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ABSTRACT

Large Language Models (LLMs) generate text through probabilistic token sam-
pling, a mechanism increasingly leveraged for inference-time watermarking to
verify AI-generated content. As watermarking schemes proliferate, assessing their
robustness-detectability trade-off becomes essential to determine whether water-
marks can survive output editing while remaining invisible to adversaries. Current
evaluation relies on empirical tests lacking provable guarantees. In this work, we
present the first information-theoretic framework that rigorously characterizes this
fundamental trade-off. We first prove that detectability is determined solely by
the sampling strategy, not the model architecture, thereby establishing a hierarchy
ranging from undetectable (distribution-preserving) to highly detectable (biased
sampling) schemes. Second, we demonstrate an inverse relationship: watermarks
robust to text modifications are inherently more detectable by adversaries, cre-
ating an irreducible trilemma: no scheme simultaneously achieves high robust-
ness, low detectability, and reliable verification. Motivated by these theoretical
constraints, we propose a hybrid watermarking system that adaptively switches
sampling strategies based on LLM output edit levels, achieving Pareto-optimal
trade-offs. We show that distribution-preserving schemes provide perfect unde-
tectability; however, they are only robust to near-zero adversarial edits. On the
other hand, bias-free and biased sampling offer high robustness guarantees at 15-
20% output editing, but with detectable output statistics. At high output editing
rates, no watermarking provides robustness guarantees. Lastly, we empirically
validate our theoretical trade-off claims with Llama 2 7B and Mistral 7B mod-
els under paraphrasing attacks, thereby confirming that Pareto-optimality is only
achieved by a hybrid watermarking scheme. Overall, our framework provides wa-
termark evaluation beyond empirical testing via principled design, revealing that
sampling-based watermarking faces fundamental constraints rooted in informa-
tion theory rather than implementation limitations.

1 INTRODUCTION

Large Language Models (LLMs) have fundamentally transformed natural language generation, pro-
ducing text increasingly indistinguishable from human authorship Radford et al. (2019). As these
models become ubiquitous in text generation Chung et al. (2024) and summarization Liu & Lapata
(2019), they enable malicious applications, including the dissemination of misinformation at scale,
contamination of training datasets, and erosion of trust in legitimate AI-generated content. The
challenge of distinguishing AI-generated from human-written text has thus become critical Stokel-
Walker (2022), with inference-time watermarking emerging as the dominant approach for attribu-
tion. However, current watermarking schemes face a fundamental trade-off: robust watermarks
that survive text editing introduce detectable statistical artifacts ( Gloaguen et al. (2025); Liu et al.
(2025)), while provably undetectable watermarks Christ et al. (2024) fail catastrophically under
LLM editing as token entropy used to embed the watermark drops Moitra & Golowich (2024).

The rapidly growing class of inference-time LLM watermarking schemes (Fig. 1) employs crypto-
graphic primitives at different stages of token generation to embed verifiable signals in LLM out-

∗The name alludes to Joseph Heller’s Catch-22, a paradoxical dilemma in which one decision cannot be
made without negating another. In the context of LLMs, watermarks face an analogous bind: improving ro-
bustness often makes them more detectable, while reducing detectability weakens their robustness.
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Figure 1: Watermarking schemes in modern LLMs exhibit a trade-off between detectability via
statistical tests and robustness against LLM output editing.
puts. Biased sampling methods (Kirchenbauer et al. (2023); Zhao et al. (2023)) use hash functions
to designate “green” tokens whose logits are systematically increased, creating detectable statistical
signals. Bias-free approaches (Hu et al. (2024); Wu et al. (2024)) employ key-dependent reweighting
that preserves expected token distributions while encoding information in variance patterns. Prov-
ably undetectable schemes (Christ et al. (2024)) replace sampling randomness with pseudorandom
functions (PRFs), achieving perfect undetectability by maintaining exact output distributions. While
probability-modifying schemes (biased and bias-free) create redundant statistical signals enabling
detection after substantial editing, these deviations are increasingly exposed by black-box statistical
tests (Gloaguen et al. (2025)) and targeted prompt analysis (Liu et al. (2025)). Conversely, prov-
able distribution-preserving schemes achieve perfect undetectability but rely on PRF sequences that
break under output perturbation, leading to poor robustness Moitra & Golowich (2024).

Although recent work claims provable robustness for undetectable watermarks under bounded edit
distance (Moitra & Golowich (2024)), these theoretical guarantees require exponentially large vo-
cabulary sizes that preclude practical deployment. This dichotomy raises a fundamental question:
What is the inherent trade-off between watermark robustness and detectability?

In this work, we provide a definitive answer through a unified theoretical framework that establishes
the fundamental impossibility of simultaneously achieving high robustness, low detectability, and
reliable verification. Our analysis reveals that the empirically observed trade-offs (Kirchenbauer
et al. (2024); Zhao et al. (2023)) reflect deep information-theoretic constraints rather than limitations
of current techniques. Our framework proceeds in two steps: (i) we quantify detectability via total
variation distance between watermarked and unwatermarked distributions, proving it depends solely
on sampling transformations (Theorem 1), and then (ii) we characterize the information capacity of
watermarked LLM outputs under different-editing levels perceived as noise, revealing how capacity
determines robustness guarantees (Theorem 2). This framework allows us to ask the question: What
is an optimal watermarking scheme?

We answer this through the construction of a hybrid watermarking scheme, which selects between
probability-modifying and distribution-preserving methods based on noise levels. This hybrid
scheme optimizes the watermark parameters to achieve a Pareto-optimal detectability-robustness
trade-off (Theorem 3). Experiments with paraphrasing attacks on watermarked outputs from Llama
and Mistral models confirm our hybrid scheme achieves a superior trade-off across all noise regimes.

To summarize, our principal contributions are as follows:

1. Universal detectability bounds: We establish design-time information-theoretic limits on
watermark detectability independent of specific statistical tests or targeted prompt attacks.
Detectability remains constant for Greedy sampling, whereas it increases by O(|δ|

√
T ) for

biased sampling with bias δ and length T , O(
√
T ) for bias-free sampling, while dropping

to zero for distribution-preserving schemes (Theorem 1).
2. Detectability-robustness characterization using information capacity: We prove that

information capacity is inversely related to the detectability. The channel capacity together
with the watermark encoding scheme determines robustness guarantees (Theorem 2).

3. Optimal hybrid watermark construction: We propose a hybrid watermarking scheme
that switches between probability-modifying and distribution-preserving methods based on
the noise levels, achieving Pareto-optimal detectability-robustness trade-offs (Theorem 3).
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4. Experimental validation: We demonstrate the validity of our theoretical predictions
through paraphrasing attacks across open-source Llama and Mistral models, confirming
that our hybrid scheme achieves Pareto-optimal robustness guarantees even with a 15-20%
editing rate, while simultaneously maintaining a total variation distance of< 0.1 compared
to unwatermarked outputs.

The remainder of this paper is organized as: Section 2 reviews existing watermarking approaches
and their limitations. Section 3 develops our information-theoretic framework, followed by Sec-
tion 4, which derives the optimal hybrid watermark construction. Section 5 validates our theoretical
predictions through comprehensive experiments. Finally, Section 6 concludes the paper.

2 RELATED WORK ON LLM WATERMARKING AND RESEARCH GAP

Inference-time watermarking for LLMs has evolved rapidly, with schemes progressively trading ro-
bustness for undetectability. We categorize existing approaches by their sampling strategies and
identify critical gaps that motivate our theoretical framework. Due to space limitations, a com-
prehensive technical analysis of existing watermarking schemes, along with their corresponding
detection schemes, is provided in Appendix A.

Watermarking via Sampling Modifications. Existing watermarking schemes modify the token
generation process through three distinct approaches:

1. Biased sampling (Kirchenbauer et al. (2023); Zhao et al. (2023)) designates certain tokens
as “green” at each step and applies an exponential tilt to the sampling probability. While
achieving strong empirical robustness (Kirchenbauer et al. (2024)), these schemes are eas-
ily detected through statistical tests (Sadasivan et al. (2023); Gloaguen et al. (2025); Liu
et al. (2025)).

2. Bias-free sampling (Hu et al. (2024); Wu et al. (2024); Kuditipudi et al. (2024)) employs
reweighting functions RE that preserve expected distributions: EE [RE(pt)] = pt. Despite
maintaining first-order unbiasedness, recent work (Gloaguen et al. (2025)) proves all such
schemes remain detectable through variance analysis.

3. Distribution-preserving sampling1 (Christ et al. (2024); Zamir (2024)) provably main-
tains exact token probabilities (qt ≡ pt) while replacing true randomness with PRFs:
Ut = PRF(k, contextt). Though achieving provable undetectability, these schemes fail
catastrophically under perturbation to LLM outputs. It is worth noting that, although Moitra
& Golowich (2024) proposed a provably undetectable and robust watermarking scheme, it
necessitates impractical assumptions, specifically an exponential LLM vocabulary size, to
substantiate its robust claims.

This landscape reveals a critical gap: no existing framework quantifies the fundamental limits
of the robustness-detectability trade-off. Prior works lack: (i) information-theoretic bounds on
achievable detectability for given robustness requirements, (ii) analysis revealing why undetectable
schemes fail under noise, and (iii) principled construction of schemes that optimally navigate this
trade-off. Our work addresses these gaps via an information-theoretic framework, as described in
the subsequent sections.

3 INFORMATION-THEORETIC FRAMEWORK FOR ROBUSTNESS VS.
DETECTABILITY TRADE-OFF ANALYSIS

The detectability and robustness of watermarked text fundamentally depend on how tokens are sam-
pled during generation. When a language model generates text, it proceeds token by token, comput-
ing probability distributions over its vocabulary at each step. The actual text produced depends not
just on these probabilities but on the sampling rule that converts probabilities into token choices.

1Note that we term use distribution-preserving for provably undetectable watermarks such as in Christ et al.
(2024) unlike statistically indistinguishable watermarks using the same term (Wu et al. (2024)).
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Randomness enters this process at each generation step t 2. The model provides a conditional dis-
tribution pt(·) = pθ(· | x,y<t) over its vocabulary Σ, where x denotes the initial prompt and
y<t = (y1, . . . , yt−1) represents the sequence of tokens already generated. To select a token, we
need a source of randomness, typically a uniform random variable Ut ∼ Uniform[0, 1]. A sampling
rule s is a function that takes both pt and this random variable Ut (possibly along with secret keys) to
produce the next token yt. A watermarked sampling rule modifies either the probabilities (creating
qt ̸= pt) or the random variable itself (using a keyed pseudorandom function (PRF)), or both.
Definition 1 (Detectability). The detectability of a watermarking scheme is the statistical distin-
guishability between watermarked and unwatermarked text. Given a baseline sampling rule s pro-
ducing distribution P s over complete texts and a watermarked sampling rule s producing distribu-
tion Qs, the detectability is quantified by the total variation distance:

Detectability(s) = TV(P s, Qs) = sup
A⊆Ω

|P s(A)−Qs(A)| ≤
√

1
2 KL(Qs∥P s), (1)

This measures the maximum distinguishing advantage of any adversary without knowledge of the
watermarking key, where the inequality follows from Pinsker’s inequality (Pinsker (1964)).

We analyze four sampling approaches spanning the complete spectrum of detectability, building
on the watermarking schemes described in Section 2. In addition to the three watermarking ap-
proaches, we include greedy sampling as a baseline, which eliminates all randomness by always
selecting the most probable token: v⋆t = argmaxv pt(v). Together, these four approaches enable
us to characterize how detectability depends on the degree of randomness modification, from com-
plete elimination (greedy) to biased probability adjustments (biased and bias-free sampling) to exact
distribution preservation with controlled randomness (distribution-preserving sampling).

3.1 DETECTABILITY CHARACTERIZATION

Theorem 1 (Information-theoretic Detectability (single-shot)). Fix a prompt x and length T . Let
P s be the baseline distribution induced by standard stochastic sampling from the model, and let
Q denote the distribution induced by a given sampling rule. The single-shot total variation (TV)
distance between P s and Q satisfies:

Sampling Method Total Variation Distance Scaling in T
Greedy TV(P s, Qgreedy) = 1− P s(y⋆) O(1)

Biased (δ-tilt) TV(P s, Qbiasδ) ≤ |δ|

√√√√1

4

T∑
t=1

gt(1− gt) O(|δ|
√
T )

Bias-free (fixed key/code E) TV(P s, Qbf
E ) ≤

√√√√1

4

T∑
t=1

∑
v

VarE [RE(pt)(v)]

pt(v)
O(

√
T )

Distribution-preserving (per draw) TV(P s, Qprf) = 0 0

We denote the distributions as follows: (a) Qgreedy, which places unit mass on the deterministic
greedy sequence y⋆; (b) Qbiasδ , the tilted distribution with bias δ over a keyed green set Gt, where
gt = pt(Gt) =

∑
v∈Gt

pt(v) is its baseline probability mass; (c) Qbf
E , obtained from an unbi-

ased reweighting operator RE with EE [RE(pt)] = pt, noting that for a fixed key E one still has
RE(pt) ̸= pt; and (d) Qprf , which preserves qt ≡ pt while replacing randomness with PRF coins.
The proof is given in Appendix C.

Interpretation of Theorem 1

• Universal characterization: Detectability is determined by the sampling transformation alone,
independent of model architecture, allowing general analysis via total variation distance.

• Detectability hierarchy: Greedy sampling gives constant detectability; biased tilts grow as
O(|δ|

√
T ); bias-free reweightings scale as O(

√
T ) for a fixed key; and distribution-preserving

schemes yield zero single-shot detectability.

• Accumulation over length: Any nontrivial deviation from the baseline distribution, however
small, accumulates over longer texts.

2All the math notations used in this work are described in Appendix B.
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The analysis highlights a clear hierarchy: detectability diminishes as sampling rules employ more
sophisticated mechanisms, with PRF-based distribution-preserving schemes achieving provable
single-shot undetectability (statistical in the random-oracle model and computational with PRFs).
This result underpins the robustness–detectability trade-off explored next.

3.2 ROBUSTNESS ANALYSIS UNDER TEXT PERTURBATIONS

The fundamental tension in watermarking lies in balancing stealth, i.e., keeping the generated distri-
bution statistically close to the baseline so unauthorized parties cannot reliably distinguish it 3, with
robustness, i.e., enabling an authorized key holder to detect the watermark after edits or paraphras-
ing. We quantify stealth via per-sample KL-divergence drift, and robustness via the detection power
of a Neyman–Pearson (NP) test at miss probability β (power 1− β).
Definition 2 (Robustness). Fix a false-alarm level α ∈ (0, 1). A scheme achieves (ε, α, β)-
robustness on a length-T output if, whenever the edited text ỹ differs from the watermarked text
y in at most εT token positions (measured by edit distance ED), the key-holder’s level-α detector
recovers the watermark with miss probability at most β:

Pr
[
Detect(k, ỹ) = 1

∣∣ED(y, ỹ) ≤ εT
]
≥ 1− β. (2)

We construct a noise model, where the token at each position is either replaced by a uniformly
random element of the LLM vocabulary Σ with probability ε, or left unchanged. For the biased and
the bias-free watermarks, we define the induced per-token information at zero edits, D0 as:

• Biased: the sampler tilts toward a key-dependent subset G ⊆ Σ of baseline mass γ =∑
v∈G pt(v), producing qt,δ(v) ∝ pt(v) e

δ1[v∈G] with D(biased)
0 ≈ δ2 γ(1−γ)

2 ln 2 .

• Bias-free: the sampler reweights by RE(v) with EE [RE(v)] = 1, so qt,E(v) =
pt(v)RE(v). Therefore we can express σ2(v) = VarE [RE(v)] and σ̂2 =

∑
v pt(v)σ

2(v)

leading to D(bias-free)
0 ≈ σ̂2

2 ln 2 .

These D0 values are the noise-free per-token information budget available to the optimal NP test.
The total information budget across T tokens is TI(T ) := T ·D0, the natural analogue of blocklength
times per-use information in digital communication. Under edits at rate ε, the difference between
the watermarked and baseline token distributions at each position is linearly attenuated by 1 − ε.
This is because KL distance is locally quadratic in perturbations, leading to the effective per-token
information contracting by (1− ε)2, so Dε ≈ (1− ε)2D0. The channel capacity is therefore:

C(ε) :=

T∑
t=1

D(qt,ε∥pt,ε) ≈ T (1− ε)2D0. (3)

Theorem 2 (Watermark Robustness–Detectability). We fix T and the substitution channel described
above. In the small-signal regime the noise-free per-token information is D(biased)

0 ≈ δ2γ(1 −
γ)/(2 ln 2) and D(bias-free)

0 ≈ σ̂2/(2 ln 2). Under edits at rate ε, the detector’s usable information is
C(ε) ≈ T (1 − ε)2D0. A sufficient condition for power 1 − β in the NP-test is T (1 − ε)2D0 ≥
log2(1/β), making the maximal tolerable edit rate: εβ(T,D0) = 1−

√
log2(1/β)/TD0 .

The proof (per-token KL expansions, (1− ε)2 contraction, chain rule in T ) appears in Appendix D.

Interpretation of Theorem 2
• No single “critical noise” point. There is no universal edit level where all methods fail. Each

watermark has a turning point (knee) determined by the number of tokens examined and the amount
of watermark signal placed per token. More tokens or a stronger signal increase the knee value.

• Total information budget. The watermark provides a fixed information budget spread across the
output. After editing, only a fraction remains, and beyond the knee, no detector can compensate
once the budget falls below what is needed for verification.

• Stealth versus robustness. If the watermark must stay hard to spot, especially to outsiders who
can collect many tokens, the per-token signal must be small. Stronger stealth, therefore, lowers the
knee and reduces tolerable editing.

3We use stealth to mean low detectability (i.e., small total variation between the baseline P s and Q under a
fixed prompt and length T ) for untrusted parties who do not possess the knowledge of secret key.
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3.3 IMPLICATIONS FOR WATERMARK DESIGN

Theorem 2 gives a simple rule of thumb for design: robustness improves by increasing redundancy
via number of tokens T and the per-token information budgetD0, and it degrades quadratically with
the edit rate through the factor (1 − ε)2. For a given power target β (in NP-test), the operating
boundary is a knee in ε determined solely by (T,D0, β).

Watermarking methods that allocate the same total information TD0 will therefore share the same
boundary (w.r.t. to the NP-test), even if they realize the information in different statistical features
across LLM outputs. Distribution-preserving (undetectable) schemes sit at the opposite end of this
spectrum: because their verification relies on stringent entropy conditions rather than accumulated
statistical drift, they are brittle to edits and offer only vanishing tolerance under adversarial perturba-
tions (shown in Appendix D). The following corollary consolidates the baseline impossibility region
implied by Theorem 2 and its strengthening when an explicit stealth constraint is imposed.
Corollary 1 (Impossibility Result). Fix length T , watermark strength D0 (bits/ token), and target
power 1− β. Define the knee

εβ(T,D0) = 1−

√
log2(1/β)

T ·D0
. (4)

For any ε > εβ(T,D0) one has T (1 − ε)2D0 < log2
1
β , so, beyond this boundary, reliable detec-

tion at the specified power is unattainable for any probability-modifying watermark with the given
(T,D0). In particular, seeking high robustness (e.g., ε ≳ 0.3) together with strong stealth (small τ
for nontrivial M ) is incompatible at fixed T .

The proof of the above corollary is provided in Appendix D.9. At a high level, the corollary formal-
izes the design dilemma: one cannot simultaneously have large edit tolerance, stringent stealth, and
guaranteed verification. Practical watermarking must therefore select an operating point along this
trade-off, or adopt hybrid schemes that adapt the information budget to the anticipated edit regime
while acknowledging the fundamental boundary imposed by εβ(T,D0). In the next section, we
propose the latter as a Pareto-optimal watermarking scheme in terms of detectability and robustness.

4 CONSTRUCTING OPTIMAL WATERMARKS UNDER OUTPUT EDITING

Building upon the robustness-detectability trade-off in Theorem 2, in this section, we develop a
principled construction that finds the optimal watermark parameters based on the edit rate of the
output channel. The key idea is that no single family is uniformly optimal across noise regimes.
Instead, the operating point should be chosen as a function of the edit rate ε̂, the text length T , and
the per-token information budget available to the detector. We refer to the three watermark families:
distribution-preserving (DP), bias-free (BF), and biased (B), as described in Section 2, as well as to
their detectability behavior (Section 3.1) and small-signal information expansions (Section 3.2).

4.1 A COMPOSITE LOSS FUNCTION

The design objective is to maintain a clear link between stealth and robustness while enabling a
clean optimization program. Let D0(θ) denote the per-token information (in bits) induced by wa-
termark parameters θ at zero edits. Under the substitution channel, Theorem 2 states that the usable
sequence-level signal at edit rate ε equals

C(ε; θ) = T (1− ε)2D0(θ), D0(θ) ≥ Dreq(ε, T, β) :=
log2(1/β)

T (1− ε)2
, (5)

which yields a sufficient condition for achieving miss probability at most β with a level-α Neyman–
Pearson detector. On the stealth side, Theorem 1 formalizes detectability in terms of total variation
for a single shot. We denote the resulting monotone penalty by TVpen(D0;M) for an outsider that
can pool M tokens, and we summarize the corresponding stealth cap as Dstealth(M, τ) for a target
TV budget τ . These ingredients motivate an information-aware loss that enforces robustness while
discouraging unnecessary statistical drift:

L(θ; ε̂,M, τ) = λr
[
log2(1/β)−T (1−ε̂)2D0(θ)

]
+
+ λq TVpen

(
D0(θ);M

)
+ λa Amp(θ). (6)

6
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The hinge in the first term compels the design to supply just enough information to meet the detection
requirement in equation 5, and no more. The second term translates the single-shot detectability
perspective of Theorem 1 into a conservative, sequence-level penalty that grows monotonically with
D0. The final term regularizes signal amplitude at the parameter level (e.g.,

√
σ̂2 for BF and |δ| for

B), thereby favoring parameterizations that realize the same information with smaller perturbations.

4.2 OPTIMAL WATERMARKING THROUGH LOSS MINIMIZATION

Minimizing equation 6 reveals a simple and interpretable structure. Because both the detectability
penalty and the amplitude penalty increase with D0, whereas the robustness hinge vanishes once
the inequality in equation 5 is met, any minimizer must operate at the smallest feasible per-token
information. This observation leads to the target level

D⋆ := min
{
Dstealth(M, τ), Dmax

BF +Dmax
B

}
subject to D⋆ ≥ Dreq(ε, T, β), (7)

where Dmax
BF and Dmax

B denote the small-signal budgets specified previously. If the inequality
in equation 7 cannot be satisfied, then the requested power 1 − β is unattainable at the given edit
rate under the available stealth and budget constraints.

For a feasible D⋆, the remaining decision concerns how to realize this information across the two
types of probability-modifying watermarks. Since the TV penalty depends only on D⋆ (and not
on how it is decomposed), the optimal split minimizes the amplitude term. The family-specific
mappings between information and parameters yield a closed-form allocation that prioritizes the
bias-free family up to its budget and uses the biased family only for any residual information.
Theorem 3 (Optimal hybrid watermarking). Fix T , ε, a detector level α, and a power target 1− β.
Consider a DP watermark with K marked positions and correction radius t, and the statistical
families BF and B with budgets Dmax

BF and Dmax
B defined earlier. For the loss in equation 6, an

optimal strategy W⋆(ε) is:

1. DP region (perfect stealth). If the verifier succeeds with probability at least 1 − β under
edits (equivalently, if X ∼ Binomial(K, 1 − ε) obeys Pr[X < K − t] ≤ β as stated
once in the prior section), then DP achieves the target power with TV = 0 and thus
minimizes equation 6.

2. Statistical region (information targeting). Otherwise, choose the target information D⋆

via equation 7. If D⋆ < Dreq(ε, T, β), then no watermark can meet the power target at
this edit rate.

3. Allocation and parameters. Among all decompositions D⋆ = DBF
0 +DB

0 that respect the
budgets, the amplitude-minimizing split and corresponding parameter read-off are

DBF⋆
0 = min{D⋆, Dmax

BF }, σ̂2⋆ = BF map applied to DBF⋆
0 , (8)

DB⋆
0 = D⋆ −DBF⋆

0 , δ⋆ = B map applied to DB⋆
0 , γ⋆ = 1

2 , (9)

where the “BF/B map applied to D0” refers to D(biased)
0 or D(bias-free)

0 (Section 3.2). In par-
ticular, if Dreq(ε, T, β) ≤ Dmax

BF , then the optimizer selects a pure BF design; otherwise,
BF is saturated and the remainder is realized with B.

The proof of the above theorem is provided in Appendix E.

Interpretation of Theorem 3

1. No universal optimum. There is no single watermarking scheme that is best in all situations.
When the distribution-preserving verifier succeeds, it should be used because it achieves perfect
stealth. Otherwise, a statistical scheme should be selected and tuned to the smallest signal level
that still guarantees the target detection power.

2. Preference for bias-free information. Among statistical options, the bias-free family is favored
first because it achieves the same detection capability with a smaller parameter change. Only when
this budget is exhausted should the biased family be used to supply any remaining information.

3. Limits of feasibility. If the information required for the desired reliability exceeds what is per-
mitted by stealth constraints and family budgets, then reliable detection cannot be achieved. This
identifies a true impossibility region rather than a shortcoming of the detector.
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Figure 2: Empirical validation showing: (a) dependence of total variation (TV) on sampling rule and
sequence length, (b) detection AUROC versus edit noise in generated text, and (c) trade-off between
attack resistance and detectability across low, moderate, and high noise regimes. The hybrid scheme
aligns with the Pareto optimal boundary in every regime.

In summary, the composite loss equation 6 combines the detectability perspective of Theorem 1 with
the robustness requirement of Theorem 2 into a single optimization framework. The hinge enforces
the minimal information level needed for the desired power, the TV penalty internalizes conser-
vative single-shot detectability into sequence-level design, and the amplitude regularizer privileges
parameter-efficient realizations of a fixed information budget. Next, we compare the detectability
vs. robustness of our hybrid watermark with other schemes through paraphrasing attacks on LLMs.

5 EXPERIMENTAL EVALUATION

This section empirically validates our information-theoretic framework using three families of wa-
termarking schemes, evaluating both detectability and robustness against paraphrasing attacks. All
the relevant code for replicating the experiments is available at https://anonymous.4open.
science/r/Catch-22-Pareto-Frontier-Watermark-in-LLMs-040B. The reposi-
tory will be made publicly available, ensuring replicability and full functionality, along with detailed
user manuals, once the paper is accepted.

Experimental Setup

Dataset and Models. For our non-watermarked baseline, we generate text using 500 prompts randomly sam-
pled from the LFQA dataset, which contains long-form questions from Reddit spanning six domains (July
to December 2021) Krishna et al. (2023). We conduct our analysis using open-source Llama-2 7B Touvron
et al. (2023) and Mistral 7B Jiang et al. (2023) models on a single NVIDIA H100 GPU, generating outputs
ranging from 100 to 1000 tokens.
Watermarking Schemes. We evaluate three categories of watermarking: biased sampling (KGW in Kirchen-
bauer et al. (2023) and Unigram in Zhao et al. (2023)), bias-free sampling (DiPMark in Wu et al. (2024) and
HCW in Hu et al. (2024)), and distribution-preserving sampling (CGZ scheme in Christ et al. (2024)). Ad-
ditionally, we test our optimal hybrid sampling scheme derived from Theorem 3, which dynamically adapts
to observed edit noise levels.
Paraphrasing Attacks. We employ two attack methods: the DIPPER paraphraser in Krishna et al. (2023)
with variable token edit rates, and the OPT-2.7B model Zhang et al. (2022) prompted with “Rewrite the
following paragraph:”, which produces an average edit rate of 15%.

Appendix F, Table 1 provides a comprehensive comparison of robustness versus detectability,
demonstrating that our hybrid scheme achieves Pareto optimality across different noise regimes.
While this tabular analysis offers a model-agnostic view of the detectability-robustness space, we
now present a detailed analysis focusing on Llama 7B outputs subjected to DIPPER paraphrasing at
varying edit levels.

5.1 TRADE-OFFS BETWEEN ATTACK RESISTANCE AND DETECTABILITY

Figure 2(a) demonstrates how total variation (TV) distance scales with output token length, confirm-
ing the predictions of Theorem 1. Greedy decoding exhibits O(1) TV scaling with sequence length

8

https://anonymous.4open.science/r/Catch-22-Pareto-Frontier-Watermark-in-LLMs-040B
https://anonymous.4open.science/r/Catch-22-Pareto-Frontier-Watermark-in-LLMs-040B


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

T , empirically approaching the upper bound of 1, reflecting the length-independent distributional
shift induced by deterministic selection. Biased sampling shows TV growing as |δ|

√
T , where δ

represents bias magnitude. Bias-free sampling displays similar
√
T growth but with a different

constant factor determined by variance modulation rather than mean shifts. Distribution-preserving
sampling maintains near-zero TV across all sequence lengths, remaining effectively undetectable.
These results validate and formalize previous empirical observations in Kirchenbauer et al. (2024)
regarding the improved detectability that comes with increased token length.

Figure 2(b) illustrates detection performance (AUROC) under varying paraphrasing intensities. The
curves exhibit a characteristic knee point corresponding to the threshold where the Neyman-Pearson
test maintains 99% detection power. The critical noise thresholds ε99 ≈ 0.15 for biased sam-
pling and 0.12 for bias-free sampling aligns with T (1 − ε)2D0 ≥ log2(1/β) in Theorem 2, with
β = 0.01 and initial information budget TD0 = 10 bits. Below this threshold, both schemes main-
tain high AUROC, though their degradation patterns differ: bias-free (variance-based) encoding
exhibits a sharp decline beyond the knee, while biased (mean-shift) encoding degrades more grad-
ually. Distribution-preserving sampling proves fragile to edits, as its decoding depends on intact
high-entropy substrings, rendering it undetectable even under minimal paraphrasing.

Figure 2(c) synthesizes the complete landscape by plotting AUROC against TV distance across
three noise regimes, each sampled at five edit rates: low noise (red, ε99 < 0.005), moderate noise
(blue, ε99 ≈ 0.15), and high noise (green, ε99 > 0.15). No single scheme achieves both unde-
tectability and attack resistance across all regimes. However, the optimal hybrid from Theorem 3
consistently traces the Pareto frontier, crucially outperforming the best existing scheme within each
regime. This adaptive approach emerges as the most reliable and stealthy watermarking solution
across all noise conditions. By adjusting watermark parameters based on observed edit rates, the
hybrid maintains superiority in the AUROC-TV plane, with operating points aligning precisely with
theoretical predictions and surpassing any fixed scheme across the entire spectrum of edit inten-
sities. Our framework, therefore, serves as a practical guide for constructing watermarks on the
Pareto-optimal frontier of the AUROC-TV plane, as discussed next.

6 DISCUSSION AND CONCLUSION

This work establishes an information-theoretic framework that fundamentally characterizes the
trade-off between detectability and edit tolerance in language model watermarks. Biased and bias-
free sampling schemes accumulate detectable statistical signals across tokens, enabling reliable re-
covery under text edits while remaining statistically identifiable. Conversely, distribution-preserving
techniques achieve provable undetectability but fail under minimal editing due to their reliance on
intact high-entropy patterns. In our analysis, we frame watermark detection as one-bit extraction
over a noisy channel, proving that redundancy enhances robustness at the cost of statistical visibil-
ity. In other words, this fundamental trade-off cannot be circumvented. Any scheme seeking both
properties must compromise on at least one of them. Building on these insights, we develop a hybrid
watermarking scheme operating at the Pareto-optimal boundary, consistently outperforming existing
approaches across all noise regimes.

This information-theoretic perspective transcends the adversarial cat-and-mouse game of water-
marking attacks by providing principled guidance for systematic designers. Rather than pursuing
simultaneous robustness and undetectability, designers can adaptively select schemes based on ap-
plication requirements: deploying undetectable watermarks in privacy-sensitive contexts and robust
watermarks in public applications, knowing a single type can’t cater to both.

Extensions and Implications. While our analysis focuses on inference-time watermarking, it pro-
vides insights for training-time watermarks embedded in model parameters (Appendix F). Since
model architecture has a minimal impact on inference-time performance, we believe training-time
schemes can potentially exhibit different trade-offs that are worthy of future investigation. Addi-
tionally, undetectable watermarking introduces security concerns: the surplus entropy concealing
one-bit signals can encode multi-bit payloads, creating covert channels within LLM outputs as pro-
posed in Gaure et al. (2024); Zamir (2024), and we also analyze it further in Appendix G.

All in all, our work identifies Pareto-optimal LLM watermarking solutions and establishes theoreti-
cal foundations for practical watermark designs, even when the conflicting goals of high robustness
and undetectability cannot be simultaneously achieved.
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IMPACT STATEMENT

Practical Deployment. Our work reveals that no watermarking scheme can simultaneously achieve
high robustness, strong undetectability, and reliable detection. For controlled environments (en-
terprise, academic), we recommend undetectable watermarks paired with access controls and key
rotation. For public deployments, use detectable watermarks with documented failure modes and
regular auditing. System operators should monitor real-world editing patterns and adjust watermark-
ing strategies based on our theoretical thresholds: use distribution-preserving methods for minimal
editing (ε < 0.05), variance-based encoding near the critical threshold (ε ≈ 0.15), and bias-based
methods under heavy editing (ε > 0.3).

Future Work. While our analysis focuses on inference-time watermarking, several directions merit
investigation. First, training-time watermarks (Gu et al. (2024)) that embed signals directly into
model weights could enable watermarking for open-source models where users control decoding.
Key challenges include resistance to fine-tuning attacks and minimizing distillation-induced quality
loss. Second, semantic watermarking operating in embedding space may offer orthogonal robustness
properties worth characterizing theoretically, such as in images and multimodal data. Finally, the
covert channel vulnerability in watermarks (Appendix G) requires further investigation, including
the development of detection methods for unauthorized payload embedding.

Limitations. While our framework establishes fundamental bounds for LLM watermarking, it as-
sumes independent token-level editing that sophisticated paraphrasing attacks may violate through
correlated changes. However, since the attack on LLMs is an active research area, such paraphrasing
attacks are crucial for vulnerability assessment of LLMs, which in turn enhances their security. Ad-
ditionally, although our hybrid scheme achieves Pareto optimality across noise regimes, it requires
accurate estimation of editing levels, which remains challenging in adversarial settings and can be
considered as a future direction of research. Nevertheless, our theoretical insights provide essential
guidance for practical deployments.

ETHICAL CONSIDERATIONS

We conduct all our experiments on open-source large language models with known vulnerabilities,
such as loss of watermarking robustness due to LLM output editing. This research is essential
from the perspective of LLM vulnerability assessment, given that these systems are increasingly
becoming part of our daily lives. We believe that our theoretical framework and results will assist
the research community in designing improved LLM watermarking schemes.

REPRODUCIBILITY

We are firm believers and remain committed to open-source research. The relevant code and
its corresponding instructions is available at https://anonymous.4open.science/r/
Catch-22-Pareto-Frontier-Watermark-in-LLMs-040B for replication of results.
This includes models, prompts, watermarking schemes, and paraphrasing attacks to support compar-
ative studies and encourage the community to adopt joint reporting of detectability and robustness
of new LLM watermarking schemes.
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Thibaud Gloaguen, Nikola Jovanović, Robin Staab, and Martin Vechev. Black-box detection of
language model watermarks. In International Conference on Learning Representations (ICLR),
2025. URL https://openreview.net/forum?id=E4LAVLXAHW.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of water-
marks for language models. In The Twelfth International Conference on Learning Representations
(ICLR), 2024. URL https://openreview.net/forum?id=9k0krNzvlV.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbi-
ased watermark for large language models. In Proceedings of the 12th International Conference
on Learning Representations (ICLR), 2024. URL https://openreview.net/forum?
id=uWVC5FVidc.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023. URL https:
//arxiv.org/abs/2301.10226.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of wa-
termarks for large language models. In Proceedings of the 12th International Conference on
Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=
DEJIDCmWOz.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing
evades detectors of ai-generated text, but retrieval is an effective defense. In Proceedings of
NeurIPS, 2023. URL https://arxiv.org/abs/2303.13408.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. Transactions on Machine Learning Research (TMLR), 2024.
URL https://openreview.net/forum?id=FpaCL1MO2C.

Aiwei Liu, Sheng Guan, Yiming Liu, Leyi Pan, Yifei Zhang, Liancheng Fang, Lijie Wen, Philip S
Yu, and Xuming Hu. Can watermarked llms be identified by users via crafted prompts? In The
Thirteenth International Conference on Learning Representations (ICLR), 2025. URL https:
//openreview.net/forum?id=ujpAYpFDEA.

Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. arXiv preprint
arXiv:1908.08345, 2019. URL https://arxiv.org/abs/1908.08345.

Ankur Moitra and Noah Golowich. Edit distance robust watermarks for language models. In
Proceedings of the 38th International Conference on Neural Information Processing Systems
(NeurIPS), pp. 20645–20693, 2024. URL https://arxiv.org/abs/2406.02633.

Mark S Pinsker. Information and information stability of random variables and processes. Holden-
Day, 1964.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. URL
https://cdn.openai.com/better-language-models/language_models_
are_unsupervised_multitask_learners.pdf.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023. URL
https://arxiv.org/abs/2303.11156.

11

https://arxiv.org/abs/2405.15652
https://arxiv.org/abs/2405.15652
https://openreview.net/forum?id=E4LAVLXAHW
https://openreview.net/forum?id=9k0krNzvlV
https://openreview.net/forum?id=uWVC5FVidc
https://openreview.net/forum?id=uWVC5FVidc
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2301.10226
https://arxiv.org/abs/2301.10226
https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=DEJIDCmWOz
https://arxiv.org/abs/2303.13408
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=ujpAYpFDEA
https://openreview.net/forum?id=ujpAYpFDEA
https://arxiv.org/abs/1908.08345
https://arxiv.org/abs/2406.02633
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2303.11156


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chris Stokel-Walker. Ai bot chatgpt writes smart essays-should professors worry? Nature, 2022.
URL https://www.nature.com/articles/d41586-022-04397-7.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. URL https:
//arxiv.org/abs/2307.09288.

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang Zhang, and Heng Huang. A resilient and
accessible distribution-preserving watermark for large language models. ICML, 2024. URL
https://openreview.net/pdf?id=c8qWiNiqRY.

Or Zamir. Excuse me, sir? your language model is leaking (information). arXiv preprint
arXiv:2401.10360, 2024. URL https://arxiv.org/abs/2401.10360.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer lan-
guage models. arXiv preprint arXiv:2205.01068, 2022. URL https://arxiv.org/pdf/
2205.01068.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Provable robust watermarking for ai-generated text.
arXiv preprint arXiv:2306.17439, 2023. URL https://arxiv.org/abs/2306.17439.

A EXTENDED REVIEW OF LLM WATERMARKING LITERATURE

We provide here a comprehensive technical analysis of existing watermarking schemes for large
language models, extending the overview presented in Section 2. This review organizes prior work
according to its fundamental design principles and analyzes its theoretical guarantees, practical lim-
itations, and empirical vulnerabilities.

A.1 PROBABILITY-MODIFYING WATERMARKS

Probability-modifying watermarks alter token selection probabilities during generation to embed
detectable signals. This broad category encompasses all schemes that deviate from the original
model’s distribution, whether through direct biasing or more subtle statistical modifications.

Biased Sampling Schemes The seminal work of Kirchenbauer et al. (2023) introduced soft water-
marking through dynamic vocabulary partitioning. Their scheme computes a cryptographic hash
function based on the preceding k − 1 tokens to partition the vocabulary at each generation step.
Specifically, for position t, the vocabulary V is divided into a green list Gt containing a fraction γ
of tokens and a red list Rt = V \Gt. The watermark manifests through logit modification:

ℓ̂t[v] = ℓt[v] + δ · 1[v ∈ Gt] (10)
where δ controls watermark strength. This induces an exponential tilt in the sampling distribution,
increasing the probability of green tokens by approximately a factor eδ . Note that in this work, we
use k − 1 = 1 preceding tokens when referring to the KGW scheme.

A significant advancement came from Zhao et al. (2023), who demonstrated that fixing the
green-red partition across all positions yields superior robustness properties. Their UNIGRAM-
WATERMARK scheme establishes tight bounds on output quality degradation through Rényi diver-
gence analysis and proves quantitative robustness guarantees, tolerating O(n) adversarial edits for
sequences of length n.

Shortcoming. Although robust against moderate edits, both KGW and UNIGRAM accumulate out-
sider evidence at rate O(|δ|

√
T ). Even modest biases create detectable frequency shifts that can be

flagged by chi-square tests or amplified by adversarial prompting. Thus, robustness is achieved only
at the cost of increased detectability.

Bias-Free Sampling Schemes While still modifying probabilities, bias-free approaches attempt to
preserve expected token distributions through sophisticated reweighting mechanisms. The frame-
work introduced by Hu et al. (2024) employs context-dependent reweighting functions satisfying:

EE [RE(pt)] = pt (11)
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where E is a watermark code derived from context and secret key. This ensures the expected distri-
bution over random keys matches the original model’s output, though individual samples are drawn
from modified distributions.

Similarly, Wu et al. (2024) achieves expectation preservation through vocabulary permutations,
while Kuditipudi et al. (2024) employs inverse transform sampling with controlled randomness.
All these schemes modify the sampling distribution qt ̸= pt at each step but maintain E[qt] = pt
through careful construction.

Shortcoming. Despite unbiasedness in expectation, these methods inevitably introduce higher-
order variance signatures that grow as O(

√
T ). Such distortions are detectable by second-moment

tests Gloaguen et al. (2025). To sustain resilience under edits, the injected watermark signal must
be amplified, which further undermines stealth. Hence, they cannot simultaneously ensure strong
robustness and low detectability.

A.2 DISTRIBUTION-PRESERVING WATERMARKS

The most recent class of watermarking schemes achieves provable undetectability by maintaining
exact output distributions while controlling only the source of randomness.

Cryptographic Undetectability The breakthrough work of Christ et al. (2024) demonstrated that
replacing true randomness with pseudorandom functions achieves perfect statistical indistinguisha-
bility. Their construction maintains qt ≡ pt for all positions while making generation deterministic
for key holders. Detection requires exact reproduction of PRF outputs, creating a cryptographic
verification mechanism rather than statistical hypothesis testing.

Extensions by Zamir (2024) show that arbitrary payloads can be embedded within this framework
by incorporating messages into PRF seeds, enabling covert communication channels with capacity
Θ(L) bits for text length L.

Shortcoming. While perfectly undetectable in theory (qt ≡ pt), these schemes collapse under even
light paraphrasing. Verification depends on intact PRF alignment, making edit resilience negligi-
ble. Attempts to strengthen robustness reintroduce detectable statistical drift, negating their unde-
tectability advantage.

A.3 DETECTION METHODS AND VULNERABILITIES

The arms race between watermarking and detection has produced increasingly sophisticated statis-
tical tests that expose subtle artifacts across all scheme categories.

Statistical Detection Methods For probability-modifying watermarks, Sadasivan et al. (2023)
demonstrates that simple frequency analysis suffices for detection. Their chi-squared test compares
observed versus expected token frequencies:

χ2 =
∑
v∈V

(f obs
v − f exp

v )2

f exp
v

(12)

where fv denotes the frequency of token v. This test achieves high power against biased watermarks
with modest sample sizes.

For expectation-preserving schemes, Gloaguen et al. (2025) develops second-moment tests that de-
tect variance anomalies. Their test statistic aggregates squared deviations from expected variance:

T =

n∑
t=1

(
∥p̂t∥22 − E[∥pt∥22]

)
(13)

This approach succeeds because reweighting necessarily introduces variance distortions even when
preserving expectations.

Adaptive Attacks Beyond passive detection, Liu et al. (2025) demonstrates active attacks using
adversarial prompting. By crafting prompts that amplify watermark biases, they force watermarked
models to produce highly distinguishable outputs. Their optimization finds prompts maximizing:

∆(x) = Ey∼p̂(·|x)[score(y)]− Ey∼p(·|x)[score(y)] (14)
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where score measures watermark strength. Such targeted attacks reduce required sample sizes by
orders of magnitude.

Note. These detection methods and attacks highlight a structural vulnerability: biased schemes
are easily exposed via frequency analysis, bias-free schemes via variance anomalies, and both via
adversarial prompting. Thus, neither family achieves low detectability in practice.

A.4 ALTERNATIVE APPROACHES TO WATERMARK ROBUSTNESS ANALYSIS

While our main analysis models text perturbations as a noisy channel, several alternative mathe-
matical frameworks have been developed in the watermarking literature to analyze robustness. We
review two prominent approaches here.

Direct Statistical Analysis of Detection Scores

Zhao et al. (2023) analyzed robustness by directly tracking how the watermark detection statistic
degrades under edit operations. Their approach does not invoke channel capacity or information-
theoretic arguments, but instead provides explicit bounds on the z-score used for detection.

For their UNIGRAM-WATERMARK scheme, they prove that if text y is watermarked and an ad-
versary produces modified text u with edit distance η = ED(y, u) < n, then the detection z-scores
satisfy:

zu ≥ zy −max

{
(1 + γ/2)η√

n
,
(1− γ/2)η√

n− η

}
(15)

where γ is the green list ratio parameter, the proof technique involves analyzing how each edit
operation affects the count of green tokens, using a Taylor expansion argument to bound the worst-
case degradation. This approach yields that the watermark can tolerate up to O(n) arbitrary edits
for text of length n when the watermark strength parameter δ is constant.

The key advantage of this direct approach is its simplicity and explicitness; it provides concrete for-
mulas for how detection degrades with edits. However, it is specific to their particular watermarking
scheme and does not readily generalize to other watermarking methods.

Shortcoming. Although offering concrete edit tolerance formulas, this method is tied to UNIGRAM
and does not generalize. Moreover, it provides no guarantees about detectability, limiting its appli-
cability for designing low-detectability watermarks.

Coding-Theoretic Constructions with Indexing

Moitra & Golowich (2024) took a fundamentally different approach by explicitly constructing wa-
termarks using error-correcting codes. Their key innovation is the concept of indexing pseudoran-
dom codes, which enables robustness to insertions and deletions in addition to substitutions. The
construction begins with a binary pseudorandom code (PRC) that is robust to substitutions, then cre-
ates an “indexing PRC” over a larger alphabet whose size is a multiple of the original code length.
Each symbol in this larger alphabet maps to an index position via a random function, with multiple
symbols mapping to each index to provide redundancy.

During encoding, they generate a binary codeword and output symbols whose indices correspond to
the positions of ones in that codeword. For decoding, received symbols are mapped back to indices
to reconstruct a binary string, which is then decoded using the original binary PRC. The redundancy
parameter is crucial for handling insertions and deletions—when an adversary makes edits, the set
of indices changes, but the redundancy ensures that with high probability, the Hamming distance
between the original and modified binary strings remains bounded.

Their analysis proves that this watermarking scheme achieves substring robustness, meaning that
any sufficiently high-entropy substring of watermarked text remains detectable even after a constant
fraction of edits. The scheme tolerates a fraction of edits that scales quadratically with the entropy
rate, though it requires the alphabet size to grow polynomially with the security parameter.

Shortcoming. The required exponential vocabulary growth (e.g., n23 for 10% edits, where n is the
block length) makes the method impractical for real-world LLMs, where vocabularies are capped at
∼30k–100k tokens.
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B NOTATION AND VARIABLES

NOTATION CONVENTIONS

• Vectors: VT denotes T -length token sequences from vocabulary V .

• Subscripts: t indexes token position (1 to T ).

• Superscripts: On Q indicate sampling method; asterisk (∗) denotes optimal values.

• Context: Conditionals like pt(·) depend on y<t and prompt x.

• Overloading note: M denotes outsider pooled tokens in §4.1; in Appendix G it denotes the
number of covert messages.

CORE VARIABLES AND DISTRIBUTIONS

Symbol Type/Dim Description Sections
L, T Scalar Text length (number of tokens) §3, §4
V , Σ Set Token vocabulary §3
x Vector Initial prompt §3
y = (y1, . . . , yT ) VT Generated token sequence §3
y<t Vt−1 Tokens before position t §3
ỹ VT Edited/noisy text §3
y⋆ VT Deterministic greedy path §3
pt(·), pθ(·|·) Function Baseline LLM conditional probabilities §3
qt(·) Function Watermarked conditional probabilities §3
P s Distribution Baseline sampling distribution over sequences §3
QW Distribution Sequence distribution for scheme W §3
Qgreedy Distribution Greedy sampling distribution §3
Qbiasδ Distribution Biased (tilted) sampling with parameter δ §3
Qbf

E Distribution Bias-free sampling with key/code E §3
Qprf Distribution PRF-based distribution-preserving sampling §3
Ut [0, 1] Uniform random variable used for sampling §3
U ∆(Σ) Uniform distribution on Σ App. D
Tε(P ) Operator Edit channel: (1− ε)P + εU App. D
pt,ε, qt,ε Function Edited conditionals: Tε(pt), Tε(qt) App. D

WATERMARKING PARAMETERS

Symbol Type/Dim Description Sections
δ, δ⋆ Scalar Bias strength (optimal value δ⋆) §3, §4
Gt ⊂ V Set Keyed green token set at step t §3
gt = pt(Gt) [0, 1] Baseline green mass at step t §3, App. C
γ, γ⋆ [0, 1] Typical/target green mass (often γ⋆ = 1

2
) §3, §4

k Key Secret cryptographic key §3
E, Et Code Keyed code or permutation for bias-free schemes §3
RE Function Reweighting operator with EE [RE(pt)] = pt §3
σ2(v), σ̂2 Scalar σ2(v) = VarE [RE(pt)(v)], σ̂2 =

∑
v pt(v)σ

2(v) §3, App. D
Zt Scalar Normalizer for tilted sampling App. C
PRF Function Pseudorandom function for RNG replacement §3
W , W⋆(ε) Scheme Watermarking scheme and the optimal hybrid §4, App. E
K, t Scalars DP verifier: marked positions K and correction radius t §4, App. E
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INFORMATION THEORY AND ROBUSTNESS

Symbol Type/Dim Description Sections
D0, Dε Bits/token Per-token information at 0 edits and at rate ε §3, App. D
C(ε) Bits Total usable information ≈ T (1− ε)2D0 §3, App. D
εβ(T,D0) [0, 1] “Knee”: 1−

√
log2(1/β)/(TD0) App. D

TV(P,Q) [0, 1] Total variation distance §3, App. C
KL(Q∥P ) [0,∞) Kullback–Leibler divergence (base 2 in proofs) §3
H(·), H2(·) Function Entropy, binary entropy §3
I(·; ·) Bits Mutual information App. G
Detectability(s) [0, 1] Distinguishability for sampling rule s §3
ε, ε̂ [0, 1] Edit rate (true and estimated) §3, §4
α, β [0, 1] Detector level and miss probability (power = 1− β) §4, App. D
Dreq(ε, T, β) Bits/token log2(1/β)

/
T (1− ε)2 §4.1, App. D

M , τ Scalar, [0, 1] Outsider pooled tokens M and TV budget τ §4.1, App. D
Dstealth(M, τ) Bits/token Stealth cap 2τ2

M ln 2
§4.1, App. D

z, zthreshold Scalar Z-score statistic and threshold App. D
Ngreen Scalar Count of green tokens App. D
Φ(·), Φ−1(·) Function Standard normal CDF and its inverse §4

OPTIMIZATION AND OPERATORS

Symbol Type/Dim Description Sections
L(θ; ε̂,M, τ) Scalar Composite loss §4.1
θ Variable Scheme parameters §4
λr , λq , λa Scalars Weights for reliability, stealth penalty, amplitude §4.1
D⋆ Bits/token Target per-token information after constraints §4.2, App. E
Dmax

BF , Dmax
B Bits/token Available budgets for BF and B families §4.2, App. E

TVpen(D0;M) Scalar Monotone detectability penalty used in the loss §4.1
Amp(θ) Scalar Amplitude regularizer (e.g.,

√
σ̂2 or |δ|) §4.1

E[·], Var[·] Operator Expectation, variance §3
1[·] Function Indicator §3
argmax, sup Operator Maximizer, supremum §3
ln, log, log2 Function Natural log, log, base-2 log §3
O(·), o(·), Θ(·), ω(·), Ω(·) Notation Asymptotic notation §3
≈ Operator Approximately equal App. D
∞ Symbol Infinity App. E

ADDITIONAL SYMBOLS USED IN APPENDIX G

Symbol Type/Dim Description Sections
W RV Message index (uniform over {1, . . . ,M}) App. G
Qw, Q Distribution Distribution for message w and outsider mixture 1

M

∑
w Qw App. G

C⋆ Scalar Mixture divergence budget D(Q∥P ) ≤ C⋆ App. G
θ (Appendix) [0, 1] Activity probability c/

√
L in square-root law construction App. G

c, κ Scalar Constants in square-root law achievability App. G

C PROOF OF THEOREM 1

This appendix proves the bounds in Theorem 1 and provides a detailed explanation of each step.
The statement in the main paper is for computing the total variation distance from a single-shot or
a single generated text from LLM. Multi-shot black-box detection over multiple LLM queries, key-
averaged (n-shot) properties for bias-free watermarks, as well as the computational undetectability
guarantees for PRF-seeded schemes, are also described later in this proof.

We measure distributional separation with the total variation distance

TV(P,Q) =
1

2

∑
y

∣∣P (y)−Q(y)
∣∣, (16)
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and we use the Kullback–Leibler (KL) divergence

KL(Q∥P ) = Ey∼Q

[
log

Q(y)

P (y)

]
. (17)

Pinsker’s inequality connects these two quantities and will be invoked repeatedly:

TV(P,Q) ≤
√

1

2
KL(Q∥P ). (18)

For autoregressive distributions that factorize across positions, the KL chain rule expresses the se-
quence level divergence as a sum of conditional one-step divergences:

KL(Q∥P ) =
T∑

t=1

Ey<t∼Q

[
KL
(
qt(· | y<t) ∥ pt(· | y<t)

)]
. (19)

C.1 GREEDY SAMPLING

Let Qgreedy be the degenerate distribution that puts unit mass on the unique greedy path y⋆ =
(y⋆1 , . . . , y

⋆
T ), with y⋆t = argmaxv pt(v | y⋆<t). Since Qgreedy(y⋆) = 1 and Qgreedy(y) = 0 for all

y ̸= y⋆, the total variation distance expands as

TV(P s, Qgreedy) =
1

2

∑
y

∣∣P s(y)−Qgreedy(y)
∣∣ (20)

=
1

2

∣∣P s(y⋆)− 1
∣∣+ ∑

y ̸=y⋆

∣∣P s(y)− 0
∣∣ . (21)

The absolute value in the first term simplifies to 1 − P s(y⋆) because probabilities are at most one.
The sum over the remaining sequences simplifies to

∑
y ̸=y⋆ P s(y) = 1 − P s(y⋆) because the

probabilities must sum to one. Therefore

TV(P s, Qgreedy) = 1− P s(y⋆). (22)

C.2 BIASED SAMPLING (EXPONENTIAL TILT, SOFT GREEN LIST)

At position t, let Gt ⊆ V denote the keyed green set and define its baseline probability mass gt :=
pt(Gt) =

∑
v∈Gt

pt(v). The biased sampler applies an exponential tilt to tokens in Gt:

qt(v) =
pt(v) exp{δ 1[v ∈ Gt]}

Zt
, Zt =

∑
v

pt(v) exp{δ 1[v ∈ Gt]}. (23)

The normalizer follows from splitting the sum into green and non-green tokens. The mass of the
complement of Gt is 1− gt and the mass of Gt is gt, hence

Zt = (1− gt) + gte
δ = 1 + gt (e

δ − 1). (24)

The one-step KL divergence equals

KL(qt∥pt) =
∑
v

qt(v) log
qt(v)

pt(v)
(25)

=
∑
v

qt(v) (δ 1[v ∈ Gt]− logZt) (26)

= δ qt(Gt)− log
(
1 + gt(e

δ − 1)
)
. (27)

The second line uses the explicit tilted form of qt, which cancels the factor pt(v) and yields a term
that depends only on Zt. The last line replaces the indicator sum by the mass qt(Gt).
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A small parameter expansion provides an explicit constant. Using eδ = 1 + δ + δ2

2 + O(δ3) and
log(1 + x) = x− x2

2 +O(x3), the logarithm of the normalizer expands as

logZt = log
(
1 + gt

(
δ + δ2

2 +O(δ3)
))

(28)

= gtδ +
gt(1− gt)

2
δ2 +O(δ3). (29)

In the previous step, since gt is a fixed probability mass, it is absorbed in the last term O(δ3). The
mass of the green set under qt is a ratio of two series. Using the series for eδ and the identity
(1 + u)−1 = 1− u+O(u2) with u = gt(δ +

δ2

2 ) +O(δ3) gives

qt(Gt) =
gte

δ

1 + gt(eδ − 1)
= gt + gt(1− gt)δ +O(δ2). (30)

Substituting both expansions into the one-step KL cancels the linear terms and leaves the quadratic
coefficient

KL(qt∥pt) =
gt(1− gt)

2
δ2 +O(δ3). (31)

At the sequence level, the chain rule equation 19 expresses the KL divergence as a sum of the
conditional one-step terms under the biased process. Keeping the leading order in δ yields

KL
(
Qbiasδ ∥ P s

)
=
δ2

2

T∑
t=1

Ey<t∼Qbiasδ

[
gt(1− gt)

]
+O(T |δ|3). (32)

Finally, Pinsker’s inequality converts this to a total variation bound,

TV(P s, Qbiasδ) ≤ |δ|

√√√√1

4

T∑
t=1

E[gt(1− gt)] +O
(√
T |δ|3/2

)
, (33)

which exhibits the O(|δ|
√
T ) scaling with an explicit leading constant.

C.3 BIAS-FREE SAMPLING (UNBIASED REWEIGHTING)

In the bias free setting a keyed operator RE : ∆(V) → ∆(V) reweights the baseline, and unbiased-
ness requires EE [RE(pt)] = pt for every step. For a fixed key E one can write

RE(pt)(v) = pt(v) + ϵ
(E)
t (v),

∑
v

ϵ
(E)
t (v) = 0, (34)

where the sum constraint enforces normalization. The one-step KL divergence admits a Taylor
expansion around pt:

KL(RE(pt) ∥ pt) =
∑
v

(
pt(v) + ϵ

(E)
t (v)

)
log

(
1 +

ϵ
(E)
t (v)

pt(v)

)
(35)

=
∑
v

[
ϵ
(E)
t (v) +

1

2

(
ϵ
(E)
t (v)

)2
pt(v)

+O

(
|ϵ(E)
t (v)|3

pt(v)2

)]
. (36)

The second line follows from log(1+u) = u− u2

2 +O(u3) with u = ϵ
(E)
t (v)/pt(v), distributing the

factor pt(v) + ϵ
(E)
t (v) and combining like terms. The linear term sums to zero if one averages over

keys because EE [ϵ
(E)
t (v)] = 0 by unbiasedness. Therefore, taking the expectation over E yields

EE [KL(RE(pt) ∥ pt)] =
∑
v

VarE [RE(pt)(v)]

2 pt(v)
+ o(∥ϵ∥2). (37)
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Summing across positions with the chain rule equation 19 and applying Pinsker’s inequality leads
to the single-shot bound for a fixed key

KL
(
Qbf

E ∥ P s
)
=

T∑
t=1

KL(RE(pt) ∥ pt) , (38)

TV
(
P s, Qbf

E

)
≤

√√√√1

4

T∑
t=1

∑
v

VarE [RE(pt)(v)]

pt(v)
, (39)

which shows the O(
√
T ) scaling and makes explicit the variance controlled constant. This is the

detector’s view with a fixed key. For completeness, we record a separate mixture view. If the
implementation guarantees fresh, independent codes across positions and queries by maintaining a
context code history that forbids reuse, then the joint distribution averaged over keys coincides with
the baseline for any finite number of generations, which is often referred to as n shot undetectability.
That statement concerns a mixture of keys and is distinct from the fixed key detectability bound
developed above.

C.4 DISTRIBUTION PRESERVING SAMPLING (PER DRAW)

If a keyed pseudorandom source replaces randomness while the per-step probabilities remain un-
changed, that is qt ≡ pt for all histories, then the induced sequence distribution equals the baseline:

Qprf(y1:T ) =

T∏
t=1

qt(yt | y<t) =

T∏
t=1

pt(yt | y<t) = P s(y1:T ). (40)

Consequently

TV(P s, Qprf) =
1

2

∑
y

∣∣P s(y)−Qprf(y)
∣∣ = 0. (41)

This identity formalizes the intuitive fact that sampling from the same conditional laws produces the
same sequence distribution, independent of how the coins are generated, as long as they are fresh
and independent at each step.

D PROOF OF THEOREM 2

This appendix provides a complete derivation of Theorem 2. Throughout the appendix, all log-
arithms are base 2, so KL divergences and mutual informations are measured in bits. We write
D(P∥Q) for the Kullback–Leibler (KL) divergence between distributions P and Q.

We model watermark verification as a binary hypothesis test. The null hypothesis H0 corresponds
to unwatermarked text generated by the baseline sampler, whereas the alternative H1 corresponds to
text produced by a watermarked sampler. Formally,

H0 : unwatermarked text vs. H1 : watermarked text, (42)

where the observation is taken after a perturbation channel that edits tokens independently with rate
ε ∈ [0, 1].

We adopt a single perturbation model used consistently throughout. Let Σ denote the vocabulary.
At each token position t ∈ {1, . . . , L}, the edited token Ỹt is drawn as

Ỹt =

{
Yt, with probability 1− ε,

Ut, with probability ε,
Ut ∼ Uniform(Σ) and independent of everything else.

(43)
Equivalently, if P is a distribution on Σ, the edit channel acts as a convex combination

Tε(P ) = (1− ε)P + εU, with U uniform on Σ. (44)

Thus the pre-noise per-position conditionals pt(·) (baseline) and qt(·) (watermarked) are mapped to
pt,ε = Tε(pt) and qt,ε = Tε(qt).
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The detection problem is posed at a fixed false-alarm level α. We write β for the miss probability
(so power is 1− β). The central idea is that a sufficient condition for achieving a given β is that the
total KL divergence from H1 to H0 on the observed sequence exceeds log2(1/β). This is captured
by a Stein-type sufficient condition (Lemma 2). To use it, we (i) quantify the per-token information
contributed by the watermark at zero edits, (ii) show how this information contracts under the edit
channel, and (iii) aggregate across the sequence by the KL chain rule.

We analyze two small-signal watermark families. In the biased (green-list) family, the water-
marker tilts the baseline distribution towards a key-dependent subset G ⊆ Σ with baseline mass
γ =

∑
v∈G pt(v). Writing the tilt parameter as δ,

qt,δ(v) ∝ pt(v) e
δ 1[v∈G]. (45)

A Taylor expansion shows that the corresponding per-token KL is quadratic in δ. In the bias-free
(variance) family, the watermarker reweights by RE(v) with EE [RE(v)] = 1, i.e.,

qt,E(v) = pt(v)RE(v), (46)

and the per-token KL is quadratic in the reweighting variance. The following lemmas formalize
these statements and prepare the ground for the edit-channel analysis.

D.1 PRELIMINARIES: KL EXPANSIONS AND A RELIABILITY BOUND

The first lemma is a standard second-order expansion of KL divergence around a reference distribu-
tion, with an explicit remainder bound. It formalizes that, locally, KL equals a quadratic form (the
Fisher information metric) up to third-order terms.
Lemma 1 (Second-order KL expansion around p). Let p be a distribution on a finite set and q = p+r
for some perturbation r with

∑
v r(v) = 0 and ∥r∥∞ ≤ η < minv p(v). Then

D(q∥p) =
1

2 ln 2

∑
v

r(v)2

p(v)
+ R, with |R| ≤ C

ln 2
∥r∥∞

∑
v

r(v)2

p(v)
(47)

for an absolute constant C. In particular, when ∥r∥∞ → 0,

D(q∥p) = (1 + o(1))
1

2 ln 2

∑
v

r(v)2

p(v)
. (48)

Proof. Write

D(q∥p) =
∑
v

(p(v) + r(v)) log

(
1 +

r(v)

p(v)

)
. (49)

Set xv : = r(v)/p(v). By Taylor’s theorem with remainder for log(1 + x),

log(1 + x) = x− x2

2
+

x3

3(1 + θx)3
(50)

for some θ = θ(x) ∈ (0, 1) when |x| < 1. Using this with x = xv and noting
∑

v r(v) = 0,

D(q∥p) =
∑
v

(p(v) + r(v))

(
xv −

x2v
2

+
x3v

3(1 + θvxv)3

)
(51)

=
∑
v

(
p(v)xv −

p(v)x2v
2

)
+
∑
v

r(v)xv +
∑
v

(p(v) + r(v))
x3v

3(1 + θvxv)3
. (52)

The first sum simplifies to − 1
2

∑
v r(v)

2/p(v). The second sum equals
∑

v r(v)
2/p(v). Combining

these two gives
1

2

∑
v

r(v)2

p(v)
. (53)

For the remainder, since |xv| ≤ ∥r∥∞/pmin =: τ < 1, we have
∣∣(1 + θvxv)

−3
∣∣ ≤ (1 − τ)−3 and

|p(v) + r(v)| ≤ p(v) + ∥r∥∞. Therefore∣∣∣∣∣∑
v

(p(v) + r(v))
x3v

3(1 + θvxv)3

∣∣∣∣∣ ≤ 1

3(1− τ)3

∑
v

(
p(v) + ∥r∥∞

) |r(v)|3
p(v)3

. (54)
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Applying the crude bound |r(v)| ≤ ∥r∥∞ and p(v) ≥ pmin yields

|R| ≤ C ′

ln 2
∥r∥∞

∑
v

r(v)2

p(v)
(55)

for a constant C ′ depending only on pmin and τ ; absorbing constants gives the stated bound with C.
Dividing by ln 2 converts from nats to bits. The o(1) claim follows as ∥r∥∞ → 0.

The second lemma provides the reliability criterion we will use to translate available information
into detection power. It asserts that, for independent per-token contributions, having total KL at least
log2(1/β) is sufficient to drive the miss probability below β at fixed false-alarm level α. We present
a standard achievability proof based on the Neyman–Pearson (NP) test, an exponential Markov
bound to control the level, and a Cramér–Chernoff bound (in base 2) under the alternative to control
the miss probability.
Lemma 2 (Stein’s sufficient condition (bits form)). Consider a simple binary hypothesis test be-
tween product distributions on sequences of length L, or more generally conditionals whose log-
likelihood ratio is a sum of independent terms with finite moment generating function in a neighbor-
hood of the origin. For any level α ∈ (0, 1) and any β ∈ (0, 1), there exists L0(α, β) such that for
all L ≥ L0 the NP test with threshold chosen to achieve level at most α has miss probability at most
β whenever

L∑
t=1

D
(
P

(1)
t ∥P (0)

t

)
≥ log2

1

β
+ o(L). (56)

In particular, ignoring the lower-order o(L) term yields the clean sufficient rule∑L
t=1D(P

(1)
t ∥P (0)

t ) ≥ log2(1/β).

Proof. Let Zt = log2
(P (1)

t (Yt)

P
(0)
t (Yt)

)
and SL =

∑L
t=1 Zt be the base-2 log-likelihood ratio (LLR) of the

sequence. The NP test rejects H0 when SL ≥ τL for a threshold τL. Under H0, for any s > 0,

P0(SL ≥ τL) = P0

(
2sSL ≥ 2sτL

)
≤ 2−sτL E0[2

sSL ] (Markov) (57)

= 2−sτL

L∏
t=1

E0[2
sZt ] = 2−sτL

L∏
t=1

∑
y

P
(0)
t (y)

(
P

(1)
t (y)

P
(0)
t (y)

)s
(58)

= 2−sτL

L∏
t=1

∑
y

P
(0)
t (y)1−sP

(1)
t (y)s. (59)

Taking s = 1 gives E0[2
SL ] = 1 and hence P0(SL ≥ τL) ≤ 2−τL . Choosing τL = log2(1/α)

ensures the level constraint P0(reject H0) ≤ α.

Under H1, for any s ∈ (0, 1),

P1(SL ≤ τL) = P1

(
2−sSL ≥ 2−sτL

)
≤ 2sτL E1[2

−sSL ] (Markov) (60)

= 2sτL
L∏

t=1

E1[2
−sZt ] = 2sτL

L∏
t=1

∑
y

P
(1)
t (y)

(
P

(0)
t (y)

P
(1)
t (y)

)s
(61)

= 2sτL
L∏

t=1

∑
y

P
(1)
t (y)1−sP

(0)
t (y)s. (62)

Define, in base 2, ψt(s) := − log2
∑

y P
(1)
t (y)1−sP

(0)
t (y)s and ΨL(s) =

∑L
t=1 ψt(s). Then

P1(SL ≤ τL) ≤ 2 sτL−ΨL(s). (63)

By smoothness at s = 0, ψt(0) = 0 and ψ′
t(0) = D(P

(1)
t ∥P (0)

t ); moreover ψ′′
t (0) is the variance

(in bits) of Zt under P (1)
t , which is finite by assumption. Hence, for s small,

ΨL(s) = s

L∑
t=1

D
(
P

(1)
t ∥P (0)

t

)
− 1

2 s
2VL + o(s2L), VL :=

L∑
t=1

Var
P

(1)
t

(Zt). (64)
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With τL = log2(1/α) and optimizing the quadratic exponent in s yields, for all large L,

P1(SL ≤ τL) ≤ 2−
(∑L

t=1 D(P
(1)
t ∥P (0)

t ) − log2(1/α) − o(L)
)
. (65)

Therefore, given any fixed α and any β, there exists L0(α, β) such that for all L ≥ L0, the miss
probability is at most β whenever

L∑
t=1

D
(
P

(1)
t ∥P (0)

t

)
≥ log2

1

β
+ o(L), (66)

which proves the claim. Dropping the lower-order term gives the clean sufficient rule used in the
main text.

Between Lemma 1 and Lemma 2, the picture is now clear: the watermark induces a small per-token
shift from pt to qt whose information content is, to second order, the quadratic form of Lemma 1.
Summing these local contributions across the sequence gives the total information available to the
detector, and Lemma 2 translates that total into a sufficient condition for the desired power. What
remains is to understand how the edit (noise) channel deforms the local shift, which is precisely the
content of the next lemma.

D.2 PER-TOKEN INFORMATION AT ε = 0

For the biased family, let I(v) = 1[v ∈ G] and Zt(δ) =
∑

v pt(v)e
δI(v) = (1− γ) + γeδ . Then

log
qt,δ(v)

pt(v)
= δ I(v)− logZt(δ). (67)

Taking expectation under qt,δ and expanding at δ = 0 yields (the first derivative vanishes and the
second derivative equals Varpt

(I) = γ(1− γ))

D
(
qt,δ∥pt

)
=

δ2

2 ln 2
γ(1− γ) + O(δ3), (68)

so in bits per token

D(biased)
0 ≈ δ2 γ(1− γ)

2 ln 2
. (69)

For the bias-free family, write RE(v) = 1+∆E(v) with EE [∆E(v)] = 0 and ∥∆E∥∞ small. Then

D
(
qt,E∥pt

)
=
∑
v

pt(v) (1 + ∆E(v)) log
(
1 + ∆E(v)

)
. (70)

Using log(1 + x) = x− x2

2 +O(x3) and averaging over E,

EE

[
D(qt,E∥pt)

]
=

1

2 ln 2

∑
v

pt(v)EE [∆E(v)
2] + O

(∑
v

pt(v)E[|∆E(v)|3]

)
. (71)

With σ2(v) = VarE [RE(v)] and σ̂2 =
∑

v pt(v)σ
2(v) this gives, in bits/token,

D(bias-free)
0 ≈ σ̂2

2 ln 2
. (72)

These two expressions are exactly the D0 quantities used in the theorem.

D.3 EDITS CONTRACT THE SIGNAL QUADRATICALLY

We now show that the edit channel scales the local perturbation by (1 − ε) and hence the local KL
by (1 − ε)2 to second order. This is the key structural fact that produces the quadratic decay with
the edit rate.
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Lemma 3 (Local (1 − ε)2 contraction). Fix p on Σ and write q = p + r with
∑

v r(v) = 0 and
∥r∥∞ small. Let pε = Tε(p) = (1− ε)p+ εU and qε = Tε(q) = (1− ε)q + εU . Then

D
(
qε∥pε

)
= (1− ε)2

1

2 ln 2

∑
v

r(v)2

pε(v)
+ o

(∑
v

r(v)2

p(v)

)
. (73)

In particular, when pε and p are boundedly comparable (which holds for every fixed ε > 0), we have

D
(
qε∥pε

)
= (1 + o(1)) (1− ε)2D(q∥p). (74)

Proof. Since qε − pε = (1− ε)r, apply Lemma 1 at the reference pε:

D(qε∥pε) =
1

2 ln 2

∑
v

(
(1− ε)r(v)

)2
pε(v)

+Rε (75)

= (1− ε)2 · 1

2 ln 2

∑
v

r(v)2

pε(v)
+Rε, (76)

withRε = o
(∑

v r(v)
2/p(v)

)
as ∥r∥∞ → 0. The comparability pε(v) ∈ [(1−ε)p(v), (1−ε)p(v)+

ε/|Σ|] yields the stated equivalence.

D.4 FROM PER-TOKEN INFORMATION TO SEQUENCE-LEVEL RELIABILITY

Let {pt}Lt=1 and {qt}Lt=1 denote the baseline and watermarked conditionals, respectively. Under the
edit channel we observe {pt,ε} and {qt,ε}. The KL chain rule aggregates local contributions along
the sequence and shows that conditioning can only reduce KL on average; thus the unconditional
sum of per-token KLs is a valid (and often tight) proxy for the total.

Lemma 4 (Additivity bound for total information). For the binary test H0 :
∏

t pt,ε versus H1 :∏
t qt,ε, the total KL satisfies

D

(
L∏

t=1

qt,ε

∥∥∥ L∏
t=1

pt,ε

)
=

L∑
t=1

EH1

[
D
(
qt,ε(· | Y<t)∥pt,ε(· | Y<t)

)]
(77)

≤
L∑

t=1

D(qt,ε∥pt,ε). (78)

If the embedder is memoryless and per-step statistics are homogeneous, the equality reduces to the
sum of identical per-token KLs.

Proof. The equality is the KL chain rule. The inequality is Jensen’s inequality: averaging over
histories (conditioning) cannot increase KL.

Combining Lemma 3 with Lemma 4 yields the total information available to the detector,

C(ε) :=

L∑
t=1

D(qt,ε∥pt,ε) ≈ L (1− ε)2D0, (79)

with D0 given by equation 69 or equation 72.

D.5 POWER CONDITION AND THE “KNEE” EDIT RATE

We now translate total information into a sufficient condition for the target power. Applying
Lemma 2 with total signal C(ε) gives

L (1− ε)2D0 ≥ log2
1

β
, (80)
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which guarantees miss probability at most β. Solving for ε produces the knee—the maximal edit
rate compatible with the target power:

εβ(L,D0) = 1−

√
log2(1/β)

LD0
. (81)

This completes the proof of Theorem 2 once the family-specific expressions forD0 from equation 69
and equation 72 are substituted.

D.6 IMPOSSIBILITY REGION AND QUALITATIVE BEHAVIOR

The impossibility region follows immediately: whenever the total information falls below the re-
quired threshold, no level-α detector can meet the target power.

Proposition 1 (Impossibility region). For fixed (L, β) and per-token information D0, if

L (1− ε)2D0 < log2
1

β
, (82)

then detection at power 1−β is impossible. Equivalently, no method can succeed for ε > εβ(L,D0).

Proof. This is the contrapositive of Lemma 2 applied to the total sequence divergence.

In the small-signal regime with independent contributions, the separation of likelihood-ratio scores
underH0 andH1 is governed by the same total KL and therefore by L(1−ε)2D0. Once this quantity
drops below the threshold log2(1/β), the score distributions are no longer reliably separable and
operating characteristics converge to chance.

D.7 ASSUMPTIONS, APPROXIMATIONS, AND SCOPE OF VALIDITY

The derivation operates in a small-signal regime. For the biased family this means |δ| ≪ 1; for the
bias-free family it means ∥∆E∥∞ ≪ 1 and pt(v) bounded away from zero. Lemma 1 quantifies the
approximation error and shows it is lower order relative to the quadratic term in the perturbation.
The (1 − ε)2 contraction in Lemma 3 is a local statement around the operating point and uses
the quadratic form that defines the local KL (equivalently, Fisher information). The aggregation
argument uses the KL chain rule; for memoryless embedding with homogeneous per-step statistics,
the total KL is exactly the sum of per-step KLs, whereas in general it is upper bounded by that
sum, which suffices for a sufficient power condition. Lastly, Lemma 2 is invoked as a sufficiency
result: for independent per-token contributions with regularity, the type-II error exponent matches
the KL (Chernoff–Stein achievability), and the base-2 normalization cleanly produces the threshold
log2(1/β) in bits.

D.8 WORKED NUMERIC EXAMPLES

For illustration, take L = 1000 and power targets 1− β ∈ {0.90, 0.95, 0.99}, so that

log2(1/β) ∈ {3.322, 4.322, 6.644}. (83)

If the total noise-free information is LD0 = 10 bits (e.g., D0 = 0.01 bits/token), the knees are

ε90 ≈ 0.424, ε95 ≈ 0.343, ε99 ≈ 0.185. (84)

For the biased family with γ = 0.25, achieving D0 = 0.01 requires approximately

δ ≈

√
2 ln 2D0

γ(1− γ)
≈ 0.27, (85)

while for the bias-free family one needs σ̂2 ≈ 2 ln 2D0 ≈ 0.0139.
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D.9 CONCLUSION OF THE PROOF

Combining (i) the small-signal per-token KL for the biased and bias-free families, (ii) the quadratic
attenuation (1 − ε)2 under the edit channel, (iii) the chain rule aggregation across L positions, and
(iv) Stein’s sufficient condition for miss probability β, yields the theorem’s sufficiency condition

L(1− ε)2D0 ≥ log2(1/β), (86)

and the corresponding knee

εβ(L,D0) = 1−

√
log2(1/β)

LD0
. (87)

The impossibility region and qualitative behavior beyond the knee discussed in the main text follow
directly.

PROOF OF COROLLARY 1

The corollary merges the baseline operating boundary with its stealth-aware tightening. For the
baseline part, Theorem 2 asserts that reliable detection at power 1 − β requires L(1 − ε)2D0 ≥
log2(1/β). Therefore, for any ε > εβ(L,D0) with εβ as defined above, the inequality is violated
and reliable detection is unattainable.

For the stealth-aware part, suppose an outsider may pool M tokens and we require that the water-
marked and baseline distributions remain within total variation τ on that pooled sample. Pinsker’s
inequality, together with the base conversion from nats to bits, implies the per-token information
constraint D0 ≤ (2/ ln 2) τ2/M . Substituting this into the baseline condition yields

L(1− ε)2
2τ2

M ln 2
≥ log2(1/β) =⇒ ε ≤ 1−

√
log2(1/β)

L
· M ln 2

2τ2
. (88)

Thus any edit rate exceeding the right-hand side is infeasible under the stated stealth constraint.

E PROOF OF THEOREM 3

All logarithms are base 2, so every divergence and information quantity is measured in bits. The
proof is organized into several stages, each of which builds toward the statement of the theorem.
We begin with the local information contributed per token by biased and bias-free watermarking
families. We then quantify the attenuation introduced by the substitution edit channel and extend
this to sequences using the KL chain rule. We next invoke the Chernoff–Stein lemma to obtain a
sufficiency condition for reliable detection. After this, we translate stealth requirements into infor-
mation caps using Pinsker’s inequality. Finally, we combine these pieces into the composite loss,
which determines the optimal operating point, and analyze how the allocation between families
should be made. The proof concludes by identifying conditions under which distribution-preserving
watermarking strictly dominates.

E.1 PER-TOKEN INFORMATION IN THE SMALL-SIGNAL REGIME

We begin with the biased (tilt) family. At a given position with baseline conditional distribution
pt over the vocabulary Σ, a key-selected subset G ⊆ Σ with baseline mass γ =

∑
v∈G pt(v) is

exponentially tilted with parameter δ ∈ R. This produces the conditional

qt,δ(v) =
pt(v) e

δ 1[v∈G]

Zt(δ)
, Zt(δ) = (1− γ) + γeδ. (89)

Expanding log2(qt,δ(v)/pt(v)) around δ = 0 and retaining the leading nonzero term gives

D
(
qt,δ ∥ pt

)
=
γ(1− γ)

2 ln 2
δ2 +O(δ3). (90)

Thus, the small-signal per-token information is

DB
0 ≈ γ(1− γ)

2 ln 2
δ2, (91)
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which is maximized at γ⋆ = 1
2 for fixed D0.

For the bias-free family, the watermarked conditional is a mean-one reweighting qt,E(v) =
pt(v)RE(v) with E[RE(v)] = 1. Writing RE(v) = 1 + ∆E(v) and expanding log(1 + ∆E(v))
shows that the quadratic variance term dominates, yielding

DBF
0 ≈ σ̂2

2 ln 2
, σ̂2 =

∑
v

pt(v)Var[RE(v)]. (92)

E.2 ATTENUATION UNDER EDITS

Each token passes through the substitution channel

Tε(P ) := (1− ε)P + εU, (93)

where U is uniform on Σ. If q = p + r with
∑

v r(v) = 0, then Tε(q) − Tε(p) = (1 − ε)r. Since
KL divergence is locally quadratic in r, the attenuation factor is squared, giving

D
(
Tε(q) ∥Tε(p)

)
= (1− ε)2D(q∥p) (1 + o(1)). (94)

Consequently, for either family the per-token information after edits is

Dε ≈ (1− ε)2D0. (95)

E.3 SEQUENCE-LEVEL INFORMATION ACCUMULATION

The KL chain rule extends the per-token information to sequences. Writing pt,ε = Tε(pt) and
qt,ε = Tε(qt), one obtains

D

(
T∏

t=1

qt,ε

∥∥∥∥∥
T∏

t=1

pt,ε

)
≤

T∑
t=1

D(qt,ε∥pt,ε). (96)

In the homogeneous small-signal regime each summand is approximately Dε, so the total usable
signal is

C(ε) ≈ T (1− ε)2D0. (97)

E.4 RELIABILITY REQUIREMENT VIA CHERNOFF–STEIN

A level-α Neyman–Pearson test achieves miss probability at most β if the sequence-level KL under
the alternative exceeds log2(1/β). Combining this condition with equation 97 gives

D0 ≥ Dreq(ε, T, β) :=
log2(1/β)

T (1− ε)2
. (98)

This inequality captures the robustness requirement: a minimum information budget per token is
needed to guarantee detection.

E.5 STEALTH CONSTRAINTS VIA PINSKER

Pinsker’s inequality in nats yields TV ≤
√
Dnat/2, and converting bits to nats gives Dnat =

M(ln 2)D0 for M pooled tokens. Thus,

TV ≤
√

ln 2
2 M D0. (99)

Imposing a budget TV ≤ τ leads to the stealth cap

D0 ≤ Dstealth(M, τ) :=
2τ2

M ln 2
. (100)
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E.6 MINIMIZATION OF THE COMPOSITE LOSS

The composite loss is

L(θ; ε,M, τ) = λr[log2(1/β)−T (1− ε)2D0(θ)]++λq TVpen(D0(θ);M)+λa Amp(θ). (101)

Because the hinge vanishes once D0 reaches the required threshold, while both detectability and
amplitude penalties increase with D0, the optimizer must select the smallest feasible D0. This gives

D⋆ = min{Dstealth(M, τ), Dmax
BF +Dmax

B }, D⋆ ≥ Dreq(ε, T, β). (102)

If this inequality cannot be satisfied, reliable detection is impossible at the given edit rate.

E.7 OPTIMAL ALLOCATION BETWEEN FAMILIES

With D⋆ fixed, the TV penalty depends only on its value, not on the split between families. Hence
the allocation minimizes the amplitude term. Since

σ̂2 = 2 ln 2DBF
0 , δ2 = 8 ln 2DB

0 (γ = 1
2 ), (103)

the amplitude penalty is

λa

(√
2 ln 2

√
DBF

0 +
√
8 ln 2

√
DB

0

)
. (104)

This is minimized by maximizing the allocation to BF, subject to its budget. Therefore,

DBF⋆
0 = min{D⋆, Dmax

BF }, DB⋆
0 = D⋆ −DBF⋆

0 . (105)

The corresponding parameter values are

σ̂2⋆ = 2 ln 2DBF⋆
0 , δ⋆ =

√
8 ln 2DB⋆

0 , γ⋆ = 1
2 . (106)

If Dreq(ε, T, β) ≤ Dmax
BF , the optimizer chooses pure BF; otherwise BF is saturated and the remain-

der is realized with B.

E.8 DOMINANCE OF DISTRIBUTION-PRESERVING WATERMARKING

Finally, we examine when distribution-preserving watermarking is preferable. Suppose K positions
are marked and the verifier corrects up to t errors. If X ∼ Binomial(K, 1 − ε) counts surviving
marks, then

Pr[X < K − t] ≤ exp

(
−2K

(
(1− ε)− t/K

)2)
. (107)

Thus DP achieves miss probability at most β whenever

(1− ε) ≥ t

K
+

√
ln(1/β)

2K
. (108)

Because DP leaves the token distribution unchanged, it yields zero detectability and, therefore,
strictly dominates any statistical scheme meeting the same robustness target. In this region, DP
is optimal; outside of it, the statistical allocation of equation 105 applies.

E.9 CONCLUSION

Combining the small-signal identities equation 91–equation 95, the sequence accumulation equa-
tion 97, the reliability requirement equation 98, the stealth cap equation 100, the composite loss
equation 101, the allocation rule equation 105, and the DP dominance condition equation 108 estab-
lishes the full structure of the hybrid watermarking strategy and completes the proof of Theorem 3.
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Table 1: Performance evaluation of Biased (KGW Kirchenbauer et al. (2023), Unigram Zhao et al.
(2023)), Bias-free (DiPMark Wu et al. (2024), HCW Hu et al. (2024)), and undetectable CGW Christ
et al. (2024) watermarking schemes on Llama-2-7B and Mistral-7B. For all cases, we evaluate ro-
bustness metrics (Reliable detection with key in presence of noise): AUROC, TPR at 1% FPR, and
F1 at 1% FPR. We also evaluate detectability metrics (detection without key using statistical tests)
via p-score and z-score.

Model Attack Method Robustness (with key) Detectability (no key)
AUROC TPR@1% F1@1% p-scorea z-scoreb

Llama-2-7B

Reference
(no paraphrasing)

KGW (Biased) 0.99 1.000 0.995 0.72 30.1
Unigram (Biased) 0.99 1.000 0.995 0.68 11.2
DiPMark (Bias-free) 0.99 1.000 0.995 0.31 43.2
HCW (Bias-free) 0.99 1.000 0.995 0.28 105.1
CGW (Dist-pres.) 0.99 1.000 0.995 — -5.8
Optimal Hybridc 0.99 1.000 0.995 — -7.8

DIPPER
(avg ϵ = 0.25)

KGW (Biased) 0.860 0.640 0.780 0.72 9.6
Unigram (Biased) 0.875 0.665 0.795 0.68 8.8
DiPMark (Bias-free) 0.895 0.800 0.865 0.31 3.9
HCW (Bias-free) 0.905 0.820 0.875 0.28 3.4
CGW (Dist-pres.) 0.500 0.150 0.230 — -10.2
Optimal Hybridc 0.910 0.835 0.885 — 5.7

OPT-2.7B
(avg ϵ = 0.15)

KGW (Biased) 0.780 0.590 0.720 0.72 8.4
Unigram (Biased) 0.790 0.615 0.740 0.68 7.9
DiPMark (Bias-free) 0.905 0.855 0.900 0.31 3.6
HCW (Bias-free) 0.920 0.880 0.915 0.28 3.1
CGW (Dist-pres.) 0.502 0.310 0.420 — -5.4
Optimal Hybridc 0.930 0.895 0.922 — 4.5

Mistral-7B

Reference
(no paraphrasing)

KGW (Biased) 0.99 1.000 0.995 0.69 27.8
Unigram (Biased) 0.99 1.000 0.995 0.66 10.5
DiPMark (Bias-free) 0.99 1.000 0.995 0.34 39.5
HCW (Bias-free) 0.99 1.000 0.995 0.26 98.7
CGW (Dist-pres.) 0.99 1.000 0.995 — -12.5
Optimal Hybridc 0.99 1.000 0.995 — -11.0

DIPPER
(avg ϵ = 0.25)

KGW (Biased) 0.845 0.615 0.765 0.71 9.0
Unigram (Biased) 0.860 0.640 0.780 0.67 8.2
DiPMark (Bias-free) 0.885 0.785 0.860 0.33 4.1
HCW (Bias-free) 0.895 0.805 0.872 0.29 3.5
CGW (Dist-pres.) 0.500 0.135 0.210 — -8.9
Optimal Hybridc 0.902 0.820 0.880 — 7.6

OPT-2.7B
(avg ϵ = 0.15)

KGW (Biased) 0.760 0.565 0.705 0.71 8.2
Unigram (Biased) 0.770 0.585 0.720 0.67 7.7
DiPMark (Bias-free) 0.890 0.840 0.890 0.32 3.8
HCW (Bias-free) 0.910 0.865 0.902 0.29 3.2
CGW (Dist-pres.) 0.501 0.285 0.400 — -9.7
Optimal Hybridc 0.922 0.875 0.910 — 8.8

a p-score detectability metric reported by Gloaguen et al. (2025), which is watermark specific,
hence left blank for CGW Christ et al. (2024) and proposed optimal hybrid watermarking scheme.

b z-score detectability metric reported by Liu et al. (2025), with negative score meaning less detectability.
c Proposed Pareto-optimal hybrid watermarking scheme by Theorem 3.

F ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSION

For each base model in Table 1 (Llama 2 7B and Mistral 7B), we evaluate three editing conditions
and then measure detection strength and third-party detectability for each watermarking scheme.
The two paraphrasing conditions apply DIPPER Krishna et al. (2023) with a token editing rate
of ϵ = 0.25 and OPT 2.7B, prompted with “Rewrite the following paragraph:” with an average
ϵ = 0.15, which induces higher and lower token changes, respectively. For every condition, we
report detection metrics with access to the key (area under the ROC curve, TPR at 1% FPR, and
F1 at 1% FPR) and detectability metrics without the key using p-score and z-score from black box
statistical tests Gloaguen et al. (2025); Liu et al. (2025).

We evaluate the following families and instances: Biased (KGW Kirchenbauer et al. (2023), Uni-
gram Zhao et al. (2023)), Bias free (DiPMark Wu et al. (2024), HCW Hu et al. (2024)), and distribu-
tion preserving CGW Christ et al. (2024), along with our Optimal Hybrid (Theorem 3). This setup
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places each watermarking scheme at a point on the plane that balances detection strength against
detectability, revealing how that point moves as edit intensity changes under using DIPPER and
OPT 2.7B paraphrasing attacks.

Across both models, the detection–detectability tradeoff primarily depends on the watermarking
family, rather than the underlying LLM. In the no-paraphrasing condition (reference), all methods
achieve near-perfect detection strength; however, detectability differs markedly: CGW sits near the
low detectability corner, KGW and Unigram are easily flagged statistically, and DiPMark and HCW
occupy the middle. Under DIPPER with average ϵ = 0.25, CGW loses most of its detection strength,
DiPMark and HCW maintain midrange values, and KGW and Unigram lie between these extremes;
OPT 2.7B paraphrasing with average ϵ = 0.15 causes a milder shift but preserves the same ordering.
A single fixed family does not satisfy both needs over the full range of edits. In contrast, the Optimal
Hybrid uses a simple estimate of edit intensity to select the active family, moving toward CGW when
edits are light to keep detectability low and shifting toward HCW or KGW/Unigram as edits increase
to keep high TPR at a fixed false positive rate. The empirical results align with our theory, and the
closely matched trends for Llama and Mistral indicate that placement on the accuracy–detectability
plane is driven by the watermarking type rather than the model type.

Extension to Training-Time Watermarks. While our analysis focuses on inference-time water-
marking where the sampling distribution is modified during text generation, recent work in Gu et al.
(2024) has explored embedding watermarks directly into model parameters during training. These
training-time approaches learn weights-based watermarking through distillation, enabling models to
naturally generate watermarked text under standard decoding algorithms without specialized sam-
pling procedures. Our information-theoretic framework provides insights into these methods: since
detectability depends solely on the sampling distribution rather than model architecture (Theorem 1),
training-time watermarks must fundamentally alter the model’s learned distribution pθ to approxi-
mate the watermarked distribution q. This introduces additional challenges: the watermark signal
becomes vulnerable to fine-tuning attacks that can remove the embedded patterns, and the distil-
lation process itself incurs a quality-detectability penalty beyond our theoretical bounds. Never-
theless, training-time watermarks offer practical advantages for open-source models where users
control the decoding process, suggesting that hybrid approaches combining training-time embed-
ding with inference-time enhancement may achieve better robustness-detectability trade-offs than
either method alone.

G WATERMARKING AS COVERT CHANNELS

Modern watermark detectors aggregate a small per-token statistical signal and then apply a Neyman-
Pearson test to distinguish watermarked text from baseline text. The same statistical signal can be
intentionally controlled to convey side information, thereby turning watermarking mechanisms into
covert channels. Let D0 denote the noise-free per-token information in bits per token contributed by
a given watermark family. When the text passes through a substitution edit channel with edit rate ε,
this quantity contracts quadratically:

Dε ≈ (1− ε)2D0. (109)
For a sequence of length L, the total detector signal available after edits is

C(ε) ≈ L(1− ε)2D0. (110)

In the biased green list family, where a subset of the vocabulary of baseline mass γ is exponentially
tilted by a factor δ, a second-order expansion gives

D0 ≈ δ2 γ(1− γ)

2 ln 2
. (111)

In the bias-free family, where unbiased reweighting with variance σ̂2 is applied, the corresponding
expression is

D0 ≈ σ̂2

2 ln 2
. (112)

A level α Neyman Pearson test achieves miss probability at most β whenever

L(1− ε)2D0 ≥ log2

( 1
β

)
. (113)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 2: Covert use of common watermark families (width safe TabularX)

Family How Alice encodes How Bob decodes

Greedy tie breaking Use a pre-shared set of
tie-breaking keys. Select km
to represent message m and
add a small term
ϵPRFkm(t, v) to logits when
two top scores fall within a
narrow band.

Given the prompt and model,
simulate greedy decisions
under each k ∈ K and choose
the key that reproduces the
observed tie outcomes.

Biased green list (tilt) Partition m into w bit chunks
and use each chunk to seed
the green list in its window.
Apply the exponential tilt
qt ∝ pt exp{δ 1[v ∈ Gt]}
with small δ.

Regenerate the candidate
green lists and evaluate the
matched filter score of green
token counts per window to
select the chunk.

Bias-free (variance) Use keyed permutations or
codes REt with
E[REt(v)] = 1 so that
E[qt] = pt while the variance
carries the information.

Apply the family-specific key
verified statistic and perform
maximum likelihood over the
2w codes in each window.

Distribution preserving (PRF-driven RNG) Replace Ut∼Uniform[0, 1]
by
Ut = PRFk,m(contextt, t)
and draw vt = F−1

pt (Ut),
leaving one step marginals
unchanged.

Resimulate the RNG stream
with k and candidate m̂ and
select the m̂ that reproduces
the observed sequence.

Table 3: Message size scaling on length L and edits at rate ε (width safe TabularX)

Family Message size on length L Outsider evidence driver

Greedy tie breaking log2 |K| once per document Large sequence drift relative to
the stochastic baseline.

Biased green list (tilt) Θ(
√
L) under a fixed outsider

mixture budget (Lemma 5)
D0 ≈ δ2γ(1− γ)/(2 ln 2) and
edited signal L(1− ε)2D0.

Bias free (variance) Θ(
√
L) under a fixed outsider

mixture budget (Lemma 5)
D0 ≈ σ̂2/(2 ln 2) and edited
signal L(1− ε)2D0.

Distribution preserving (PRF RNG) Θ(L) in a single pass; repeated
queries reveal determinism unless
the seed is ephemeral

One step marginals match the
baseline; a single pass outsider
sees no local drift, but identical
replays can expose determinism.

Solving for the maximum admissible edit rate that still guarantees power 1− β yields

εβ(L,D0) = 1 −

√
log2(1/β)

LD0
. (114)

This expression shows that there is no universal critical edit rate; instead, performance depends
jointly on L, D0, and β.

G.1 TURNING WATERMARK RULES INTO CHANNELS

Alice and Bob share a secret key k. During generation, Alice steers a standard probability-modifying
watermark family to encode a message, and Bob decodes it using the matched key and verified
statistics. An outsider observes only the text and is unaware of k. The constructions below are
representative and capture the essential scaling laws. The receiver always applies the detector that
is matched to the family and keyed to k.
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G.2 CAPACITY VERSUS DETECTABILITY: A SQUARE ROOT LAW

The following lemma (based on Theorem 2) formalizes the relationship between achievable message
size and outsider evidence. It captures the square root scaling for biased and bias-free families under
a realistic stealth requirement on the outsider mixture, and it clarifies the stronger constraint that
arises if one demands small drift for every message separately.
Lemma 5 (Capacity detectability law for watermark driven channels). Let a watermark family con-
tribute D0 bits of information per token. A covert transmitter chooses a message W ∈ {1, . . . ,M}
uniformly and uses a secret key so that the outsider observes the mixture Q = 1

M

∑M
w=1Qw. Then:

(a) Mixture budget. If the outsider mixture satisfies D(Q∥P ) ≤ C⋆ for a constant C⋆ independent
of L, then for biased and bias free families

logM = Θ(
√
L) (115)

in the noise-free case, and
logM = Θ

(
(1− ε)2

√
L
)

(116)
under the substitution edit channel at rate ε.

(b) Per message pooling. If one imposes the stronger constraint TV(Qw, P ) ≤ τ for every message
w, then Pinsker’s inequality gives D0 ≤ 2τ2/(L ln 2) and hence

logM = O(1). (117)

(c) Linear growth requires vanishing per token drift. Any scheme that achieves logM = ω(
√
L)

while keeping D(Q∥P ) ≤ C⋆ must satisfy D0 → 0 at the one-step margin, that is, it must be
distribution preserving.

G.3 PROOF OF LEMMA 5

We first recall the small signal identities that underlie all bounds. For the biased family,

D0 ≈ δ2 γ(1− γ)

2 ln 2
, (118)

and for the bias-free family,

D0 ≈ σ̂2

2 ln 2
. (119)

Under the substitution channel, the per-token information contracts as

Dε ≈ (1− ε)2D0 , (120)

so the total sequence level signal equals

C(ε) ≈ L(1− ε)2D0 . (121)

A level α Neyman Pearson test reaches miss probability at most β once

L(1− ε)2D0 ≥ log2

( 1
β

)
. (122)

Achievability under the mixture constraint. Consider a sparse activity design. Fix θL = c/
√
L with

c > 0. Using the secret key, mark each position active independently with probability θL; inactive
positions are sampled from the baseline. On active positions, apply a constant tilt δ = δ0 and select
the green list using successive message chunks. The outsider mixture at a given token is

(1− θL)pt + θLqt,δ0 , (123)

and a second-order expansion gives its KL to pt as

D((1− θL)pt + θLqt,δ0 ∥ pt) =
θ 2
L

2 ln 2

∑
v

(
qt,δ0(v)− pt(v)

)2
pt(v)

+ o(θ 2
L) (124)

≈ θ 2
L · δ

2
0 γt(1− γt)

2 ln 2
. (125)
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Summing over L tokens yields

D(Q∥P ) ≈ Lθ 2
L · δ

2
0 γ(1− γ)

2 ln 2
= O(1) , (126)

since Lθ 2
L = c2 and δ0 is constant. Thus the mixture divergence remains bounded uniformly in L.

Conditioned on the key there are T = θLL = c
√
L active positions. On each active position, the

matched statistic provides a constant positive information increment κ > 0. Standard concentration
for log likelihood ratios then gives reliable decoding, provided

logM ≤ 1

2
T κ − ω(1) = Θ(

√
L) . (127)

Under edits at rate ε, each active increment contracts by (1− ε)2, so the same argument yields

logM = Θ
(
(1− ε)2

√
L
)
. (128)

Converse under the mixture constraint. Let Qw denote the distribution induced by message w and
Q = 1

M

∑
wQw the outsider mixture. The mutual information satisfies

I(W ;Y1:L) =
1

M

M∑
w=1

D(Qw∥Q) . (129)

The log sum inequality together with the small signal expansion that controls D(Q∥P ) implies that
the average squared perturbation around P is of order 1/L, which limits the aggregate distinguisha-
bility across messages to order

√
L. A sphere packing bound for multi-hypothesis testing with total

information budget of order
√
L, therefore, yields

logM ≤ c1
√
L+O(1) , (130)

for a constant c1 determined by the family and the map from watermark strength to D0. The same
(1− ε)2 contraction applies under edits.

Per message pooling constraint. If for every w one requires TV(Qw, P ) ≤ τ , then Pinsker and unit
conversion imply

LD0 ≤ 2τ2

ln 2
, (131)

so D0 = O(1/L) and any two messages have only a constant order separation across the entire text.
Reliable decoding is then possible for at most a constant number of hypotheses, which proves the
stated order.

Distribution preserving case. If D0 = 0 at the one-step margin, for example, by replacing the
RNG with a pseudorandom stream, then one can place one bit of seed-controlled entropy per token
without changing one-step marginals. In a single-pass setting, this allows

logM = Θ(L) , (132)

although repeated queries with the same seed reveal determinism unless the seed is refreshed, mak-
ing this a pure covert channel rather than a forensic watermark.

G.4 RELIABILITY UNDER EDITS: KNEE AND AUROC

With total usable information
C(ε) ≈ L(1− ε)2D0 , (133)

the sufficiency condition for miss probability β is

L(1− ε)2D0 ≥ log2

( 1
β

)
, (134)

and the corresponding knee is

εβ(L,D0) = 1 −

√
log2(1/β)

LD0
. (135)

Beyond this point, the score distributions of the likelihood ratio test largely overlap, and the area
under the ROC curve approaches 0.5 with only finite sample fluctuations.
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