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Abstract

Short text is typical for reports such as incident synopsis and product feedback
for efficiency and convenience. However, classifying short reports can be very
challenging due to incomplete information and limited labeled data, and in some
cases, many domain-specific terms. To address these issues, we examine the use of
causality, as represented by linguistic cause and effect, in models for short report
classification. We propose two augmentations of a hierarchical graph attention
network to represent latent causes and effects. We also investigate the effectiveness
of using a pretrained Language Model SBERT vs. the more traditional tf-idf repre-
sentations for reports with general and specialized vocabularies. Experiments on
five public report datasets verify that inclusion of causality in modeling short report
datasets with many domain-specific terms improves classification performance.

1 Introduction

Reporting delivers important information for many critical circumstances and is essential to inform
a variety of decision making. For example, regulators use reports to analyze causes of problems
in accidents to determine responsibilities and prevention strategies [8]. Another example includes
business reports to review feedback of products to understand satisfaction and unmet needs [12].
Categorizing short text reports can take tremendous manual effort and expert knowledge, hence it
is frequently impractical to sort and label every report. This raises a strong need for the research of
short text report classification.

The challenges of short text classification include lacking sufficient labels for training a classifier [S]]
and lacking context in short text content [19]. Large Language Models (LLMs) such as Sentence
Transformer (SBERT) [20] has been used for few-shot learning to adapt to new tasks with label
scarcity. Because these LLMs are pretrained by a large amount of web data, they maintain a strong
understanding of context for a wide array of short text classification. However, in some tasks like
short report classification, the report text can include many domain-specific terms that are not well
represented in pretrained LLM models.

Another thread of research uses graph neural networks to capture relationships and context in
relational data for learning rich and task-specific representation. Prior work [16]] leverages latent
topics and entity recognized in text content to enrich the context in heterogeneous graphical attention
network (HGAT) for semi-supervised learning. However, while the general latent topics are relevant,
they may not be precise enough context to classify reports. For example, in a task of classifying
traffic incident reports, a popular word “car” can be relevant to many incidents but is not precise to
indicate problems or consequences of a traffic incident.
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Fortunately, text written in many short reports tend to include language with causal relations. For
example, railroad incident reports presented in Figure |1|include abnormal weather patterns (e.g.,
“extreme environmental conditions wind velocity”) or operation failures (e.g., “failed to be in proper
position”) that lead to certain situations (e.g., “going in the wrong direction,” “derailed 9 cars”). This
explicit or implicit causality expressed in text content may help classify reports into categories that
are important for investigation, e.g., accident causes or side effects. We hypothesize that the text that
indicates likely cause and effect can provide more precise context for report analysis.

In this work, we propose to augment graph neural networks with causality context for semi-supervised
classification on short text reports. This approach allows information propagation to be more aligned
with potential causes and effects indicated in text content. Our contributions include: (1) We
investigate the effectiveness of using an LLM, SBERT vs. the traditional tf-idf representations for
classifying short reports with general and specialized vocabularies. (2) We propose a framework that
captures the context and aligns connections in a graph neural network with relevant causalilty relations
to improve short report classification. (3) We evaluate the proposed idea over the state-of-the-art
across five public datasets, where it consistently enhances the classification targets with specialized
vocabularies.

2 Related Work

A popular research question in text classification is the strategies to leverage labels for training. Pre-
trained language models such as SBERT [20] and RoBERTa [[17] harness self-attention mechanisms
to capture contextual relationships from large scale web text. These pretrained LLMs have been
demonstrated effective for few-shot text classification for the tasks with vocabularies well represented
in web data (e.g., news and online reviews) that these pretrained models are trained on.

In addition, semi-supervised learning is effective for use cases with label scarcity [18]. Many
approaches are proposed based on graph neural network models (GNNs) because GNNs can leverage
the inherent structure of the graph data such as GCN [15] and TextGCN [27], which contains
relationships between data points. Graph convolution networks (GCN) [[15]] is an efficient variant of
convolutional neural networks which operate directly on data represented as graphs. The concept of
GCN is applied for semi-supervised text classification (TextGCN) [27]] by modeling the text corpus
as a document-work graph. Heterogeneous attention networks [16, 25/ [10] are designed to handle
heterogeneous graphs where nodes belong to different types, and provides an attention mechanism to
capture relevant context from different node types to address the challenge of missing context. Our
work uses it as the backbone and distills the relational structure by infusing the context of causality
inferred in text to improve report classification.

Causality is a metaphysical concept that is commonly seen in real world text data. A typical causal
relation in text refers to a relationship between text arguments where one (cause) is responsible for
causing the other (effect) [6]. Understanding causality has been explored by many natural language
processing works [13, [11]. Particularly, large causal datasets [23l 22} 21]] have been released for
training and verification, which enabled much progress in cause-effect-signal span detection. Our
work uses the detector to extract specific spans of text within a given report that represent the cause
and effect. Since the extracted text can be noisy due to detection errors and diverse expressions, we
use latent topics of the extracted cause and effect text to represent causality context and build the
relational structure.

3 Our Proposed Approach

First, we introduce the approach to capture the representative context of causality, namely, latent
causes and effects, from short text reports. Second, we present a framework to add latent causes and
latent effects to a graph neural network to improve report classification.

3.1 Representing Latent Causes and Effects

Our goal is to provide representative cause and effect context in a graph neural network to model
more precise relationships. To learn representative causes and effects, we detect the causal relation at



]
]
qg-chilacb-20 derailed 9 cars while J

traveling on main 2 track due to extreme
environmental conditions wind velocity ...

Example detected causes/effects l

. . . (@) Detect causal
g-chilac6-20 derailed 9 cars while e
traveling on main 2 track due to I
extreme environmental conditions
wind velocity (b) Represent latent

causes and effects

crew of the ypr22r-06 failed to be in 1
proper position to observe (/C) causality text attributé)
movement resulting in train going in nodes nodes  nodes

the wrong direction raking the side
of outbound train 2mdnbus-01

amtrak train, p05991-27, hit an
unoccupied vehicle at the e. fifth
street crossing causing damage to

the crossing signal equipment. \ : /
Causally-Augmented Graph Neural Net

Figure 1: Left: Example cause text (blue) and effect text (green) detected from incident reports.
Right: System diagram of our approach. Best seen in color.

the level of each text report (Figure[I| (a)), and then aggregate similar cause and effect text extracted
from different reports into representative latent causes and effects (Figure |I| (b)).

A causal relation presented in free text can be signaled in different ways; for example, “due to” in the
first report of Figure[I]and the alternatives such as “resulting in” and “causing” as appeared in the
second and third report, respectively. Prior work has attempted to collect annotated text and train
models to classify causal events or detect cause and effect signal span. Tan et al. [23] 22, 21] use
a neural network to train a cause-effect-signal span detector based on annotated news dataset. We
leverage the detector D to extract the text segments that are likely to indicate a cause or a effect,
denoted as (tX,t¢) = D(t,), where tX is the cause text segment and ¢, is the effect text segment

n»'n
extracted from a report ¢,, as presented in Figure[T]

The extracted cause and effect text are inherently noisy due to diverse expressions and detection
errors. For example, “a go-around event” and “a change of route” may be referred to as the same
type of event. We use LDA [7] to discover latent topics € from extracted cause text and effect text as
latent causes and effects. Each of latent causes and effects is represented by the word distribution
(w1, ..., wpm). m is the vocabulary size.

3.2 Causally-Augmented Graph Neural Net

We include the latent causes and effects in a graph neural network to align the information propagation
with similar causal relations in our causally-augmented model, CHGAT. Our graph G = (V, E)
where V" and E represent nodes and edges respectively has heterogeneous types of nodes, including
causality nodes (cp), text report nodes (%,,), and attribute nodes (a,) as shown in Figure|I|(c). Causality
nodes include latent causes and effects, where a node ¢, corresponds to ¢ (cf. Section and is
represented by its word distribution. We use topic distribution inference to calculate the posterior
probabilities p(f.,|tX) and p(f.,|t;,) for each pair ¢, and t,. The edges between t,, and the &k
causality nodes of ¢ with the highest probability are initialized with 1, otherwise by 0, in an adjacency
matrix A. Self-connections are also initialized as 1 in A. We use HGAT to learn the attention weights
of heterogeneous types of nodes, where the layer-wise propagation rule is formulated as,

D — O'(A~H(l)~W(l))’ 1)



Table 1: Statistics of evaluation datasets.

Dataset ASR REA ECD WCR DRU
#docs 13,090 10,000 480 19,663 4,045
#classes 2 5 6 5 5
#tokens 34.73 44.54 11.24 6.29 43.85
+16.2 +32.8 +1.7 24 +46.3
domain aviation railroad workplace e-commerce drug
no c/e 0.26 0.12 0.00 0.002 0.16

A=M"2AM"% is the symmetric normalized adjacency matrix, where M;; = > j A;j is a degree

matrix. W) is a trainable transformation matrix for each layer. ¢ (-) is an activation function such as
ReLU. After an L-layer HGAT with the embeddings of all nodes, the embedding of text nodes are
fed to a softmax layer for classification.

For a fair comparison, the text embedding of t,, is initialized with tf-idf, as used in HGAT, but it can
be replaced with other text embeddings. HGAT uses name entity recognition to detect entities in text
to represent attribute nodes. Since name entities are less common in report data than news and social
media data that the prior work mainly addressed, we instead use report attributes (e.g. reporting
office) that are already associated with each report to represent the attribute nodes a,, where each
attribute is initialized with a one-hot vector. The same attribute nodes are used in both the baseline
HGAT and the proposed approach in our experiments. The report attributes used in different datasets
are reported in Appendix [A]

4 Experiments

The evaluation aims to investigate (1) the effectiveness of LLM vs. non-LLM representations for
classifying short text reports with general and specialized vocabulary, and (2) the effectiveness of
relational and causality context for short reports with vocabularies that are not well represented in
LLMs. We first present the experiment settings and then discuss the experimental results.

4.1 Datasets

The evaluation is conducted on the 5 public datasets below. We report data statistics in Table [I]
including the proportion of text samples without cause and effect text detected (no c/e). Three
of these datasets (ASR, REA, DRU) include terms specific to a certain knowledge domain, i.e.,
aviation, railroad and drug. For each dataset, we randomly select 40 labeled samples per class,
20 of which for training and the rest for validation. Similar to [15], all the left samples are
used for testing and are also used as unlabeled samples for training. In our experiments, all
conditions are tested once. More details of the datasets (e.g., class labels) are presented in Appendix [A]

ASR: This dataset [[1] includes reports published in the Aviation Safety Reporting System
database from NASA. We use the column of situations to generate binary class labels, ie. related to
human factors or not. Data entries without clear cue to determine the labels are removed.This dataset
includes many terms specific to the aviation domain.

REA: This dataset [3]] includes railway incident reports published by the Federal Railroad
Administration, Office of Railroad Safety. We use the top five accident cause codes as the class labels,
and randomly sample 2,000 reports per class for experiments. This dataset includes many terms
specific to the railroad traffic and incidents.

ECD: This dataset [2] includes employee complaints in an organization. We use top 5 complaint
genres as the class labels and one more class label to include any other complaint genres.

WCR: This is a Women’s Clothing E-Commerce dataset with customers’ reviews [4]]. Since the full
review text is long (mean: 72.15 tokens), we use the review titles as text reports. We use the 5 levels
of satisfaction ratings as the class labels.

DRU: The dataset [[14] includes patient reviews on specific drugs along with related side effects. We
use the 5 levels of side effects as the class labels. This dataset includes many specific drugs along
with related conditions.



Table 2: Test accuracy (A) and macro-F1 (F) of the baselines and our approach. The best results are
bolded.

Dataset SBERT tf-idf
SVM SVM  HGAT | CHGAT CHGAT+
ASR A | 4850 58.70  67.96 | 67.10 69.82
F | 36.50 54.65 67.49 | 65.56 69.39
REA A | 27.86 2541 4843 | 48.18 51.24
F | 24.06 2346 48.40 | 48.26 51.63
ECD A | 82.50 60.83 61.67 | 63.75 64.17
F | 77.18 54.00 57.89 | 61.39 61.30
WCR A | 40.87 19.21 24.60 | 28.33 26.51
F | 30.33 1519 19.32 | 22.85 20.76
DRU A | 31.50 3220 29.10 | 31.42 35.81
F | 25.79 27.71 26.88 | 28.05 30.62

Table 3: Test accuracy (A) and macro-F1 (F) for our approach with the use of either cause or effect
context.

Dataset CHGAT CHGAT+
cause effect | cause effect
ASR A | 6158 67.02 | 6646 68.22
F | 61.11 6502 | 6646 67.69
REA A | 48.46 44.16 | 47.70 47.27
F | 48.18 44.14 | 47.66 47.42
ECD A | 6125 60.00 | 6542 64.17
F | 57.82 58.48 | 60.79 62.76
A | 2747 36.88 | 27.72 27.97
WER | £ 12190 2433 | 2146 2258
DRU A | 29.86 32.07 | 35.03 35.55
F | 28.16 30.30 | 30.66 30.82

4.2 Approaches

We compare the approaches using LLM and non-LLM reprentations in a few-shot learning
framework, a state-of-the-art graph neural network for heterogeneous types of nodes and our
proposed approach that leverages both relational and causality context.

SVM+SBERT: This approach uses a pretrained SBERT to represent text data. The SVM
[9] classifier is trained with the labeled data only, representing a baseline without considering the
unlabeled data in a specified task.

SVM-+tfidf: This baseline is similar to SVM+SBERT but uses tf-idf as text representations.
HGAT: HGAT [16] has been compared with a variety of graph neural networks such as TextGCN
[27], HAN [25], GCN [15]], GAT [24] in the prior work [26] and obtained the state-of-the-art results
for short text classification.

Our approaches, CHGAT and CHGAT+, both use HGAT as the backbone with representations of
causality context. CHGAT+ is similar to CHGAT but includes the whole text ¢,, in additional to cause
or effect text, attempting to remedy the missing context due to undetected or inaccurately detected
cause-effect text spans. The SVM classifiers in the evaluation uses SBERT [20] and tf-idf as the text
embedding. The tf-idf representation is used in the approaches that leverage relational and causality
context i.e. HGAT, CHGAT, and CHGAT+, to differentiate context from the relationships in the
task-specific data versus the context from the pretrained LLM model. All of the approaches including
SVM use both text and attribute information. Parameter settings are reported in Appendix
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4.3 Experiment Results
4.3.1 Comparison over LLM based and non-LLM based Text Representations

Table 2] reports the accuracy and F1 (macro-F1) of different approaches across 5 datasets. SBERT
helps improve the performance of the SVM classifiers on ECD and WCR, having a characteristic that
includes more general vocabulary than others. On the other hand, the models using tf-idf features
perform better or competitively on ASR, REA and DRU with many domain-specific terms(e.g., the
term YNPO4R-25 in REA). This implies that it is better to select a text representation method which
takes care of domain specific terms directly when the dataset has a large vocabulary of them.

4.3.2 Effectiveness of Relational and Causality Context

Table [2| shows that HGAT improves SVM+tfidf in the ASR and REA datasets, demonstrated the
effectiveness of relational context learned in graph neural networks. However, HGAT does not
improve in the DRU dataset. On the other hand, our proposed approach CHGAT+ consistently
outperforms the baseline models SVM and HGAT in both measures for the datasets with specialized
vocabularies, which suggests the effectiveness of causality context inferred from the linguistic
characteristics and the graph structure.

In addition, CHGAT+ performs better than CHGAT in more of the datasets. Particularly, for the
datasets with higher proportion of undetected cause-effect text spans (cf. no c/e in Table 1) such
as ASR, REA and DRU, CHGAT+ obtains more improvements. This suggests that CHGAT+ may
be a potential remedy for the missing context from imperfect cause-effect text span detection, by
considering whole text in addition to cause and effect text.

While there are missing cause and effect text, all the datasets have a majority of data samples with
cause and effect text detected. The highest undetected rate is 0.26 as reported in Table[I] suggesting
that it is possible to get plentiful causality context in short text reports. Note that, the F1 of cause-effect
text span detector is reported in the prior work [23]], around 60%-70%.

4.3.3 Discussion

The effectiveness of cause and effect context varies over tasks as reported in Table[3] Cause context is
most effective in REA, where the class labels are accident causes that have more obvious relationships
with cause text. Effect context is more useful in other classification tasks such as side effect and
satisfaction. The trend of effectiveness appears in CHGAT and CHGAT+ are roughly consistent.

There is no clear winner between cause only and effect only models. Hence, including both cause and
effect and using a mechanism to estimate the importance of each could be useful. This work leverages
the attention mechanism to determine the importance of individual links to different causality nodes.
The mechanism offers flexibility to incorporate cause or effect for different tasks or mixed situations,
e.g., different classes (Figure [2)) can be more related to cause text (blue) or effect text (green).

5 Conclusion

Our investigation found that the short text reports with specialized vocabularies are more challenging
for LLM based text representation. We propose to infuse the causality context from free text to a
graph neural network for short report classification. The experiments on five public datasets suggest
that relational and causality context improves short report classification for the data with specialized
vocabularies. In the future we will improve the mechanism of representing and attending causality
context to generalize its use and to improve large language models for tasks with domain-specific
text.
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A Datasets

This section includes more details about the datasets, including the class labels and the report attributes
used for attribute nodes a,.

ASR: This dataset [1] includes reports published in the Aviation Safety Reporting System database
maintained by NASA. We use the column of contributing factors / situations to generate class labels.
This column has many data entries assigned with multiple labels. Since we only focus on multi-class
classification rather than multi-label classification, we only keep the data entries that is labeled with
“human factors” without any other labels, and the data entries that are labeled with any labels except
“human factors”. This results in a 2 class labels, i.e., “human factors” or “not human factors”. In
addition to that, the attributes in the columns of aircraft flight phase and aircraft make model name
are used for the attribute nodes. The column of synopsis is used for the text nodes.



REA: This dataset [3]] includes railway incident reports published by the Federal Railroad Administra-
tion, Office of Railroad Safety; contains data on railway incidents from 1975 to 2022. We use the top
five accident cause codes as the class labels, i.e., “wide gage,” “switch improperly lined,” “shoving
movement,” “switch point worn or broken,” ”’buffing or slack action excessive.” The attributes in the
columns of reporting railroad code and report year are used for the attribute nodes. The column of

narrative is used for the text nodes.

ECD: This dataset [2] includes employee complaints in an organization. We use top 5 complaint
genres as the class labels and one more class label to include any other complaint genres, totally 6
classes including “communication issues,” “workload and stress,” “management lifestyle,” “lack of
training and development,” “workplace environment” and “others”. The attributes in the columns of
employee role and gender are used for the attribute nodes. The column of report is used for the text

nodes.

WCR: This is a Women’s Clothing E-Commerce dataset with the reviews written by customers [4].
The data has been anonymized, and references to the company in the review text have been replaced
with “retailer.”” We use the 5 level of review ratings as the class labels. The attributes in the columns
of product class (type) and department are used for attribute nodes. The column of title is used for
the text nodes.

DRU: The dataset [14] includes patient reviews on specific drugs along with related conditions and
side effects. The data was obtained by crawling online pharmaceutical review sites. We use the 5 level
of side effects as the class labels ranging from “No Side Effects”, “Mild Side Effects,” “Moderate
Side Effects,” “Severe Side Effects,” “Extremely Severe Side Effects.” The attributes in the columns
of drug name and effectiveness are used for the attribute nodes. The column of side effect reviews is
used for the text nodes.

For all the datasets, data entries with missing class labels, text reports for text nodes and attributes for
attribute nodes are removed.

B Input feature for SVM

For fair comparison, SVM has used attribute information as suggested in the prior work [[16]. We
convert attribute information into one-hot vector, then the vector is concatenated with tf-idf (SVM+tf-
idf) or SBERT (SVM+SBERT) features derived from text nodes.

C Parameter Settings

We set k = 2 for initializing the number of edges between a text node and its top-k causality nodes
with 1. We set the number of LDA topics as 15, the layer number as 2, and the hidden dimension as
512, same with the setting for HGAT. The learning rate is 0.01, and the dropout rate is 0.95.

D Packages Used

We use NLTK for preprocessing. In addition, we use scikit-learn for extracting tf-idf features and
training LDA and SVM models.
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