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ABSTRACT

Data mixing strategies (e.g., CutMix) have shown the ability to greatly improve the
performance of convolutional neural networks (CNNs). They mix two images as
inputs for training and assign them with a mixed label with the same ratio. While
they are shown effective for vision transformers (ViTs), we identify a token fluc-
tuation phenomenon that has suppressed the potential of data mixing strategies.
We empirically observe that the contributions of input tokens fluctuate as forward
propagating, which might induce a different mixing ratio in the output tokens. The
training target computed by the original data mixing strategy can thus be inaccu-
rate, resulting in less effective training. To address this, we propose a token-label
alignment (TL-Align) method to trace the correspondence between transformed
tokens and the original tokens to maintain a label for each token. We reuse the
computed attention at each layer for efficient token-label alignment, introducing
only negligible additional training costs. Extensive experiments demonstrate that
our method improves the performance of ViTs on image classification, semantic
segmentation, objective detection, and transfer learning tasks.

1 INTRODUCTION

The recent developments of vision transformers (ViTs) have revolutionized the computer vision field
and set new state-of-the-arts in a variety of tasks, such as image classification (Dosovitskiy et al.,
2020; Touvron et al., 2021b; Liu et al., 2021a; Chu et al., 2021), object detection (Carion et al.,
2020; Zhu et al., 2020; Dai et al., 2021a;b), and semantic segmentation (Li et al., 2017; Strudel
et al., 2021; Zheng et al., 2021; Cheng et al., 2021). The successful structure of alternative spatial
mixing and channel mixing in ViTs also motivates the arising of high-performance MLP-like deep
architectures (Tolstikhin et al., 2021; Touvron et al., 2021a; Tang et al., 2022; Wei et al., 2022)
and promotes the evolution of better CNNs (Ding et al., 2022; Liu et al., 2022; Guo et al., 2022). In
addition to architecture designs, an improved training strategy can also greatly boost the performance
of a trained deep model (Jiang et al., 2021; Touvron et al., 2022; Chen et al., 2022; 2021b).

The training of modern deep architecture almost all adopts data mixing strategies for data augmen-
tation (Walawalkar et al., 2020; Uddin et al., 2020; Kim et al., 2020; Verma et al., 2019; Yun et al.,
2019; Zhang et al., 2018), which have been proven to consistently improve the generalization perfor-
mance. They randomly mix two images as well as their labels with the same mixing ratio to produce
mixed data. As the most commonly used data mixing strategy, CutMix (Yun et al., 2019) performs a
copy-and-paste operation on the spatial domain to produce spatially mixed images. While data mix-
ing strategies have been widely studied for CNNs (Walawalkar et al., 2020; Uddin et al., 2020; Kim
et al., 2020), few works have explored their compatibilities with ViTs (Chen et al., 2021b). We find
that self-attention in ViTs causes a fluctuation of the original spatial structure. Unlike the translation
equivalence that ensures a global label consistency for CNNs, self-attention in ViTs undermines
this global consistency and causes a misalignment between the token and label. This misalignment
induces a different mixing ratio in the output tokens. The training targets computed by the original
data mixing strategies can then be inaccurate, resulting in less effective training.

To address this, we propose a token-label alignment (TL-Align) method for ViTs to obtain a more
accurate target for training. We present an overview of our method in Figure 1. We first assign a
label to each input token in the mixed image according to the source of the token. We then trace
the correspondence between the input tokens and the transformed tokens and align the labels ac-
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Figure 1: An overview of the proposed TL-Align method. (a) CutMix-like methods (Yun et al.,
2019) are widely used in model training, which spatially mix the tokens and their labels in the input
space. (b) They are originally designed for CNNs and assume the processed tokens are spatially
aligned with the input tokens. We show that it does not hold true for ViTs due to the global receptive
field and the adaptive weights. (c) Compared with existing methods, our method can effectively and
efficiently align the tokens and labels without requiring a pretrained teacher network.

cordingly. We assume that only the spatial self-attention and residual connection operation alter
the presence of input tokens since channel MLP and layer normalization process each token inde-
pendently. We reuse the computed attentions to linearly mix the labels of input tokens to obtain
those of transformed tokens. The token-label alignment is performed iteratively to obtain a label
for each output token. For class-token-based classification (e.g., ViT (Dosovitskiy et al., 2020) and
DeiT (Touvron et al., 2021b)), we directly use the aligned label for the output class token as the
training target. For global-pooling-based classification (e.g., Swin (Liu et al., 2021a)), we similarly
average the labels of output tokens as the training target. The proposed TL-Align is only used for
training to improve performance and introduces no additional workload for inference. We apply the
proposed TL-Align to various ViT variants with CutMix including plain ViTs (DeiT (Touvron et al.,
2021b)) and hierarchical ViTs (Swin (Liu et al., 2021a)). A consistent performance boost is observed
across different models on ImageNet-1K (Deng et al., 2009). Specifically, our TL-Align improves
DeiT-S by 0.8% using the same training recipe. We also evaluated the ImageNet-pretrained mod-
els on various downstream tasks including semantic segmentation, objection detection, and transfer
learning. Experimental results verify the generalization ability of our method.

2 RELATED WORK

Vision Transformer. Transformers have been widely used in natural language processing and
achieved great success on many language tasks. Recently, Vision Transformers (ViTs) have
aroused extensive interest in computer vision due to their competitive performance compared with
CNNs (Dosovitskiy et al., 2020; Touvron et al., 2021b; Liu et al., 2021a; Chu et al., 2021). Doso-
vitskiy et al. (2020) firstly introduced transformers into the image classification task. They split
the input image into non-overlapped patches and then feed them into the transformer encoders. Liu
et al. (2021a) proposed a shifted windowing scheme to produce hierarchical feature maps suitable
for dense prediction tasks. The great potential of vision transformer has motivated its adaptation to
many challenging tasks including object detection (Dai et al., 2021a; Zhu et al., 2020; Carion et al.,
2020), segmentation (Cheng et al., 2021; Strudel et al., 2021), image enhancement (Chen et al.,
2021a; Li et al., 2021) and video understanding (Liu et al., 2021b; Arnab et al., 2021).

Recently, some efforts have been devoted to producing better training targets to improve the perfor-
mance of vision transformers (Jiang et al., 2021; Touvron et al., 2022). For example, DeiT (Touvron
et al., 2021b) introduces a knowledge distillation procedure to reduce the training cost of ViTs and
achieves a better accuracy/speed trade-off. TokenLabeling (Jiang et al., 2021) employs a pretrained
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teacher annotator to predict a label for each token for dense knowledge distillation. Differently, we
do not require a pretrained network to obtain the training targets. Our TL-Align maintains an aligned
label for each token layer by layer and can be trained efficiently in an end-to-end manner.

Data Mixing Strategy. As an important type of data augmentation, data mixing strategies have
demonstrated a consistent improvement in the generalization performance of CNNs. Zhang et al.
(2018) first proposed to combine a training pair to create augmented samples for model regulariza-
tion. They perform linear interpolations on both the input images and associated targets. Follow-
ing MixUp, CutMix (Yun et al., 2019) also utilizes the mixture of two input images but adopts a
region copy-and-paste operation. Later methods including Puzzle Mix (Kim et al., 2020), Salien-
cyMix (Uddin et al., 2020) and Attentive CutMix (Walawalkar et al., 2020) leverage the salient
regions for informative mixture generation. Recently, Yang et al. (2022) proposed a RecursiveMix
strategy which employs the historical input-prediction-label triplets for scale-invariant feature learn-
ing. Despite the better performance, a drawback of these methods is the heavily increased training
cost due to the saliency extraction or historical information exploitation.

Most existing data mixing methods are originally designed for CNNs, and their effectiveness on
ViTs has not been well explored. TransMix (Chen et al., 2021b) utilizes the class attention map
at the last layer to re-weight the mixing targets. They assume that the output tokens keep spatial
correspondence with the input tokens. However, we identify a token fluctuation phenomenon for
ViTs which may cause a mismatch between the tokens and their labels. This mismatch leads to
inaccurate label assignments in both the original CutMix and TransMix. To address this, we propose
to align the label space with the token space by tracing their correspondence in a layerwise manner.

3 PROPOSED APPROACH

3.1 PRELIMINARIES

The convolution neural network (CNN) has been the dominant architecture for computer vision
in the deep learning era, greatly improving the performance of many tasks. Its monopoly has been
challenged by the recent emergence of vision transformers (ViTs), which first “patchify” each image
into tokens and process them with alternating self-attention (SA) and multi-layer perceptron (MLP).

In addition to architecture design, training strategy also has a large effect on the model performance,
especially the data augmentation strategy. Data mixing (Walawalkar et al., 2020; Uddin et al., 2020;
Kim et al., 2020; Verma et al., 2019; Yun et al., 2019; Zhang et al., 2018) is an important set of data
augmentation for the training of both CNNs and ViTs, as it significantly improves the generalization
ability of models. As the most commonly used data mixing strategy, CutMix (Yun et al., 2019) aims
to create virtual training samples from the given training samples (X, y), where X ∈ RH×W×C

denotes the input image and y is the corresponding label. CutMix randomly selects a local region
from one input X1 and uses it to replace the pixels in the same region of another input X2 to generate
a new sample X̃. Similarly, the label ỹ of x̃ is also the combination of the original labels y1 and y2:

X̃ = M�X1 + (1−M)�X2

ỹ = λy1 + (1− λ)y2
(1)

where M ∈ {0, 1}H×W is a binary mask indicating the image each pixel belongs to, 1 is an all-
one matrix, and � is the element-wise multiplication. λ reflects the mixing ratio of two labels
and is the proportion of pixels cropped from X1 in the mixed image X̃. For a cropped region
[rx, rx + rw]× [ry, ry + rh] from X1, we compute λ = rwrh

WH to obtain the initial mixed target ỹ.

3.2 THE TOKEN FLUCTUATION PHENOMENON

CutMix is originally designed for CNNs and assumes the feature extraction process does not alter
the mixing ratio. However, we discover that different from CNNs, self-attention in ViTs can lead
to the fluctuation of some tokens. The fluctuation further results in the mismatch between the token
space and label space, which hinders the effective training of the network.

Formally, we use zi to denote a token of the image Z, i.e., zi is the transposed i-th column
vector of Z. We can then compute the i-th transformed token ẑi after the spatial operation as
ẑi =

∑N
j=1 w

s
i,jzj , where ws

i,j is the i, j-th element of the computed spatial mixing matrix ws(z).

3



Under review as a conference paper at ICLR 2023

…
<latexit sha1_base64="k3sLoPlC0wFfnhVu1GzGMi7cvzc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMhszPLTK8QQj7CiwdFvPo93vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0N/NbT9xYodUjjlMeJnSgRCwYRSe1uhpFwm2vXPGr/hxklQQ5qUCOeq/81e1rliVcIZPU2k7gpxhOqEHBJJ+WupnlKWUjOuAdRxV1S8LJ/NwpOXNKn8TauFJI5urviQlNrB0nketMKA7tsjcT//M6GcY34USoNEOu2GJRnEmCmsx+J31hOEM5doQyI9ythA2poQxdQiUXQrD88ippXlSDq2rwcFmp3eZxFOEETuEcAriGGtxDHRrAYATP8ApvXuq9eO/ex6K14OUzx/AH3ucPh+OPsw==</latexit>⌦

<latexit sha1_base64="14SSSImuYP0ue83rF2rNZny6qjk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNjk5lZrulsl/xZyDLJMhJGXLUuqWvTk+zLOEKmaTWtgM/xXBMDQom+aTYySxPKRvSPm87qmjCbTieXTshp07pkVgbVwrJTP09MaaJtaMkcp0JxYFd9Kbif147w/g6HAuVZsgVmy+KM0lQk+nrpCcMZyhHjlBmhLuVsAE1lKELqOhCCBZfXiaN80pwWQnuL8rVmzyOAhzDCZxBAFdQhTuoQR0YPMIzvMKbp70X7937mLeuePnMEfyB9/kD0faPSw==</latexit>�
<latexit sha1_base64="sqUR6BmVYyOwpq8y44d6AyV9CYg=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG8FNBfuAdiyZNNOGZpIhyShlmP9w40IRt/6LO//GTDsLbT0QOJxzL/fkBDFn2rjut1NaWV1b3yhvVra2d3b3qvsHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcp37nUeqNJPi3kxj6kd4JFjICDZWeuhH2IyDMO0M0tssG1Rrbt2dAS0TryA1KNAcVL/6Q0mSiApDONa657mx8VOsDCOcZpV+ommMyQSPaM9SgSOq/XSWOkMnVhmiUCr7hEEz9fdGiiOtp1FgJ/OUetHLxf+8XmLCKz9lIk4MFWR+KEw4MhLlFaAhU5QYPrUEE8VsVkTGWGFibFEVW4K3+OVl0j6rexd17+681jgv6ijDERzDKXhwCQ24gSa0gICCZ3iFN+fJeXHenY/5aMkpdg7hD5zPH+jvkr0=</latexit>

WK

<latexit sha1_base64="Vrx7FL6IV2qraHaOSzkTAHz6A8w=">AAAB9XicbVDLSgMxFL2pr1pfVZdugkVwVWakqMuCG5cV7APasWTSTBuayQxJRinD/IcbF4q49V/c+Tdm2llo64HA4Zx7uSfHjwXXxnG+UWltfWNzq7xd2dnd2z+oHh51dJQoyto0EpHq+UQzwSVrG24E68WKkdAXrOtPb3K/+8iU5pG8N7OYeSEZSx5wSoyVHgYhMRM/SLvDtJNlw2rNqTtz4FXiFqQGBVrD6tdgFNEkZNJQQbTuu05svJQow6lgWWWQaBYTOiVj1rdUkpBpL52nzvCZVUY4iJR90uC5+nsjJaHWs9C3k3lKvezl4n9ePzHBtZdyGSeGSbo4FCQCmwjnFeARV4waMbOEUMVtVkwnRBFqbFEVW4K7/OVV0rmou5d1965RazaKOspwAqdwDi5cQRNuoQVtoKDgGV7hDT2hF/SOPhajJVTsHMMfoM8f+bGSyA==</latexit>

WV

<latexit sha1_base64="gEoaZA6oEGdv/Eo7kJQsyXm1oNo=">AAAB9XicbVBNSwMxFHypX7V+VT16CRbBU9mVoh4LXjy2YFuhXUs2zbah2eySZJWy7P/w4kERr/4Xb/4bs+0etHUgMMy8x5uMHwuujeN8o9La+sbmVnm7srO7t39QPTzq6ihRlHVoJCJ17xPNBJesY7gR7D5WjIS+YD1/epP7vUemNI/knZnFzAvJWPKAU2Ks9DAIiZn4Qdobpu0sG1ZrTt2ZA68StyA1KNAaVr8Go4gmIZOGCqJ133Vi46VEGU4FyyqDRLOY0CkZs76lkoRMe+k8dYbPrDLCQaTskwbP1d8bKQm1noW+ncxT6mUvF//z+okJrr2UyzgxTNLFoSAR2EQ4rwCPuGLUiJklhCpus2I6IYpQY4uq2BLc5S+vku5F3b2su+1Grdko6ijDCZzCObhwBU24hRZ0gIKCZ3iFN/SEXtA7+liMllCxcwx/gD5/APITksM=</latexit>

WQ <latexit sha1_base64="5PXVaNQaZGaod4vOXTvkvY0vf5I=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy5bsA9sS8mkmTY0kxmSO0IZ+hduXCji1r9x59+YaWehrQcCh3PuJeceP5bCoOt+O4WNza3tneJuaW//4PCofHzSNlGiGW+xSEa661PDpVC8hQIl78aa09CXvONP7zK/88S1EZF6wFnMByEdKxEIRtFKj/2Q4sQP0uZ8WK64VXcBsk68nFQgR2NY/uqPIpaEXCGT1Jie58Y4SKlGwSSfl/qJ4TFlUzrmPUsVDbkZpIvEc3JhlREJIm2fQrJQf2+kNDRmFvp2MktoVr1M/M/rJRjcDlKh4gS5YsuPgkQSjEh2PhkJzRnKmSWUaWGzEjahmjK0JZVsCd7qyeukfVX1rqtes1ap1/I6inAG53AJHtxAHe6hAS1goOAZXuHNMc6L8+58LEcLTr5zCn/gfP4Av7iQ7Q==</latexit>

Q

<latexit sha1_base64="ADpK8FcKwOSp9u3ramw6GNLX1c0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFN4KbCvaB7VAy6Z02NJMZkoxQhv6FGxeKuPVv3Pk3pu0stPVA4HDOveTcEySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpn57SdUmsfywUwS9CM6lDzkjBorPfYiakZBmN1N++WKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/PEU3JmlQEJY2WfNGSu/t7IaKT1JArs5CyhXvZm4n9eNzXhtZ9xmaQGJVt8FKaCmJjMzicDrpAZMbGEMsVtVsJGVFFmbEklW4K3fPIqaV1Uvcuqd1+r1Gt5HUU4gVM4Bw+uoA630IAmMJDwDK/w5mjnxXl3PhajBSffOYY/cD5/ALaakOc=</latexit>

K

<latexit sha1_base64="JE5PJvbfDQpaCCOGWa7YyjKScts=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6rLgxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGYtWeDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofazeeIZObPKkISxsk8aMld/b2Q00noaBXYyT6iXvVz8z+ulJrzxMy6T1KBki4/CVBATk/x8MuQKmRFTSyhT3GYlbEwVZcaWVLEleMsnr5L2Rd27qnv3l7XGZVFHGU7gFM7Bg2towB00oQUMJDzDK7w52nlx3p2PxWjJKXaO4Q+czx/HUZDy</latexit>

V
<latexit sha1_base64="k3sLoPlC0wFfnhVu1GzGMi7cvzc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMhszPLTK8QQj7CiwdFvPo93vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0N/NbT9xYodUjjlMeJnSgRCwYRSe1uhpFwm2vXPGr/hxklQQ5qUCOeq/81e1rliVcIZPU2k7gpxhOqEHBJJ+WupnlKWUjOuAdRxV1S8LJ/NwpOXNKn8TauFJI5urviQlNrB0nketMKA7tsjcT//M6GcY34USoNEOu2GJRnEmCmsx+J31hOEM5doQyI9ythA2poQxdQiUXQrD88ippXlSDq2rwcFmp3eZxFOEETuEcAriGGtxDHRrAYATP8ApvXuq9eO/ex6K14OUzx/AH3ucPh+OPsw==</latexit>⌦

<latexit sha1_base64="k3sLoPlC0wFfnhVu1GzGMi7cvzc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMhszPLTK8QQj7CiwdFvPo93vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0N/NbT9xYodUjjlMeJnSgRCwYRSe1uhpFwm2vXPGr/hxklQQ5qUCOeq/81e1rliVcIZPU2k7gpxhOqEHBJJ+WupnlKWUjOuAdRxV1S8LJ/NwpOXNKn8TauFJI5urviQlNrB0nketMKA7tsjcT//M6GcY34USoNEOu2GJRnEmCmsx+J31hOEM5doQyI9ythA2poQxdQiUXQrD88ippXlSDq2rwcFmp3eZxFOEETuEcAriGGtxDHRrAYATP8ApvXuq9eO/ex6K14OUzx/AH3ucPh+OPsw==</latexit>⌦

<latexit sha1_base64="SM7VzobOVls/wdBpUDUJUMWuRi0=">AAACC3icbZDLSsNAFIYn9VbrLerSzdAiVJCSSFGXFTeCmxbsBdpQJtNJO3QyCTMToYTs3fgqblwo4tYXcOfbOEkjaOsPAx//OYc553dDRqWyrC+jsLK6tr5R3Cxtbe/s7pn7Bx0ZRAKTNg5YIHoukoRRTtqKKkZ6oSDIdxnputPrtN69J0LSgN+pWUgcH4059ShGSltDszzwkZpgxOKrpJqx68Wt5PQHb5OToVmxalYmuAx2DhWQqzk0PwejAEc+4QozJGXftkLlxEgoihlJSoNIkhDhKRqTvkaOfCKdOLslgcfaGUEvEPpxBTP390SMfClnvqs70xXlYi01/6v1I+VdOjHlYaQIx/OPvIhBFcA0GDiigmDFZhoQFlTvCvEECYSVjq+kQ7AXT16GzlnNPq/ZrXqlUc/jKIIjUAZVYIML0AA3oAnaAIMH8ARewKvxaDwbb8b7vLVg5DOH4I+Mj28b+psL</latexit>A(Q,K)

<latexit sha1_base64="14SSSImuYP0ue83rF2rNZny6qjk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNjk5lZrulsl/xZyDLJMhJGXLUuqWvTk+zLOEKmaTWtgM/xXBMDQom+aTYySxPKRvSPm87qmjCbTieXTshp07pkVgbVwrJTP09MaaJtaMkcp0JxYFd9Kbif147w/g6HAuVZsgVmy+KM0lQk+nrpCcMZyhHjlBmhLuVsAE1lKELqOhCCBZfXiaN80pwWQnuL8rVmzyOAhzDCZxBAFdQhTuoQR0YPMIzvMKbp70X7937mLeuePnMEfyB9/kD0faPSw==</latexit>� …

TL-Align TL-Aligns

Mix

Train

Mix

<latexit sha1_base64="buX/8nKp7plwcv/uDJxEkwm8GBA=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiRS1GXBjcsK9iFtWibTSTt0MgkzE6WE/IcbF4q49V/c+TdO0iy09cDA4Zx7uWeOF3GmtG1/W6W19Y3NrfJ2ZWd3b/+genjUUWEsCW2TkIey52FFORO0rZnmtBdJigOP0643u8n87iOVioXiXs8j6gZ4IpjPCNZGGg4CrKeenzykw8ROR9WaXbdzoFXiFKQGBVqj6tdgHJI4oEITjpXqO3ak3QRLzQinaWUQKxphMsMT2jdU4IAqN8lTp+jMKGPkh9I8oVGu/t5IcKDUPPDMZJZSLXuZ+J/Xj7V/7SZMRLGmgiwO+TFHOkRZBWjMJCWazw3BRDKTFZEplphoU1TFlOAsf3mVdC7qzmXduWvUmo2ijjKcwCmcgwNX0IRbaEEbCEh4hld4s56sF+vd+liMlqxi5xj+wPr8AcHFkqM=</latexit>

Y0

<latexit sha1_base64="1qBSglyYFes51xyMFuLpfZO4Nag=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiRS1GXBjcsK9oFtWibTSTt0MgkzE6WE/IcbF4q49V/c+TdO0iy09cDA4Zx7uWeOF3GmtG1/W6W19Y3NrfJ2ZWd3b/+genjUUWEsCW2TkIey52FFORO0rZnmtBdJigOP0643u8n87iOVioXiXs8j6gZ4IpjPCNZGGg4CrKeenzykw8ROR9WaXbdzoFXiFKQGBVqj6tdgHJI4oEITjpXqO3ak3QRLzQinaWUQKxphMsMT2jdU4IAqN8lTp+jMKGPkh9I8oVGu/t5IcKDUPPDMZJZSLXuZ+J/Xj7V/7SZMRLGmgiwO+TFHOkRZBWjMJCWazw3BRDKTFZEplphoU1TFlOAsf3mVdC7qzmXduWvUmo2ijjKcwCmcgwNX0IRbaEEbCEh4hld4s56sF+vd+liMlqxi5xj+wPr8AcNOkqQ=</latexit>

Z0
<latexit sha1_base64="bXE27YddS6dSIeaBjoCDU89yoVk=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiRS1GXBjcsK9oFtWibTSTt0MgkzE6WE/IcbF4q49V/c+TdO0iy09cDA4Zx7uWeOF3GmtG1/W6W19Y3NrfJ2ZWd3b/+genjUUWEsCW2TkIey52FFORO0rZnmtBdJigOP0643u8n87iOVioXiXs8j6gZ4IpjPCNZGGg4CrKeenzykw8RJR9WaXbdzoFXiFKQGBVqj6tdgHJI4oEITjpXqO3ak3QRLzQinaWUQKxphMsMT2jdU4IAqN8lTp+jMKGPkh9I8oVGu/t5IcKDUPPDMZJZSLXuZ+J/Xj7V/7SZMRLGmgiwO+TFHOkRZBWjMJCWazw3BRDKTFZEplphoU1TFlOAsf3mVdC7qzmXduWvUmo2ijjKcwCmcgwNX0IRbaEEbCEh4hld4s56sF+vd+liMlqxi5xj+wPr8AcTTkqU=</latexit>

Z1
<latexit sha1_base64="UnPLVVwdwmunl76Sxc0sb/9OE60=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiRSqsuCGxcuKtgHtmmZTCft0MkkzEyUEvIfblwo4tZ/ceffOGmz0NYDA4dz7uWeOV7EmdK2/W0V1tY3NreK26Wd3b39g/LhUVuFsSS0RUIeyq6HFeVM0JZmmtNuJCkOPE473vQ68zuPVCoWins9i6gb4LFgPiNYG2nQD7CeeH7ykA6S23RYrthVew60SpycVCBHc1j+6o9CEgdUaMKxUj3HjrSbYKkZ4TQt9WNFI0ymeEx7hgocUOUm89QpOjPKCPmhNE9oNFd/byQ4UGoWeGYyS6mWvUz8z+vF2r9yEyaiWFNBFof8mCMdoqwCNGKSEs1nhmAimcmKyARLTLQpqmRKcJa/vEraF1WnXnXuapVGLa+jCCdwCufgwCU04Aaa0AICEp7hFd6sJ+vFerc+FqMFK985hj+wPn8A7dqSwA==</latexit>

ZL

<latexit sha1_base64="G1/D27eUPELpfqLWo+M8WRGQGEY=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiRSqsuCGxcuKtiHtGmZTCft0MkkzEyUEvIfblwo4tZ/ceffOGmz0NYDA4dz7uWeOV7EmdK2/W0V1tY3NreK26Wd3b39g/LhUVuFsSS0RUIeyq6HFeVM0JZmmtNuJCkOPE473vQ68zuPVCoWins9i6gb4LFgPiNYG2nQD7CeeH7ykA6S23RYrthVew60SpycVCBHc1j+6o9CEgdUaMKxUj3HjrSbYKkZ4TQt9WNFI0ymeEx7hgocUOUm89QpOjPKCPmhNE9oNFd/byQ4UGoWeGYyS6mWvUz8z+vF2r9yEyaiWFNBFof8mCMdoqwCNGKSEs1nhmAimcmKyARLTLQpqmRKcJa/vEraF1WnXnXuapVGLa+jCCdwCufgwCU04Aaa0AICEp7hFd6sJ+vFerc+FqMFK985hj+wPn8A7FGSvw==</latexit>

YL
<latexit sha1_base64="6LLFIj7bs7Mkvi+/KnN7Up6GGjI=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiRS1GXBjcsK9iFtWibTSTt0MgkzE6WE/IcbF4q49V/c+TdO0iy09cDA4Zx7uWeOF3GmtG1/W6W19Y3NrfJ2ZWd3b/+genjUUWEsCW2TkIey52FFORO0rZnmtBdJigOP0643u8n87iOVioXiXs8j6gZ4IpjPCNZGGg4CrKeenzykw8RJR9WaXbdzoFXiFKQGBVqj6tdgHJI4oEITjpXqO3ak3QRLzQinaWUQKxphMsMT2jdU4IAqN8lTp+jMKGPkh9I8oVGu/t5IcKDUPPDMZJZSLXuZ+J/Xj7V/7SZMRLGmgiwO+TFHOkRZBWjMJCWazw3BRDKTFZEplphoU1TFlOAsf3mVdC7qzmXduWvUmo2ijjKcwCmcgwNX0IRbaEEbCEh4hld4s56sF+vd+liMlqxi5xj+wPr8AcNKkqQ=</latexit>

Y1

Figure 2: Illustration of the proposed TL-Align. We trace the correspondence between the input to-
kens and the transformed tokens and align the labels accordingly. We reuse the computed attentions
to linearly mix the labels of input tokens to obtain those of transformed tokens. The token-label
alignment is performed iteratively to obtain a label for each output token.

With the assumption of the linear information integration, we define the contribution of an original
token zi to an mixed token ẑj as c(zi, ẑj) =

|ws
i,j |∑N

k=1 |ws
k,j |

, where | · | denotes the absolute value. We

can then compute the presence of a token zi in all the mixed image tokens as:

p(zi) =

N∑
j=1

c(zi, ẑj) =

N∑
j=1

|ws
i,j |∑N

k=1 |ws
k,j |

. (2)

For non-strided depth-wise convolution, each token is multiplied by each element in the convolu-
tional kernel due to the translation invariance. We thus have the following equations:

N∑
l=1

|ws
i,l| =

N∑
j=1

|ws
k,j | =

M∑
k=1,l=1

|Kk,l|, ∀i, j ∈ PNE , (3)

where PNE denotes the set of positions that are not at the edge of the image, Kk,l denotes the value
of the k, l-th position of the convolution kernel K andM is the kernel size. We can infer that p(zi) =
1, ∀i ∈ PNE , i.e., the effect of all the internal tokens does not change during the convolution
process. However, for self-attention in ViTs, Eq. (3) does not hold due to the non-existence of
translation invariance. The fluctuation of p(z) is further amplified by the input dependency of the
spatial mixing matrix ws(z) induced by self-attention. As an extreme case, we may obtain p(z) ∼ 0
for certain tokens. The fluctuation of tokens will alter the proportion of mixing (i.e., λ) and the
network might even completely ignore one of the mixed images. The actual label of the processed
tokens can then deviate from the mixed label computed by Eq. (1), resulting in less effective training.

3.3 TOKEN-LABEL ALIGNMENT

In vision transformers, each token interacts with other tokens globally using the self-attention mech-
anism. The input-dependent weights empower ViTs with more flexibility but also result in a mis-
match between the processed token and the initial token. To address this, we propose a token-label
alignment (TL-Align) method to trace the correspondence between the input tokens and transformed
tokens to obtain the aligned labels for the resulting representations, as illustrated in Figure 2.

Specifically, ViTs first split the mixed input X̃ after CutMix (Eq. (1)) to a sequence of N non-
overlapped patches and then flatten them to obtain the original image tokens {x̃1, x̃2, · · · , x̃N}. We
then project them into a proper dimension and add positional embeddings:

Z0 = [z̃cls; x̃1 ·E; x̃2 ·E; · · · ; x̃N ·E] +Epos, (4)

where z̃cls ∈ R1×d denotes the class token, N is the number of tokens, E represents the patch
projector, and Epos ∈ R(N+1)×d is the position embeddings. Note that we adopt the process of the
original transformer architecture (Dosovitskiy et al., 2020) as an example without loss of generality.
Other models may omit the class token and use a relative positional embedding instead, which does
not affect the utility of the proposed TL-Align method.
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We first assign each token zi ∈ R1×d with a label embedding yi ∈ R1×C :
Y0 = [ỹ0

cls; ỹ
0
1; ỹ

0
2; ...; ỹ

0
N ], (5)

where the sum of elements in each yi equals 1 (i.e.,
∑C

j=1 yi,j = 1) and yi,j indicates how much
the i-th token belong to the j-th class. We initialize the label embedding following the conventional
data mixing paradigm. For example, when using CutMix to mix two images X1 and X2 from the
j-th class and the k-th class with a mixing ratio of λ, we set ỹcls,j = λ and ỹcls,k = 1 − λ for the
class token. For each patch token, we set ỹi,j = 1 if it comes from X1 and ỹi,k = 1 if it comes from
X2. If a patch token contains both the mixed images, we use the mixing ratio within this patch as
the label. For MixUp, we can simply set all label embeddings {ỹi} with ỹ,j = λ and ỹ,j = 1− λ.

We perform TL-Align in a layer-wise manner and compute the aligned labels based on the operation
on the tokens. Formally, ViTs use self-attention to perform spatial mixing of the input tokens Z:

Q = Z ·WQ,K = Z ·WK,V = Z ·WV,

A(Q,K) = Softmax(Q ·KT /
√
d),

Ẑ = SA(Z) = A(Q,K) ·V.
(6)

To align the labels, we update the label embeddings Y using the same attention matrix A(Q,K):

Ŷ = A(Q,K) ·Y. (7)
ViTs usually adopt multi-head self-attention (MSA) to perform multiple self-attentions parallelly:

Ẑ = MSA(Z) = [SA1(Z);SA2(Z); · · · ;SAH(Z)] ·wh, (8)
where H is the number of heads and wh ∈ Rd×d. We then adapt our label alignment to MSA by
simply taking the average of all the attention matrices for alignment:

Ŷ = TL-Align-S(Z,Y) :=
1

H

H∑
i=1

Ai(Q,K) ·Y, (9)

where Ai is the attention matrix corresponding to the i-th head SAi.

Each transformer block l processes the tokens by both spatial and channel mixing:

Ẑl−1 = MSA(LN(Zl−1)), Z′l−1 = Ẑl−1 + Zl−1,

Ẑl = MLP(LN(Z′l−1)), Zl = Ẑl + Z′l−1,
(10)

where MLP and LN denote the MLP module and layer normalization (Ba et al., 2016), respectively.
Our TL-Align then aligns the label embeddings in a similar manner:

Ŷl−1 = TL-Align-S(Yl−1), Y′l−1 = Norm(Ŷl−1 +Yl−1),

Ŷl = Y′l−1, Yl = Norm(Ŷl +Y′l−1),
(11)

where Norm denotes the normalization operation. We implement Norm by a simple average.

Hierarchical vision transformers such as Swin (Liu et al., 2021a) further introduce a patch aggre-
gation operation to merge multiple patches. They usually concatenate multiple tokens across the
channels to reduce the spatial resolution. Instead of concatenation, we simply add the label embed-
dings of the merged tokens followed by normalization as the aligned labels.

We synchronously align the labels with the processed tokens layer by layer and obtain the aligned
tokens ZL and labels YL. The final representation of the image z is either the class token
zLcls (Dosovitskiy et al., 2020; Touvron et al., 2021b) or the average pooling of all the spatial tokens
1
N

∑N
i=1 z

L
i (Liu et al., 2021a). The aligned label yalign for the image is then yL

cls or 1
N

∑N
i=1 y

L
i

depending on the specific model. We then adopt the aligned label yalign to train the network and
can adapt to different loss functions and training schemes:

J = J(z, stop-gradient(yalign)). (12)
We do not back-propagate through the aligned label as they only serve as a more accurate target.

Our TL-Align serves as a plug-and-play module on various vision transformers while only introduc-
ing negligible training costs. We adjust the label of each token adaptively during the layer-by-layer
propagation and preserve alignment between tokens and labels throughout the forward process. TL-
Align is only used during training and introduces no additional computation cost when inference.
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Table 1: Results on ImageNet classification task. We compare the parameters, FLOPs and accu-
racy of different vision transformer backbones without and with our TL-Align.

Model Image Size Params FLOPs Top-1 Acc.(%) Top-5 Acc.(%)

DeiT-T
2242 5.7M 1.6G 72.2 91.3

+TL-Align 73.2 91.7
DeiT-S

2242 22M 4.6G 79.8 95.0
+TL-Align 80.6 95.0
DeiT-B

2242 86M 17.5G 81.8 95.5
+TL-Align 82.3 95.8

Swin-T
2242 29M 4.5G 81.2 95.5

+TL-Align 81.4 95.7
Swin-S

2242 50M 8.8G 83.0 96.3
+TL-Align 83.4 96.5
Swin-B

2242 88M 15.4G 83.5 96.4
+TL-Align 83.7 96.5

Table 2: Comparison of our TL-Align with
other training strategies on ImageNet.

Method Params Speed (image/s) Acc.(%)

Vanilla 22M 322 76.4

CutMix 22M 322 79.8
Puzzle-Mix 22M 139 79.8
SaliencyMix 22M 314 79.2
Attentive-CutMix 46M 239 77.5
TransMix 22M 322 80.1

CutMix + TL-Align 22M 311 80.6

Table 3: Results on semantic segmentation
on the ADE20K dataset.

Backbone Params FLOPs mIoU mIoU (MS) mAcc

DeiT-S 58M 1032G 43.8 45.1 55.2
+TL-Align 44.5 45.7 55.5
Swin-T 60M 945G 44.4 45.8 55.6
+TL-Align 44.7 46.5 56.4
Swin-S 81M 1038G 47.6 49.5 58.8
+TL-Align 48.0 49.7 59.5
Swin-B 121M 1188G 48.1 49.7 59.1
+TL-Align 48.3 50.1 59.7

4 EXPERIMENTS

In this section, we conducted extensive experiments to evaluate the proposed TL-Align method.
We demonstrate the improvement of TL-Align on various vision transformers and compare it with
state-of-the-art training strategies concerning accuracy, network complexity, and training speed. We
examine the transferability on downstream tasks including semantic segmentation, object detection,
and transfer learning. We further provide in-depth analysis to evaluate the effectiveness of TL-Align.

4.1 IMAGENET CLASSIFICATION

Implementation Details. We first evaluate our TL-Align method on ImageNet for image classifica-
tion. We conduct experiments on various transformer architectures: three variants of DeiT (Touvron
et al., 2021b) (DeiT-T, DeiT-S, and DeiT-B), and three variants of Swin Transformer (Liu et al.,
2021a) (Swin-T, Swin-S, and Swin-B). For tiny and small models, we train the models from scratch
for 300 epochs following the same training recipe as (Touvron et al., 2021b) and (Liu et al., 2021a)
for fair comparisons. For large models (i.e., Deit-B and Swin-B), we finetune the official pre-trained
models for 40 epochs with a constant learning rate of 1e-5 and a weight decay of 1e-8.

Performance on Different Architectures. As shown in Table 1, TL-Align steadily improves the
performance of different vision transformer architectures. Specifically, TL-Align boosts the top-1
accuracy of DeiT-T, DeiT-S, and DeiT-B by 1.0%, 0.8%, and 0.5%, respectively, in a parameter-
free manner. Moreover, our method is generalizable and can be directly applied to hierarchical
vision transformers like Swin. It is worth noting that most existing methods need either architecture
modifications (adding a class token in (Chen et al., 2021b)) or extra computations (saliency map
extraction in (Uddin et al., 2020)) when applied to Swin. In contrast, our TL-Align method can be
used as a plug-and-play module and achieves consistent improvement on variants of Swin.

Comparison with Other Training Strategies. We also compare our method with the state-of-
the-art training strategies for data mixing on DeiT-S, including CutMix (Yun et al., 2019), Puzzle-
Mix (Kim et al., 2020), SaliencyMix (Uddin et al., 2020), Attentive-CutMix (Walawalkar et al.,
2020), and TransMix (Chen et al., 2021b). Specifically, we train the DeiT-S model while only dis-
abling CutMix as the baseline method, which is denoted as Vanilla in Table 2. Moreover, since
TransMix (Chen et al., 2021b) reports the EMA accuracy with different hyperparameters, we repro-
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Table 4: Experimental results on object detection and instance segmentation on COCO.
Backbone Params FLOPs Schedule APbox APbox

50 APbox
75 APmask APmask

50 APmask
75

Swin-T 86M 745G 3x 50.4 69.2 54.7 43.7 66.6 47.3
+TL-Align 50.5 69.4 54.9 43.8 66.6 47.3

Swin-S 107M 838G 3x 51.9 70.7 56.3 45.0 68.2 48.8
+TL-Align 52.2 71.1 56.7 45.2 68.4 49.1

Swin-B 145M 982G 3x 51.9 70.5 56.4 45.0 68.1 48.9
+TL-Align 52.3 71.2 56.9 45.3 68.7 49.1

Table 5: The accuracy and model complexity on different transfer learning datasets.
Model Params FLOPs C-10 C-100 Flowers Cars

ResNet50 26M 4.1G - - 96.2 90.0
ViT-B/16 86M 55.4G 98.1 87.1 89.5 -
ViT-L/16 307M 190.7G 97.9 86.4 89.7 -

Deit-T 5.7M 1.6G 97.6 85.7 97.1 90.1
+TL-Align 5.7M 1.6G 97.8 86.4 97.9 90.7
Deit-S 22M 4.6G 97.9 90.2 98.1 91.4
+TL-Align 22M 4.6G 98.8 90.4 98.3 91.8
Deit-B 86M 17.5G 99.1 90.8 98.4 92.1
+TL-Align 86M 17.5G 99.1 90.5 98.6 93.0

duce it under the same training recipe (Touvron et al., 2021b) for a fair comparison. As demonstrated
in Table 2, TL-Align shows significantly better performance than the other mixup variants while
maintaining the number of parameters and training speed. Puzzle-Mix obtains the same classifica-
tion accuracy as CutMix but results in a much lower training speed as it relies on an extra model
to get the optimal solution. SaliencyMix and Attentive-CutMix lead to performance degeneration
when built upon DeiT-S backbone. Notably, our method also achieves higher top-1 accuracy than
ViT-targeted TransMix. Due to the token fluctuation phenomenon, the class token attention utiliza-
tion in TransMix can not reflect the actual contribution of different tokens. Differently, TL-Align
obtains accurate alignment of the tokens and labels, resulting in improved performance.

4.2 DOWNSTREAM TASKS

Semantic Segmentation. We evaluate our TL-Align on ADE20K dataset (Lin et al., 2014) for
semantic segmentation. We adopt DeiT-S and three variants of Swin Transformer as backbones
equipped with UpperNet for segmentation. As presented in Table 3, TL-Align improves the seg-
mentation performance on both DeiT and Swin at different model scales, showing its effectiveness.

Object Detection and Instance Segmentation. We also examine the performance of TL-Align on
object detection and instance segmentation on the COCO 2017 dataset (Lin et al., 2014). We apply
our TL-Align to Swin (Liu et al., 2021a) due to the advantage of the hierarchical representations on
object detection tasks. We adopt the Cascade Mask-RCNN (Cai & Vasconcelos, 2018) framework
and use the training strategy of 3x schedule. As shown in Table 4, we observe consistent improve-
ments on all variants of Swin Transformer. This demonstrates the advantages of our method for
learning token-level meaningful features suitable for dense prediction tasks.

Transfer Learning. We further evaluate the transferred classification performance of TL-Align
on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), Flowers (Nilsback
& Zisserman, 2008) and Cars (Krause et al., 2013). We use pre-trained models on ImageNet and
finetune them on these datasets following existing works (Touvron et al., 2021b). We compare the
performance with and without TL-Align on three variants of DeiT (Touvron et al., 2021b), as shown
in Table 5. TL-Align obtains significant performance gains for all variants on the four datasets.

4.3 PERFORMANCE ANALYSIS AND VISUALIZATION

Effectiveness of Token-Label Alignment. We first quantize the difference between the original
targets and aligned labels and investigate its correlation with the model. Specifically, we compute
the Root Mean Square Error (RMSE) between the original targets and labels obtained by our TL-
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Figure 3: The Root Mean Square Error
(RMSE) between original CutMix targets
and labels obtained by T-L Align. We show
results on variants of DeiT and Swin.

Figure 4: Visualization of mixing ratio λ of
fluctuating tokens from different layers. We
compare the results of TL-Align with CutMix,
token similarity, TransMix, and TokenLabeling.

Table 6: Comparison results of model generalization ability and robustness. We evaluate them
on various out-of-distribution/corrupted datasets and against adversarial attacks.

Model FLOPs Params ImageNet Generalization Robustness

Top-1↑ Top-5↑ IN-V2↑ IN-A↑ IN-C↓ IN-R↑ AutoAttack↑
DeiT-T 5.7M 1.6G 72.2 91.3 60.4 7.7 69.1 34.1 3.9
+TL-Align 5.7M 1.6G 73.2 91.7 61.4 6.1 68.0 34.6 4.4

DeiT-S 22M 4.6G 79.8 95.0 68.5 18.9 54.7 42.5 6.9
+TL-Align 22M 4.6G 80.6 95.0 68.9 19.2 53.2 43.2 7.5

DeiT-B 86M 17.5G 81.8 95.5 70.5 27.9 48.5 45.3 -
+TL-Align 86M 17.5G 82.3 95.8 70.9 29.0 47.1 44.4 -

Align. As shown in Figure 3, the RMSE decreases when enlarging the model size. This indicates that
larger models demonstrates less token fluctuation. Moreover, the RMSE for Swin Transformer tends
to be lower compared with DeiT of a similar model size. This is due to the adopted local-window
self-attention in Swin which preserves more local information. These observations are consistent
with our experimental results: the improvements on small models and DeiT-like backbones tend to
be more significant as they encounter more token fluctuation.

Visualization of the Layer-wise Mixing Ratio of Fluctuated Tokens. To investigate the effec-
tiveness of TL-Align, we compute a similarity-based “ground-truth” mixing ratio for each layer.
Specifically, we compute the similarities of tokens between the mixed and unmixed images and use
them as the label of each token. We compare them with the mixing ratios produced by TL-Align,
CutMix (Yun et al., 2019), TransMix (Chen et al., 2021b), and TokenLabeling (Jiang et al., 2021).
As shown in Figure 4, the similarity-based mixing ratio changes at each layer, resulting from token
fluctuation. However, CutMix, TransMix, and TokenLabeling assume the output tokens keep spatial
correspondence with the input tokens and compute a fixed mixing ratio. TL-Align assigns dynamic
labels to tokens using layer-wise alignment, which is more accurate compared with other methods.

Evaluation of Robustness and Generalization. We further conduct experiments to validate the
generalization ability and robustness of TL-Align, as shown in Table 6. For robustness evaluation,
we employ four corrupted and out-of-distribution datasets including ImageNet-A, ImageNet-C and
ImageNet-R. We also adopt AutoAttack (Croce & Hein, 2020) to evaluate the adversarial robustness
on ImageNet validation set. Due to the memory limitation, we do not experiment with DeiT-B on
AutoAttack. We use mean Corruption Error (mCE, lower is better) for ImageNet-C and Top-1 Ac-
curacy for others as the evaluation metric. For generalization evaluation, we adopt the ImageNet-V2
dataset (Recht et al., 2019). We see that TL-Align improves both the robustness and generalization
ability, demonstrating the superiority of adopting TL-Align for pre-training.

Ablation Study on different Data Mixing Strategies. Due to the efficiency of the proposed layer-
wise alignment, TL-Align can be directly applied to a wide range of data mixing strategies. We
adopt MixUp, CutMix, a random mixing strategy and a block-wise mixing strategy to evaluate the
generalizability of TL-Align. The random mixing and block-wise mixing strategies are inspired
by MAE (He et al., 2022) and BEiT (Bao et al., 2021) and we replace the masking operation with
image mixing on patch-level and block-level (both of size 16×16) respectively. The comparison
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Table 7: Ablation of applying TL-Align to different
data mixing strategies for DeiT-S training.

MixUp CutMix Random Block-wise Top-1 Acc.(%) +TL-Align
Top-1 Acc.(%)

× × × × 76.4 -
× X × × 79.8 80.6
X X × × 79.8 80.2
× × X × 79.7 80.2
× × × X 80.0 80.3

Table 8: Ablation of different token-
label alignment operations.

Alignment Top-1 Acc.(%)

None (DeiT-S baseline) 79.8
TL-Align-S (Layer 12) 80.1
TL-Align-S (Layer 2,4,6,8) 80.2
Normalization Disabled 80.3
Default (TL-Align) 80.6

Input   Mixed Image Original Label Aligned LabelInput  

DeiT-S

Swin-S

Figure 5: The visualization of results on DeiT-S and Swin-S. We visualize the input images, the
mixed image, the original label embedding, and the label embedding after token-label alignment.

results of training DeiT-S with and without our approach is demonstrated in Table 7. Specifically,
TL-Align improves CutMix by 0.8%, MixUp+CutMix by 0.4%, random mixing by 0.5% and block-
wise mixing by 0.3% respectively, further verifying the generalizability of the proposed TL-Align.

Ablation Study on Different Label Alignment Operations. Our TL-Align aligns the labels with
tokens transformed by spatial self-attention and residual connection layer-by-layer. To investigate
the effect of reusing attention maps and normalization, we conduct an ablation study regarding
different alignment operations on DeiT-S. We try aligning the labels only by using the attention map
of Layer 12, which is equivalent to TransMix (Chen et al., 2021b). We also test the performance of
applying alignment to several middle transformer layers and disabling normalization. As presented
in Table 8, incomplete alignment at a part of layers marginally boosts the performance as it cannot
well handle the token fluctuation issue. Disabling normalization leads to 0.3% accuracy drop due to
the inaccurate alignment at the presence of residual connections. This demonstrates the significance
of the token-label alignment by attention utilization and normalization in a layer-wise manner.

Visualizations of Aligned Labels. We visualize the labels obtained by TL-Align on DeiT-S (Tou-
vron et al., 2021b) and Swin-S (Liu et al., 2021a) as shown in Figure 5. Specifically, the aligned
label embedding is obtained after the final transformer block for both DeiT-S and Swin-S. The value
of the label embedding represents the probability of the belonged class of the corresponding token.
We use red to denote larger probabilities towards the first image and blue for the second image. We
observe that the aligned labels can deviate from the original labels and result in different mixing ra-
tios for training. Therefore, using the original ratio as the training target may produce false training
signals and lead to inferior performance. We see that our TL-Align can correct the labels when the
images are mixed with uninformative tokens. More visualization results are included in Appendix B.

5 CONCLUSION

In this paper, we have presented a token-label alignment method for training better vision trans-
formers. As important subsets of data augmentation methods, data mixing strategies are able to
consistently improve the performance of both CNNs and ViTs. We identify a token fading issue for
ViTs and address this by tracing the correspondence between transformed tokens and the original
tokens to obtain a label for each output token to obtain more accurate training signals. Experi-
mental results have demonstrated that the proposed TL-Align method can uniformly improve the
performance of various ViT models. The generalization of TL-Align to other architectures such as
MLP-like models remains unknown and is a promising future direction.
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Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. arXiv preprint
arXiv:2204.07118, 2022.

AFM Uddin, Mst Monira, Wheemyung Shin, TaeChoong Chung, Sung-Ho Bae, et al. Salien-
cymix: A saliency guided data augmentation strategy for better regularization. arXiv preprint
arXiv:2006.01791, 2020.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.
In ICML, pp. 6438–6447, 2019.

Devesh Walawalkar, Zhiqiang Shen, Zechun Liu, and Marios Savvides. Attentive cutmix: An en-
hanced data augmentation approach for deep learning based image classification. arXiv preprint
arXiv:2003.13048, 2020.

Guoqiang Wei, Zhizheng Zhang, Cuiling Lan, Yan Lu, and Zhibo Chen. Activemlp: An mlp-like
architecture with active token mixer. arXiv preprint arXiv:2203.06108, 2022.

Lingfeng Yang, Xiang Li, Borui Zhao, Renjie Song, and Jian Yang. Recursivemix: Mixed learning
with history. arXiv preprint arXiv:2203.06844, 2022.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV, pp.
6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In ICLR, 2018.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation from
a sequence-to-sequence perspective with transformers. In CVPR, pp. 6881–6890, 2021.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. In ICLR, 2020.

12



Under review as a conference paper at ICLR 2023

A GENERALIZING TL-ALIGN BEYOND VITS

ViTs can achieve better accuracy/computation trade-off than conventional CNNs, where one of the
working mechanisms is the alternation between spatial mixing (e.g., SA) and channel mixing (e.g.,
MLP) (Tolstikhin et al., 2021). Based on this, some works have explored different spatial mixing
strategies in addition to self-attention, including spatial MLP (Tolstikhin et al., 2021; Touvron et al.,
2021a; Tang et al., 2022; Wei et al., 2022) and depth-wise convolution (Ding et al., 2022; Liu et al.,
2022; Guo et al., 2022). For an image X ∈ RH×W×C , they first perform patch-wise image tokeniza-
tion to obtain a tokenized image representation Z ∈ RN×d, where N is the number of tokens and d
is the number of channels. We formulate modern deep vision networks into various compositions of
five operations:

• Spatial mixing: Z←Ws(Z) · Z, where Ws(Z) ∈ RN×N .

• Channel mixing: Z← Z ·Wc(Z), where Wc(Z) ∈ Rd×d.

• Point-wise transformation: Z ← f(Z), where f is a point-wise operation such as bias
adding and normalization.

• Residual connection: Z ← Z + g(Z), where g can be one or a composition of the above
operations.

• Spatial aggregation: Z ← Aggre({Zi}), where Aggre typically concatenates multiple to-
kens across the feature dimension.

For example, MLP-Mixer (Tolstikhin et al., 2021) adopts Ws(Z) = W s, where W s ∈ RN×N

is a learnable parameter matrix. ConvNeXt (Liu et al., 2022) adopts Ws(Z) = T (K), where
K ∈ R7×7 is a convolutional kernel and T transforms the kernel into a equivalent matrix for direct
multiplication.

The proposed TL-Align can be generalized to different architectures by applying the corresponding
operations on the label embeddings. We initialize the label embedding following Eq. (5). We detail
the label embedding updating for different operations in Table 9. The Norm(·) operation denotes
that we normalize each row vector so that the sum of all elements equals to 1.

Table 9: Updating of the label embeddings for different operations on the tokens.
Operation Token Processing Label Alignment Example

Spatial mixing Z←Ws(Z) · Z Y ← Norm(Ws(Z)) ·Y Spatial attention
Channel mixing Z← Z ·Wc(Z) Y ← Y Channel MLP
Point-wise transformation Z← f(Z) Y ← Y Layer normalization
Residual connection Z← Z+ g(Z) Y ← Norm(Y + g(Y)) Residual connection
Spatial aggregation Z← Aggre({Zi}) Y ← Norm(

∑
i Yi) Patch merging

For spatial mixing, we accordingly mix the token embeddings using the same weights as the token
processing. For example, for a processed token ẑ = 0.5 · z1 + 0.5 · z2, we similarly compute the
aligned label as ŷ = 0.5 · y1 + 0.5 · y2, assuming the label information is linearly addable. As
channel mixing and point-wise transformation only reorganize information within each token, they
do not alter the label embedding. For residual connection, we similarly add a residual connection
to the label embedding before normalization. Spatial aggregation is similar to spatial mixing and
also aggregates information among multiple tokens. Therefore, we also need to align the labels by
adding their label embeddings before normalization.

We leave the experiments for generalized TL-Align for future works.

B MORE VISUALIZATIONS

We provide more visualization results of obtained labels of the proposed token-label alignment
method in Figure 6. We visualize the input images, the mixed image, the original label embedding,
and the label embedding after token-label alignment. Specifically, the aligned label embedding is
obtained after the final transformer block for both DeiT-S and Swin-S. The size of the original label
embedding is equivalent to the number of input tokens, i.e. 14 × 14 for DeiT-S and 56 × 56 for
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Figure 6: More visualization results on DeiT-S and Swin-S. We visualize the input images, the
mixed image, the original label embedding and the label embedding after token-label alignment.

Swin-Transformer since they employ different patch size for patch embbedding. The size of the
aligned label embedding is equivalent to the number of output tokens, i.e. 14 × 14 for DeiT-S and
7× 7 for Swin-Transformer due to patch merging. The value of the label embedding represents the
probability the corresponding token belongs to each class, which is viewed by color. Red stands
for the class of the first input image while blue stands for the class of the second input image. We
observe that the aligned labels can deviate from the original labels and result in different mixing
ratios during training. Therefore, using the original mixing ratio as the training target produces false
training signals and might lead to inferior performance.

C DETAILS ABOUT DATASETS

We evaluate our method on ImageNet for image classification task, on ADE20K for semantic seg-
mentation and COCO 2017 for object detection and instance segmentation. ImageNet contains about
1.2 million training and 50K validation images from 1K categories. ADE20K contains 20K training
images and 2K validation images from 150 semantic categories. COCO 2017 dataset consists of
118K training images and 5K validation images from 80 different categories.

We further conduct experiments to evaluate the robustness and the generalization ability of the TL-
Align pretrained models. For robustness, we consider ImageNet-A, ImageNet-C, ImageNet-R and
under AutoAttack. ImageNet-A (Hendrycks et al., 2021b) consists of naturally adversarial exam-
ples from real-world challenging scenarios. ImageNet-C (Hendrycks & Dietterich, 2019) is used to
evaluate the model robustness to diverse image corruptions. ImageNet-R (Hendrycks et al., 2021a)
contains various artistic renditions of 200 ImageNet classes. which contains new test sets of Ima-
geNet following the same labeling protocol. AutoAttack (Croce & Hein, 2020) is a novel adversarial
attacks benchmark to test the adversarial robustness on ImageNet validation set. To evaluate the gen-
eralization ability, we adopt the ImageNet-V2 dataset (Recht et al., 2019), which contains new test
sets of ImageNet following the same labeling protocol.
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