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Abstract

We introduce a novel framework of combinato-
rial multi-armed bandits (CMAB) with multivari-
ant and probabilistically triggering arms (CMAB-
MT), where the outcome of each arm is a d-
dimensional multivariant random variable and the
feedback follows a general arm triggering process.
Compared with existing CMAB works, CMAB-
MT not only enhances the modeling power but
also allows improved results by leveraging dis-
tinct statistical properties for multivariant random
variables. For CMAB-MT, we propose a general
1-norm multivariant and triggering probability-
modulated smoothness condition, and an opti-
mistic CUCB-MT algorithm built upon this condi-
tion. Our framework can include many important
problems as applications, such as episodic rein-
forcement learning (RL) and probabilistic maxi-
mum coverage for goods distribution, all of which
meet the above smoothness condition and achieve
matching or improved regret bounds compared to
existing works. Through our new framework, we
build the first connection between the episodic RL
and CMAB literature, by offering a new angle to
solve the episodic RL through the lens of CMAB,
which may encourage more interactions between
these two important directions.
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1. Introduction
The stochastic multi-armed bandit (MAB) (Robbins, 1952;
Auer et al., 2002) is a classical model for sequential decision-
making that has been widely studied(cf. Slivkins et al.
(2019); Lattimore & Szepesvári (2020)). As a notewor-
thy extension of MAB, combinatorial multi-armed bandits
(CMAB) have drawn considerable attention due to their rich
applications in domains such as online advertising, network
optimization, and healthcare systems (Gai et al., 2012; Kve-
ton et al., 2015b; Chen et al., 2013b; 2016; Wang & Chen,
2017; Merlis & Mannor, 2019; Liu et al., 2021; Zuo & Joe-
Wong, 2021; Zuo et al., 2022). In CMAB, the learning
agent chooses a combinatorial action (often referred to as
super arm) in each round. This combinatorial action would
trigger a set of arms to be pulled simultaneously, and the
outcomes of these arms are observed as feedback (typically
known as semi-bandit feedback). The agent then receives a
reward, which can be a general function of the pulled arms’
outcomes, with the summation function being the most com-
mon example. The agent’s goal is to minimize the expected
regret, which quantifies the difference in expected cumula-
tive rewards between always selecting the best action (i.e.,
the action with the highest expected reward) and following
the agent’s own policy. CMAB poses the challenge of bal-
ancing exploration and exploitation while dealing with an
exponential number of combinatorial actions.

To model a wider range of application scenarios where
the combinatorial action may probabilistically trigger arms,
Chen et al. (2016) first introduce a generalization of CMAB,
known as CMAB with probabilistically triggered arms
(CMAB-T). This extension successfully encompasses a
broader range of applications, including cascading ban-
dits (Combes et al., 2015) and online influence maximiza-
tion (OIM) (Wen et al., 2017). Subsequently, Wang & Chen
(2017); Liu et al. (2022) improve the regret bounds of (Chen
et al., 2016) by introducing novel triggering probability
modulated (TPM) smoothness conditions and/or variance
adaptive algorithms. Further elaboration on related works
can be found in Appendix A.

Despite the expanded modeling capabilities and improved
regret bounds, all prior CMAB-T frameworks assume that
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each arm’s outcome is a univariate random variable, upon
which they base their smoothness conditions, algorithms,
and analyses. In real-world applications, arm outcomes
can be d-dimensional multivariate random variables with
distinct statistical properties. One example is the indivisible
goods distribution (Alkan et al., 1991; Chevaleyre et al.,
2017), where each good can be distributed to one of d target
users, forming a multivariant random variable. Another
critical example is episodic reinforcement learning (RL)
(Jaksch et al., 2010; Azar et al., 2017; Zanette & Brunskill,
2019; Neu & Pike-Burke, 2020), where in each episode
the agent starts from an initial state s1 and transits through
traverses a series of H states (sh)h∈[H] by taking action
ah upon each encountered state sh. Each transition in this
scenario is a multivariant random variable, with outcomes
spanning the state space S. Existing CMAB-T approaches
cannot effectively model these situations with appropriate
smoothness conditions. Specifically, they resort to treating
each multivariate arm as d separate arms, thereby neglecting
the unique statistical characteristics of multivariate random
variables and yielding suboptimal regret performance.

Our Contributions. We introduce a new CMAB-MT
framework, which inherits the arm triggering mechanism of
CMAB-T while accommodating d-dimensional multivari-
ate random variables as arm outcomes. The key challenge
lies in determining the contributions of each dimension of
the arms to the overall regret and effectively leveraging the
multivariate statistical characteristics. To address this chal-
lenge, we first introduce a novel 1-norm MTPM smoothness
condition that assigns varying weights to different arms and
dimensions, which flexibly covers existing 1-norm TPM
smoothness conditions of CMAB-T and accommodates new
applications such as episodic RL. Then, we construct an
action-dependent confidence region that can incorporate
problem-specific multivariant statistical properties. Lever-
aging this confidence region, we devise the CUCB-MT algo-
rithm with a general joint oracle and establish the first regret
bound for any CMAB-MT problem. Our new analysis com-
bines regret decomposition techniques from the RL domain
and sharp CMAB techniques to deal with arm triggering and
regret amortization, which can yield matching or improved
results for applications within and beyond this study.

To show the applicability of our framework, we first show
that episodic RL fits into the CMAB-MT framework by
mapping each transition kernel as an arm and employing the
occupancy measure as the triggering probability. Leveraging
this insight, we give two CUCB-MT algorithms that can
achieve Õ(

√
H4S2AT ) and Õ(

√
H3SAT ) regret based on

distinct smoothness conditions, with the latter matches the
lower bound (Jaksch et al., 2010) up to logarithmic factors.
Remarkably, our regret bound improves at least a factor
of O(log2 T ) for the leading regret term compared with
existing works (Zanette & Brunskill, 2019; Zhang et al.,

2023) owing to our sharp CMAB analysis. As a by-product,
our framework gives a gap-dependent regret that scales with
O(log T ). Notably, episodic RL is widely known to be a
strict generalization of the MAB and thus much harder to
solve than MAB due to the state transition and long-term
reward structure. Our work makes the first attempt to view
episodic RL as an instance of CMAB, and offers a new
angle for addressing episodic RL challenges through the
lens of CMAB. Our results highlight that episodic RL is not
significantly harder than CMAB-MT problems, and build a
valuable connection between the RL and CMAB that may
encourage more interactions between these pivotal research
directions.

Furthermore, we explore another application beyond
episodic RL that fits into our framework: the probabilis-
tic maximum coverage for goods distribution (PMC-GD).
For PMC-GD, we overcome the challenge of identifying
a tight confidence region based on its unique statistical
property and finding the efficient implementation of the
joint oracle. To this end, our framework gives a regret
bound that improves the best-known variance-adaptive al-
gorithm (Merlis & Mannor, 2019; Liu et al., 2022) by a
factor of Õ(

√
|V |/k), where |V | and k are the numbers of

target nodes and selected source nodes, and V ≫ k in most
application scenarios (Chen et al., 2016; Liu et al., 2023b).

2. Combinatorial MAB with Multivariant and
Probabilistically Triggering Arms

In this section, we present the combinatorial multi-armed
bandit with multivariant and probabilistically triggering
arms (or CMAB-MT for short), which generalizes the pre-
vious CMAB-T framework to handle d-dimensional multi-
variant arm outcomes. CMAB-MT covers not only existing
instances of CMAB-T with univariant arms, but more im-
portantly, the episodic RL as a new example.

Notations. We use boldface symbols for vectors v ∈ Rd.
For matrix v ∈ Rm×d, we treat v as a long column vector
that sequentially stacks m sub-vectors of dimension d and
vi ∈ Rd is the i-th sub-vector for i ∈ [m]. For function V :
[d] → R, we use V to denote the vector (V (x))x∈[d] ∈ Rd.
For any set S, we define probability simplex ∆S = {p ∈
[0, 1]|S| :

∑
i∈S p(i) = 1}. We use ei ∈ Rd to denote the

vector whose i-th entry is 1 and 0 elsewhere. For vector
v ∈ Rd, we use |v| to denote the vector (|vi|)i∈[d].

2.1. Framework Setup

Problem Instance. A CMAB-MT problem instance can
be described by a tuple ([m], d,Π,D, Dtrig, R), where
[m] = {1, 2, ...,m} is the set of multivariant base arms;
d is the dimension of multivariant base arm’s random
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outcome1 (with bounded support [0, 1]d), i.e., outcome
Xi = (Xi,1, ..., Xi,d) ∈ [0, 1]d; Π is the set of eligible
combinatorial actions and π ∈ Π is a combinatorial action;2

D is the set of possible distributions over the outcomes of
base arms with support [0, 1]m×d; Dtrig is the probabilistic
triggering function and R is the reward function, which shall
be specified shortly after.

Learning Process. In CMAB-MT, the learning agent inter-
acts with the unknown environment in a sequential manner
as follows. First, the environment chooses a distribution
D ∈ D unknown to the agent. Then, at round t = 1, 2, ..., T ,
the agent selects a combinatorial action πt ∈ Π and the en-
vironment draws from the unknown distribution D random
outcome vectors Xt = (Xt,1, ...,Xt,m) ∈ [0, 1]m×d for
all m multivariate base arms. Note that the outcome Xt

is assumed to be independent from outcomes generated in
previous rounds, but outcomes Xt,i and Xt,j in the same
round could be correlated. Let Dtrig(π,X) be a distribu-
tion over all possible subsets of [m]. When the action πt

is played on the outcome Xt, base arms in a random set
τt ∼ Dtrig(πt,Xt) are triggered, meaning that the multivari-
ant outcomes of arms in τt, i.e., (Xt,i)i∈τt are revealed as
the feedback to the agent, and are involved in determining
the reward of action πt. Function Dtrig is referred to as the
probabilistic triggering function. At the end of the round t,
the agent will receive a non-negative reward R(πt,Xt, τt),
determined by πt,Xt and τt.

Learning Objective. The goal of CMAB-MT is to ac-
cumulate as much reward as possible over T rounds, by
learning distribution D or its parameters. Let vector µ =
(µ1, ...,µm) ∈ [0, 1]m×d, where µi = (µi,1, ..., µi,d) ∈
[0, 1]d denote the mean vector of base arm i’s multivariant
outcome, i.e., µi = EXt∼D[Xt,i]. Similar to the CMAB-
T framework (Wang & Chen, 2017; Liu et al., 2022; 2023a),
we assume that the expected reward E[R(π,X, τ)] is a func-
tion of the unknown mean vector µ, where the expectation is
taken over the randomness of X ∼ D and τ ∼ Dtrig(π,X),

and therefore we use r(π;µ)
def
= E[R(π,X, τ)] to denote

the expected reward. The performance of a learning algo-
rithm ALG is measured by its regret, defined as the differ-
ence of the expected cumulative reward between always
playing the best action π∗ def

= argmaxπ∈Π r(π;µ) and that
of playing actions chosen by the algorithm.

For many reward functions r(π;µ), it is NP-hard to com-
pute the exact π∗ even when µ is known (Chen et al.,
2013b; Wang & Chen, 2017; Liu et al., 2022), so we
assume that one has access to an (α, β)-approximation

1For simplicity, we assume dimensions are the same, yet it is
easy to generalize d to di for arm i ∈ [m].

2When Π is a collection of subsets of [m], we call action π ∈ Π
a super arm. Otherwise, we treat Π as a general action space, same
as in (Wang & Chen, 2017).

oracle Õ. Õ takes a confidence region function C that
maps any action π ∈ Π to possible parameters C(π) ⊆
[0, 1]m×d as input, and outputs an action-parameter pair
(π̃, µ̃) = Õ(C) such that π̃ ∈ Π, µ̃ ∈ C(π̃) and
(π̃, µ̃) is an α-approximation with probability at least β,
i.e., Pr

[
r(π̃, µ̃) ≥ α ·maxπ∈Π,µ∈C(π) r(π;µ)

]
≥ β. For-

mally, the T -round (α, β)-approximate regret is defined as

Reg(T ;α, β,µ) = T · αβ · r(π∗;µ)− E

[
T∑

t=1

r(πt;µ)

]
,

(1)
where the expectation is taken over the randomness of the
outcomes X1, ...,XT , the triggered sets τ1, ..., τT , as well
as the randomness of the algorithm ALG itself.
Remark 1 (CMAB-MT v.s. CMAB-T). CMAB-MT is
more general and reduces to CMAB-T when d = 1. Con-
versely, for any CMAB-MT instance, one can treat each
multi-variant arm i ∈ [m] as d separate arms (i, j)j∈[d] with
unknown mean µi,j and use the CMAB-T model to learn
these md arms, but in this way, one cannot enjoy some
nice statistical property (e.g., concentration properties) by
treating them as a whole. Take PMC-GD in Section 5 as
an example, using CMAB-MT can improve the regret up to
a factor of O(

√
d), owing to tighter concentration inequal-

ity around the mean vector µi instead of using d separate
concentration inequality around µi,j .

Remark 2 (Computational complexity of joint oracle Õ).
Different from the classical CMAB (α, β)-approximation
oracle O : [0, 1]m×d → Π that takes a single param-
eter (e.g., mean vector µ) as input and optimizes over
the action space Π, the joint oracle Õ can optimize over
the joint action-parameter space (π, C(π))π∈Π. In the
worst case, one has to compute the best reward r∗(π) =
maxµ∈C(π) r(π;µ) for π ∈ Π, and then enumerate over
π ∈ Π to get the optimal (π∗,µ∗) in time O(|Π|). Nev-
ertheless, the joint oracle has been used in many CMAB
(Combes et al., 2015; Degenne & Perchet, 2016) and linear
contextual bandits (Sec. 19.3.1 in Lattimore & Szepesvári
(2020)) works. In this paper, we will show that all CMAB-
MT applications considered, i.e., the episodic RL (Section 4)
and PMC-GD (Section 5) have efficient implementations
for the joint oracle.

2.2. Key Quantities and Conditions

In the CMAB-MT model, there are several quantities and
conditions that are crucial to the subsequent study. First,
we define triggering probability q

D,Dtrig,π
i as the probability

that base arm i is triggered when the combinatorial action
is π, the outcome distribution is D, and the probabilistic
triggering function is Dtrig. Since Dtrig is always fixed in a
given application context, and D often determines the trig-
gering probability via its mean µ in most cases, we use qµ,π

i

to denote q
D,Dtrig,π
i for simplicity. Triggering probabilities
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qµ,π
i ’s are crucial for the triggering probability modulated

bounded smoothness conditions to be defined below. Sec-
ond, we define the batch-size K

def
= maxπ∈Π

∑
i∈[m] q

µ,π
i

as the maximum expected number of arms that can be
triggered. Note that this definition is much smaller than
K ′ def

= maxπ∈Π

∑
i∈[m] I{q

µ,π
i > 0} originally defined in

(Wang & Chen, 2017). For example, in episodic RL, this
difference saves a factor of S, i.e., K ′ = SH and K = H .

Owing to the nonlinearity and the combinatorial structure
of the reward, it is essential to give some conditions for the
reward function in order to achieve any meaningful regret
bounds (Chen et al., 2013b; 2016; Wang & Chen, 2017;
Degenne & Perchet, 2016; Merlis & Mannor, 2019). In this
paper, we consider the smoothness condition as follows.

Condition 1 (1-norm multivariant and triggering probability
modulated (MTPM) smoothness condition). We say that
a CMAB-MT problem satisfies 1-norm MTPM smoothness
condition, if there exist weight vectors wµ̃,π

i ∈ [0, w̄]d for
µ̃ ∈ [0, 1]m×d, π ∈ Π, i ∈ [m] such that, for any two
distributions D̃,D ∈ D with mean µ̃,µ ∈ [0, 1]m×d, and
for any action π ∈ Π, we have

|r(π; µ̃)− r(π;µ)| ≤
∑
i∈[m]

qµ,π
i

∣∣∣|µ̃i − µi|⊤ wµ̃,π
i

∣∣∣ . (2)

Furthermore, if for any two distributions D̃,D ∈ D with
mean µ̃,µ ∈ [0, 1]m×d, and for any action π ∈ Π we have

|r(π; µ̃)− r(π;µ)| ≤
∑
i∈[m]

qµ,π
i

∣∣∣(µ̃i − µi)
⊤wµ̃,π

i

∣∣∣ , (3)

then we say CMAB-MT problem satisfies 1-norm MTPM+
smoothness condition.

Remark 3 (Intuitions of Condition 1). The 1-norm MTPM
smoothness condition aims to bound the reward difference
caused by the parameter changing from µ to µ̃. Intuitively,
we use |µ̃i − µi|⊤ wµ̃,π

i to characterize the parameter dif-
ference for each multivariant base arm i. Instead of directly
using the 1-norm distance ∥µi − µ̃i∥1, we use a refined
weighted 1-norm where each dimension’s difference, each
dimension’s difference |µi,j − µ̃i,j | is weighted by wµ̃,π

i,j

for j ∈ [d]. Then, each arm i’s parameter difference is re-
weighted by the triggering probability qµ,π

i . Intuitively,
for base arm i that is unlikely to be triggered/observed
(small qµ,π

i ), Condition 1 ensures that a large change in
µi only causes a small change (multiplied by qµ,π

i ) in the
reward, and thus one does not need to pay extra regret to
observe such arms. Notice that qµ,π

i and wµ̃,π
i are related

to µ and µ̃, respectively, to keep the balance of µ, µ̃, and
the condition still holds if one exchanges the µ and µ̃ of
qµ,π
i and wµ̃,π

i . The intuition for 1-norm MTPM+ is sim-
ilar to 1-norm MTPM, but 1-norm MTPM+ condition is
stronger since any CMAB-MT instance satisfies 1-norm

MTPM+ condition with wµ̃,π
i ∈ [0, w̄]d also satisfies 1-

norm MTPM condition with the same wµ̃,π
i , owing to

the fact that
∣∣∣(µ̃i − µi)

⊤wµ̃,π
i

∣∣∣ ≤ |µ̃i − µi|⊤ wµ̃,π
i . In

Section 4, we will show episodic RL satisfies the stronger
1-norm MTPM+, which is the key to achieving minimax
regret bound. On the other hand, the weaker 1-norm MTPM
condition is easier to satisfy and can potentially cover more
applications.

Remark 4 (Instances and extensions of 1-norm MTPM
condition). 1-norm MTPM/MTPM+ smoothness condi-
tion reduces to B1 bounded 1-norm TPM condition in the
CMAB-T framework (Wang & Chen, 2017) when d = 1
and wµ̃,π

i = B1, covering all CMAB-T problems as in-
stances. More importantly, the 1-norm MPTM/MTPM+
smoothness condition covers the smoothness of value func-
tions for episodic RL in Section 4.3 and Section 4.4. 1-
norm MTPM/MTPM+ can also be transformed to the in-
finity norm or other norms, e.g., |r(π; µ̃)− r(π;µ)| ≤
maxi∈[m] q

µ,π
i ·|µ̃i − µi|⊤ wµ̃,π

i . When d = 1 and wµ̃,π
i =

B∞, ℓ∞-norm MTPM reduces to the B∞-bounded max-
norm smoothness condition (Chen et al., 2013b).

3. Multivariant CUCB Algorithm
For CMAB-MT, we give a combinatorial upper confidence
bound algorithm with a general joint oracle (CUCB-MT)
in Algorithm 1. Since the CUCB-MT algorithm and its
analysis are slightly different for problems satisfying the
1-norm MPTM condition in Eq. (2) and the stronger 1-norm
MPTM+ condition in Eq. (3), we unify the notation and
for any u,v ∈ Rd use [u− v]+

def
= |u− v| for the former

problems and [u− v]+
def
= (u− v) for the latter problems.

CUCB-MT utilizes the principle of optimism in the face of
uncertainty. In each round t, it first constructs a function C,
where Ct(π) ⊆ [0, 1]m×d are action-dependent confidence
region around the empirical mean µ̂t−1. In this work, we
assume the Ct(π) for any π ∈ Π is defined as:

Ct(π)
def
=
{
µ̃ :
∣∣∣[µ̃i − µ̂t−1,i]

⊤
+ wµ̃,π

i

∣∣∣ ≤ ϕt,i,∀i ∈ [m]
}
,

(4)

where wµ̃,π
i are weights specified by Condition 1, ϕt,i

are confidence radius defined as ϕt,i = Ft,i

√
1

Nt−1,i
+

It,i
1

Nt−1,i
, and Ft,i, It,i are problem-specific values that

will be specified for subsequent applications.

CUCB-MT then selects an optimistic action-parameter pair
(πt, µ̃t) with the help of the joint oracle Õ. Note that the
joint oracle is determined by the confidence region Ct and
the reward function r(π;µ). The agent then plays the se-
lected combinatorial action πt, which will trigger a set of
multivariant base arms τt whose d-dimensional outcomes
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Algorithm 1 CUCB-MT: Combinatorial Upper Confidence
Bound Algorithm for CMAB-MT

1: Input: Base arms [m], dimension d, joint oracle Õ.
2: Initialize: For each arm i, N0,i = 0, µ̂0,i = 0.
3: for t = 1, ..., T do
4: Construct an action-dependent confidence region

function Ct around µ̂t−1 according to Equation (4).
5: Apply joint oracle Õ and get (πt, µ̃t) = Õ(Ct).
6: Play action πt, which triggers arms τt ⊆ [m] with

outcome Xt,i, for i ∈ τt.
7: For i ∈ τt, update Nt,i = Nt−1,i+1, µ̂t,i = µ̂t−1,i+

(Xt,i−µ̂t−1,i)/Nt,i. For i ̸∈ τt, keep Nt,i = Nt−1,i,
µ̂t,i = µ̂t−1,i.

8: end for

are observed. Finally, CUCB-MT updates the statistics and
historical information accordingly to improve future deci-
sions. Note that though the form of Ct and the joint oracle
are abstracted out in CUCB-MT, we will give concrete ap-
plications as examples in Section 4 and Section 5, where
determining Ct and Õ serve as key ingredients of efficient
algorithms and tight regret bounds.

3.1. Analysis of CUCB-MT and Its Discussion

Fix the underlying distribution D ∈ D and its mean vec-
tor µ ∈ [0, 1]m×d with optimal action π∗. For each ac-
tion π ∈ Π, we define the (approximation) gap as ∆π =
max{0, αr(π∗;µ) − r(π;µ)}. For each arm i ∈ [m], we
define ∆min

i = infπ∈Π:qµ,π
i >0, ∆π>0 ∆π .

Recall that for any round t, µ̂t−1,i is the empirical mean,
Ct is the confidence region function defined in Eq. (4) with
problem-specific parameters Ft,i and It,i, Õ is the joint
oracle, and (πt, µ̃t) = Õ(Ct) are the pair of optimistic
policy and parameter in line 5 of Algorithm 1. Define the
concentration event

Ec,1 =
{ ∣∣∣[µi − µ̂t−1,i]

⊤
+ wµ,π∗

i

∣∣∣ ≤ Ft,i

√
1

Nt−1,i

+ It,i
1

Nt−1,i
, for all i ∈ [m], t ∈ [T ]

}
. (5)

Let Gt,i, Jt,i be another two problem-specific parameters
for i ∈ [m], t ∈ [T ], and define the second concentration
event

Ec,2 =
{ ∣∣∣[µi − µ̂t−1,i]

⊤
+ (wµ̃t,πt

i −wµ,π∗

i )
∣∣∣

≤ Gt,i

√
1

Nt−1,i
+ Jt,i

1

Nt−1,i
, for all i ∈ [m], t ∈ [T ]

}
.

(6)

Let F̄, Ḡ, Ī, J̄ be upper bounds for problem specific parame-
ters so that

∑
i∈[m] q

µ,πt

i F 2
t,i ≤ F̄ ,

∑
i∈[m] q

µ,πt

i G2
t,i ≤ Ḡ,

It,i ≤ Ī , Jt,i ≤ J̄ , then we have the following theorem.

Theorem 1. For a CMAB-MT problem instance
([m], d,Π,D, Dtrig, R) that satisfies 1-norm MTPM or
MTPM+ smoothness condition (Condition 1) with weight
vectors wµ̃,π

i ∈ [0, w̄]d for µ̃ ∈ [0, 1]m×d, π ∈ Π, i ∈ [m],
if the oracle Õ is an (α, β)-approximation oracle, and
concentration events Ec,1, Ec,2 hold with probability at
least 1 − 1

T , then CUCB-MT (Algorithm 1) achieves an
(α, β)-approximate gap-dependent regret bounded by

O

∑
i∈[m]

(F̄ + Ḡ)

∆min
i

+ (Ī + J̄) log

(
(Ī + J̄)K

∆min
i

) , (7)

and the gap-independent regret bounded by

O

(√
m(F̄ + Ḡ)T +m(Ī + J̄) log(KT )

)
. (8)

Remark 5. Looking at the above theorem, problem-specific
parameters Ft,i, It,i, Gt,i, Jt,i are related to concentration
inequalities that hold with high probability, so they are poly-
logarithmic terms regarding T . For example, when arms are
d-dimensional multinoulli random variables, Ft,i, Gt,i =
O(w̄

√
d log T ) and It,i = Jt,i = 0. Therefore, the leading

regret is O(
√
m(F̄ + Ḡ)T ). For event Ec,1 in Theorem 1,

we only require µ ∈ Ct(π∗) (instead of µ ∈ Ct(π) for all
π), which can obtain smaller Ft,i, It,i with tighter regret.
For event Ec,2 in Theorem 1, Gt,i, Jt,i can be very small
since wµ̃t,πt

i ,wµ,π∗

i can be very close to each other, e.g., if
wµ,π

i = c are constant vectors, then Gt,i = Jt,i = 0. Now
looking at any CMAB-T problem following 1-norm TPM
condition with B1 mentioned in Remark 4 and arms being
Bernoulli, Ft,i = B1

√
1.5 log(mT ), Gt,i = It,i = Jt,i =

0 and our theorem gives Õ(B1

√
mKT ) regret, matching

the tight regret bound given by (Wang & Chen, 2017). In
later sections, we will provide two representative applica-
tions that fit into the CMAB-MT framework and identify pa-
rameters F̄, Ḡ, Ī, J̄ , which achieves matching or improved
regret bounds compared to existing works. Due to the space
limit, the detailed analysis of Theorem 1 is deferred to Ap-
pendix B.3.

4. Application to Episodic Reinforcement
Learning

In this section, we first introduce the setup of episodic RL,
which is modeled as a finite-horizon Markov decision pro-
cess (MDP). Then we demonstrate how episodic RL can be
effectively integrated into the framework of CMAB-MT and
satisfy two different 1-norm MTPM smoothness conditions.
For the former, we give a result matching that of the seminal
work (Jaksch et al., 2010) as a warm-up case. For the latter,
we achieve the minimax-optimal regret bound by leveraging
a tighter confidence region function and the variance-aware
analysis.
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4.1. Setup of Episodic MDP and RL

We consider the finite-horizon MDP, i.e., episodic MDP,
which can be described by a tuple (S,A, H,P,R). S is
the finite state space with cardinality S. A is the finite ac-
tion space with cardinality A. H is the number of steps for
each episode. P = (p(s, a, h))(s,a,h)∈S×A×[H] are tran-
sition kernels, where p(s, a, h) ∈ ∆S and each element
p(s′|s, a, h) is the probability of transitioning to state s′ af-
ter taking action a in state s at step h.3 For the ease of expo-
sition, reward distribution R = (r(s, a, h))(s,a,h)∈S×A×[H]

are assumed to be Bernoulli random variables with mean
r(s, a, h) ∈ [0, 1], indicating the instantaneous reward col-
lected upon taking action a in state s at step h.

In episodic RL, the agent interacts with an unknown episodic
MDP environment (where P and R are unknown) in a se-
quence of episodes t ∈ [T ]. At the beginning of episode t,
the agent starts from a fixed initial state s1 and determines
a policy πt, where πt(s, h) ∈ A maps any state and step
h to actions.4 Then at the step h = 1, ...,H , the agent se-
lects an action at,h = πt(st,h, h), receives a random reward
Rk,h ∈ [0, 1] with mean r(st,h, at,h, h), and transits to the
next state st,h+1 with probability p(st,h+1 | st,h, at,h, h).
The trajectory (st,h, at,h)h∈[H] and the random reward
(Rk,h)h∈[H] are observed as feedback to improve future
policies.

Each policy π specifies a value function for every state s
and step h (i.e., the expected total reward starting from state
s at step h until the end of the episode), defined as V π

h (s) =

E[
∑H

i=h r(si, ai, i) | sh = s, π], where the expectation is
taken over visited state-action pairs (si, ai) upon starting
from state s at step h. It is easily shown that the value
function satisfies the Bellman equation (with V π

H+1 = 0)
for any policy π:

V π
h (s) = r(s, π(s, h), h) + p(s, π(s, h), h)⊤V π

h+1. (9)

For episodic MDP, there always exists a policy π that attains
the best possible values, and we define the optimal value
function V ∗

h (s) = supπ V
π
h (s). The objective of episodic

RL is to minimize the regret over T episodes, which is
defined as

Reg(T ) def
=
∑
t∈[T ]

(V ∗
1 (s1)− V πt

1 (s1)) . (10)

3We consider the time inhomogeneous setting where
p(s, a, h)’s at different steps are different.

4The fixed initial state can be generalized to random initial state
st,1 by using a H+1 step MDP which virtually starts from a fixed
state s0 and transits to st,1 with (unknown) distribution p0.

4.2. Episodic RL from the Lens of CMAB-MT

Similar to existing works, we assume transition kernels P
are unknown while the reward distribution R is known.5 For
this episodic RL problem, it fits into CMAB-MT framework
with tuple ([m], d,Π,D, Dtrig, R). Each transition kernel
p(s, a, h) ∈ ∆S corresponds to a base arm and there are
m = SAH of them. The outcome of base arm Xs,a,h ∈
{0, 1}S is a multinoulli (or categorical) random variable
with dimension d = S, i.e., a one-hot vector Xs,a,h = es′

indicating the state at next step h+ 1 will be s′ upon taking
action a at step h. The set of feasible combinatorial actions
π corresponds to the set of deterministic policies π that
maps state-step pairs to actions, i.e., π : S × [H] → A. As
mentioned before, we assume the reward distribution R is
known, so the set of D corresponds to any feasible MDP
with reward distribution R.

Before the RL game starts, the environment draws an un-
known distribution D ∈ D with transition probabilities
p = (p(s, a, h))s,a,h∈S×A×[H], where p(s, a, h) ∈ ∆S .
At each episode t ∈ [T ], let the outcomes of base arms be
Xt = (Xt,s,a,h)s,a,h ∼ D. Given the policy πt and the
starting state s1, the triggering set τt = (st,h, at,h, h)h∈[H]

includes a cascade of H base arms starting from the state-
action-step tuple (s1, πt(s1, 1), 1), and the h-th arm for h >
1 of this cascade is tuple (st,h, at,h, h) = (s′, πt(s

′, h), h),
where s′ ∈ S is the index such that s′-th entry of
Xt,st,h−1,at,h−1,h−1 equals to 1. In this case, the triggering
probability distribution Dtrig(πt,Xt) is fully determined
by πt and Xt, i.e., τt is deterministically decided given πt

and Xt. And it is easy to show that the reward function
R(πt,Xt, τt) =

∑
(s,a,h)∈τt

r(s, a, h) and the expected re-
ward function r(πt;p) = E[R(πt,Xt, τt)] = V πt

1 (s1).

Key Quantities. The triggering probability is the oc-
cupancy measure of (s, a, h), i.e., qp,πs,a,h = E[I{sh =
s, ah = a | π,p}], indicating the probability of visit-
ing state-action pair (s, a) at step h when the underlying
transition is p and the policy is π. And the batch-size is
K = maxπ

∑
s,a,h q

p,π
s,a,h = H .

4.3. The Simple Smoothness Condition with Constant
Weights Achieves Sublinear Regret

Fitting episodic RL into CMAB-MT, we can show that it sat-
isfies the following lemma, whose proof is in Appendix C.1.

Lemma 1. Episodic RL with unknown transition is a CMAB-
MT instance, which satisfies 1-norm MTPM smoothness con-
dition (Condition 1) with weights wp̃,π

s,a,h = H · 1 ∈ RS for

all p̃, π, i.e.,
∣∣∣V p̃,π

1 (s1)− V p,π
1 (s1)

∣∣∣ ≤ H ·
∑

s,a,h q
p,π
s,a,h ·

5Handling unknown reward distribution R is straight-forward
by adding SAH arms with d = 1 for the SAH unknown rewards.
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Algorithm 2 Extended Value Iteration Oracle in Episode t

1: Input: Counter Nt−1(s, a, h), empirical transition
p̂t−1(s, a, h) for all s, a, h, and δ′ = 1/(2T ).

2: Initialize: ϕ′
t(s, a, h) =

√
2S log(SAHT/δ′)

Nt−1(s,a,h)
,

V̄t,H+1(s) = 0 for all s, a, h.
3: for Step h = H,H − 1, ..., 1 do
4: For all (s, a), set p̃t(s, a, h) =

argmaxp′∈∆S :∥p′−p̂t−1(s,a,h)∥1≤ϕ′
t(s,a,h)

p′⊤V̄t,h+1

5: For all (s, a), set Qt(s, a, h) = r(s, a, h) +
p̃t(s, a, h)

⊤V̄t,h+1.
6: For all s, set πt(s, h) = argmaxa Qt(s, a, h) and

V̄t,h(s) = Qt(s, πt(s, h), h)
7: end for
8: Return: πt, p̃t.

∥p̃(s, a, h)− p(s, a, h)∥1.

Confidence Region Function Ct and Joint Oracle
Õ. By definition, we have counter Nt(s, a, h) =∑t

t′=1 I{(s, a, h) ∈ τt′} and the empirical mean

p̂t(s, a, h) =
∑t

t′=1
I{(s,a,h)∈τt′}Xt′,s,a,h

Nt(s,a,h)
. Based on the

fact that outcomes Xt,s,a,h are multinoulli random vari-
ables, we use the concentration for multinoulli distribu-
tions (Lemma 7), i.e., ∥p(s, a, h)− p̂t−1(s, a, h)∥1 ≤√

2S log(2/δ)
Nt−1(s,a,h)

with probability at least 1 − δ. The confi-
dence region function defined as Eq. (4) becomes

Ct(π) = {p̃ : for all (s, a, h), p̃(s, a, h) ∈ ∆S ,

H · ∥p̃(s, a, h)− p̂t−1(s, a, h)∥1 ≤ ϕt(s, a, h)}, (11)

where ϕt(s, a, h) = Ft,s,a,h

√
1

Nt−1(s,a,h)
+

It,s,a,h

Nt−1(s,a,h)
,

and Ft,s,a,h = H
√
2S log(SAHT/δ′), It,s,a,h = 0.

Since this region is not policy-dependent, we use Ct as
a shortcut of Ct(π) for all π ∈ Π. Based on the confi-
dence region Ct, we identify the joint oracle as (πt, p̃t) =

argmaxπ∈Π,p̃∈Ct
V p̃,π
1 (s1). According to Jaksch et al.

(2010), this joint oracle can be implemented efficiently us-
ing extended value iteration described in Algorithm 2. Note
that in line 4 in Algorithm 2, we need to solve a linear op-
timization problem over a convex polytope, which can be
solved in O(S2A).

Regret Bound and Discussion. Based on the above confi-
dence region function and the joint oracle, we have
Theorem 2. For episodic RL fitting into the CMAB-MT
framework with weights in Lemma 1, CUCB-MT algorithm
with the confidence region function Ct in Eq. (11) and the
joint oracle in Algorithm 2 satisfies the requirements of
Theorem 1 with parameters F̄ = Õ(H3S), Ḡ = Ī = J̄ = 0,
and thus achieves a regret bounded by Õ(

√
H4S2AT ).

Looking at the above theorem, we achieve a regret bound

Algorithm 3 Optimistic Value Iteration Oracle in Episode t

1: Input: Counter Nt−1(s, a, h), empirical transition
p̂t−1(s, a, h) for all s, a, h, and δ′ = 1/(8T ).

2: Initialize: Constant L = log
(
SAHT

δ′

)
, value function

V̄t,H+1(s) =
¯
Vt,H+1(s) = 0, for all s.

3: for h = H,H − 1, ..., 1 do
4: For all (s, a), set confidence radius

ϕt(s, a, h) = 2

√
Vars′∼p̂t−1(s,a,h)(V̄t,h+1(s′))L

Nt−1(s,a,h)
+

2

√
Es′∼p̂t−1(s,a,h)[V̄t,h+1(s′)−

¯
Vt,h+1(s′)]

2
L

Nt−1(s,a,h)
+

5HL
Nt−1(s,a,h)

.
5: Set s∗ = argmaxs V̄t,h+1(s).
6: for (s, a) ∈ S ×A do
7: if V̄t,h+1(s

∗) < p̂t−1(s, a, h)
⊤V̄t,h+1 +

ϕt(s, a, h) then
8: Set p̃t(s, a, h) = es∗

9: else
10: Pick any p̃t(s, a, h) ∈ ∆S s.t.

p̃t(s, a, h)
⊤V̄t,h+1 = p̂t−1(s, a, h)

⊤V̄t,h+1 +
ϕt(s, a, h).

11: end if
12: Qt(s, a, h) = r(s, a, h) + p̃t(s, a, h)

⊤V̄t,h+1.
13: end for
14: For all s, set πt(s, h) = argmaxa Qt(s, a, h).
15: For all s, set V̄t,h(s) = Qt(s, πt(s, h), h).
16: For all s, set

¯
Vt,h(s) = max{r(s, πt(s, h), h) +

p̂t−1(s, πt(s, h), h)
⊤
¯
Vt,h+1 − ϕt(s, a, h), 0}.

17: end for
18: Return: πt, p̃t.

matching the seminal work Jaksch et al. (2010), and up to
a factor of Õ(

√
HS) compared with lower bound given by

Jaksch et al. (2010), see Appendix C.2 for detailed analysis.

4.4. The Value Function Related Smoothness Condition
Achieves Optimal Regret

A natural question to ask is whether we can achieve the
minimax optimal regret using the CMAB-MT framework.
The answer is affirmative by leveraging the RL structures
for stronger 1-norm MTPM+ smoothness condition, tighter
confidence region Ct, and variance-aware analysis. We
start with a stronger smoothness condition. Compared with
Lemma 1, we use the future value function V µ̃,π

h+1 instead of
the constant H · 1 as the weight wµ̃,π

s,a,h, whose proof is in
Appendix C.1.

Lemma 2. Episodic RL with unknown transition is a CMAB-
MT instance, which satisfies 1-norm MTPM+ smoothness
(Condition 1) with weight vector wp̃,π

s,a,h = V p̃,π
h+1 for

all p̃, π, i.e.,
∣∣∣V p̃,π

1 (s1)− V p,π
1 (s1)

∣∣∣ ≤
∑

s,a,h q
p,π
s,a,h ·∣∣∣[p̃(s, a, h)− p(s, a, h)]⊤V p̃,π

h+1

∣∣∣.
Confidence Region Function Ct and Joint Oracle

7
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Õ. Based on the above lemma, we use the follow-
ing confidence region that bounds the expected future
value p̃(s, a, h)⊤V p̃,π

h+1 around the empirical future value
p̂(s, a, h)⊤V p̃,π

h+1, i.e.,

Ct(π) = {p̃ : for all (s, a, h), p̃(s, a, h) ∈ ∆S ,∣∣∣[p̃(s, a, h)− p̂t(s, a, h)]
⊤V p̃,π

h+1

∣∣∣ ≤ ϕt(s, a, h)}. (12)

where ϕt(s, a, h) is the confidence radius to be deter-
mined later on. According to Dann et al. (2017) (Lemma
D.1 in particular), we can show that the exact joint or-
acle over Ct, i.e., (πt, p̃t) = argmaxπ,p̃∈Ct(π) V

p̃,π
1 (s1),

is optimistic value iteration with bonus ϕt(s, a, h) de-
scribed in Algorithm 3. For the value of ϕt(s, a, h),
we only need p ∈ Ct(π∗) as specified in Theo-
rem 1, so one possibility is to set ϕt(s, a, h) =

Õ(
√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)
/Nt−1(s, a, h)) according

to the concentration of optimal future value (Lemma 8),
saving a factor of O(

√
S) compared to the ϕt(s, a, h) in

Section 4.3. However, since both p and V ∗
h+1 are un-

known and inspired by Zanette & Brunskill (2019), we
use the concentration of Lemma 11 and set ϕt(s, a, h)
using optimistic V̄t,h and pessimistic

¯
Vt,h as in line 4

in Algorithm 3. Mapping back to the form of Eq. (4),

we have Ft,s,a,h = 2
√
Vars′∼p̂t−1(s,a,h)

(
V̄t,h+1(s′)

)
L +√

Es′∼p̂t−1(s,a,h)

[
V̄t,h+1(s′)− V ∗

h+1(s
′)
]2

L, It,s,a,h =

5HL.

Regret Bound and Discussion. Based on the above tighter
confidence region function and the joint oracle, we have

Theorem 3. For episodic RL fitting into the CMAB-
MT framework with weight in Lemma 2, CUCB-MT al-
gorithm (Algorithm 1) with the confidence region func-
tion Ct in Eq. (12) and the joint oracle in Algorithm 3
achieves a regret bounded by O(

√
H3SAT log(SAHT ) +

H3S2A log3/2(SAHT )) according to the analysis proce-
dure of Theorem 1.

Looking at the above regret bound, we obtain a mini-
max optimal worst-case regret matching the lower bound
Ω(

√
H3SAT ) up to logarithmic factors. Our regret

also saves at least a O(log2(SAHT )) factor for the
leading O

(√
H3SAT log(SAHT )

)
term compared with

O

(√
H3SAT log5(SAHT )

)
(Zanette & Brunskill, 2019;

Zhang et al., 2023) due to our tight analysis that uses sharp
CMAB proof techniques, and see Section 4.4 for details. As
a by-product, we give a gap-dependent bound that scales
with O(log T ). In the worst case, our result is at most a fac-
tor of O(1/q∗) larger than Simchowitz & Jamieson (2019)
that uses involved clipping techniques. However, when con-
sidering gap-independent bound, ours still improves theirs

by a factor of O(
√

log(SAHT )), see Appendix D.5 for
details.

5. Applications Beyond Episodic RL
In this section, we first consider the probabilistic maximum
coverage problem for goods distribution (PMC-GD), which
is a new variant of the PMC problem (Chen et al., 2013b;
Merlis & Mannor, 2019; Liu et al., 2022). For PMC-GD,
we show that CMAB-MT framework can give an improved
regret bound compared with using the CMAB-T framework.

Application Setup. The PMC-GD problem is modeled
by a weighted bipartite graph G = (U, V,E, p), where U
are the nodes to be selected, V are the nodes to be cov-
ered, and E are the edges between U and V . Each edge
(u, v) in E is associated with a probability p(u, v). The
probability p(u, v) indicates the likelihood that node u from
U can cover a target node v in V . In the classical PMC
problem, each selected node u′ can independently cover v,
and edges (u′, v) are independent Bernoulli random vari-
ables with mean p(u′, v). In goods distribution applications
(Alkan et al., 1991; Chevaleyre et al., 2017), the good (e.g.,
food, medicine, product, coupon) given to nodes in U is
indivisible and u can only randomly distribute it to exactly
one of the target users in V . Thus for PMC-GD, each se-
lected node u′ will cover one of its neighbors in V , and
the edges ((u′, v))v:(u′,v)∈E form a multinoulli distribution
with

∑
v:(u′,v)∈E p(u′, v) ≤ 1. The coverage means the

target node v ∈ V receives such indivisible goods. The
objective of the decision maker is to select at most k nodes
in U to maximize the number of covered nodes in V .

For the online PMC-GD problem, we consider T rounds of
repeated PMC-GD where the edge probabilities p(u, v)’s
are unknown initially. Without loss of generality, we assume
G is a complete bipartite graph. For each round t ∈ [T ], the
agent selects k nodes in U as combinatorial action πt, the
feedback are k node pairs (u, v), where v receives indivisi-
ble goods from u ∈ πt.

Fitting into CMAB-MT Framework. The PMC-GD prob-
lem fits into CMAB-MT framework as follows: the nodes U
are the set of multivariant base arms, the unknown outcome
distribution D ∈ D is the joint of m = |U | multinoulli distri-
bution with dimension d = |V |, the vectors µi = p(i, ·) ∈
∆V are unknown mean vectors for i ∈ U , the set of com-
binatorial action Π are any set of nodes π ⊆ U with size
|π| ≤ k. For the arm triggering in round t, the triggering set
is τt = πt. Let Xt = {0, 1}|U |×|V | be the random outcome
where Xt,u,v = 1 if and only if user u sends the good to
user v at time step t. The total reward is R(πt,Xt, τt) =∑

v∈V I{∃u ∈ πt s.t. Xt,u,v = 1}, and the expected re-
ward r(πt;p) =

∑
v∈V

(
1−

∏
u∈πt

(1− p(u, v))
)
.

Key Quantities and Conditions. For the triggering proba-
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bility, qp,πt

i = 1 if i ∈ πt and qp,πt

i = 0 otherwise. And the
batch-size K = k.

Lemma 3. PMC-GD is a CMAB-MT instance, which
satisfies 1-norm MTPM smoothness (Condition 1) with
weights wp̃,π

u = 1, i.e., |r(π; p̃)− r(π;p)| ≤∑
u∈π ∥p̃(u, ·)− p(u, ·)∥1.

Confidence Region Function Ct and Joint Oracle Õ.
Since each base arm u’s outcome follows from multi-
noulli distribution, indicating ∥p(u, ·)− p̂t−1(u, ·)∥1 ≤√

2|V | log(2/δ)
Nt−1,u

with probability at least 1 − δ. The con-
fidence region defined by Eq. (4) becomes

Ct = {p̃ : for any u ∈ U,p(u, ·) ∈ ∆V ,

∥p(u, ·)− p̂t−1(u, ·)∥1 ≤ ϕt,u}, (13)

and does not depend on the action π, where
ϕt,u = Ft,i

√
1

Nt−1,u
+

It,i
Nt−1,u

and Ft,i =√
2|V | log(|U ||V |T/δ′), It,i = 0.

The joint oracle is (πt, p̃t) = argmax|π|≤k,p̃t∈Ct
r(π; p̃).

A new challenge arises since the above joint oracle is a hard
optimization problem. In particular, argmax|π|≤k r(π; p̃)
itself is NP-hard given p̃, and now we also have to jointly
optimize p̃ within the confidence region. To obtain an effi-
cient oracle, our strategy is to bypass r(π; p̃) and optimize
an upper bound of r(π; p̃) using Lemma 3 for all p̃ as the
pseudo reward function for PMC-GD:

r̄t(π; p̃) = r(π; p̂t−1) +
∑
u∈π

∥p̃(u, ·)− p̂t−1(u, ·)∥1

(14)

We now optimize (πt, p̃t) = argmax|π|≤k,p̃∈Ct
r̄t(π; p̃),

which is solved in Algorithm 4. Based on Eq. (13), first,
we can find optimal p̃t in line 3 of Algorithm 4. Then in
line 5, we can optimize r̄t(π; p̃t) = r(π; p̂t−1) +

∑
u∈π qu

efficiently using a greedy algorithm with O(k|U |) calls
to r̄t(π; p̃t), yielding a (1 − 1/e, 1)-approximation since
r̄t(π; p̃t) is a submodular function regarding π ⊆ U . Since
we use pseudo reward r̄t(π;p), mapping back the true re-
ward r(π;p) will have an additional

∑
t∈[T ] r̄t(πt;p) −

r(πt;p) term for the final regret, see Appendix E for details.

Regret Bound and Discussion. Based on the above argu-
ment, we have the following theorem.

Theorem 4. For PMC-GD equipped with pseudo-reward
in Eq. (14), CUCB-MT algorithm (Algorithm 1) with the
confidence region function Ct in Eq. (13) and the joint ora-
cle in Algorithm 4 satisfies the requirements of Theorem 1
with parameters F̄ = Õ(k|V |), Ḡ = Ī = J̄ = 0, and
thus achieves a (1− 1/e, 1)-approximate regret bounded by
Õ(
√
k|U ||V |T ).

Algorithm 4 Efficient Joint Oracle for PMC-GD in round t

1: Input: Counter Nt−1,u, empirical edge probability
p̂t−1(u, ·) for all u ∈ U , and δ′ = 1/(2T ).

2: Initialize: ϕt,u =
√

2|V | log(|U ||V |T/δ′)
Nt−1,u

for all u ∈ U .
3: For all u ∈ U , compute p̃t(u, ·) =

argmaxp∈∆V :∥p−p̂t−1(u,·)∥1≤ϕt,u
∥p− p̂t−1(u, ·)∥1.

4: For all u ∈ U , set qu = ∥p̃t(u, ·)− p̂t−1(u, ·)∥1.
5: πt = argmaxπ∈Π r(π; p̂t−1) +

∑
u∈π qu.

6: Return: πt, p̃t.

Compared with existing works, our regret improves upon
CUCB-T algorithm (Wang & Chen, 2017) with regret
Õ(
√
k|U ||V |2T ) by a factor of Õ(

√
V ), and the recent

variance-adaptive algorithms (Merlis & Mannor, 2019; Liu
et al., 2022) with regret Õ(

√
|U ||V |2T ) by a factor of

Õ(
√
|V |/k) when |V | ≥ k, where in most application sce-

narios |V | ≫ k (Chen et al., 2016; Liu et al., 2023b).

6. Conclusion and Future Directions
In this work, we propose a new combinatorial multi-armed
bandit framework with multivariant and probabilistically
triggering arms (CMAB-MT). Through our framework,
we build the first connection between episodic RL and
CMAB literature, achieving matching or improved results
for episodic RL and beyond. For future work, it will be
interesting to study the CMAB-MT framework when con-
sidering the linear or nonlinear function approximation. One
can also explore new application scenarios that can fit into
the CMAB-MT framework for improved results.
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Appendix

A. Extended Related Works
In this section, we review two lines of literature that are related to this work.

Stochastic Combiantorial Multi-Armed Bandits. There has been a vast literature on stochastic combinatorial multi-armed
bandit (CMAB) (Gai et al., 2012; Kveton et al., 2015c; Combes et al., 2015; Chen et al., 2016; Wang & Chen, 2017; Merlis &
Mannor, 2019; Saha & Gopalan, 2019; Liu et al., 2022). Gai et al. (2012) is the first work to consider the stochastic CMAB
with semi-bandit feedback. Since then, its algorithm and regret have been improved by Kveton et al. (2015c); Combes
et al. (2015); Chen et al. (2016); Merlis & Mannor (2019) in different settings. To model a broader range of applications,
such as online learning to rank (Kveton et al., 2015a;b) and online influence maximization (Chen et al., 2013a; Wen et al.,
2017), Chen et al. (2016) first generalizes the CMAB to CMAB with probabilistically triggered armed (CMAB-T). Later on,
Wang & Chen (2017) improve the regret bound of Chen et al. (2016) by introducing a new smoothness condition called
the triggering probability modulated (TPM) condition, which removes a factor of 1/q∗ compared to Chen et al. (2016),
where q∗ is the minimum positive probability that any arm can be triggered. Recently, Liu et al. (2022) introduce a new
variance-modulated TPM condition (TPVM) and variance-adaptive algorithms that can further remove a factor of K, where
K is the number of arms that can be triggered in each round. Beyond these works, Qin et al. (2014); Li et al. (2016);
Nika et al. (2020); Demirel & Tekin (2021); Liu et al. (2023a); Hwang et al. (2023) study contextual environments with
linear/nonlinear base arm structures, Zimmert et al. (2019); Tsuchiya et al. (2023); Nie et al. (2023); Wan et al. (2023)
consider adversarial environments, and Wang & Chen (2018); Huyuk & Tekin (2019); Perrault (2022) investigate Thompson
sampling algorithms for both CMAB and CMAB-T settings. However, all the above works assume the outcome of each
arm is a uni-variant sub-Gaussian random variable. In this work, we consider a different setting where arms’ outcomes are
multivariant random variables, and propose a new CMAB-MT framework that can cover new applications, e.g. episodic RL,
and give matching/improved regrets by leveraging the statistical properties of the multivariant random variables.

Episodic Reinforcement Learning. In recent years, there has been an emerging number of works that study provably
efficient RL for regret minimization (c.f. (Agarwal et al., 2019)). For episodic RL, the seminal work (Jaksch et al., 2010)
proposes the UCRL2 algorithm that adds optimistic bonuses on transition probabilities and achieves a regret bound of
Õ(

√
H4S2AT ), matching the lower bound Ω(

√
H3SAT ) given by the same work up to a factor of Õ(

√
HS). Later on,

Azar et al. (2017) build confidence region directly for value functions rather than transition probabilities and provide a
minimax-optimal regret of Õ(

√
H3SAT ). Their result is then improved by Zanette & Brunskill (2019) who proposes an

algorithm based on both optimistic and pessimistic values for the bonus design and achieves tighter problem-dependent
regret bounds. After this, various works (Li et al., 2021; Zhang et al., 2021; Ménard et al., 2021; Wu et al., 2022; Zhang
et al., 2023) refine the lower-order terms of regret. In addition, many studies (Jiang et al., 2017; Sun et al., 2019; Jin et al.,
2020; 2021; Du et al., 2021; Zhong et al., 2022; Liu et al., 2024; Foster et al., 2021) extend beyond tabular RL and explore
function approximation, although their regret bounds become suboptimal when applied to the tabular setting. The above
works all focus on giving gap-independent regret bound that scales with Õ(

√
T ). There are also other works (Simchowitz

& Jamieson, 2019; Dann et al., 2021) that focus on studying gap-dependent regret bound that scales with O(log T ) via
clipping techniques. To the best of our knowledge, we are the first to solve the episodic RL problem by modeling it as a
CMAB-MT instance. From this perspective, we propose new algorithms and analysis that achieves the minimax-optimal
leading regret with improved logarithmic factors for the leading regret term. Our approach also gives gap-dependent regret
bounds “for free” without using the involved clipping techniques, which matches the Simchowitz & Jamieson (2019) up to
a factor of 1/q∗ in the worst case, where q∗ is the minimum positive occupancy measure of any state-action pair for any
policy. To this end, we build an important connection between the RL and CMAB literature, which may encourage more
interactions between these two important directions.

B. Analysis for CMAB-MT Framework
B.1. Definitions

Definition 1 ((Approximation) Gap). Fix a distribution D ∈ D and its mean vector µ ∈ [0, 1]m×d, for each action
π ∈ Π, we define the (approximation) gap as ∆π = max{0, αr(π∗;µ) − r(π;µ)}. For each arm i ∈ [m], we define
∆min

i = infπ∈Π:qµ,π
i >0, ∆π>0 ∆π , ∆max

i = supπ∈Π:qµ,π
i >0,∆π>0 ∆π . As a convention, if there is no action π ∈ Π such that

qµ,π
i > 0 and ∆π > 0, then ∆min

i = +∞,∆max
i = 0. We define ∆min = mini∈[m] ∆

min
i and ∆max = maxi∈[m] ∆

max
i .

Definition 2 (Event-Filtered Regret). For any series of events (Et)t∈[T ] indexed by round number t, we define the
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RegALG
α,µ(T, (Et)t∈[T ]) as the regret filtered by events (Et)t∈[T ], or the regret is only counted in t if E happens in t. Formally,

RegALG
α,µ(T, (Et)t∈[T ])

def
= E

∑
t∈[T ]

I(Et)(α · r(π∗;µ)− r(πt;µ))

 . (15)

For simplicity, we will omit ALG, α,µ, t ∈ [T ] and rewrite RegALG
α,µ(T, (Et)t∈[T ]) as Reg(T, Et) when contexts are clear.

B.2. Bounds for event-filtered regrets

Lemma 4 (Decomposition of the filtered regret). Let K ∈ N+. For all t ≥ 1, consider the event

Et =

∆πt ≤
∑
k∈[T ]

Rt,k

 (16)

and K decomposed events

E ′
t,k = {∆πt

≤ KRt,k} (17)

for some Rt,k ≥ 0. Then, we have

Reg(T, Et) ≤
∑
k∈[T ]

Reg(T, E ′
t,k) (18)

.

Proof. It suffices to prove that I{Et}∆πt
≤
∑

k∈[T ] I{E ′
t,k}∆πt

for each round t. If Et does not hold, we are done.
If Et holds, there exists k′ ∈ [T ] such that ∆πt

≤ KRt,k′ , so at least one of the K decomposed events holds and
1 ≤

∑
k∈[T ] I{∆πt ≤ KRt,k}, which gives I{Et}∆πt ≤

∑
k∈[T ] I{∆πt ≤ KRt,k}∆πt . ■

Lemma 5 (Null counters). For all i ∈ [m], if there exists constants Ki ∈ R+, consider the event

Et =

∆πt
≤

∑
i∈[m]:Nt−1,i=0

qµ,πt

i Ki

 . (19)

Then, the event filtered regret Reg(T, Et) ≤
∑

i∈[m] Ki.

Proof. Let Ft−1 = ((π1, τ1, (Xt,i)i∈τ1), ..., (πt−1, τt−1, (Xt,i)i∈τt−1
), πt) be all historical information before t plus the

action at t, where τt is the triggered arm set at round t. By the definition of the triggering probability qµ,πt

i , we have

Reg(T, Et) = E

∑
t∈[T ]

I{Et}∆πt

 (20)

≤ E

∑
t∈[T ]

E

∑
i∈[m]

KiI{Nt−1,i = 0, i ∈ τt} | Ft−1

 (21)

≤
∑
i∈[m]

Ki. (22)

The last inequality holds since the counter Nt−1,i will be added by one if i ∈ τt, indicating the event can only occur for at
most one round, giving the upper bound

∑
i∈[m] Ki. ■
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B.3. Proof of Theorem 1

By Condition 1, we have the weight vector is bounded by 0 ≤ wµ̃,π
i,j ≤ w̄ for all i ∈ [m], j ∈ [d], µ̃ ∈ [0, 1]m×d, π ∈ Π.

Define the event Es,t as the event joint oracle successfully yields an α-approximation in round t ∈ [T ], i.e., Es,t ={
r(πt, µ̃t) ≥ α ·maxπ∈Π,µ∈C(π) r(π;µ)

}
. Recall that Ft−1 = ((π1, τ1, (Xt,i)i∈τ1), ..., (πt−1, τt−1, (Xt,i)i∈τt−1

), πt) is
all historical information before t plus the action at t.

We bound the regret under the event (Es,t)t∈[T ], the concentration event Ec,1 in Eq. (5) and the concentration event Ec,2 in
Eq. (6) as follows.

Step 1: Regret Decomposition.

First, recall that [u−v]+
def
= |u− v| for any problem that satisfies the 1-norm MPTM smoothness condition and [u−v]+

def
=

(u− v) for problem that satisfies the 1-norm MPTM+ smoothness condition. We can decompose the round t instantaneous
regret as follows.

∆πt
= α · r(π∗;µ)− r(πt;µ) (23)
(a)

≤ r(πt; µ̃t)− r(πt;µ) (24)
(b)
=
∑
i∈[m]

qµ,πt

i

∣∣∣[µ̃t,i − µi]
⊤
+ wµ̃t,πt

i

∣∣∣ (25)

≤
∑

i∈[m]:Nt−1,i>0

qµ,πt

i

∣∣∣[µ̃t,i − µi]
⊤
+ wµ̃t,πt

i

∣∣∣+ ∑
i∈[m]:Nt−1,i=0

qµ,πt

i w̄d (26)

=
∑

i∈[m]:Nt−1,i>0

qµ,πt

i

∣∣∣[µ̃t,i − µ̂t−1,i + µ̂t−1,i − µi]
⊤
+ wµ̃t,πt

i

∣∣∣+ ∑
i∈[m]:Nt−1,i=0

qµ,πt

i w̄d (27)

(c1)

≤
∑

i∈[m]:Nt−1,i>0

qµ,πt

i

∣∣∣[µ̃t,i − µ̂t−1,i]
⊤
+ wµ̃t,πt

i

∣∣∣+ qµ,πt

i

∣∣∣[µ̂t−1,i − µi]
⊤
+ wµ̃t,πt

i

∣∣∣+ ∑
i∈[m]:Nt−1,i=0

qµ,πt

i w̄d (28)

(c2)

≤
∑

i∈[m]:Nt−1,i>0

qµ,πt

i

∣∣∣[µ̃t,i − µ̂t−1,i]
⊤
+ wµ̃t,πt

i

∣∣∣+ qµ,πt

i

∣∣∣[µi − µ̂t−1,i]
⊤
+ wµ,π∗

i

∣∣∣
+ qµ,πt

i

∣∣∣[µi − µ̂t−1,i]
⊤
+ (wµ̃t,πt

i −wµ,π∗

i )
∣∣∣+ ∑

i∈[m]:Nt−1,i=0

qµ,πt

i w̄d (29)

(d)

≤
∑

i∈[m]:Nt−1,i>0

qµ,πt

i (2Ft,i +Gt,i)

√
1

Nt−1,i
+

∑
i∈[m]:Nt−1,i>0

qµ,πt

i (2It,i + Jt,i)
1

Nt−1,i
+

∑
i∈[m]:Nt−1,i=0

qµ,πt

i w̄d

(30)

(e)

≤ 2

√ ∑
i∈[m]:Nt−1,i>0

qµ,πt

i F 2
t,i +

√ ∑
i∈[m]:Nt−1,i>0

qµ,πt

i G2
t,i

√√√√ ∑
i∈[m]:Nt−1,i>0

qµ,πt

i

Nt−1,i

+ 2(Ī + J̄)
∑

i∈[m]:Nt−1,i>0

qµ,πt

i

Nt−1,i
+

∑
i∈[m]:Nt−1,i=0

qµ,πt

i w̄d (31)

(f)

≤ 2
(√

F̄ +
√

Ḡ
)√√√√ ∑

i∈[m]:Nt−1,i>0

qµ,πt

i

Nt−1,i
+ 2(Ī + J̄)

∑
i∈[m]:Nt−1,i>0

qµ,πt

i

Nt−1,i
+

∑
i∈[m]:Nt−1,i=0

qµ,πt

i w̄d (32)

where inequality (a) is due to µ ∈ Ct(π∗) and r(πt, µ̃t) ≥ α ·maxπ∈Π,µ∈C(π) r(π;µ) under Es, inequality (b) is due to the
1-norm MTPM/MTPM+ smoothness condition (Condition 1), inequality (c1) and (c2) are by triangle inequality for both
[u− v]+= |u− v| and [u− v]+=(u− v) cases, inequality (d) is due to the confidence region Eq. (4), the event Ec,1 in
Eq. (5) and Ec,2 in Eq. (6), inequality (e) is by Cauchy-Schwarz inequality and the definition of Ī , J̄ , and inequality (f) is
due to the definition of F̄, Ḡ.

Let c1 = 3× 2(
√
F̄ +

√
Ḡ), c2 = 3× 2(Ī + J̄), c3 = 3× w̄d. Now we define the main event Et and its three decomposed
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events E ′
t,1, E ′

t,2, E ′
t,3 as follows:

Et =

∆πt ≤ 2(
√
F +

√
Ḡ)

√√√√ ∑
i∈[m]:Nt−1,i>0

qµ,πt

i

Nt−1,i
+ 2(Ī + J̄)

∑
i∈[m]:Nt−1,i>0

qµ,πt

i

Nt−1,i
+

∑
i∈[m]:Nt−1,i=0

qµ,πt

i w̄d

 ,

(33)

E ′
t,1 =

∆πt
≤ c1

√√√√ ∑
i∈[m]:Nt−1,i>0

qµ,πt

i

Nt−1,i

 , E ′
t,2 =

∆πt
≤ c2

∑
i∈[m]:Nt−1,i>0

qµ,πt

i

Nt−1,i

 , (34)

E ′
t,3 =

∆πt ≤
∑

i∈[m]:Nt−1,i=0

qµ,πt

i c3

 . (35)

By Lemma 4, we have

Reg(T, Et) ≤
∑
i∈[3]

Reg(T, E ′
t,i) (36)

Step 2: Bound the Reg(T, E ′
t,1) term

Let Et = [· | Ft−1]. Suppose E ′
t,1 holds, we use the reverse amortization trick as follows:

∆πt

(a)

≤
∑

i∈[m]:Nt−1,i>0

c21q
µ,πt

i
1

Nt−1,i

∆πt

(37)

(b)

≤ −∆πt + 2
∑

i∈[m]:Nt−1,i>0

c21q
µ,πt

i
1

Nt−1,i

∆πt

(38)

≤ −
∑

i∈[m]:Nt−1,i>0 q
µ,πt

i ∆πt∑
i∈[m] q

µ,πt

i

+ 2
∑

i∈[m]:Nt−1,i>0

c21q
µ,πt

i
1

Nt−1,i

∆πt

(39)

(c)

≤
∑

i∈[m]:Nt−1,i>0

qµ,πt

i

(
2c21

1
Nt−1,i

∆πt

− ∆πt

K

)
(40)

where inequality (a) follows from event E ′
t,1, inequality (b) is due to the reverse amortization trick that multiplies two to

both sides of inequality (a) and rearranges the terms, and inequality (c) is due to definition of K def
= maxπ∈Π

∑
i∈[m] q

µ,π
i .

Then we use the triggering probability equivalence trick (TPE) in (Liu et al., 2023a) to deal with the triggering probability
qµ,πt

i as follows:

Et[∆πt
]
(a)

≤ Et

 ∑
i∈[m]:Nt−1,i>0

qµ,πt

i

(
2c21

1
Nt−1,i

∆πt

− ∆πt

K

) (41)

(b)
= Et

 ∑
i∈τt:Nt−1,i>0

(
2c21

1
Nt−1,i

∆πt

− ∆πt

K

) (42)

where inequality (a) follows from Equation (40), inequality (b) follows from TPE trick to replace qµ,πt

i = Et[I{i ∈ τt}].

Now we claim that

Et[∆πt ]
(a)

≤ Et

 ∑
i∈τt:Nt−1,i>0

κi(Nt−1,i)

 , (43)
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where we define Li,1 =
c21

(∆min
i )2

, Li,2 =
2c21K

(∆min
i )2

, and

κi(ℓ) =


2

√
c21
ℓ , if 1 ≤ ℓ ≤ Li,1,

2c21
∆min

i

1
ℓ , if Li,1 < ℓ ≤ Li,2,

0, if ℓ > Li,2,

(44)

We now show inequality (a) because of the following argument.

Case 1: If there exists i′ ∈ τt with 1 ≤ Nt−1,i′ ≤ c21
∆2

πt

.

We have Nt−1,i′ ≤ c21
∆2

πt

≤ Li′,1, thus
∑

i∈τt:Nt−1,i>0 κi(Nt−1,i) ≥ κi′(Nt−1,i′) ≥ 2

√
c21

Nt−1,i′
= 2∆πt

, then inequality

(a) holds.

Case 2: For any arm i ∈ τt with Nt−1,i > 0, they satisfy Nt−1,i ≥ c21
∆2

πt

.

If Nt−1,i ≤ Li,1, then
2c21

1
Nt−1,i

∆πt
− ∆πt

K ≤
2c21

1
Nt−1,i

∆πt
= 2

√
c21

∆2
πt

·Nt−1,i

√
c21

Nt−1,i
≤ 2

√
c21

Nt−1,i
= κi(Nt−1,i); Else

if Li,1 < Nt−1,i ≤ Li,2, then
2c21

1
Nt−1,i

∆πt
− ∆πt

K ≤
2c21

1
Nt−1,i

∆πt
≤

2c21
1

Nt−1,i

∆min
i

= κi(Nt−1,i); Else if Nt−1,i > Li,2,
2c21

1
Nt−1,i

∆πt
− ∆πt

K ≤ 0 = κi(Nt−1,i). Therefore, we have

Et[∆πt
] ≤ Et

 ∑
i∈τt:Nt−1,i>0

(
2c21

1
Nt−1,i

∆πt

− ∆πt

K

) ≤ E

 ∑
i∈τt:Nt−1,i>0

κi(Nt−1,i)

 . (45)

Combining the above two cases proves inequality (a).

Now we have

Reg(T, E ′
t,1) = E

[
T∑

t=1

∆πt

]
(46)

(a)

≤ E

∑
t∈[T ]

Et

 ∑
i∈τt:Nt−1,i>0

κi(Nt−1,i)

 (47)

(b)
= E

∑
t∈[T ]

∑
i∈τt:Nt−1,i>0

κi(Nt−1,i)

 (48)

(c)
= E

∑
i∈[m]

NT−1,i∑
s=1

κi(s)

 (49)

≤
∑
i∈[m]

Li,1∑
s=1

2

√
c21
s

+
∑
i∈[m]

Li,2∑
s=Li,1+1

2c21
∆min

i

1

s
(50)

≤
∑
i∈[m]

∫ Li,1

s=0

2

√
c21
s

· ds+
∑
i∈[m]

∫ Li,2

s=Li,1

2c21
∆min

i

1

s
· ds (51)

≤
∑
i∈[m]

2c21
∆min

i

(3 + logK), (52)

where (a) follows from Equation (43), (b) follows from the tower rule, (c) follows from that Nt−1,i is increased by 1 if and
only if i ∈ τt.
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Step 3: Bound the Reg(T, E ′
t,2) term

Let Et = [· | Ft−1]. Suppose E ′
t,2 holds, we use the reverse amortization trick as follows:

∆πt

(a)

≤
∑

i∈[m]:Nt−1,i>0

c2q
µ,πt

i

1

Nt−1,i

(b)

≤ −∆πt
+ 2

∑
i∈[m]:Nt−1,i>0

c2q
µ,πt

i

1

Nt−1,i

= −
∑

i∈[m]:Nt−1,i>0 q
µ,πt

i ∆πt∑
i∈[m]:Nt−1,i>0 q

µ,πt

i

+ 2
∑

i∈[m]:Nt−1,i>0

c2q
µ,πt

i

1

Nt−1,i
(53)

(c)

≤
∑

∑
i∈[m]:Nt−1,i>0

qµ,πt

i

(
−∆πt

K
+ 2c2

1

Nt−1,i

)
, (54)

where inequality (a) follows from event Et,2, inequality (b) is due to the reverse amortization trick that multiplies two to

both sides of inequality (a) and rearranges the terms, inequality (c) is due to definition of K def
= maxπ∈Π

∑
i∈[m] q

µ,π
i .

It follows that

Et[∆πt
]
(a)

≤ Et

∑
i∈[m]

qµ,πt

i

(
−∆πt

K
+ 2c2

1

Nt−1,i

)
(b)
= Et

 ∑
i∈τt:Nt−1,i>0

(
−∆πt

K
+ 2c2

1

Nt−1,i

)
(c)

≤ Et

 ∑
i∈τt:Nt−1,i>0

κi(Nt−1,i)

 (55)

where the following regret allocation function follows from

κi(ℓ) =

{
2c2
ℓ , if 1 ≤ ℓ ≤ Li

0, if ℓ > Li + 1,
(56)

where Li =
2c2K
∆min

i
. And inequality (a) follows from Equation (54), (b) is due to the TPE to replace qµ,πt

i = Et[I{i ∈ τt}],

(c) follows from the fact that if Nt−1,i >
2c2K
∆min

i
, then −∆πt

K + 2c2
1

Nt−1,i
≤ −∆πt

K +
∆min

i

K ≤ 0; Else, −∆πt

K + 2c2
1

Nt−1,i
≤

2c2
1

Nt−1,i
.

Reg(T,Et,2) = E

[
T∑

t=1

∆πt

]
(57)

(a)

≤ E

∑
t∈[T ]

Et

 ∑
i∈τt:Nt−1,i>0

κi(Nt−1,i)

 (58)

(b)
= E

∑
t∈[T ]

∑
i∈τt:Nt−1,i>0

κi(Nt−1,i)

 (59)

(c)
= E

∑
i∈[m]

NT−1,i∑
s=1

κi(s)

 (60)
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≤
∑
i∈[m]

Li∑
ℓ=1

2c2
ℓ

(61)

≤
∑
i∈[m]

2c2

(
1 +

∫ Li

s=1

1

s
· ds

)
(62)

=
∑
i∈[m]

2c2

(
1 + log

(
2c2K

∆min
i

))
, (63)

where (a) follows from Equation (55), (b) follows from the tower rule, (c) follows from that Nt−1,i is increased by 1 if and
only if i ∈ τt.

Step 4: Bound the Reg(T, E ′
t,3) term

By Lemma 5, we have

Reg(T, E ′
t,3) ≤ c3m. (64)

Step 5: Putting everything together

Plugging Eq. (52), Eq. (63), Eq. (64) into Eq. (36), we have

Reg(T, Et) ≤
∑
i∈[m]

2c21
∆min

i

(3 + logK) +
∑
i∈[m]

2c2

(
1 + log

(
2c2K

∆min
i

))
+ c3m (65)

≤
∑
i∈[m]

144(F̄ + Ḡ)

∆min
i

(3 + logK) +
∑
i∈[m]

12(Ī + J̄)

(
1 + log

(
12(Ī + J̄)K

∆min
i

))
+ 3mw̄d (66)

= O

∑
i∈[m]

(F̄ + Ḡ)

∆min
i

+ 2(Ī + J̄) log

(
2(Ī + J̄)K

∆min
i

) (67)

Let Reg(T, {}) def
= E

[∑
t∈[T ](α · r(π∗;µ)− r(πt;µ))

]
be the regret event without any filter events. Now consider the

regret caused by the failure event (¬Es,t)t∈[T ],¬Ec,1,¬Ec,2, we have

Reg(T, {}) ≤ Reg(T, Es,t ∩ Ec,1 ∩ Ec,2) + Reg(T,¬Es,t) + Reg(T,¬Ec,1) + Reg(T,¬Ec,2) (68)
(a)

≤ Reg(T, Et) + (1− β)T∆max + 2∆max (69)

where inequality (a) is due to Es,t ∩ Ec,1 ∩ Ec,2 implies Et for the first term and the fact that ∆πt
≤ ∆max,Pr[¬Es,t] ≤

β,Pr[¬Ec,1] ≤ 1/T,Pr[¬Ec,2] ≤ 1/T for the rest of the terms.

Therefore we can derive that the regret is upper bounded by

Reg(T ;α, β,µ) = Reg(T, {})− (1− β)Tαr(π∗;µ) (70)
≤ Reg(T, {})− (1− β)T∆max (71)
≤ Reg(T, Et) + 2∆max (72)

= O

∑
i∈[m]

(F̄ + Ḡ)

∆min
i

+ 2(Ī + J̄) log

(
2(Ī + J̄)K

∆min
i

) (73)

For the gap-independent regret take ∆ =
√
144m(F̄ + Ḡ)/T . On one hand, Reg(T, I{∆πt < ∆}∩Et) ≤ T∆; On the other

hand, Reg(T, I{∆πt
≥ ∆}∩Et) ≤

∑
i∈[m]

144(F̄+Ḡ)K
∆ (3+ logK)+

∑
i∈[m] 12(Ī + J̄)

(
1 + log

(
12(Ī+J̄)K

∆

))
+3mw̄d

according to Eq. (67). Therefore, Reg(T ;α, β,µ) ≤ Reg(T, I{∆πt
< ∆} ∩ Et) + Reg(T, I{∆πt

≥ ∆} ∩ Et) + 2∆max ≤
O
(√

(F̄ + Ḡ)mT +m(Ī + J̄) log(KT )
)

using the similar proof of Eq. (73).
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C. Analysis for Episodic RL with Sublinear Regret in Section 4.3
C.1. Proof of Lemma 1 and Lemma 2

We use qp,π(s′,i)(s, a, h) to denote the triggering probability qp,πs,a,h when the policy is π, the transition is p, and starting from
initial state s′ at step i. For notational simplicity, we use q(s′,i)(s, a, h) to denote qp,π(s′,i)(s, a, h) and q̃(s′,i)(s, a, h) to denote

qp̃,π(s′,i)(s, a, h). Similarly, we use q(s, a, h) to denote qp,π(s1,1)
(s, a, h) and q̃(s, a, h) to denote qp̃,π(s1,1)

(s, a, h) when the starting
state is fixed from s1 at the initial step.

Lemma 6 (Smoothness of the Triggering Probability and the Value Function). For any triggering probability q and q̃ given
by the same policy π but different transition p and p̃, respectively, we have

q̃(s, a, h)− q(s, a, h) =
∑

(s′,a′),s′′

h−1∑
i=1

q(s′, a′, i)(p̃(s′′|s′, a′, i)− p(s′′|s′, a′, i))q̃(s′′,i+1)(s, a, h). (74)

And we have ∣∣∣V p̃,π
1 (s1)− V p,π

1 (s1)
∣∣∣ ≤ ∑

s,a,h

qp,πs,a,h

∣∣∣[p̃(s, a, h)− p(s, a, h)]⊤V p̃,π
h+1

∣∣∣ (75)

≤ H
∑
s,a,h

qp,πs,a,h ∥p̃(s, a, h)− p(s, a, h)∥1 (76)

Proof. We first prove Eq. (74) by induction on h. When h = 1, then q̃(s, a, h) = q(s, a, h) = I{π(s, h) = a}I{s = s1},
Eq. (74) holds. For the induction step h > 1:

q̃(s, a, h)− q(s, a, h)
(a)
= I{π(s, h) = a}

∑
s′,a′

q̃(s′, a′, h− 1)p̃(s|s′, a′, h− 1)− q(s′, a′, h− 1)p(s|s′, a′, h− 1)


(77)

= I{π(s, h) = a}
∑
s′,a′

p̃(s|s′, a′, h− 1)(q̃(s′, a′, h− 1)− q(s′, a′, h− 1))︸ ︷︷ ︸
Term 1

+ I{π(s, h) = a}
∑
s′,a′

q(s′, a′, h− 1)(p̃(s|s′, a′, h− 1)− p(s|s′, a′, h− 1))︸ ︷︷ ︸
Term 2

(78)

where inequality (a) is due to q(s, a, h) =
∑

s′,a′ I{π(s, h) = a}q(s′, a′, h− 1)p(s|s′, a′, h− 1). Then we bound Term 1
and Term 2 as follows.

Term 1
(a)
= I{π(s, h) = a}

∑
s′,a′

p̃(s|s′, a′, h− 1)

·

 ∑
(s′′,a′′),s′′′

h−2∑
i=1

q(s′′, a′′, i)(p̃(s′′′|s′′, a′′, i)− p(s′′′|s′′, a′′, i))q̃(s′′′,i+1)(s
′, a′, h− 1)

 (79)

=
∑

(s′′,a′′),s′′′

h−2∑
i=1

q(s′′, a′′, i)(p̃(s′′′|s′′, a′′, i)− p(s′′′|s′′, a′′, i))

·
∑
s′,a′

p̃(s|s′, a′, h− 1)I{π(s, h) = a}q̃(s′′′,i+1)(s
′, a′, h− 1) (80)

(b)
=

∑
(s′′,a′′),s′′′

h−2∑
i=1

q(s′′, a′′, i)(p̃(s′′′|s′′, a′′, i)− p(s′′′|s′′, a′′, i))q̃(s′′′,i+1)(s, a, h) (81)
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(82)

where equality (a) is due to the induction hypothesis, equality (b) is due to q̃(s′′′,i+1)(s, a, h) =
∑

s′,a′ p̃(s|s′, a′, h −
1)I{π(s, h) = a}q̃(s′′′,i+1)(s

′, a′, h− 1).

Term 2 =
∑

(s′,a′),s′′

I{π(s′′, h) = a}I{s′′ = s}q(s′, a′, h− 1)(p̃(s′′|s′, a′, i)− p(s′′|s′, a′, i)) (83)

(a)
=

∑
(s′,a′),s′′

q(s′, a′, h− 1)(p̃(s′′|s′, a′, i)− p(s′′|s′, a′, i))q̃(s′′,h)(s, a, h) (84)

where equality (a) is due to q̃(s′′,h)(s, a, h) = I{π(s′′, h) = a}I{s′′ = s}.

Plugging in Term 1 (with changing variables s′′′, s′′, a′′ to s′′, s′, a′) and Term 2 proves the Eq. (74).

Now we prove the smoothness for the value function for the second part of Lemma 6.

∣∣∣V p̃,π
1 (s1)− V p,π

1 (s1)
∣∣∣=
∣∣∣∣∣∣
∑
s,a,h

(q̃(s, a, h)− q(s, a, h))r(s, a, h)

∣∣∣∣∣∣ (85)

(a)
=

∣∣∣∣∣∣
∑
s,a,h

∑
(s′,a′),s′′

h−1∑
i=1

q(s′, a′, i)(p̃(s′′|s′, a′, i)− p(s′′|s′, a′, i))q̃(s′′,i+1)(s, a, h)r(s, a, h)

∣∣∣∣∣∣ (86)

=

∣∣∣∣∣∣
H∑
i=1

∑
(s′,a′),s′′

q(s′, a′, i)(p̃(s′′|s′, a′, i)− p(s′′|s′, a′, i))
∑

s,a,h>i

q̃(s′′,i+1)(s, a, h)r(s, a, h)

∣∣∣∣∣∣
(87)

=

∣∣∣∣∣∣
H∑
i=1

∑
(s′,a′),s′′

q(s′, a′, i)(p̃(s′′|s′, a′, i)− p(s′′|s′, a′, i))V p̃,π
h+1(s

′′)

∣∣∣∣∣∣ (88)

≤
∑
s,a,h

qp,πs,a,h

∣∣∣[p̃(s, a, h)− p(s, a, h)]⊤V p̃,π
h+1

∣∣∣ (89)

(b)

≤ H
∑
s,a,h

qp,πs,a,h ∥p̃(s, a, h)− p(s, a, h)∥1 (90)

where equality (a) is due to the first part of Lemma 6 we just proved, inequality (b) is due to V p̃,π
h+1(s) ≤ H . ■

C.2. Proof of Theorem 2

We suppose the concentration event Etran1 as defined in Eq. (102) holds with probability δ′ = 1/(2T ). Let L = log(SAHT ).
Since µ ∈ Ct as defined in Eq. (11) due to the event Etran1, we follow the same regret decomposition and derivation as
in Step 1 of Appendix B.3, and identify Ft,s,a,h = 2H

√
SL, It,s,a,h = 0 due to the definition of ϕt(s, a, h) in Eq. (11),

and Gt,s,a,h = Jt,s,a,h = 0 since wp,π
s,a,h = H · 1 are constants. Now we can derive that F̄ =

∑
s,a,h q

p,π
s,a,hF

2
t,s,a,h =

4H3SL, Ḡ = Ī = J̄ = 0, w̄ = H, d = S, we have

∆πt≤2
(√

4H3SL
)√√√√ ∑

i∈[m]:Nt−1,i>0

qp,πt

i

Nt−1,i
+

∑
i∈[m]:Nt−1,i=0

qp,πt

i SH (91)

Following step 2,3 in Appendix B.3, we have gap-dependent regret

Reg(T ) = O

∑
s,a,h

H3S log(SAHT )

∆min
s,a,h

 (92)
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and gap-independent regret

Reg(T ) = O
(√

H4S2AT log(SAHT )
)
. (93)

D. Analysis that Achieve Minimax Optimal Regret for Episodic RL in Section 4.4
D.1. Concentration Inequalities

Lemma 7 (Concentration of the Transition).

Pr
[
∥p̂t−1(s, a, h)− p(s, a, h)∥1 ≤

√
2S log

(
SAHT

δ′

)
Nt−1(s, a, h)

, for any (s, a, h) ∈ S ×A× [H], t ∈ [T ]
]
≥ 1− 2δ′ (94)

and

Pr
[
|p̂t−1(s

′|s, a, h)− p(s′|s, a, h)| ≤

√
p(s′|s, a, h)(1− p(s′|s, a, h)) log

(
SAHT

δ′

)
Nt−1(s, a, h)

+
log
(
SAHT

δ′

)
Nt−1(s, a, h)

,

for any (s, a, h) ∈ S ×A× [H], t ∈ [T ]
]
≥ 1− 2δ′ (95)

Proof. Using the (Weissman et al., 2003) for the first part, and using the Bernstein inequality for the second part, and taking
the union bound over s, a, h, t ∈ S ×A× [H]× [T ] and the counter Nt−1(s, a, h) ∈ [T ], we obtain the lemma. ■

Lemma 8 (Concentration of the Optimal Future Value).

Pr
[ ∣∣∣(p̂t−1(s, a, h)− p(s, a, h))

⊤
V ∗
h+1

∣∣∣ ≤ 2

√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)
log
(
SAHT

δ′

)
Nt−1(s, a, h)

+
H log

(
SAHT

δ′

)
Nt−1(s, a, h)

,

for any (s, a, h) ∈ S ×A× [H], t ∈ [T ]
]
≥ 1− 2δ′ (96)

Proof. Using the Bernstein inequality and taking the union bound over s, a, h, t ∈ S × A × [H] × [T ] and the counter
Nt−1(s, a, h) ∈ [T ], we obtain the lemma. ■

Lemma 9 (Concentration of the Variance).

Pr
[ ∣∣∣∣√Vars′∼p̂t−1(s,a,h)

(
V̄t,h+1(s′)

)
−
√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)∣∣∣∣ ≤√Es′∼p̂t−1(s,a,h)

[
V̄t,h+1(s′)− V ∗

h+1(s
′)
]2

+ 2H

√
log
(
SAHT

δ′

)
Nt−1(s, a, h)

, for any (s, a, h) ∈ S ×A× [H], t ∈ [T ]
]
≥ 1− 2δ′ (97)

Proof. According to Proposition 2 (i.e., Eq. (53)) in (Zanette & Brunskill, 2019), we have

Pr
[ ∣∣∣∣√Vars′∼p̂t−1(s,a,h)

(
V ∗
h+1(s

′)
)
−
√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)∣∣∣∣ ≤ 2H

√
log
(
SAHT

δ′

)
Nt−1(s, a, h)

,

for any (s, a, h) ∈ S ×A× [H], t ∈ [T ]
]
≥ 1− 2δ′ (98)

Then we have ∣∣∣∣√Vars′∼p̂t−1(s,a,h)

(
V̄t,h+1(s′)

)
−
√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)∣∣∣∣ (99)

≤
∣∣∣∣√Vars′∼p̂t−1(s,a,h)

(
V̄t,h+1(s′)

)
−
√
Vars′∼p̂t−1(s,a,h)

(
V ∗
h+1(s

′)
)∣∣∣∣

+

∣∣∣∣√Vars′∼p̂t−1(s,a,h)

(
V ∗
h+1(s

′)
)
−
√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)∣∣∣∣ (100)
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(a)

≤
√
Es′∼p̂t−1(s,a,h)

[
V̄t,h+1(s′)− V ∗

h+1(s
′)
]2

+ 2H

√
log
(
SAHT

δ′

)
Nt−1(s, a, h)

(101)

where inequality (a) is due to Eq. (48)-(52) in (Zanette & Brunskill, 2019) and Eq. (98) that holds with probability at least
1− 2δ′. ■

Based on the concentration lemmas we use, we define the following events.

Etran1
def
=
[
∥p̂t−1(s, a, h)− p(s, a, h)∥1 ≤

√
2S log

(
SAHT

δ′

)
Nt−1(s, a, h)

, for any (s, a, h) ∈ S ×A× [H], t ∈ [T ]
]

(102)

Etran2
def
=
[
|p̂t−1(s

′|s, a, h)− p(s′|s, a, h)| ≤

√
p(s′|s, a, h)(1− p(s′|s, a, h)) log

(
SAHT

δ′

)
Nt−1(s, a, h)

+
log
(
SAHT

δ′

)
Nt−1(s, a, h)

]
(103)

Efuture
def
=
[ ∣∣∣(p̂t−1(s, a, h)− p(s, a, h))

⊤
V ∗
h+1

∣∣∣ ≤ 2

√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)
log
(
SAHT

δ′

)
Nt−1(s, a, h)

+
H log

(
SAHT

δ′

)
Nt−1(s, a, h)

,

for any (s, a, h) ∈ S ×A× [H], t ∈ [T ]
]

(104)

Evar
def
=
[ ∣∣∣∣√Vars′∼p̂t−1(s,a,h)

(
V̄t,h+1(s′)

)
−
√

Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)∣∣∣∣ ≤√Es′∼p̂t−1(s,a,h)

[
V̄t,h+1(s′)− V ∗

h+1(s
′)
]2

+ 2H

√
log
(
SAHT

δ′

)
Nt−1(s, a, h)

, for any (s, a, h) ∈ S ×A× [H], t ∈ [T ]
]

(105)

(106)

E = Etran1 ∩ Etran2 ∩ Efuture ∩ Evar (107)

Lemma 10 (High Probability Event). Let δ = δ′/8, then

Pr[E ] ≥ 1− 8δ′ = 1− δ. (108)

Proof. We can obtain this lemma by Lemmas 7 to 9. ■

Lemma 11 (Concentration of the Optimal Future Value Regarding Known Statistics). Let L = log
(
8SAHT

δ

)
. Let

ϕt(s, a, h) = 2

√
Vars′∼p̂t−1(s,a,h)(V̄t,h+1(s′))L

Nt−1(s,a,h)
+ 2

√
Es′∼p̂t−1(s,a,h)[V̄t,h+1(s′)−

¯
Vt,h+1(s′)]

2
L

Nt−1(s,a,h)
+ 5HL

Nt−1(s,a,h)
. With probability

at least 1− δ, we have ∣∣∣(p̂t−1(s, a, h)− p(s, a, h))
⊤
V ∗
h+1

∣∣∣ ≤ ϕt(s, a, h) (109)

Proof. Under E , we can obtain the lemma by applying Lemma 8, Lemma 9, and Lemma 12 ■

D.2. Optimism and Pessimism

Let L = log
(
SAHT

δ′

)
. Let ϕt(s, a, h) = 2

√
Vars′∼p̂t−1(s,a,h)(V̄t,h+1(s′))L

Nt−1(s,a,h)
+ 2

√
Es′∼p̂t−1(s,a,h)[V̄t,h+1(s′)−

¯
Vt,h+1(s′)]

2
L

Nt−1(s,a,h)
+

5HL
Nt−1(s,a,h)

.

Lemma 12. If concentration event E holds, then it holds that

¯
Vt,h(s) ≤ V ∗

h (s) ≤ V̄t,h(s) (110)

for all s ∈ S, h ∈ [H], t ∈ [T ].
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Proof. We prove this lemma by induction. Since it holds that
¯
Vt,H+1(s) = V ∗

H+1(s) = V̄t,H+1(s) = 0, so it suffices to
prove that if

¯
Vt,h+1(s) ≤ V ∗

h+1(s) ≤ V̄t,h+1(s), then
¯
Vt,h(s) ≤ V ∗

h (s) ≤ V̄t,h(s).

We first prove the optimistic part, i.e., V ∗
h (s) ≤ V̄t,h(s). If

r(s, πt(s, h), h) + p̂t−1(s, πt(s, h), h)
⊤V̄t,h+1 + ϕt(s, πt(s, h), h) ≥ H − h, (111)

then we are done. If the above does not hold, we have the following,

V̄t,h(s) = r(s, πt(s, h), h) + p̂t−1(s, πt(s, h), h)
⊤V̄t,h+1 + ϕt(s, πt(s, h), h) (112)

(a)

≥ r(s, π∗(s, h), h) + p̂t−1(s, π
∗(s, h), h)⊤V̄t,h+1 + ϕt(s, π

∗(s, h), h) (113)
(b)

≥ r(s, π∗(s, h), h) + p̂t−1(s, π
∗(s, h), h)⊤V ∗

h+1 + ϕt(s, π
∗(s, h), h) (114)

(c)

≥ r(s, π∗(s, h), h) + p̂t−1(s, π
∗(s, h), h)⊤V ∗

h+1 + 2

√
Vars′∼p̂t−1(s,π∗(s,h),h)

(
V̄t,h+1(s′)

)
L

Nt−1(s, π∗(s, h), h)

+ 2

√
Es′∼p̂t−1(s,π∗(s,h),h)

[
V̄t,h+1(s′)− V ∗

h+1(s
′)
]2

L

Nt−1(s, π∗(s, h), h)
+

5HL

Nt−1(s, π∗(s, h), h)
(115)

(d)

≥ r(s, π∗(s, h), h) + p̂t−1(s, π
∗(s, h), h)⊤V ∗

h+1 + 2

√
Vars′∼p(s,π∗(s,h),h)

(
V ∗
h+1(s

′)
)
L

Nt−1(s, π∗(s, h), h)
+

HL

Nt−1(s, π∗(s, h), h)

(116)
(e)

≥ r(s, π∗(s, h), h) + p(s, π∗(s, h), h)⊤V ∗
h+1 (117)

= V ∗
h (s), (118)

where inequality (a) is due to taking the maximization over the actions in the optimistic MDP, inequality (b) is due to
the inductive hypothesis V ∗

h+1(s) ≤ V̄t,h+1(s), inequality (c) is due to the inductive hypothesis
¯
Vt,h+1(s) ≤ V ∗

h+1(s),
inequality (d) is due to Lemma 9, and inequality (e) is due to Lemma 8.

Next we prove the pessimistic part. Let let a = πt(s, h). Similarly, if

r(s, a, h) + p̂t−1(s, a, h)
⊤
¯
Vt,h+1 − ϕt(s, a, h) ≤ 0, (119)

we are done. If the above inequality does not hold, we have

¯
Vt,h(s) = r(s, a, h) + p̂t−1(s, a, h)

⊤
¯
Vt,h+1 − ϕt(s, a, h) (120)

(a)

≤ r(s, a, h) + p̂t−1(s, a, h)
⊤V ∗

h+1 − 2

√
Vars′∼p̂t−1(s,a,h)

(
V̄t,h+1(s′)

)
L

Nt−1(s, a, h)

− 2

√
Es′∼p̂t−1(s,a,h)

[
V̄t,h+1(s′)− V ∗

h+1(s
′)
]2

L

Nt−1(s, a, h)
− 5HL

Nt−1(s, a, h)
(121)

(b)

≤ r(s, a, h) + p̂t−1(s, a, h)
⊤V ∗

h+1 − 2

√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)
L

Nt−1(s, a, h)
− HL

Nt−1(s, a, h)
(122)

(c)

≤ r(s, a, h) + p(s, a, h)⊤V ∗
h+1 (123)

≤ r(s, π∗(s, h), h) + p(s, π∗(s, h), h)⊤V ∗
h+1 (124)

= V ∗
h (s), (125)

where inequality (a) is due to the inductive hypothesis V ∗
h+1(s) ≥ ¯

Vt,h+1(s), inequality (b) is due to Lemma 9, inequality
(c) is due to Lemma 8. ■

Lemma 13 (Difference between optimism and pessimism). If the concentration event E holds, then we have

V̄t,h(s)−
¯
Vt,h(s) ≤

H∑
i=h

E(si,ai)∼πt

[
min

{
20HL

√
S√

Nt−1(si, ai, i)
, H

}
| sh = s, πt

]
(126)
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Proof. Let a = πt(s, h) be the action chosen by our algorithm at t-th episode,

V̄t,h(s) ≤ r(s, a, h) + p̂t−1(s, a, h)
⊤V̄t,h+1 + ϕt(s, a, h) (127)

¯
Vt,h(s) ≥ r(s, a, h) + p̂t−1(s, a, h)

⊤
¯
Vt,h+1 − ϕt(s, a, h) (128)

Then,

V̄t,h(s)−
¯
Vt,h(s) (129)

≤ p̂t−1(s, a, h)
⊤ (V̄t,h+1 −

¯
Vt,h+1

)
+ 2ϕt(s, a, h) (130)

= p(s, a, h)⊤
(
V̄t,h+1 −

¯
Vt,h+1

)
+ (p̂t−1(s, a, h)− p(s, a, h))⊤

(
V̄t,h+1 −

¯
Vt,h+1

)
+ 4

√
Vars′∼p̂t−1(s,a,h)

(
V̄t,h+1(s′)

)
L

Nt−1(s, a, h)
+ 4

√
Es′∼p̂t−1(s,a,h)

[
V̄t,h+1(s′)−

¯
Vt,h+1(s′)

]2
L

Nt−1(s, a, h)
+

10HL

Nt−1(s, a, h)
(131)

≤ p(s, a, h)⊤
(
V̄t,h+1 −

¯
Vt,h+1

)
+ ∥p̂t−1(s, a, h)− p(s, a, h)∥1

∥∥V̄t,h+1 −
¯
Vt,h+1

∥∥
∞

+ 4

√
H2L

Nt−1(s, a, h)
+ 4

√
H2L

Nt−1(s, a, h)
+

10HL

Nt−1(s, a, h)
(132)

(a)

≤ p(s, a, h)⊤
(
V̄t,h+1 −

¯
Vt,h+1

)
+H

√
2SL

Nt−1(s, a, h)
+ 18HL

√
1

Nt−1(s, a, h)
(133)

≤ p(s, a, h)⊤
(
V̄t,h+1 −

¯
Vt,h+1

)
+

20HL
√
S√

Nt−1(s, a, h)
(134)

= Es′∼p(s,a,h)

[
V̄t,h+1(s

′)−
¯
Vt,h+1(s

′)
]
+

20HL
√
S√

Nt−1(s, a, h)
(135)

(b)

≤
H∑
i=h

E(si,ai)∼πt

[
min

{
20HL

√
S√

Nt−1(si, ai, i)
, H

}
| sh = s, πt

]
(136)

where inequality (a) is due to Lemma 7, and inequality (b) is due to a = πt(s, h) and recursively apply the same operation
on V̄t,h+1(s

′)−
¯
Vt,h+1(s

′) till step H when coupled with the fact that V̄t,h(s)−
¯
Vt,h(s) ≤ H . ■

Lemma 14 (Cumulative difference between optimism and pessimism). If the concentration event E holds, then∑
h,s,a

qp,πt

s,a,hp(s, a, h)
⊤(V̄t,h+1 −

¯
Vt,h+1)

2 ≤
∑
h,s,a

qp,πt

s,a,h

400H4L2S

Nt−1(s, a, h)
(137)

Proof. For any t ∈ [T ], h ∈ [H], s ∈ S, let wt,h(s) denote the probability that state s is visited at step h in episode t. We
can bound ∑

h,s,a

qp,πt

s,a,hp(s, a, h)
⊤(V̄t,h+1 −

¯
Vt,h+1)

2 (138)

=
∑
h,s,a

qp,πt

s,a,h

∑
s′

p(s′|s, a, h)(V̄t,h+1(s
′)−

¯
Vt,h+1(s

′))2 (139)

=
∑

h,s′,s,a

qp,πt

s,a,hp(s
′|s, a, h)(V̄t,h+1(s

′)−
¯
Vt,h+1(s

′))2 (140)

=
∑
h,s′

wt,h+1(s
′)(V̄t,h+1(s

′)−
¯
Vt,h+1(s

′))2 (141)

=

H∑
h=1

Esh+1∼πt(V̄t,h+1(sh+1)−
¯
Vt,h+1(sh+1))

2 (142)

≤
H∑

h=1

Esh∼πt
(V̄t,h(sh)−

¯
Vt,h(sh))

2 (143)
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(a)

≤
H∑

h=1

Esh∼πt

( H∑
i=h

E(si,ai)∼πt

[
20HL

√
S√

Nt−1(si, ai, h)
| sh, πt

])2

(144)

(b)

≤ H

H∑
h=1

Esh∼πt

H∑
i=h

(
E(si,ai)∼πt

[
20HL

√
S√

Nt−1(si, ai, h)
| sh, πt

])2

(145)

(c)

≤ H

H∑
h=1

Esh∼πt

H∑
i=h

E(si,ai)∼πt

[
400H2L2S

Nt−1(si, ai, h)
| sh, πt

]
(146)

≤ H

H∑
h=1

H∑
i=h

E(si,ai)∼πt

[
400H2L2S

Nt−1(si, ai, h)

]
(147)

≤ H2
H∑

h=1

E(sh,ah)∼πt

[
400H2L2S

Nt−1(sh, ah, h)

]
(148)

=
∑
h,s,a

qp,πt

s,a,h

400H4L2S

Nt−1(s, a, h)
(149)

where inequality (a) is due to Lemma 13, inequality (b) is due to Cauchy-Schwarz inequality, inequality (c) is due to Jensen’s
inequality. ■

D.3. Variance Inequalities

Lemma 15 (Cumulative difference of the variance). If the concentration event E holds, then it holds for all t ∈ [T ] that

∑
h,s,a

qp,πt

s,a,h

√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)
L

Nt−1(s, a, h)
−
∑
h,s,a

qp,πt

s,a,h

√
Vars′∼p(s,a,h)

(
V πt

h+1(s
′)
)
L

Nt−1(s, a, h)
≤

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h ·∆πt

Nt−1(s, a, h)

(150)

Proof. For any t ∈ [T ], h ∈ [H], s ∈ S, let wt,h(s) denote the probability that state s is visited at step h in episode t.

∑
h,s,a

qp,πt

s,a,h

√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)
L

Nt−1(s, a, h)
−
∑
h,s,a

qp,πt

s,a,h

√
Vars′∼p(s,a,h)

(
V πt

h+1(s
′)
)
L

Nt−1(s, a, h)
(151)

(a)

≤
√
L
∑
h,s,a

qp,πt

s,a,h

√√√√Es′∼p(s,a,h)

[(
V ∗
h+1(s

′)− V πt

h+1(s
′)
)2]

Nt−1(s, a, h)
(152)

≤
√
L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

√∑
h,s,a

qp,πt

s,a,hEs′∼p(s,a,h)

[(
V ∗
h+1(s

′)− V πt

h+1(s
′)
)2]

(153)

=
√
L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

√∑
h,s,a

qp,πt

s,a,h

∑
s′

p(s′|s, a, h)
(
V ∗
h+1(s

′)− V πt

h+1(s
′)
)2

(154)

≤
√
HL

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

√∑
h,s,a

qp,πt

s,a,h

∑
s′

p(s′|s, a, h)
(
V ∗
h+1(s

′)− V πt

h+1(s
′)
)

(155)

=
√
HL

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

√∑
h,s′

wt,h+1(s′)
(
V ∗
h+1(s

′)− V πt

h+1(s
′)
)

(156)

(b)

≤
√
HL

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

√∑
h

(V ∗
1 (s1)− V πt

1 (s1)) (157)
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=
√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

√
(V ∗

1 (s1)− V πt
1 (s1)) (158)

=
√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h ·∆πt

Nt−1(s, a, h)
(159)

where inequality (a) is due to Eq. (48)-(52) in (Zanette & Brunskill, 2019) and inequality (b) is due to Lemma 17 in (Zanette
& Brunskill, 2019) ■

Lemma 16 (Law of total variance). For any policy π, then it holds that∑
h,s,a

qp,πs,a,hVars′∼p(s,a,h)

(
V π
h+1(s

′)
)
≤ H2 (160)

Proof. Let Eπ[·|s1] is taken over the trajectories following policy π starting from state s1.∑
h,s,a

qp,πs,a,hVars′∼p(s,a,h)

(
V π
h+1(s

′)
)

(161)

=

H∑
h=1

Eπ

[
Varπ

(
V π
h+1(sh+1)|sh

)
|s1
]

(162)

= Eπ

[
H∑

h=1

Varπ
(
V π
h+1(sh+1)|sh

)
|s1

]
(163)

(a)
= Eπ

( H∑
h=1

r(sh, π(sh, h), h)− V π
1 (s1)

)2

|s1

 (164)

≤ H2, (165)

where (a) is due to Lemma 15 in (Zanette & Brunskill, 2019). ■

D.4. Proof of Theorem 3

Now we prove the regret upper bound for Theorem 3. The proof of Theorem 3 is slightly different from that of Theorem 1
but follows the similar analysis ideas/steps and we show the details as follows.

We suppose the concentration event E holds. According to our joint oracle Algorithm 3, we have V̄t,h = V p̃t,πt

t,h , where

(πt, p̃t) = argmaxπ∈Π,p̃∈Ct(π) V
p̃,π
1 (s1). Let L = log

(
SAHT

δ′

)
and ϕt(s, a, h) = 2

√
Vars′∼p̂t−1(s,a,h)(V̄t,h+1(s′))L

Nt−1(s,a,h)
+

2

√
Es′∼p̂t−1(s,a,h)[V̄t,h+1(s′)−

¯
Vt,h+1(s′)]

2
L

Nt−1(s,a,h)
+ 5HL

Nt−1(s,a,h)
.

Step 1: Regret decomposition. We use a similar argument for the regret decomposition (Step 1) in Appendix B.3.

∆πt

def
=
(
V p,π∗

1 (s1)− V p,πt

1 (s1)
)

(166)

(a)

≤
(
V p̃t,πt

t,1 (s1)− V p,πt

1 (s1)
)

(167)

(b)

≤
∑

h∈[H],s∈S,a∈A

qp,πt

s,a,h

∣∣∣(p̃t(s, a, h)− p(s, a, h))⊤V p̃t,πt

t,h+1

∣∣∣ (168)

(c)
=
∑
h,s,a

qp,πt

s,a,h

∣∣∣(p̃t(s, a, h)− p̂t−1(s, a, h))
⊤
V p̃t,πt

t,h+1

∣∣∣︸ ︷︷ ︸
Term (I): Optimistic Future Value Regret

(169)
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+
∑
h,s,a

qp,πt

s,a,h

∣∣∣(p̂t−1(s, a, h)− p(s, a, h))
⊤
V ∗
h+1

∣∣∣︸ ︷︷ ︸
Term (II): Optimal Future Value Regret

(170)

+
∑
h,s,a

qp,πt

s,a,h

∣∣∣(p̂t−1(s, a, h)− p(s, a, h))
⊤
(
V p̃t,πt

t,h+1 − V ∗
h+1

)∣∣∣︸ ︷︷ ︸
Term (III): Lower-Order Regret

. (171)

where inequality (a)-(c) following the same reasoning of (a)-(c) in the Step 1 of Appendix B.3. In what follows identify the
Ft,s,a,h, Gt,s,a,h, It,s,a,h, Jt,s,a,h and their upper bounds F̄, Ḡ, Ī, J̄ as in Theorem 1.

Step 2: Bound the optimistic future value regret - Term (I)

First, we can identify Ft,s,a,h = 2
√
Vars′∼p̂t−1(s,a,h)

(
V̄t,h+1(s′)

)
L + 2

√
Es′∼p̂t−1(s,a,h)

[
V̄t,h+1(s′)−

¯
Vt,h+1(s′)

]2
L,

It,s,a,h = 5HL from Eq. (174). Slightly different from inequality (f) in Step 1 of Appendix B.3,
∑

s,a,h q
p,π
s,a,hF

2
t,s,a,h will

produce some lower-order terms F ′ = O(H4SL3
∑

s,a,h

q
p,πt
s,a,h

Nt−1(s,a,h)
) so that

√
F ′

√∑
s,a,h

q
p,πt
s,a,h

Nt−1(s,a,h)
can be merged into

Ī . Concretely, we have

Term (I) =
∑
h,s,a

qp,πt

s,a,h

∣∣∣(p̃t(s, a, h)− p̂t−1(s, a, h))
⊤
V p̃t,πt

t,h+1

∣∣∣ (172)

(a)

≤
∑
h,s,a

qp,πt

s,a,h · ϕt(s, a, h) (173)

(b)

≤
∑
h,s,a

qp,πt

s,a,h

(
2

√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)
L

Nt−1(s, a, h)
+ 4

√
Es′∼p̂t−1(s,a,h)

[
V̄t,h+1(s′)−

¯
Vt,h+1(s′)

]2
L

Nt−1(s, a, h)

+
9HL

Nt−1(s, a, h)

)
(174)

(c)

≤ 2
∑
h,s,a

qp,πt

s,a,h

√
Vars′∼p(s,a,h)

(
V πt

h+1(s
′)
)
L

Nt−1(s, a, h)
+ 2

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h ·∆πt

Nt−1(s, a, h)
+ 9HL

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

+ 4
∑
h,s,a

qp,πt

s,a,h

√
Es′∼p̂t−1(s,a,h)

[
V̄t,h+1(s′)−

¯
Vt,h+1(s′)

]2
L

Nt−1(s, a, h)
(175)

≤2
√
L

√∑
h,s,a

qp,πt

s,a,hVars′∼p(s,a,h)

(
V πt

h+1(s
′)
)√√√√∑

h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 2

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h ·∆πt

Nt−1(s, a, h)

+ 9HL
∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 4

∑
h,s,a

qp,πt

s,a,h

√
Es′∼p̂t−1(s,a,h)

[
V̄t,h+1(s′)−

¯
Vt,h+1(s′)

]2
L

Nt−1(s, a, h)︸ ︷︷ ︸
Term (I.a)

(176)

(d)

≤ 2
√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 2

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h ·∆πt

Nt−1(s, a, h)

+ 9HL
∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 100

√
H4SL3

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
(177)

where inequality (a) is due to the definition of confidence region function Ct(π) in Eq. (12), inequality (b) is due to Lemma 9,
inequality (c) is due to Lemma 15, inequality (d) is due to Lemma 16 and the Term (I.a) bounded as follows. Before we
prove the Term (I.a), we can see from Eq. (177) (and compared with Eq. (32)) that we equivalently have F̄ = 4H2L and the
additionally produced second, third, and fourth term in Eq. (177) can be merged together as the Ī term. For Term (I.a) we

28



Combinatorial Multivariant Multi-Armed Bandits

have,

Term (I.a) =
∑
h,s,a

qp,πt

s,a,h

√
Es′∼p̂t−1(s,a,h)

[
V̄t,h+1(s′)−

¯
Vt,h+1(s′)

]2
L

Nt−1(s, a, h)
(178)

≤
√
L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

√∑
h,s,a

qp,πt

s,a,hp̂t−1(s, a, h)⊤(V̄t,h+1 −
¯
Vt,h+1)2 (179)

≤
√
L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

(√∑
h,s,a

qp,πt

s,a,hp(s, a, h)
⊤(V̄t,h+1 −

¯
Vt,h+1)2

+

√∑
h,s,a

qp,πt

s,a,h |p(s, a, h)− p̂t−1(s, a, h)|⊤ (V̄t,h+1 −
¯
Vt,h+1)2

)
(180)

≤
√
L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

(√∑
h,s,a

qp,πt

s,a,hp(s, a, h)
⊤(V̄t,h+1 −

¯
Vt,h+1)2

+
√
H

√∑
h,s,a

qp,πt

s,a,h |p(s, a, h)− p̂t−1(s, a, h)|⊤ (V̄t,h+1 −
¯
Vt,h+1)

)
(181)

(a)

≤
√
L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

(√√√√∑
h,s,a

qp,πt

s,a,h

400H4L2S

Nt−1(s, a, h)
+

√
H

√√√√21
√
H4S2L3

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

)
(182)

≤ 20
√
H4SL3

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 5

√
H3SL2.5

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
(183)

≤ 25
√
H4SL3

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
, (184)

where inequality (a) is due to Lemma 14 and the Term (III) bounded by Eq. (199). Intuitively, term

Step 3: Bound the optimal future value regret - Term (II)

Step 3 can be proved using Step 2 above since
[
(p̂t−1(s, a, h)− p(s, a, h))

⊤
V ∗
h+1

]
≤ ϕt(s, a, h) due to Lemma 11. But

we can have a tighter bound as follows:

Term (II) =
∑
h,s,a

qp,πt

s,a,h

∣∣∣(p̂t−1(s, a, h)− p(s, a, h))
⊤
V ∗
h+1

∣∣∣ (185)

(a)

≤ 2
∑
h,s,a

qp,πt

s,a,h

√
Vars′∼p(s,a,h)

(
V ∗
h+1(s

′)
)
L

Nt−1(s, a, h)
+
∑
h,s,a

qp,πt

s,a,h

HL

Nt−1(s, a, h)
(186)

(b)

≤ 2
∑
h,s,a

qp,πt

s,a,h

√
Vars′∼p(s,a,h)

(
V πt

h+1(s
′)
)
L

Nt−1(s, a, h)
+ 2

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h ·∆πt

Nt−1(s, a, h)
+HL

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

(187)

≤2
√
L

√∑
h,s,a

pp,πt

s,a,hVars′∼p(s,a,h)

(
V πt

h+1(s
′)
)√√√√∑

h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 2

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h ·∆πt

Nt−1(s, a, h)

+HL
∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
(188)
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(c)

≤ 2
√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 2

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h ·∆πt

Nt−1(s, a, h)
+HL

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
(189)

where inequality (a) is due to Lemma 8, inequality (b) is due to the Lemma 15, and inequality (c) is due to Lemma 16.

Step 4: Bound the lower-order regret - Term (III)

For Term (III), we can identify Gt,s,a,h =
∑

s′

(√
p(s′|s, a, h)(1− p(s′|s, a, h))L

)(
V̄t,h+1(s

′)− V ∗
h+1(s

′)
)
, Jt,s,a,h =

HSL as in Eq. (194). Then we can show that
∑

s,a,h q
p,πt

s,a,hG
2
t,s,a,h will produce lower order terms G′ =

O(H4S2L3
∑

s,a,h

q
p,πt
s,a,h

Nt−1(s,a,h)
) so that

√
G′

√∑
s,a,h

q
p,πt
s,a,h

Nt−1(s,a,h)
can be merged into J̄ . Therefore it is equivalent to

have Ḡ = 0, J̄ = 21
√
H4S2L3 as follows. Concretely, we have

Term (III) =
∑
h,s,a

qp,πt

s,a,h

∣∣∣(p̂t−1(s, a, h)− p(s, a, h))
⊤
(
V p̃t,πt

t,h+1 − V ∗
h+1

)∣∣∣ (190)

=
∑
h,s,a

qp,πt

s,a,h

∣∣∣(p̂t−1(s, a, h)− p(s, a, h))
⊤ (

V̄t,h+1 − V ∗
h+1

)∣∣∣ (191)

≤
∑
h,s,a

qp,πt

s,a,h

∑
s′

|p̂t−1(s
′|s, a, h)− p(s′|s, a, h)|

(
V̄t,h+1(s

′)− V ∗
h+1(s

′)
)

(192)

(a)

≤
∑
h,s,a

qp,πt

s,a,h

∑
s′

(√
p(s′|s, a, h)(1− p(s′|s, a, h))L

Nt−1(s, a, h)
+

L

Nt−1(s, a, h)

)(
V̄t,h+1(s

′)− V ∗
h+1(s

′)
)

(193)

(b)

≤
∑
h,s,a

qp,πt

s,a,h

∑
s′

√
p(s′|s, a, h)(1− p(s′|s, a, h))L

Nt−1(s, a, h)

(
V̄t,h+1(s

′)− V ∗
h+1(s

′)
)
+
∑
h,s,a

qp,πt

s,a,h

HSL

Nt−1(s, a, h)

(194)

(c)

≤
√
SL

∑
h,s,a

qp,πt

s,a,h

√∑
s′ p(s

′|s, a, h)
(
V̄t,h+1(s′)− V ∗

h+1(s
′)
)2

Nt−1(s, a, h)
+
∑
h,s,a

qp,πt

s,a,h

HSL

Nt−1(s, a, h)
(195)

≤
√
SL

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

√∑
h,s,a

qp,πt

s,a,hp(s, a, h)
⊤
(
V̄t,h+1 − V ∗

h+1

)2
+
∑
h,s,a

qp,πt

s,a,h

HSL

Nt−1(s, a, h)
(196)

≤
√
SL

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

√∑
h,s,a

qp,πt

s,a,hp(s, a, h)
⊤
(
V̄t,h+1 −

¯
Vt,h+1

)2
+
∑
h,s,a

qp,πt

s,a,h

HSL

Nt−1(s, a, h)
(197)

(d)

≤
√
SL

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)

√√√√∑
h,s,a

qp,πt

s,a,h

400H4L2S

Nt−1(s, a, h)
+
∑
h,s,a

qp,πt

s,a,h

HSL

Nt−1(s, a, h)
(198)

≤ 21
√
H4S2L3

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
(199)

where inequality (a) is due to Lemma 7, inequality (b) is due to V̄t,h+1(s
′) − V ∗

h+1(s
′) ≤ H , inequality (c) is due to

Cauchy-Schwarz inequality, and inequality (d) is due to Lemma 14.

Step 5: Putting all together and using CMAB-MT techniques in Appendix B

Using Eq. (177), Eq. (189) and Eq. (199), we have

∆πt
≤ 2

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 2

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h ·∆πt

Nt−1(s, a, h)
+ 9HL

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
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+ 100
√
H4SL3

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 2

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 2

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h ·∆πt

Nt−1(s, a, h)

+HL
∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 21

√
H4S2L3

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
(200)

≤ 4
√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
+ 4

√
H2L

√√√√∑
h,s,a

qp,πt

s,a,h ·∆πt

Nt−1(s, a, h)
+ 131

√
H4S2L3

∑
h,s,a

qp,πt

s,a,h

Nt−1(s, a, h)
(201)

Let c1 = 4× 4
√
H2L, c2 = 4× 4

√
H2L, c3 = 4× 131

√
H4S2L3, c4 = 4× 2H . We define the four decomposed events

as follows.

E ′
t,1 =

∆πt ≤ c1

√√√√ ∑
s,a,h:Nt−1(s,a,h)>0

qp,πt

s,a,h

Nt−1(s, a, h)

 , E ′
t,2 =

∆πt ≤ c2

√√√√ ∑
s,a,h:Nt−1(s,a,h)>0

qp,πt

s,a,h∆πt

Nt−1(s, a, h)

 ,

(202)

E ′
t,3 =

∆πt ≤ c3
∑

s,a,h:Nt−1(s,a,h)>0

qp,πt

s,a,h

Nt−1(s, a, h)

 , E ′
t,3 =

∆πt ≤ c4
∑

s,a,h:Nt−1(s,a,h)=0

qp,πt

s,a,h · 2H

 . (203)

By Lemma 4 and Eq. (201), we have

Reg(T, E) ≤
4∑

i=1

Reg(T, E ′
t,i) (204)

Regarding Reg(T, E ′
t,i) for i = 1, 3, 4, we can apply similar analysis to that of steps 2,3,4 in Appendix B.3 respectively.

For Reg(T, E ′
t,2), if E ′

t,2 holds, then we have

∆πt
≤ c22

∑
s,a,h:Nt−1(s,a,h)>0

qp,πt

s,a,h

Nt−1(s, a, h)
(205)

which can be bounded exactly the same way as Reg(T, E ′
t,3).

Using a similar analysis to Appendix B.3, we have

Reg(T, Et) ≤
∑
i∈[m]

2c21
∆min

i

(3 + logK) +
∑
s,a,h

2(c22 + c3)

(
1 + log

(
2(c22 + c3)K

∆min
i

))
+ c4m (206)

=
∑
s,a,h

512H2L

∆min
s,a,h

(3 + logH) +
∑
s,a,h

1560H2SL1.5

(
1 + log

(
1560H3SL1.5

∆min
s,a,h

))
+ 8SAH2 (207)

= O

∑
s,a,h

H2L

∆min
s,a,h

+
∑
s,a,h

H2SL1.5 log

(
1

∆min
s,a,h

) (208)

Similar to the analysis of Appendix B.3, the gap-independent regret bound is Õ(
√
H3SAT +H3S2A) when considering

the inhomogeneous episodic RL setting.

D.5. Discussion about Gap-Dependent Regret Bound

In this section, we discuss the tightness of our gap-dependent bound in Eq. (206). Since we use a different definition of
the gap, it is not directly comparable to the existing works such as (Simchowitz & Jamieson, 2019). Here we specify
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the value of ∆min
s,a,h = minπ∈Π:qp,π

s,a,h>0,V ∗
1 (s1)−V π

1 (s1)>0(V
∗
1 (s1)− V π

1 (s1)), where we will omit the underlying transition
probabilities p for V and Q functions. Similar to Simchowitz & Jamieson (2019), we first divide (s, a, h) into two parts:
Zsub = {(s, a, h) : π∗(s, h) ̸= a} and Zopt = S × A × [H]− Zsub. We use gap(s, a, h) = V ∗

h (s)−Q∗
h(s, a) to denote

the state-dependent suboptimality gap, and gapmin = mins,a,h{gap(s, a, h) : gap(s, a, h) > 0} the minimum gap. Let
q∗ = minπ,(s,a,h){qp,πs,a,h : qp,πs,a,h > 0} be the minimum occupancy measure for any policy π and state-action-step pair
(s, a, h).

We use the following performance difference lemma for episodic MDP as follows, which is slightly different from Lemma
1.16 for infinite horizon discounted MDP in Agarwal et al. (2019):

Lemma 17 (Performance difference lemma for episodic MDP). For any MDP with transition kernel p and for any two
policies π and π′, the difference of their value function starting from the initial state s1 can be bounded by

V π
1 (s1)− V π′

1 (s1) =
∑
s,a,h

qp,π
′

s,a,h [V
π
h (s)−Qπ

h(s, a)] (209)

Proof. Let qp,πs,h be the probability of visiting state s at step h following policy π.

V π
1 (s1)− V π′

1 (s1) = V π
1 (s1)−

∑
s,a,h

qp,π
′

s,a,hr(s, a, h) (210)

(a)
= V π

1 (s1)−
∑
s,a,h

qp,π
′

s,a,h

[
Qπ

h(s, a)−
∑
s′

ph(s
′ | s, a, h)V π

h+1(s
′)

]
(211)

= V π
1 (s1) +

∑
s,a,h

∑
s′

qp,π
′

s,a,hph(s
′ | s, a, h)V π

h+1(s
′)−

∑
s,a,h

qp,π
′

s,a,hQ
π
h(s, a) (212)

(b)
= V π

1 (s1) +
∑
s′,h

qp,π
′

s′,h+1V
π
h+1(s

′)−
∑
s,a,h

qp,π
′

s,a,hQ
π
h(s, a) (213)

(c)
=
∑
s′,h

qp,π
′

s′,h V
π
h (s′)−

∑
s,a,h

qp,π
′

s,a,hQ
π
h(s, a) (214)

=
∑
s,a,h

qp,π
′

s,a,h [V
π
h (s)−Qπ

h(s, a)] (215)

■

where equality (a) is due to the Bellman equation Qπ
h(s, a) = r(s, a, h) +

∑
s′ p(s

′ | s, a, h)V π
h+1(s

′), equality (b) is due to∑
s,a q

p,π
s,a,hp(s

′ | s, a, h) = qp,πs′,h+1, and equality (c) is due to qp,πs1,1
= 1 and qp,πs,1 = 0 for s ̸= s1.

Thus V ∗
1 (s1) − V π

1 (s1) =
∑

s,a,h q
p,π
s,a,hgap(s, a, h), and for (s, a, h) ∈ Zsub, we have ∆min

s,a,h =

minπ∈Π:qp,π
s,a,h>0,V ∗

1 (s1)−V π
1 (s1)>0(V

∗
1 (s1) − V π

1 (s1)) ≥ q∗ · gap(s, a, h). For (s, a, h) ∈ Zopt, we have ∆min
s,a,h ≥ gapmin

since in the worst case, π allocates all the triggering probability qp,πs,a,h to the (s, a, h) that attains gapmin. Now based on
Eq. (206) and the above reasoning, we have

Reg(T ) ≤ O

( ∑
(s,a,h)∈Zsub

H2

q∗ · gap(s, a, h)
log(SAHT ) +

H2|Zopt|
gapmin

log(SAHT )

+H3S2A log1.5(SAHT ) log

(
1

gapmin

log1.5(SAHT )

))
(216)

which matches the regret bound of (Simchowitz & Jamieson, 2019) up to a factor of 1/q∗.
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E. Analysis for PMC-GD in Section 5
E.1. Proof of Lemma 3

|r(π; p̃)− r(π;p)| =

∣∣∣∣∣∑
v∈V

[(
1−

∏
u∈π

(1− p̃(u, v))

)
−

(
1−

∏
u∈π

(1− p(u, v))

)]∣∣∣∣∣ (217)

=

∣∣∣∣∣∑
v∈V

[∏
u∈π

(1− p(u, v))−
∏
u∈π

(1− p̃(u, v))

]∣∣∣∣∣ (218)

≤
∑
v∈V

∣∣∣∣∣∏
u∈π

(1− p(u, v))−
∏
u∈π

(1− p̃(u, v))

∣∣∣∣∣ (219)

(a)

≤
∑
u∈π

∥p̃(u, ·)− p(u, ·)∥1 (220)

where inequality (a) is due to the fact that let (a1, ..., a|π|)
def
= (1 − p(u, v))u∈π, (b1, ..., b|π|)

def
= (1 − p̃(u, v))u∈π,∣∣∣∏|π|

i=1 ai −
∏|π|

i=1 bi

∣∣∣ = ∣∣∣∑|π|
i=1

∏i−1
j=1 aj · (ai − bi) ·

∏|π|
k=i+1 bk

∣∣∣ ≤∑|π|
i=1 |ai − bi|.

For the pseudo-reward function r̄t(π; p̃) = r(π; p̂t−1) +
∑

u∈π ∥p̃(u, ·)− p̂t−1(u, ·)∥1, we also have for all π,p, p̃, it
holds

|r̄t(π; p̃)− r̄t(π;p)| =

∣∣∣∣∣∑
u∈π

∥p̃(u, ·)− p̂t−1(u, ·)∥1 − ∥p(u, ·)− p̂t−1(u, ·)∥1

∣∣∣∣∣ (221)

≤
∑
u∈π

|∥p̃(u, ·)− p̂t−1(u, ·)∥1 − ∥p(u, ·)− p̂t−1(u, ·)∥1| (222)

(a)

≤
∑
u∈π

∥p̃(u, ·)− p(u, ·)∥1 (223)

where inequality (a) is due to −∥x− y∥1 ≤ ∥x∥1 − ∥y∥1 ≤ ∥x− y∥1 by triangle inequality.

E.2. Proof of Theorem 4

We define the concentration event as:

E def
=
[
∥p̂t−1(u, ·)− p(u, ·)∥1 ≤

√√√√2|V | log
(

|U ||V |T
δ′

)
Nt−1,u

, for any u ∈ U, t ∈ [T ]
]

(224)

Suppose the concentration event E holds with probability δ′ = 1/(2T ) as in Lemma 7. Let α = 1 − 1/e and L =
log(|U ||V |T ). Also we can initialize each counter by Nt0,u = 1 using t0 = |U | rounds which pays an extra O(k|U |) regret.
Now we have

∆πt = α · r(π∗;p)− r(πt;p) (225)
(a)

≤ α · r̄t(π∗;p)− r(πt;p) (226)
(b)

≤ αr̄t(π
∗; p̃t)− r(πt;p) (227)

(c)

≤ r̄t(πt; p̃t)− r(πt;p) (228)
=r̄t(πt; p̃t)− r̄t(πt;p) + r̄t(πt;p)− r(πt;p) (229)
(d)

≤
∑
u∈πt

∥p̃t(u, ·)− p(u, ·)∥1 + r̄t(πt;p)− r(πt;p) (230)
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(e)

≤ 4
∑
u∈πt

√
|V |L
Nt−1,u

+ r̄t(πt;p)− r(πt;p)︸ ︷︷ ︸
Additional Term

(231)

(f)

≤ 8
∑
u∈πt

√
|V |L
Nt−1,u

, (232)

where inequality (a) is due to r̄t(π;p) ≥ r(π;p) for any π,p by Lemma 3, inequality (b) is due to the definition of p̃t

in Algorithm 4, inequality (c) is due to πt is a (1 − 1/e, 1)-approximate solution to the problem argmax|π|≤k r̄t(π; p̃t),
inequality (d) is by Eq. (223), inequality (e) is due to Eq. (224) and Eq. (13), and inequality (f) is due to the following
inequality to deal with additional regret term brought by pseudo-reward r̄t(π;p).

Additional Term = r̄t(πt;p)− r(πt;p) (233)

=
∑
u∈πt

∥p(u, ·)− p̂t−1(u, ·)∥1 + r(πt; p̂t−1)− r(πt;p) (234)

(a)

≤ 2
∑
u∈πt

∥p(u, ·)− p̂t−1(u, ·)∥1 (235)

(b)

≤ 4
∑
u∈πt

√
|V |L
Nt−1,u

(236)

(237)

where inequality (a) is due to Lemma 3, and inequality (b) is due to event E .

Compared with Eq. (30), it is equivalent to have Ft,u = 8
√

|V |L,Gt,u = It,u = Jt,u = 0 and following step 2 in
Appendix B.3 where F̄ = 64k|V |L, Ḡ = Ī = J̄ = 0, we have gap-dependent regret

Reg(T ) = O

(∑
u∈U

k|V | log(|U ||V |T )
∆min

u

)
(238)

and gap-independent regret

Reg(T ) = O
(√

k|V ||U |T log(|U ||V |T )
)
. (239)

34


