) with respect to w at w = 0 is well-defined and greater than zero, i.e., 0 <

∥∥∥∂m̃σ
(w,l)

∂w

∥∥∥
2
<∞.

Proof. From Corollary 8

∂m̃σ
(w,l)[k]

∂w

∣∣∣∣∣
w=0

=
1

n

n−1∑
k=0

F ∗
jk · e−2πı k

n l · eπı k
n · e− k2

2σ2 · 1

sinc k
n

.

Since e−2πı k
n l · eπı k

n · e− k2

2σ2 · 1
sinc k

n

is not zero for any l ∈ [0, n] and σ ∈ (0,∞] and the IDFT

matrix F ∗ is unitary (up to scaling factor), the derivative ∂
∂wm̃σ

(w,l) ̸= 0.

A.2 INITIALIZATION ALGORITHM

Suppose an n-by-n matrix Winit is given before the initialization step. We first initialize the structural
parameters based on the correlation within the columns of Winit.

Consider the Gram matrix C = W T
initWinit. Cij = W T

:,iW:,j is the inner product between the ith
column and the jth column of Winit. That is, the higher |Cij | is, the more correlated the columns
are. Thus, for the width and the location parameter of the column of the first block, we pick a row of
the Gram matrix Ci1,: where i1 is the index of the row which has the largest norm. Then we apply
a smoothing filter (e.g., Gaussian filter with the standard deviation γ > 0) to the absolute values of
the row, which is followed by binarizing the filtered output based on some threshold τ > 0. Hence,
for the kth block, it can be summarized as follows:

bik [j] =

{
1 cik [j] ≥ τ

0 cik [j] < τ
, cik = Filter(|Cik,:|, γ), ik = argsort({∥Ci,:∥2}ni=1)[k]. (12)

As a result, the binary vector bi consists of the chunks of ones and zeros. We choose the longest
chunk of ones and initialize the width and the location parameters (wC

k , l
C
k ) correspondingly. For the

row parameters of the kth block, the same procedure is repeated with the columns of Winit selected
in the column parameter initialization step.

Next, the content parameters are set by the left and the right singular vectors of Winit scaled by the
singular values, i.e., U ← UinitS

1/2
init and V ← S

1/2
init V

T where Winit = UinitSinitV
T

init.

Finally, we update the structural parameters and content parameters by minimizing the following
objective function:

min
U ,V ,ϕ

∥∥Winit −W θ
∥∥2
F
+ λ∥w∥1 + 1w∈In

n
+ 1l∈In

n−1
(13)

We summarize the initialization steps in Algorithm 2.

17



Published as a conference paper at ICLR 2024

Algorithm 2 GBLR Parameter Initialization

1: C ←W TW ▷ Target matrix W ∈ Rn×n

2: i1, i2, . . . , in ← argsort({∥Ci,:∥2}ni=1)
3: b← 0
4: for k = 1, . . . , n do
5: ϕC

k ← get mask params(|Cik,:|, γ, τ)
6: R = (W ·mC

k )(W ·mC
k )

T

7: i′k ← argmax({∥Ri,:∥2}ni=1)
8: ϕR

k ← get mask params(|RT
i′k,:
|, γ, τ)

9: b← b+ nnz(mc
k) + nnz(mR

k )
10: if b > s then
11: wc

k ← 0, wR
k ← 0; break

12: end if
13: end for
14: U ,V ← SVD(W )
15: Solve Eq. 13 by Alg. (1).

A.3 RECTENGULAR GAUDI-GBLR MATRICES

When the number of rows m is not equal to the number of columns n, the width and location
parameters for rows are defined on Im and Im−1, respectively, whereas the structural parameters on
columns are defined on In and In−1. Except for the index sets, the GBLR matrix on the rectangular
case is defined exactly the same. Theorem 1 and 2 hold as well. The Gaudi mask is also defined in
the same manner.

A.4 GAUDI MASK WITH REAL-VALUED WIDTHS AND LOCATIONS

Let us consider the Gaudi mask in Eq. 6 with the continuous-valued widths and locations w, l ∈
[0, n]. Also, let us assume for now that σ = ∞, namely, no Gaussian smoothing is applied. On
one hand, Eq. 6 still compiles the time-domain signal after IDFT. On the other hand, the output
of the IDFT is not a boxcar mask anymore if at least one of w and l is not an integer. In Figure
7, we present the time-domain signal of three cases of the Gaudi mask on n = 512: 1) integer-
valued width and locations with the smoothing parameter σ = ∞, namely, no Gaussian filter is
applied in the Gaudi function; 2) non-integer-valued width and location with σ = ∞; and 3) non-
integer-valued width and location with σ = 100. As illustrated in the figure, the non-integer-valued
parameters generate many spiking errors (middle). Notably, however, the errors are alleviated when
the smoothing parameter σ = 100 (right), which almost recovers the shape of the signal with the
integer-valued parameters (left).

18



Published as a conference paper at ICLR 2024

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 0 100 200 300 400 500

n=512, width=128.0, location=192.0, σ =∞ n=512, width=128.5, location=191.8, σ =∞ n=512, width=128.5, location=191.8, σ = 100

Figure 7: Gaudi Masks in time-domain with different width, location and σ on n = 512. Left:
integer width w = 128 and integer location l = 192 with σ = ∞, i.e., no Gaussian smoothing.
Middle: non-integer width w = 128.5 and location l = 191.8 with σ = ∞. Due to the non-integer
parameters, the time-domain signal contains spiking errors. Right: non-integer width w = 128.5
and location l = 191.8 with σ = 100. The Gaussian smoothing in the Gaudi function alleviates the
spiking errors.

A.5 MORE DETAILS ON PROXIMAL GRADIENT DESCENT ON GAUDI-GBLR PARAMETERS
IN DEEP NEURAL NETWORKS

A.5.1 DISCRETE STRUCTURAL PARAMETERS

Here we discuss solving Problem (8) using the discrete width and location parameters w ∈ In and
l ∈ In−1. To be specific, given real-valued widths w ∈ [0, n]K and locations l ∈ [0, n]K of a
Gaudi-GBLR matrix, we apply a Straight Through Estimator (Hinton, 2012; Bengio et al., 2013;
Zhou et al., 2016) to w and l before generating the masks. Then, we project each value of w and l to
[0, n] after the PGD step. We find that this setting is useful when the Gaussian smoothing parameter
σ of the Gaudi function is very high or infinite, since the non-integer parameters generate spiking
errors as discussed in Appendix A.4.

A.5.2 MULTIPLE GAUDI-GBLR MATRICES

For a DNN with T weight matrices, we suggest adjusting the shrinkage parameter λ in eq. 9 based
on the predefined computational cost budget B for the DNN. For example, one can set λ = 0 if the
sum of average widths of the weight matrices w̄sum = w̄(W1) + w̄(W2) + · · · + w̄(WT ) is below
B, and use λ = λ0 > 0 if w̄sum is above B where λ0 is given as a hyperparameter by user. In our
experiments, this strategy effectively (not necessarily equally) distributes the computational cost to
each matrix to meet the overall cost budget constraint during the learning process.

A.6 IMPACT OF SVD

SVD. Since our method involves Singular Vector Decomposition (SVD) during initialization, the
time complexity of the SVD is discussed in this section. The impact caused by SVD is negligible
in the training process. The SVD operation performed during initialization decomposes at most
4096 × 1024-sized matrix, which takes less than a second on commercial CPUs or GPUs, whereas
the overall training or fine-tuning time ranges from a few hours to tens of hours. Also, the SVD
does not occur during the inference stage, so it does not become a bottleneck in any sense once the
network is trained.

19



Published as a conference paper at ICLR 2024

A.7 EXTENDED EXPERIMENTAL RESULTS AND DETAILS

A.7.1 FINE-TUNING

In fine-tuning experiments, we use the pre-trained ViT-Base (Dosovitskiy et al., 2020). For each
pre-trained weight on Query, Key, Value and MLPs, we assign the Gaudi-GBLR matrix where the
structural and content parameters are initialized by Algorithm 2. We use the smoothing parameter
of the filter γ = 1 and the threshold to obtain the binary mask τ = 0.98 · max(cik) in Eq. 12.
During the fine-tuning, we use σ = ∞ in Eq. 6 Then, all parameters are updated by SGD with
AdamW(Loshchilov & Hutter, 2017) optimizers.

For the Block Low-Rank matrices, we use Monarch (Dao et al., 2022) implementation. We project
the pre-trained matrix by minimizing the Frobenius norm between the pretrained one and the
Monarch matrix by gradient descent for 1000 steps with the learning rate of 0.001.

The initialization learning rate for the structural parameters was set to 0.0025 and decayed to
0.000025. We trained the networks for 35 epochs with the learning rate of 0.0001 for all param-
eters, including the structural parameters of the Gaudi-GBLR matrices.

For the WikiText103 experiments, we used the publicly available GPT-2 model1 for the pre-trained
weights.

A.7.2 TRAINING FROM SCRATCH

For the Gaudi-GBLR matrices, we initialize location parameters to zero and width parameters to the
low rank + block sparse structure. The content parameters as well as other weights are initialized
randomly.

During the training with Proximal Gradient Descent in Eq. 9, as in Appendix A.5, the shrinkage
parameter λ is set to zero if the average width of the Gaudi-GBLR matrices of the DNN is below
the predefined budget, and recovers the predefined value λ0 otherwise.

Also, we anneal σ = 1 to 100 during the training process. σ is fixed to 1 for 5 warm-up epochs, then
linearly increases to 100 for 295 epochs. The hyperparameters used in the ImageNet experiment is
presented in Table 4.
Table 4: Hyperparameters used in ImageNet experiments using ViT-Base for training from scratch.

Model Learning Rate Shrinkage
σ (init/final) Epochs Weight Decay Drop Path RateStructural Params Content Params λ0 Target Width

ViT-Base N/A 0.001 N/A N/A N/A 310 0.05 0.1
ViT-Base Gaudi-GBLR 0.001 0.001 0.04 0.12 · 768 1.0/100.0 310 0.05 0.0

A.8 EXTENDED EXPERIMENTAL RESULTS

A.8.1 GBLR MATRIX FOR CONVOLUTION WEIGHTS.

We compare the ImageNet accuracy of ResNet18 (He et al., 2016) with GBLR weight matrices
to the Automatic Layer-wise Decomposition Selector (ALDS) (Liebenwein et al., 2021), a simi-
lar rank-based layer-wise compression method. Following Liebenwein et al. (2021), we consider
the (d, c, k1, k2)-sized weight tensor of a convolution layer as d × (ck1k2)-sized matrix, where
d, c, k1, k2 are the number of output channels, input channels, and the widths and heights of the
kernels, respectively. In this manner, we converted the weights of the convolution layers of the
ResNet18 model to GBLR matrices, and retrained the model. Table 5 shows the accuracy and the
relative FLOPs of the ResNet18 model with dense weights, low-rank weights found by one-shot
ALDS, and GBLR weights found by our method. Even without any supervision on the structural
properties of the convolution kernels, GBLR outperforms ALDS low-rank weights in terms of both
accuracy and complexity.

1https://huggingface.co/Graphcore/gpt2-wikitext-103

20

https://huggingface.co/Graphcore/gpt2-wikitext-103


Published as a conference paper at ICLR 2024

Table 5: ImageNet Accuracy on ResNet18.

Weight Type Accuracy GFLOPs
Dense 69.62 1.82
ALDS (Liebenwein et al., 2021) 69.22 1.03
GBLR (ours) 69.31 1.01

A.8.2 GENERALIZATION GAP OF DNNS WITH GBLR WEIGHTS

In this section, we estimate the generalization gap of the DNNs with GBLR weights. We used the
ViT-Base model discussed in Section 4.3 which is trained on ImageNet from scratch. The accuracy
of the dense and GBLR models on the training and validation sets are evaluated and presented in
Table 6. Notably, the training-validation accuracy difference of the GBLR model is smaller than
that of the dense model. The comparable validation accuracy despite the lower training accuracy
provides reasonable empirical evidence that the DNNs with GBLR matrices may exhibit smaller
generalization errors than dense models.

Table 6: Generalization Gap of Dense and GBLR ViT-Base Models.

Weight Type Training Acc. (%) Validation Acc. (|∆|) (%) Training Loss Validation Loss (|∆|)
Dense 99.03 78.57 (20.46) 0.1640 1.0639 (0.8999)
Gaudi-GBLR 94.93 78.51 (16.42) 0.3260 0.9917 (0.6657)

21


	Introduction
	Preliminaries
	Block-related Matrices.
	Structured Matrix

	Proposed Method
	Generalized Block-Low-Rank (GBLR) Matrix
	Gaussian-Dirichlet (Gaudi) Mask
	Learning Gaudi-GBLR for Efficient Neural Networks

	Experiments
	Fine-tuning Results
	Training From Scratch
	Analysis on Learned Gaudi-GBLR Matrices

	Related Works
	Conclusion
	Reproducibility Statement
	Appendix
	Proofs
	Definitions
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 5
	Proof of Theorem 3
	Proof of Corollary 4

	Initialization Algorithm
	Rectengular Gaudi-GBLR Matrices
	Gaudi Mask with Real-valued Widths and Locations
	More Details on Proximal Gradient Descent on Gaudi-GBLR Parameters in Deep Neural Networks
	Discrete Structural Parameters
	Multiple Gaudi-GBLR Matrices

	Impact of SVD
	Extended Experimental Results and Details
	Fine-tuning
	Training from Scratch

	Extended Experimental Results
	GBLR Matrix for Convolution Weights.
	Generalization Gap of DNNs with GBLR weights



