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Abstract
Reinforcement learning (RL) provides a frame-
work for learning goal-directed policies given
user-specified rewards. However, since design-
ing rewards often requires substantial engineering
effort, we are interested in the problem of learn-
ing without rewards, where agents must discover
useful behaviors in the absence of task-specific
incentives. Intrinsic motivation is a family of un-
supervised RL techniques which develop general
objectives for an RL agent to optimize that lead
to better exploration or the discovery of skills. In
this paper, we propose a new unsupervised RL
technique based on an adversarial game which
pits two policies against each other to compete
over the amount of surprise an RL agent experi-
ences. The policies each take turns controlling
the agent. The Explore policy maximizes entropy,
putting the agent into surprising or unfamiliar sit-
uations. Then, the Control policy takes over and
seeks to recover from those situations by mini-
mizing entropy. The game harnesses the power
of multi-agent competition to drive the agent to
seek out increasingly surprising parts of the en-
vironment while learning to gain mastery over
them. We show empirically that our method leads
to the emergence of complex skills by exhibiting
clear phase transitions. Furthermore, we show
both theoretically –via a latent state space cover-
age argument– and empirically that our method
has the potential to be applied to the exploration
of stochastic, partially-observed environments.
We show that Adversarial Surprise learns more
complex behaviors, and explores more effectively
than competitive baselines, outperforming intrin-
sic motivation methods based on active inference,
novelty-seeking (Random Network Distillation
(RND)), and multi-agent unsupervised RL (Asym-
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metric Self-Play (ASP)) in MiniGrid, Atari and
VizDoom environments.

1. Introduction
Despite promising results across a number of domains (e.g.,
(Berner et al., 2019; Kober et al., 2013; Levine et al., 2016;
Vinyals et al., 2019)), a major challenge in reinforcement
learning (RL) is that the effectiveness of current methods
depends heavily on task-specific rewards (Riedmiller et al.,
2018; Vecerik et al., 2017). For many tasks, designing dense
and informative rewards require significant engineering ef-
fort, and sparse rewards make learning slow and difficult
(Riedmiller et al., 2018; Vecerik et al., 2017). Yet humans
and animals easily learn from their own experience without
being constantly told what to do. Therefore, significant prior
research has focused on developing a class of unsupervised
RL methods that optimize for intrinsic motivation (IM) –
alternative objectives (such as seeking novelty) that incen-
tivize the agent to autonomously explore and learn about
the world without being entirely dependent on explicit goals
and task incentives.

Many prior works have approached the problem of unsu-
pervised RL as one of pure novelty-seeking, training agents
to optimize for surprise in the hopes of facilitating better
exploration, which can be helpful for learning downstream
tasks. However, current novelty-seeking methods don’t al-
ways produce the desired explorative behavior. In stochastic
environments for example, such methods can suffer from
the “noisy TV” problem where the agent becomes distracted
by inherently high-entropy elements (Schmidhuber, 2010).
In contrast, some biologically-inspired approaches like ac-
tive inference suggest that complex human-like behaviors
are obtained by minimizing the expected surprise on future
observations (Friston, 2009; Friston et al., 2009; Berseth
et al., 2019). However, in the absence of an informative
observation prior that guide the agent towards interesting
behaviors, such methods suffer from the “dark room” prob-
lem (Friston et al., 2012): if what the agent can observe
from the environment is not surprising, the agent will not
be incentivized to learn any complex behavior. This is espe-
cially problematic in partially-observed environments. Yet
humans seem to always maintain a tension between opti-
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mizing for both novelty and familiarity. For example, a
child in a play room does not just try to toss their toys on
the floor in every possible pattern, but instead tries to stack
them together, find new uses for parts, or combine them in
various ways. In the same way, we suggest that the right
objective for unsupervised RL should be to actively main-
taining a tension between exploration and control. Such
method would have the potential to produce increasingly
complex and interesting behaviors without the limitations
of optimizing for novelty or familiarity alone.

Figure 1. Adversarial Surprise is a multi-agent competition in
which two policies take turns controlling an RL agent. The Ex-
plore policy acts first, and tries to put the agent into surprising,
high entropy states. On its turn, the Control policy tries to mini-
mize surprise by finding familiar, low-entropy, predictable states.
Figure (b) shows an example rollout of a game. In the Explore
policy’s first turn, it attempts to maximize entropy by remaining
in the first room with flashing lights (a noisy TV state). When the
Control policy takes over, it is able to take an action to control the
environment, by flipping the switch to stop the lights from flashing.
Therefore, when the Explore policy acts again it moves into the
next room; this is predicted by our theoretical results, which show
that the Explore policy must maximize entropy over the true state
space. During the Control policy’s next turn it remains in the dark
room. This process continues until all of the rooms have been
visited.

In this paper, we maintain a tension between exploration and
control by formulating an adversarial game between two
policies, which each take turns sequentially acting for the

same RL agent. The Explore policy is novelty-seeking, and
attempts to maximize surprise over the course of the episode,
putting the agent into a diverse range of novel states. In turn,
the Control policy must minimize surprise, by learning to
manipulate its environment in order to return to safe and pre-
dictable states. When combined, the two adversaries engage
in an arms race, repeatedly putting the agent into challeng-
ing new situations, then attempting to gain control of those
situations. Figure 1 shows an illustration of the method,
including a sample interaction. Rather than simply adding
noise to the environment, the Explore policy learns to adapt
to the Control policy, and to search for increasingly challeng-
ing situations from which the Control policy must recover.
Thus our method, Adversarial Surprise (AS), leverages the
power of multi-agent training to generate a curriculum of
increasingly challenging exploration and control problems.
We show empirically that the competition between the two
policies produces the emergence of increasingly complex
observable behaviors in the agent by exhibiting clear phase
transitions. Furthermore, we show theoretically and em-
pirically that the increasingly complex control and explo-
ration strategies found by the competing policies enable
the efficient exploration of stochastic, partially-observable
environments that previous methods optimising for novelty
or familiarity alone fail to explore.

Our main contribution is the Adversarial Surprise (AS) al-
gorithm, an unsupervised RL method to actively maintain
a tension between exploration and control which leads to
the emergence of increasingly complex behaviors. We de-
rive our method, and perform a theoretical analysis in the
recently introduced Block MDP setting (Du et al., 2019)
which shows –via a latent space coverage argument– that
our method can be applied to the exploration of partially-
observed, stochastic environments. We present a practical
instantiation based on deep reinforcement learning, and pro-
vide an empirical evaluation that compares our approach to
recent intrinsic motivation and unsupervised RL techniques.
Our results demonstrate that our method induces the emer-
gence of complex behaviors that can be used for both control
and exploration. As suggested by our theoretical results, we
show empirically that our method can be applied to the ex-
ploration of partially-observable, stochastic environments,
outperforming previous methods like Random Network Dis-
tillation (RND) (Burda et al., 2018), Suprise-Minimization
RL (SMiRL) (Berseth et al., 2019) and Asymmetric Self
Play (ASP). We also show that AS produces more meaning-
ful behaviors in VizDoom (?) and Atari (Bellemare et al.,
2013) without any external reward.

2. Related Work
Our method enables the emergence of complex skills with-
out supervision and thus enters into the budding field of
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unsupervised RL that we briefly survey below. A common
strategy in this field is to formulate a task-agnostic objective
that uses environment statistics only and to derive an intrin-
sic reward that enables exact or approximate optimization
of this objective using standard RL algorithms. A recurrent
question in this field is the applicability of the skills learned.
We will show that our method has the potential to be ap-
plied to the exploration of stochastic, partially-observable
environments.

Novelty-seeking intrinsic motivation: One of the most
frequently studied forms of intrinsic motivation is novelty-
seeking, or curiosity, which can be formulated as maximiz-
ing the information gain on the agent’s dynamics model
of the environment (Houthooft et al., 2016; Still & Precup,
2012; Bellemare et al., 2016; Pathak et al., 2017; Schmid-
huber, 1991). Common intrinsic rewards used to approx-
imate curiosity include surprise (Achiam & Sastry, 2017;
Schmidhuber, 1991; Yamamoto & Ishikawa, 2010; Pathak
et al., 2017; Burda et al., 2018) and ensemble disagreement
(Shyam et al., 2019; Pathak et al., 2019). A novelty-seeking
agent is motivated to explore its environment. However,
naı̈vely maximizing surprise leads to methods that are vul-
nerable to the noisy TV problem, where the agent becomes
distracted by inherently high-entropy, unpredictable ele-
ments in the environment, such as white noise (e.g. static
on a TV) (Schmidhuber, 2010). In this case, a curious agent
will not be able to learn meaningful behaviours. We will
show that AS overcomes this problem, and fully explores the
state space even when there are highly stochastic elements.

Surprise minimization and the free energy principle:
Rather than maximizing surprise, the free energy principle
(Faraji et al., 2018; Friston, 2009; Friston et al., 2009; 2016;
Ueltzhöffer, 2018) proposes that biological agents actually
minimize long-term average surprise by seeking familiar,
stable states, and controlling their environment to make it
more predictable. Inspired by this idea, Berseth et al. (2019)
built a surprise-minimizing RL agent, SMiRL, which out-
performs curiosity-maximizing methods like ICM (Pathak
et al., 2017) in high-entropy environments. However, in
partially observed or low-entropy environments, surprise
minimization is vulnerable to the dark room problem: if
the agent can simply stay in a highly-predictable part of the
environment where nothing happens, it will (Friston et al.,
2012). In this scenario, a surprise-minimizing agent cannot
learn meaningful behaviors either. AS is designed to avoid
this problem, because the Explore policy will not allow the
Control policy to remain in a dark room.

Empowerment: The goal of empowerment (Klyubin et al.,
2005; Salge et al., 2014b) is to maximize the mutual infor-
mation between the agent’s actions and its future states. Em-
powerment encourages agents to “keep their options open”
by exploring many states, while still maintaining a high

degree of control in those states. However, calculating em-
powerment in high dimensional environments is intractable,
leading to various methods for approximating it (e.g., (Karl
et al., 2015; Salge et al., 2014a; Zhao et al., 2020; de Abril
& Kanai, 2018; Zhang et al., 2020; Jaques et al., 2019; Mo-
hamed & Rezende, 2015)). Unfortunately, these methods
can also be difficult to get working with high dimensional
function approximation (Gregor et al., 2016). In contrast,
we show that Adversarial Surprise works with deep neural
networks applied to pixel inputs in Atari environments.

Emergence in multi-agent setting: Multi-agent compe-
tition can provide a mechanism for driving RL agents to
automatically learn increasingly complex behavior (Leibo
et al., 2019). As each agent adapts, it makes the learning
problem for the other agent increasingly difficult, leading to
the emergence of an automatic curriculum of challenging
learning tasks (Baker et al., 2019; Dennis et al., 2020; Xu
et al., 2020; ?). For example, Schmidhuber (1997) proposed
having two classifiers compete by repeatedly selecting ex-
amples which they can classify but which the other cannot.
Asymmetric Self Play (ASP) (Sukhbaatar et al., 2017; Ope-
nAI et al., 2021) rewards one agent, Alice, for executing the
shortest trajectory that a second agent, Bob, cannot copy (or
reverse). Similarly to ASP, Adversarial Surprise is formu-
lated as an adversarial game between two policies. However,
unlike ASP our method is formulated in terms of general
information theoretic quantities which make it more gener-
ally applicable. For example, we show that ASP can fail to
explore stochastic environments, because Alice can easily
produce a random goal state which Bob is not able to repro-
duce. In contrast, AS works well in stochastic environments,
outperforming ASP.

3. Background
Partially Observed Markov Decision Process: A
POMDP is a tuple (S,A, T ,O, r, γ), where s ∈ S are
states, a ∈ A are actions, r(a, s) is the reward function,
and γ ∈ [0, 1) is a discount factor. The environment is
partially observed, so the agent cannot observe the true state
s, but rather observes o ∼ p(O|s). At each timestep t, the
agent selects an action at according to its policy π(at|ot),
receives reward r(at, st), and the environment transitions to
the next state according to T (st+1|st, at). We are interested
in stochastic environments, in which the emission distribu-
tion distribution is inherently entropic for some states, i.e.
∃s : H(p(O|s)) > 0.

Block Markov Decision Process: A BMDP (Du et al.,
2019) is a POMDP with an additional disjointness assump-
tion: for any s, s′ ∈ S, s 6= s′ ⇒ supp(p(O|s)) ∩
supp(p(O|s)) = ∅. Our theoretical results show that the
AS algorithm fully covers the latent state space of a large
family of BMDPs.



Explore and Control with Adversarial Surprise

Intrinsic motivation: IM can either be used in combination
with a task objective, in which case intrinsic motivation
serves to facilitate exploration, or by itself, in which case
the agent receives no external task rewards, and aims only
to maximise its intrinsic objective, leading it to learn skills
that may potentially be useful for downstream tasks. In this
paper, we study how an agent can learn skilled behaviour
without rewards. Therefore, we consider agents that seek
to optimize cumulative intrinsic reward over the episode:
R =

∑T
t=0 γ

tri(at, st).

Surprise minimizing agents (SMiRL): The free energy
principle (Faraji et al., 2018; Friston, 2009; Friston et al.,
2009; 2016; Ueltzhöffer, 2018) suggests that biological
agents may minimize surprise, or state entropy, in order
to remain in safe and stable states. Minimising surprise for
an RL agent can be done by keeping track of the state his-
tory of the agent via a density model, pθ(s), which bounds
the state marginal density of the policy, dπ, given states
seen so far in an episode, τt = {s0, ...st}. Indeed, Berseth
et al. (2019) shows that we can use the intrinsic reward
ri(st) = log pθ(s) to minimize the entropy of the state
marginal distribution H(dπ(s)):

H(dπ(s)) ≤ −Es∼dπ(s)(log pθ(s)) = −Eπ

[ ∞∑
t=0

γt log pθ(st)

]
(1)

where the bound becomes tight as log pθ(s) → dπ(st);
that is, as the density model approaches the true state
marginal density. A SMiRL agent trained with this objective
learns emergent behaviors to reduce entropy in stochastic
environments—such as stable walking robots or playing
Tetris—even in the absence of any external reward. How-
ever, when applied to partially observed environments, the
agent is susceptible to the dark room problem; rather than
learning to control the environment, it can simply control
its observations by remaining in unsurprising parts of the
environment. Or, simply turning to look at a wall. In our
method, we build on surprise minimization, incorporating it
into a two player game that alleviates this shortcoming.

4. Adversarial Surprise
The goal of Adversarial Surprise (AS) is to produce complex
behaviors that can be used for exploration and control. To
this end, AS pits two policies against each other in a two-
player competition over the amount of surprise an RL agent
experiences. Specifically, we learn an Explore policy, πE ,
and a Control policy, πC . The goal of the Control policy is
to minimize its own surprise, or observation entropy, using a
learned model pθ(o). However, the Explore policy’s goal is
to maximize the surprise that the Control policy experiences.

The policies take turns taking actions for the agent, switch-

Algorithm 1 Adversarial Surprise
Randomly initialize φE and φC episode = 0, ...,M Initial-
ize θ,Ri = 0, β ← {}, explore turn = True, tC = k,
s0 ∼ p(s0), o0 ∼ p(O0|s0) t ← 0 T explore turn
at ∼ πE(ot, h

E
t ) *Explore at ∼ πC(ot, h

C
t ) *Con-

trol st+1 ∼ T (st+1|st, at), ot+1 ∼ p(Ot+1|st+1) *En-
vironment step rit = log pθ(ot+1) *Compute intrinsic re-
ward not explore turn and t − tC > k/2 Ri = Ri +
ri β = β ∪ {ot, at, ot+1} *Update buffer t ==
tC explore turn = not explore turn *Switch turns tC =
tC + 2k θt+1 =MLE update(β, θt) *Fit density model
φE =RL update(β,−Ri) *Train Explore policy πE with
reward −Ri φC =RL update(β,Ri) *Train Control policy
πC with reward Ri

ing back and forth throughout the episode. The policy con-
trolling the RL agent change every k steps, such that:

at ∼
{
πE(at|ot) if ∃n, t ∈ [2nk, (2n+ 1)k[
πC(at|ot) otherwise (2)

Each policy is given several steps to act because it enables
it to reach states that will be challenging for the other policy
to recover from, thus facilitating learning more complex and
long-term exploration and control behaviors (see Figure 1).

To estimate surprise, we learn a density model which esti-
mates the agent’s likelihood of experiencing observation o,
pθ(o). Because the Control policy is surprise-minimizing,
its reward is riC(st) = log pθ(ot), which resembles SMiRL
(Berseth et al., 2019), except using the observation in place
of the state. The goal of the Explore policy is to maximize
the observation surprise of the RL agent when the Control
policy is in control. This creates an adversarial game, in
which the Explore policy attempts to find surprising situ-
ations with which to expose the Control policy, and the
Control policy’s objective is to recover from them. There-
fore, the Explore policy’s reward is based on the surprise
for the observations of the Control policy. Assume that the
Control policy’s turn begins at timestep tC , and it receives
a total reward of Ri =

∑tC+k
t=tC γkri(at, st) for that turn.

Then, the Explore policy’s reward is −Ri, and is applied to
the last timestep of the Explore policy’s turn (i.e. timestep
tC−1). The full training procedure for Adversarial Surprise
is given in Algorithm 1.

Thus, Adversarial Surprise defines the following adversarial
game between the two policies:

max
πE

min
πC
−E

tC+k∑
t=tC

log pθ(ot)

 , (3)

where the Explore policy can only effect p(ot) through the
final state that it produces at the end of its turn, which is
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the initial state for the Control policy. We show in the
Appendix the equivalent of eq. 1 in the partially observable
setting. As a corrolary, the objective of the Explore policy
approaches maximizing the entropy of the Control policy’s
observations:

J E = −E

tC+k∑
t=tC

log pθ(ot)

 ≈ H(dπC (o)), (4)

Analogously, the Control policy’s goal is to minimize en-
tropy:

J C = E

tC+k∑
t=tC

log pθ(ot)

 ≈ −H(dπC (o)) (5)

Implementation details: We parameterize the policies for
the Explore and Control policy using deep neural networks
(NN) with parameters φE and φC , respectively. We pol-
icy is based on a convolutional NN which conditions on
a stack the last 4 observation frames. The networks are
trained using Proximal Policy Optimization (PPO) (Schul-
man et al., 2017); further details and hyperparameters are
given in the Appendix. Following (Berseth et al., 2019),
the density model pθ(o) is re-initialized each episode and
trained using maximum likelihood estimation (MLE) to fit
the observations of the agent within a single episode, which
are stored in a buffer β. The density model is either rep-
resented using a Gaussian distribution as in (Berseth et al.,
2019), or using independent categorical distributions. We
have found it helpful to only compute the surprise reward
using observations from the second half of the Control pol-
icy’s turn; this gives the agent greater ability to take actions
that may lead to initial surprise, but reduce entropy over the
long term. We also experiment with when to reset the buffer
β; we find that resetting the buffer after each round (after
the Explore policy and Control policy each take one turn)
can sometimes improve performance. Finally, we allow the
Explore and Control policys to act for a different number
of timesteps, tuning the emphasis on exploration or control
depending on the environment.

5. Adversarial Surprise maximizes state
coverage in Block MDPs

In this section, we show that our method covers the
state space under some restrictions on the structure of the
POMDP, and the density of states with low observation
entropy. Full proofs are in the Appendix.

We define the marginal observation distribution as: dπ(o) =
(1−γ)

∑∞
t=0 γ

tp(ot = o). We are interested in maximizing
the state marginal entropy dπ(s) by using a density model of
the observation, pθ(o). To that end, we prove the following
lemma in the Appendix:

Lemma 1. The cumulative surprise measured by the ob-
servation density model pθ(o) forms an upper bound of the
observation marginal entropy H(dπ(o)), which becomes
tight when the observation density model fits the observa-
tion marginal dπ(o): −Eπ

∑∞
t=0 log pθ(ot) ≥ H(dπ(o))

We start with an assumption on the structure of the POMDP:

Assumption 1 (Block MDP (BMDP) (Misra et al., 2020)).
We suppose that every two different states have disjoint emis-
sion supports: for any s, s′ ∈ S, s 6= s′ ⇒ supp(p(O|s)) ∩
supp(p(O|s)) = ∅

Under this assumption, we show a useful relation between
observation marginal entropy and state marginal entropy:

Lemma 2. In a BMDP, we can decompose the observation
marginal entropy:

H(dπ(o)) = Edπ(s)H(p(O|S = s)) +H(dπ(s)) (6)

See the Appendix for the proof. Equation 6 shows that
maximizing entropy in the marginal observation distribution
dπ(o) amounts to maximizing two terms: the emission en-
tropyH(p(O|S)), and the state marginal entropyH(dπ(s)).

Suppose that we have a small number of latent states with
rich observations, i.e. where the entropy of the emission
distribution is very high: ∃s : H(p(O|S = s)) � log |S|.
We can think of these states as “noisy TVs”. In this case, if
we are trying to maximize the marginal observation entropy,
we have:

max
dπ(s)

H(dπ(o)) ≈ max
dπ(s)

Edπ(s)H(p(O|S = s)) (7)

The RHS is maximized by taking:

dπ(s) = 1(s = argmax
s∈S

H(p(O|S = s))) (8)

This shows that conventional methods that focus on max-
imizing entropy over observations can trivially maximize
dπ(o) by remaining in a state with rich observation. We
will show that Adversarial Surprise is not subject to this
problem.

To this end, we define a (semiquasi)metric on the latent state
space: d̃(s, s′) = min{k : ∃π, Pπk (s′|s) = 1}, where by
convention Pπ0 (s|s) = 1 for all s. In other words, d̃(s, s′) =
k if there is a policy that reaches s′ from s in k steps with
probability 1. We symmetrize this metric by defining the
following semimetric: d(s, s′) = max{d̃(s, s′), d̃(s′, s)}

We now give a formal definition of dark rooms. We say that
a state s is a dark room if it has minimal emission entropy:
H(p(O|S = s)) = mins∈S H(p(O|S = s)). We will use
the following assumption about the density of dark rooms
in the latent state space:
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Assumption 2. We make three assumptions concerning the
density of dark rooms:

[(a)]We suppose that for every state s, there is a dark
room such that d(s, s′) ≤ T . That is, the set of dark
rooms is a T -cover of the state space with respect to
d. We suppose that for every state s, there is a dark
room such that PπT (s

′|s) = 1, that is a dark room can
be reached in exactly T steps. We suppose that for
any state s and any dark room s′, if d̃(s, s′) ≤ T , then
d(s, s′) ≤ T , that is if we can reach a dark room from
a state s in less than T steps, then we can also reach s
from this dark room is less than T steps.

We can now state our main result:

Theorem 1. Under Assumptions 1 and 2 the Markov chain
induced by the following AS game:

max
dπE (s0)

min
d
πC
1:T (s|s0)

H (dπCT (o))

T -covers the latent state space, i.e., for all states s, there
is a state s′ such that dπ(s′) > 0 and d(s, s′) ≤ T , where
dπ is the state marginal distribution induced by the game
between the Explore (πE) and Control (πC) policies.

Assumption 2 guarantees that for any states that the Explore
policy reaches, the Control policy can find a low-emission-
entropy state within its turn, such that H(p(O|s)) is mini-
mized. Thus, from the perspective of the Explore policy, the
first term in its objective in Eq. 6 is minimized, and it must
focus on maximizing the second term, H(dπ(s)). In order
to maximize entropy over the state marginal distribution
dπ(s), the Explore policy must fully explore the state space.

6. Experimental results
In this section we present experimental results designed to
answer the following four questions:

1.2.3.1. Exploration and state coverage: how well does AS
explore the underlying state space in a stochastic,
partially-observed world, as compared to alternative
methods? Given our theoretical results in Section 5,
we hypothesize that methods based on novelty-seeking
will become distracted by noisy elements, while AS
will fully explore the environment. We will use the
number of rooms visited in a navigation task as a mea-
surement of state coverage.

2. Control: will AS learn to take actions to control its
environment, and recover from surprising situations?
We measure control as the number of actions taken that
cause changes to elements in the environment, such as
flipping a switch to stop flashing lights.

3. Emergence of complexity: is AS able to produce an
arms race between the Control and Explore policies
that leads to the agent’s acquisition of increasingly
complex observable behaviors? If this is the case,
we expect to observe the alternation of relatively long
learning phases, where the two policies are competing
without visible change in the agent’s behavior, and rel-
atively short phase transition that separate two clearly
distinguishable behavior.

4. No-reward learning: will AS enable the agent to
learn meaningful behaviors in the absence of any exter-
nal reward? To assess this, we train the IM methods us-
ing only intrinsic reward, then assess the amount of task
reward they obtain in the standard Atari benchmark
(Bellemare et al., 2013). While there is no reason to ex-
pect AS to always correlate with the objectives in arbi-
trary MDPs, we expect that the twin goals of maximiz-
ing coverage while achieving high control should cor-
relate well with objectives in many reasonable MDPs,
particularly video games of the sort present in Atari.
Many of these games have a notion of progress, which
roughly corresponds to coverage, but at the same time
have many dangerous states that could result in ‘death’,
which leads to an unexpected jump back to the starting
state. Therefore, we hypothesize that AS should, with-
out even being aware of the task reward, perform well
in these environments. Comparing to prior methods in
these domains is interesting, because prior work has
variously argued that both novelty-seeking exploration
methods (Burda et al., 2018) and surprise-minimization
methods (Berseth et al., 2019) should be expected to
achieve high scores in these domains. Note that when
we assess all three metrics we look at the performance
of the agent as a whole, which is jointly controlled by
both the Explore and Control policy.

We include videos of the AS agent learning to play
games with no reward, as well as performing naviga-
tion tasks, at https://sites.google.com/view/
adversarial-surprise/home.

Baselines: We compare AS to three competitive un-
supervised RL baselines: Asymmetric Self-Play (ASP)
(Sukhbaatar et al., 2017) (a state-of-the-art multi-agent
curriculum method), Random Network Distillation (RND)
(Burda et al., 2018) (a state-of-the-art exploration method),
and SMiRL (Berseth et al., 2019) (a recently proposed
method based on surprise minimization). These three meth-
ods are all related to AS: like RND, the Explore policy aims
to maximize surprise, though not instantaneously but rather
over the Control policy’s episode; like SMiRL, the Control
policy aims to minimize surprise, but starting from the ini-
tial states that the Explore policy puts it in, and in a partially
observed setting; like asymmetric self-play (ASP), AS con-

https://sites.google.com/view/adversarial-surprise/home
https://sites.google.com/view/adversarial-surprise/home
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sists of a two-player game, though the AS two-player game
is symmetric and zero-sum, and based on observational en-
tropy rather than goal-reaching. All methods use PPO as
RL optimization algorithm, with hyperparameters given in
the Appendix.

Environments: To evaluate Q1 and Q2, we need partially-
observed environments that present an exploration chal-
lenge, and which include stochastic phenomena. Since stan-
dard benchmarks do not consistently exhibit these properties,
we constructed a custom family of procedurally generated
navigation tasks based on Minigrid (Chevalier-Boisvert
et al., 2018). These environments contain rooms that are
either empty (dark), or contain stochastic elements such
as flashing lights that randomly change color. They also
contain elements such as doors that can be opened, and
switches that, when flipped, stop the stochastic elements
from changing. An example is shown in Figure 1. As in
MiniGrid, the environments are partially observed; the agent
only sees a 5x5 window of the true state. To evaluate Q3,
we choose a relatively simpler version of our custom Min-
igrid environment that includes only two rooms to clearly
distinguish the gain of complexity due to AS from the com-
plexity of the environment. While these environments allow
us to carefully study the effects of partial observability and
stochasticity, we would also like to compare to prior work
on a standardized benchmark. For this purpose, to eval-
uate Q4 we use the Atari Arcade Learning Environment
(ALE) (Bellemare et al., 2013) (see Figure 5), which was
used by both SMiRL (Berseth et al., 2019) and RND (Burda
et al., 2018) to establish their effectiveness, as well as the
ViZDoom environment (?). Due to limited computational
resources, we do not conduct experiments in all possible
Atari games (which is consistent with prior work (Berseth
et al., 2019; Burda et al., 2018)), but we show results for
each of the games that we test, both in Section 6.4 and in
the Appendix.

6.1. Exploration and state coverage:

Figure 2 shows the results of training the AS agent in the
procedurally-generated navigation environments in terms
of the number of rooms the agent learns to visit (our mea-
sure of state coverage). We measure the number of rooms
cumulatively, over the course of training, to assess whether
each method will lead the agent to collect experience from
all possible states. This measure is relevant to whether the
technique can be used as an effective exploration bonus
to aid learning a downstream task. We also measure the
number of rooms explored within each episode. This al-
lows us to assess whether the asymptotic policy learned by
the algorithms continues to explore once it has converged.
As predicted by our theoretical analysis, we see that AS
learns to more fully explore the environments, visiting sig-
nificantly more rooms over a lifetime and per episode than

Figure 2. Q1. Exploration and state coverage: the number of
rooms explored in partially-observed environments containing
both stochastic elements and dark rooms, both (a) cumulatively
over training, and (b) within an episode. Part (a) shows how well
each method works as an exploration bonus to encourage collecting
experience from all states, and part (b) provides a measure of how
well the asymptotic policy learned by each method continues to
explore the state space at convergence. AS outperforms surprise-
minimizing SMiRL, which minimizes observation surprise by
turning to face the wall, or remains in dark rooms. AS also explores
better than the state-of-the-art exploration methods RND and ASP,
which both become distracted by noisy elements.

competing methods. It learns more quickly and explores
more thoroughly than RND, which becomes distracted by
the inherently random elements in the environment which
lead to high prediction error. The stochastic elements also
hinder learning for ASP, since Alice can easily produce ran-
dom goals that are difficult for Bob to replicate. Finally,
we see that SMiRL, which is designed for fully observed
environments, does not explore effectively because it suffers
from the dark room problem – it prefers to stay within the
empty rooms, and not venture into rooms with high-entropy,
stochastic elements.

6.2. Control:

To measure whether the agent learn to control their envi-
ronment, we investigate how many times the agent press
switches in the navigation environment that stop the stochas-
tic elements in the environment from changing color. The
results are shown in Figure 3. Since RND has no incentive
to learn to control the environment, it never learns to press
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Figure 3. Q2. Control: the average number of times the agent flip
a switch to stop lights from flashing. ASP and RND do not learn
to press the switch, while SMiRL and AS both press the switch a
similar number of times. Resetting the AS buffer more frequently
enables it to exceed even SMiRL in taking actions to control the
environment.

the switch. A similar result is observed for ASP, since re-
ducing the entropy would make it easier for the Bob agent
to replicate the Alice agent’s final state. Thus, ASP will
not always lead the agent to learn all possible behaviors
relevant to controlling the environment. Both SMiRL and
AS learn to take actions to reduce entropy. However, when
we train AS by resetting the buffer β used to fit the density
model pθ(o) after each round (that is, after both the Explore
and Control policy have taken one turn), rather than after
each episode, we see that AS increases the number of ac-
tions it takes to reduce entropy even over SMiRL. This is
likely because resetting the buffer removes any incentive
to return to states that the agent has previously seen within
its lifetime, and instead gives a stronger incentive to reduce
entropy immediately.

6.3. Emergence of Complexity:

To show that Adversarial Surprise leads to emergence of
complexity by phases, we plot the temporal acquisition
of two behaviors in order of complexity in the MiniGrid
environment. The results are shown in Figure 4. This envi-
ronment includes a dark room and a noisy room separated
by a door. The position of the door changes at each episode.
Initially, the agent is inside the noisy room and the door is
open. One episode consists of 96 steps: the Control policy
takes control of the agent during 32 steps, then the Explore
policy takes control of the agent during 32 steps, finally the
Control policy takes control of the agent during 32 steps.
The first acquired behavior by the Control policy is identi-
fying where the door is and going to the dark room during
the first round. It is a short-term suprise minimizing be-
havior and an agent trained with a SMIRL objective can
converge to it. However, the Explore policy learns to go
back to the noisy room and to reach the farthest point from

Figure 4. Q3. Emergence of Complexity: In spite of the relative
simplicity of the environment, we observe two relatively short
phase transitions separating three learning phases with three clearly
distinguishable behaviors: randomly exploring, going to the dark
room, locking the agent in the dark room. This is evidence of an
emergent curriculum induced by the multi-agent competition.

the door such that the Control policy does not have the time
to reach a state of minimum entropy before the surprise of
the agent is computed in the reward. This in turn incen-
tivizes the acquisition of a more complex behavior by the
Control policy: it learns to go in the dark room and to lock
the agent inside by closing the door during the first round,
making it harder for the Explore policy to learn to reach a
state that will surprise the agent during the Control policy’s
second round. This behavior reminiscent of Dr. Jekyll and
Mr. Hyde highlights the potential of Adversarial Surprise to
learn long-term suprise-minimizing behaviors.

6.4. No-reward learning:

Figures 5 and 6 show how well each method can be used to
learn interesting behaviors in the absence of external reward.
To assess whether they can learn useful skills, we measure
the game reward obtained in several Atari environments
and the VizDoom Take Cover environment. Because the
games reward complex behaviors like shooting or avoid-
ing enemies, a high game reward indicates the agent has
learned interesting skills, purely from optimizing the instrin-
sic objective. Across the environments, AS performs better
than RND, SMiRL, and ASP. While RND is effective in
some environments, its performance often decreases over
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Figure 5. Q4. No-reward learning in Atari: Each method is
trained in Atari using only intrinsic reward. Plots show how much
of the true game reward the agent obtains, with error bars showing
95% Confidence Interval (CI) of three seeds. Since the games
reward behavior such as staying alive and learning to shoot en-
emies, obtaining higher reward indicates the agent has learned
meaningful behaviors. AS outperforms both RND and SMiRL,
showing that AS provides a general way to learn useful behaviors
across multiple environments, in the absence of external reward.

time due the bonus from the prediction error shrinking as
more states become familiar. Further, maximizing novelty
in environments like Freeway, Space Invaders, and Doom
can lead to the agent dying, corresponding to low reward.
SMiRL performs well in Freeway, where minimizing en-
tropy corresponds closely to staying alive and not being
hit by cars. However in the other environments, SMiRL
performs poorly, because it avoids entropy by hiding from
enemies (it prefers to stay in dark rooms when they are avail-
able). ASP also performs poorly because it is possible for
Alice to quickly reach states which Bob cannot easily repli-
cate, preventing the algorithm from learning meaningful
behaviors. In contrast, AS consistently obtains high returns
across all environments, indicating that optimizing for both
exploration and control provides a broadly useful inductive
bias for learning interesting behaviors in the absence of
external reward.

7. Discussion
We proposed Adversarial Surprise as a general approach for
unsupervised reinforcement learning. Adversarial Surprise
corresponds to a two-player adversarial game, in which two
policies compete over the amount of surprise, or observa-
tion entropy, that an agent experiences. Reminiscent of Dr.
Jekyll and Mr. Hyde, the Explore policy acts to expose the
Control policy to highly entropic states from which it must
recover by learning to manipulate the environment. We

Figure 6. Q4. No-reward learning in Doom. Consistent with the
Atari results, AS learns more meaningful behaviors (i.e. moving
while avoiding enemy bullets) than other techniques. This leads to
higher environment reward during evaluation.

show that AS produce increasingly complex control and ex-
ploration strategies and has the potential to be applied to the
exploration of stochastic, partially observed environments.
In such environments, prior methods can become distracted
by noisy elements, or suffer from the “dark room” problem,
in which observation entropy is minimized by simply hid-
ing in a low-entropy part of the state space. We show both
theoretically and empirically that AS is robust against these
issues, and learns to explore the environment more thor-
oughly, and control it more effectively, than state-of-the-art
prior works like RND, ASP, and SMiRL.

Future work: Our evaluation of AS focuses on coverage
and unsupervised exploration, where we demonstrate that
AS improves over pure novelty-seeking and pure surprise
minimization methods when the environment exhibits both
unpredictable and stochastic components and partial ob-
servability. However, the potential value of unsupervised
reinforcement learning methods extends more broadly: such
methods could be used to acquire skills for downstream task
learning, controlling an environment to reach states from
which more behaviors could be performed successfully, and
other applications. Future work could study how AS and
its extensions could enable these applications, for example
by collecting data for downstream reward-guided learning.
Further, we see a potentially exciting method which com-
bines AS with hierarchical RL, by training a meta-policy to
select when to invoke the Explore and Control sub-policies.
In this way, the meta-policy could explicitly decide when to
explore and when to exploit.
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