

000 001 002 003 004 005 006 007 008 009 010 011 TRI-FACTOR SALIENCY: A LOW-DIMENSIONAL REP- 012 RESENTATION FOR EFFICIENT AND DIVERSITY-AWARE 013 VIDEO TOKEN PRUNING 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037

Anonymous authors

Paper under double-blind review

038 ABSTRACT

039 The quadratic computational overhead of self-attention severely limits the application
040 of Large Vision-Language Models (LVLMs) to long-form video. While
041 training-free token pruning offers a promising avenue for acceleration, current
042 methods still struggle for balancing the token diversity and pruning efficiency.
043 Query-based approaches prune tokens irrelevant to a specific prompt, but conse-
044 quently sacrifice the intrinsic diversity of the video content. Conversely, meth-
045 ods that preserve diversity by clustering or matching based on the raw, high-
046 dimensional token features incur prohibitive computational costs, making them
047 impractical for long video inputs. In this work, we challenge the assumption
048 that preserving diversity necessitates expensive computations in the original high-
049 dimensional feature space. We hypothesize that a low-dimensional yet informative
050 representation engineered for pruning can achieve comparable results with a frac-
051 tion of the overhead. To validate this, we propose a framework that first projects
052 the original token features into a highly informative 3D "saliency-space." This
053 projection is achieved via our Tri-Factor Saliency (TFS) model, which computes
054 three largely orthogonal sub-features from a local spatio-temporal neighborhood:
055 (1) Dynamic Saliency, which captures the magnitude of movement; (2) Regional
056 Saliency, which identifies coherent objects that stand out from their background;
057 and (3) Focal Saliency, which pinpoints unpredictable, fine-grained details. This
058 low-dimensional representation enables subsequent entity-aware clustering and
059 diversity-preserving stratified sampling to be performed with minimal computa-
060 tional cost. Our experiments show that this approach allows for the pruning of
061 up to 75% of tokens while retaining 95% of the original model's performance on
062 video understanding benchmarks. Our work demonstrates that a well-designed,
063 low-dimensional perceptual projection can effectively replace expensive high-
064 dimensional feature matching for video token pruning, charting a new course that
065 achieves both high efficiency and strong diversity preservation.

066 1 INTRODUCTION

067 The remarkable advancements of Large Vision-Language Models (LVLMs) have opened new frontiers
068 in multimodal understanding. However, extending their capabilities from static images to the
069 dynamic and lengthy nature of video presents a significant computational challenge. The self-
070 attention mechanism exhibits a computational complexity that scales quadratically with the number
071 of input tokens. For video, where a single minute can correspond to tens of thousands of visual
072 tokens. Consequently, developing effective token reduction strategies is a critical prerequisite for
073 the practical deployment of LVLMs in real-world video applications.

074 Training-free, plug-and-play methods are highly desirable as they do not require costly retraining
075 or alter the weights of pretrained models. Current approaches in this domain, however, present a
076 difficult trade-off. One major line of work performs pruning based on the relevance of video tokens
077 to a specific text query. While effective for query-focused tasks, this approach inherently compro-
078 mises the preservation of the video's intrinsic content diversity, making the resulting token set less
079 suitable for general-purpose analysis or open-ended dialogue. Conversely, another line of work aims
080 to preserve diversity by matching or clustering tokens based on their raw, high-dimensional features.

054 These methods face a different challenge: the computational cost of operating in a high-dimensional
 055 space (e.g., $D=2048$ or more) becomes a significant bottleneck itself, often negating the potential
 056 speed-ups for long video inputs.

057 In this work, we question the prevailing assumption that preserving visual diversity necessitates
 058 expensive computations in the original high-dimensional feature space. We hypothesize that a
 059 compact, low-dimensional representation, specifically engineered to capture fundamental percep-
 060 tual cues, can guide an equally effective pruning strategy with only a fraction of the computational
 061 overhead. To test this hypothesis, we introduce a novel framework that first projects the original
 062 high-dimensional features into a compact and highly informative 3D "saliency-space."

063 This projection is achieved via our Tri-Factor Saliency (TFS) model, which computes three largely
 064 complementary sub-features from a local spatio-temporal neighborhood:

065 (1) **Dynamic Saliency:** Derived from the magnitude of local motion vectors, this factor isolates
 066 regions with dynamic activity.

067 (2) **Regional Saliency:** Calculated via center-surround feature contrast, this factor identifies coher-
 068 ent objects and areas that are salient relative to their broader context.

069 (3) **Focal Saliency:** Based on local feature reconstruction error, this factor pinpoints unpredictable,
 070 fine-grained details and complex patterns.

071 This compact 3D representation, augmented with spatio-temporal coordinates, enables highly effi-
 072 cient downstream processing. The TFS features guide a sophisticated pruning pipeline that includes
 073 adaptive video segmentation to handle varying scene dynamics, followed by location-aware cluster-
 074 ing on the low-dimensional space. Within each identified entity, a stratified sampling mechanism is
 075 then employed to explicitly preserve the diversity of the underlying saliency signals. Our primary
 076 contributions can be summarized as follows:

077 (1) We propose the Tri-Factor Saliency (TFS) model, a compact, low-dimensional, and interpretable
 078 representation of token importance, designed as an efficient proxy for high-dimensional features in
 079 the context of video pruning.

080 (2) We present a complete, zero-shot pruning framework that leverages the TFS representation to
 081 perform efficient, diversity-aware sampling through adaptive segmentation and stratified clustering.

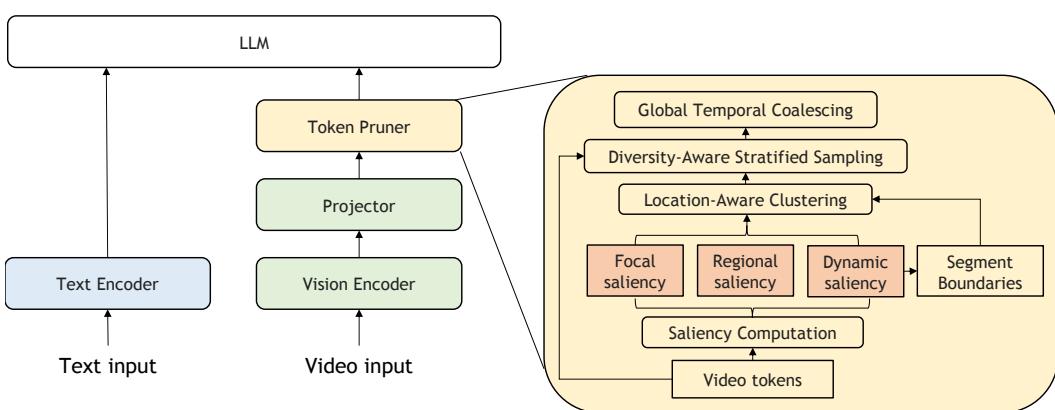
082 (3) Through extensive experiments, we demonstrate that our approach reduces computational over-
 083 head while maintaining high performance on challenging video understanding benchmarks, thereby
 084 validating our core hypothesis that a well-designed, low-dimensional projection is sufficient for in-
 085 telligent video token pruning.

091 2 RELATED WORKS

092 Our work is situated at the intersection of efficient vision-language models and, more specifically,
 093 training-free token reduction techniques for Vision Transformers.

094 2.1 EFFICIENT INFERENCE FOR VISION-LANGUAGE MODELS

095 The substantial computational requirements of Large Vision-Language Models (LVLMs) (Achiam
 096 et al., 2023; Bai et al., 2025; Wang et al., 2025; Li et al., 2024a), driven by the self-attention
 097 mechanism's quadratic complexity, have motivated extensive research into efficiency optimizations.
 098 Broadly, these efforts include model compression techniques such as quantization and weight prun-
 099 ing (Liang et al., 2021; Zhou et al., 2024b; Qu et al., 2025), as well as the design of efficient archi-
 100 tectures incorporating alternatives to full self-attention (Zhang et al., 2025; Sun et al., 2025). Our
 101 work complements these approaches by focusing on token reduction, a plug-and-play strategy that
 102 decreases the input sequence length for any standard Transformer architecture without requiring
 103 modifications to its weights or extensive retraining.

108
109
2.2 TRAINING-FREE TOKEN REDUCTION110
111 Training-free methods are particularly valuable as they can be applied to off-the-shelf pretrained
112 models. Current approaches in this domain can be primarily categorized by the information source
113 used to guide the reduction.114 One line of work is **Query-Aware Pruning** (Cao et al., 2023; Chen et al., 2024; Huang et al., 2024;
115 Chen et al., 2024; Xing et al., 2025; Lin et al., 2025; Arif et al., 2024), which utilizes the text query
116 to assess the importance of each visual token. Tokens with low relevance to the query are discarded.
117 While effective for specific, query-focused tasks, this strategy’s reliance on a given prompt makes
118 the resulting token set less suitable for general-purpose video representation, which is often required
119 for open-ended dialogue.120 To preserve the intrinsic diversity of the video, **Content-Aware Reduction** methods (Alvar et al.,
121 2025; Li et al., 2025) operate solely on the visual features. This paradigm includes both token
122 pruning and token merging, with the latter being notably represented by ToMe (Bolya et al., 2023),
123 which progressively combines the most feature-similar tokens. A key challenge for all content-
124 aware methods that aim to preserve diversity is the computational cost. To make informed decisions,
125 these approaches often rely on similarity comparisons or clustering within the raw, high-dimensional
126 feature space. This process itself can become a significant overhead for long videos, creating a
127 fundamental trade-off between the quality of the token selection and the efficiency of the reduction
128 algorithm. Therefore, developing a method that can guide a high-fidelity, diversity-aware pruning
129 process without incurring the high cost of global, high-dimensional feature analysis remains a key
130 challenge.131
132 3 METHODS133
134 Our proposed framework is a training-free module designed to intelligently prune video tokens
135 for efficient LVLM inference. The entire process is self-contained, operating solely on the feature
136 sequence provided by a pretrained vision encoder. As illustrated in Figure 1, the framework consists
137 of three main stages: (1) the computation of our proposed Tri-Factor Saliency (TFS) representation
138 for every token; and (3) a per-segment, diversity-aware pruning process that leverages clustering and a novel stratified
139 sampling mechanism.135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158 Figure 1: An overview of our proposed pruning framework. The system first computes a 3D saliency
159 representation for all tokens. This representation then guides a two-stage process of adaptive seg-
160 mentation followed by per-segment, diversity-aware clustering and sampling. After that, a global
161 temporal coalescing process is executed to remove tokens that temporally unchanged.

162 3.1 THE TRI-FACTOR SALIENCY (TFS) REPRESENTATION
163

164 We assume that the visual importance of a token, for the purpose of pruning, can be effectively
165 captured by projecting its high-dimensional feature into a compact, 3D representation. Our Tri-
166 Factor Saliency (TFS) model is composed of three complementary perceptual scores. Let $V =$
167 $\{v_i\}_{i=1}^N \in \mathbb{R}^{N \times D}$ be the input sequence of video tokens, where $N = T \times H \times W$ is the total
168 number of tokens and D is the feature dimension. Each token v_i has spatio-temporal coordinates
169 (t_i, h_i, w_i) .

170 3.1.1 DYNAMIC SALIENCY (S_M)
171

172 Dynamic Saliency aims to quantify the magnitude of motion. For each token v_i at time $t_i > 0$,
173 we first estimate its motion vector $\mathbf{mv}_i \in \mathbb{Z}^2$ by finding the spatial offset $(\Delta h, \Delta w)$ of the most
174 feature-similar token within a spatial neighborhood in the preceding frame $(t_i - 1)$. This feature-
175 based matching serves as a proxy for semantic-level optical flow. The final score for a token v_i is
176 the average magnitude of the motion vectors within its local spatio-temporal neighborhood $\mathcal{N}(i)$:

$$177 \quad S_M(i) = \frac{1}{|\mathcal{N}_{\text{real}}(i)|} \sum_{j \in \mathcal{N}(i)} \|\mathbf{mv}_j\|_2 \quad (1)$$

180 where $|\mathcal{N}_{\text{real}}(i)|$ is the count of valid neighbors. For $t_i = 0$, \mathbf{mv}_i is defined as $(0, 0)$. This ag-
181 gregation makes the score robust to spurious individual motion estimates and ensures it reflects the
182 saliency of a coherently moving region.

184 3.1.2 REGIONAL SALIENCY (S_R)
185

186 After accounting for motion, a key aspect of static importance is the presence of coherent regions
187 that stand out from the background. Regional Saliency identifies coherent regions that are salient
188 relative to their larger context. For each token v_i , we define a “center” neighborhood $\mathcal{N}_c(i)$ and a
189 larger, non-overlapping “surround” neighborhood $\mathcal{N}_s(i)$. The raw saliency is their cosine distance:

$$191 \quad S_{R,\text{raw}}(i) = 1 - \frac{\mu_c(i) \cdot \mu_s(i)}{\|\mu_c(i)\|_2 \|\mu_s(i)\|_2}, \quad (2)$$

193 where $\mu_c(i)$ and $\mu_s(i)$ are the mean feature vectors of the respective neighborhoods. To ensure ro-
194 bustness against statistical instability from few neighbors at frame boundaries, we apply a credibility
195 blending technique. We compute a confidence score $c_R(i)$ based on the number of valid surround
196 neighbors $|\mathcal{N}_{s,\text{real}}(i)|$:

$$197 \quad c_R(i) = \text{norm}(\log(1 + |\mathcal{N}_{s,\text{real}}(i)|)), \quad (3)$$

198 where $\text{norm}(\cdot)$ is a min-max normalization across all tokens. The final score is a blend of the raw
199 score and the global median of raw scores, $\tilde{S}_{R,\text{raw}}$:

$$201 \quad S_R(i) = c_R(i) \cdot S_{R,\text{raw}}(i) + (1 - c_R(i)) \cdot \tilde{S}_{R,\text{raw}}. \quad (4)$$

203 This smoothly transitions the score to a neutral default value in low-confidence regions.

204 3.1.3 FOCAL SALIENCY (S_F)
205

206 The third axis of importance relates to information content, as defined by predictability. S_F is
207 designed to identify tokens that are surprising or unpredictable given their immediate context, thus
208 representing high information content. For each token v_i , we compute its reconstruction \hat{v}_i from its
209 spatial neighbors $\mathcal{N}_{sp}(i)$ using a similarity-weighted average:

$$211 \quad \hat{v}_i = \sum_{j \in \mathcal{N}_s(i)} w_j v_j, \quad \text{where} \quad w_j = \frac{\exp(\cos(v_i, v_j))}{\sum_{k \in \mathcal{N}_s(i)} \exp(\cos(v_i, v_k))}. \quad (5)$$

214 The raw focal saliency $S_{F,\text{raw}}(i)$ is the cosine distance $1 - \cos(v_i, \hat{v}_i)$. We then apply the same
215 credibility blending technique as in Eq. 4, using the count of valid spatial neighbors $|\mathcal{N}_{s,\text{real}}(i)|$ to
compute the confidence, yielding the final robust score $S_F(i)$.

216 3.2 ADAPTIVE VIDEO SEGMENTATION
217218 Real-world videos often consist of multiple scenes with vastly different dynamic paces. Applying
219 a single, global pruning strategy is therefore suboptimal. To address this, we first segment the
220 video into dynamically consistent clips by identifying significant changes in its motion profile. This
221 process is guided by a 1D time-series signal, $P(t)$, which we term the “pace signal.”
222223 **Pace Signal Formulation.** For each frame t , we derive its pace signal $P(t)$ from the previously
224 computed motion saliency map $S_M[t, :, :] \in \mathbb{R}^{H \times W}$. A naive choice for $P(t)$ might be the mean of
225 the scores in the frame. However, the mean is highly sensitive to the proportion of static background
226 tokens; even a small, fast-moving object (a highly salient event) can be washed out when averaged
227 with thousands of near-zero scores from the background. Conversely, using the maximum value is
228 overly sensitive to singular noisy outliers.
229230 To achieve a statistically robust yet sensitive measure of the frame’s peak dynamic intensity, we
231 define the pace signal as the 95th percentile of the motion scores within that frame. This allows the
232 signal to be determined by the most active regions while inherently ignoring the vast majority of the
233 static background and the most extreme outliers. The pace signal is defined as:
234

235
$$P(t) = \text{quantile}(S_M[t, :, :], 0.95). \quad (6)$$

236 **Change-Point Detection.** With the pace signal established, we identify segment boundaries by
237 detecting significant change-points. A frame t is marked as a boundary if it satisfies either of two
238 conditions: (1) **Absolute Discontinuity:** Its pace value $P(t)$ exceeds a high, fixed threshold, T_{abs} ,
239 indicating a definitive break in temporal coherence. (2) **Relative Pace Change:** The rate of change
240 in pace is a statistical outlier. We compute the pace derivative $dP[t] = |P[t] - P[t - 1]|$ (with
241 $dP[0] = 0$) and define a relative threshold T_{rel} indicating significant relative changes.
242243 The final set of boundaries, B , is the union of the indices found by both rules, along with the start
244 and end of the video.
245

246
$$B = \text{sorted}(\text{unique}(\{0, T\} \cup \{t | P[t] > T_{abs}\} \cup \{t | dP[t] > T_{rel}\})). \quad (7)$$

247 3.3 DIVERSITY-AWARE PRUNING STRATEGY
248249 For each identified segment, we apply our clustering and pruning strategy, detailed in Algorithm 1.
250 The strategy is designed to preserve the diversity of important tokens by first identifying coherent
251 entities via clustering and then sampling within them proportionally.
252253 3.3.1 LOCATION-AWARE CLUSTERING FOR ENTITY IDENTIFICATION
254255 To identify coherent visual entities, we perform similarity-based clustering with our saliencies. A
256 clustering algorithm operating on saliency scores alone would be location-agnostic, unable to dis-
257tinguish two identical but spatially separate objects. To resolve this, we construct a 6D feature
258 vector for each token by concatenating its normalized TFS scores and spatio-temporal coordinates
259 (t, h, w) . This encourages the formation of clusters that are not only similar in their importance
260 profile but also spatio-temporally contiguous, aligning with the intuitive notion of a visual “entity.”
261262 3.3.2 STRATIFIED SAMPLING WITHIN CLUSTERS
263264 A simple Top-K sampling based on a fused score can lead to a loss of diversity. To prevent this,
265 we introduce a stratified sampling mechanism formalized in Algorithm 1. Within each cluster, we
266 execute the following steps: (1) We categorize the cluster’s member tokens into strata based on their
267 dominant TFS score (i.e., which of the three scores is highest for that token). (2) The cluster’s total
268 token budget is then proportionally allocated among these strata based on their relative sizes. (3)
269 Finally, a Top-K sampling is performed within each stratum based on the magnitude of its dominant
270 score. This ensures that all types of salient features that constitute an entity are proportionally
271 represented in the final pruned set.
272

270 **Algorithm 1** Per-Segment Diversity-Aware Pruning

271 1: **Input:** Segment tokens V_{seg} , Scores $S_{M,seg}, S_{R,seg}, S_{F,seg}$, Retain ratio r_{base} , Cluster count k
272 2: **Output:** Kept indices for the segment I_{kept}
273 3: $f \leftarrow \text{concat}(S_{M,seg}, S_{R,seg}, S_{F,seg}, \text{coords})$
274 4: $L \leftarrow \text{KMeans}(f, k)$ ▷ Get cluster label map
275 5: $B_{total} \leftarrow |V_{seg}| \cdot r_{base}$
276 6: $B_{per_cluster} \leftarrow \text{ProportionalAllocate}(|L|, B_{total})$
277 7: $I_{kept} \leftarrow \emptyset$
278 8: **for** $c \in \{0, \dots, k - 1\}$ **do**
279 9: $V_c \leftarrow \{v_i | L_i = c\}$ ▷ Tokens in current cluster
280 10: **Stratify by dominant score type**
281 11: $S_c \leftarrow \text{concat}(S_{M,seg,c}, S_{R,seg,c}, S_{F,seg,c})$
282 12: $D_c \leftarrow \text{argmax}(S_c, \text{dim} = 1)$ ▷ Categorize by dominant score
283 13: $Strata \leftarrow \{\text{motion, region, texture}\}$
284 14: **for** $j \in Strata$ **do**
285 15: $V_j \leftarrow \{v \in V_c | D_c[v] = j\}$ ▷ Tokens in current stratum
286 16: $B_{per_stratum} \leftarrow |V_j| / |V_c| \cdot B_{per_cluster}[c]$
287 17: $I_{kept_stratum} \leftarrow \text{TopK}(V_j, S_c, B_{per_stratum}[j])$
288 18: $I_{kept} \leftarrow I_{kept} \cup I_{kept_stratum}$
289 19: **return** I_{kept}

290
291 3.3.3 GLOBAL TEMPORAL COALESCING
292

293 After the per-segment spatial pruning is complete, a final global post-processing step, **Temporal**
294 **Coalescing**, is applied to remove the last layer of redundancy. This step targets tokens that were
295 kept by the spatial pruner but are perfectly static relative to the previous frame.

296 Our approach is direct and computationally efficient. We first identify the set of all tokens in
297 the video (for $t > 0$) whose motion vector magnitude is exactly zero, denoted as $V_{static} =$
298 $\{v_i | \|\mathbf{mv}_i\|_2 = 0, t_i > 0\}$. A token is considered temporally redundant if it was kept by the spatial
299 pruner but is also part of this static set. The set of tokens to be removed is therefore the intersection
300 $I_{prune} = I_{kept} \cap V_{static}$. The final set of kept tokens is the set difference $I_{final} = I_{kept} \setminus I_{prune}$.

301 This method, while simple, robustly preserves the first appearance of static objects. A static object
302 appearing at $t = 0$ is protected as we do not apply coalescing to the first frame. An object appearing
303 at a scene cut at frame $t > 0$ will exhibit a non-zero motion vector (due to a poor match in the
304 dissimilar previous frame $t - 1$) and will thus be preserved. Only the subsequent, truly redundant
305 instances of the static object (where $\mathbf{mv} = 0$) are targeted for removal. We acknowledge a potential
306 limitation of this approach: a token’s motion vector may be zero if its best match is at the same
307 spatial location, even if the features have changed. We posit that such cases are infrequent for
308 salient tokens and accept this as a reasonable trade-off for the efficiency and simplicity of this global
309 redundancy removal step.

310
311 4 EXPERIMENTS
312

313 In this section, we conduct a comprehensive set of experiments to rigorously evaluate our pro-
314 posed Tri-Factor Saliency (TFS) pruning framework. Our evaluation is designed to demonstrate our
315 method’s efficacy, efficiency, and generality across diverse models and benchmarks.

316
317 4.1 EXPERIMENTAL SETUP

318
319 **Models and Datasets.** To demonstrate the general applicability of our approach, we integrate our
320 TFS-Pruner into Qwen2.5-VL (Bai et al., 2025), InternVL-3.5 (Wang et al., 2025) and LLaVA-
321 OneVision (Li et al., 2024a). Our method is evaluated on five video understanding benchmarks:
322 VideoMME(Fu et al., 2024), LongVideoBench(Wu et al., 2024), MLVU(Zhou et al., 2024a),
323 MVBench(Li et al., 2024b), and TempCompass(Liu et al., 2024). We evaluate all models and bench-
324 marks via VLMEvalKit(Duan et al., 2024).

324
 325 Table 1: Comprehensive performance comparison across multiple LVLMs and benchmarks. Prefill
 326 times are averaged on LongVideoBench. The final column shows the average accuracy retained
 327 across all benchmarks relative to the Vanilla model.

Model	Method	Retain (%)	Prefill (s)	VideoMME	VideoMME-sub	LongVideoBench	MLVU	MVBench	TempCompass	Avg (%)
Qwen2.5-VL-7B	Vanilla	100%	2.11	62.0	65.0	59.8	64.3	66.0	74.4	100%
	FastV	50%	0.82	62.0	65.0	59.8	64.4	66.0	74.4	100%
	FastV	25%	0.50	60.4	64.1	59.8	63.7	65.8	74.1	99.2%
	Ours	50%	0.76	61.9	65.6	58.7	63.4	65.8	76.6	100%
	Ours	35%	0.68	61.6	65.1	58.6	63.1	66.2	76.8	99.9%
	Ours	25%	0.48	60.7	64.6	58.0	62.5	66.1	76.7	99.1%
	Ours	10%	0.28	60.0	62.8	57.4	59.6	64.6	76.5	97.1%
Qwen2.5-VL-32B	Vanilla	100%	8.01	65.3	70.4	60.1	66.5	65.1	77.7	100%
	FastV	50%	2.87	64.1	69.6	59.8	65.7	65.1	77.5	99.2%
	Ours	50%	2.83	64.0	69.0	59.5	65.0	65.0	77.3	98.7%
	Vanilla	100%	1.09	66.1	68.5	61.6	70.4	71.9	72.6	100%
InternVL3.5-8B	FastV	50%	0.32	64.5	66.3	59.5	68.6	68.7	70.6	96.9%
	FastV	25%	0.26	62.7	64.8	57.7	66.8	67.0	68.8	94.3%
	Ours	50%	0.29	64.5	67.0	61.0	69.5	65.9	71.5	97.2%
	Ours	35%	0.26	64.7	66.7	60.2	68.6	65.4	71.3	96.6%
	Ours	25%	0.25	63.6	65.9	60.0	68.0	65.2	71.2	95.9%
	Vanilla	100%	1.51	67.9	71.3	63.1	74.0	73.4	74.0	100%
InternVL3.5-14B	FastV	50%	0.77	65.6	68.9	61.5	72.1	69.5	72.4	96.8%
	FastV	25%	0.63	63.9	66.7	59.2	70.3	67.3	70.5	93.9%
	Ours	50%	0.73	66.3	69.8	61.3	73.8	65.3	73.8	96.9%
	Ours	35%	0.60	66.1	69.1	60.2	73.3	64.9	73.4	96.1%
	Ours	25%	0.59	65.0	68.6	60.2	72.8	64.8	72.8	95.4%
	Vanilla	100%	0.42	58.3	62.3	57.8	67.0	56.6	70.4	100%
LLaVA-OneVision	FastV	50%	0.34	58.1	62.1	57.6	66.8	56.1	69.1	99.3%
	FastV	35%	0.32	57.7	61.7	57.1	65.8	55.1	68.2	98.2%
	Ours	50%	0.31	58.0	61.8	57.2	66.2	55.0	67.5	98.3%
	Ours	35%	0.28	57.8	62.1	57.2	65.9	54.6	67.0	98.0%

349
 350 **Implementation Details.** All experiments are conducted on 4x NVIDIA H100 80GB GPUs.
 351 Our TFS-Pruner is implemented in PyTorch and Triton. To demonstrate robustness, the following
 352 key hyperparameters are kept fixed across all models and datasets. For saliency calculation,
 353 the neighborhood coordinates of token v_i with coordinates (t_i, h_i, w_i) are set to $\mathcal{N}(i) = \mathcal{N}_c(i) =$
 354 $(t_i \pm 1, h_i \pm 1, w_i \pm 1)$ and $\mathcal{N}_s(i) = (t_i \pm 1, h_i \pm 1, w_i \pm 1) \setminus \mathcal{N}_c(i)$. For adaptive segmentation,
 355 T_{abs} is 0.6, and T_{rel} is the 90th percentile of $dP[t]$. For clustering, we use a fixed number of clusters
 356 $k = 20$.
 357

358 4.2 MAIN RESULTS

359
 360 Table 1 presents a comprehensive comparison of our TFS-Pruner against the baselines across a
 361 diverse set of LVLMs and benchmarks. The collected data allows for an analysis of our method’s
 362 performance retention at various pruning ratios and its performance-efficiency trade-off relative to
 363 existing work.

364 The results indicate a high degree of performance preservation for our method. As shown in the
 365 final column of Table 1, which reports the average accuracy retained across all benchmarks, our
 366 TFS-Pruner at a 50% token retention ratio achieves over 97% of the vanilla models’ performance on
 367 most tested architectures. This level of fidelity is largely maintained at more aggressive ratios; for
 368 instance, Qwen2.5-VL-7B retains 97.1% of its performance when only 10% of the original tokens
 369 are kept.

370 When compared to the FastV(Chen et al., 2024) at similar retention ratios, our method shows com-
 371 petitive or improved results. On the InternVL3.5-14B model at 25% retention, our TFS-Pruner
 372 achieves a 95.4% average performance retention, in contrast to FastV’s 93.9%. On Qwen2.5-VL-7B
 373 at 25%, both methods yield comparable accuracy (98.1% for our method vs. 99.2% for FastV). The
 374 reported prefill times in the table confirm a clear trend of increased acceleration with lower reten-
 375 tion ratios, reaching up to a $7.5\times$ speed-up for Qwen2.5-VL-7B at the 10% level. These findings
 376 suggest that the proposed TFS representation can effectively guide the pruning process to create a
 377 sparse token set that preserves a high degree of the original model’s capabilities while significantly
 378 reducing computational requirements.

378 4.3 ANALYSIS OF COMPUTATIONAL OVERHEAD
379

380 We analyze the overhead of our TFS-Pruner and the resulting end-to-end prefill acceleration across
381 a wide spectrum of model sizes in Table 2. For smaller models, the pruner’s overhead, constitutes a
382 noticeable fraction of the original prefill time. However, the total processing time still represents a
383 clear improvement over the vanilla model. As we move to larger models like InternVL3.5-38B, the
384 vanilla prefill time becomes the dominant factor. Here, our pruner’s modest overhead is dwarfed by
385 the massive savings in the prefill stage, leading to a much higher end-to-end prefill speed-up of [e.g.,
386 $2.1 \times$] at 50% retention. This trend clearly demonstrates the excellent scalability and increasing
387 utility of our method for current and future large-scale vision-language models.
388

389 Table 2: Overhead and end-to-end prune & prefill speed-up across various model sizes. All timings
390 are averaged on LongVideoBench. Pruned results are shown for our TFS-Pruner at a 50% token
391 retention ratio.

Model	Vanilla Prefill (s)	Pruner Overhead (s)	Pruned Prefill (s)	E2E New Time (s)	Speed-up
LLaVA-OneVision (7B)	0.42	0.35	0.31	0.66	0.6 \times
Qwen2.5-VL (7B)	2.11	0.46	0.76	1.22	1.7 \times
Qwen2.5-VL (32B)	8.01	0.46	2.83	3.29	2.4 \times
Qwen2.5-VL (72B)	17.11	0.49	6.13	6.62	2.6 \times
InternVL3.5 (8B)	1.09	0.58	0.29	0.87	1.3 \times
InternVL3.5 (14B)	1.51	0.57	0.73	1.30	1.2 \times
InternVL3.5 (38B)	3.22	0.57	1.44	2.01	1.6 \times

400 4.4 COMPATIBILITY WITH FASTV
401

402 To investigate the compatibility of TFS-Pruner with FastV, we present a focused analysis on the
403 LongVideoBench benchmark in Table 3, comparing configurations at a similar final retention ratio
404 of approximately 25%.
405

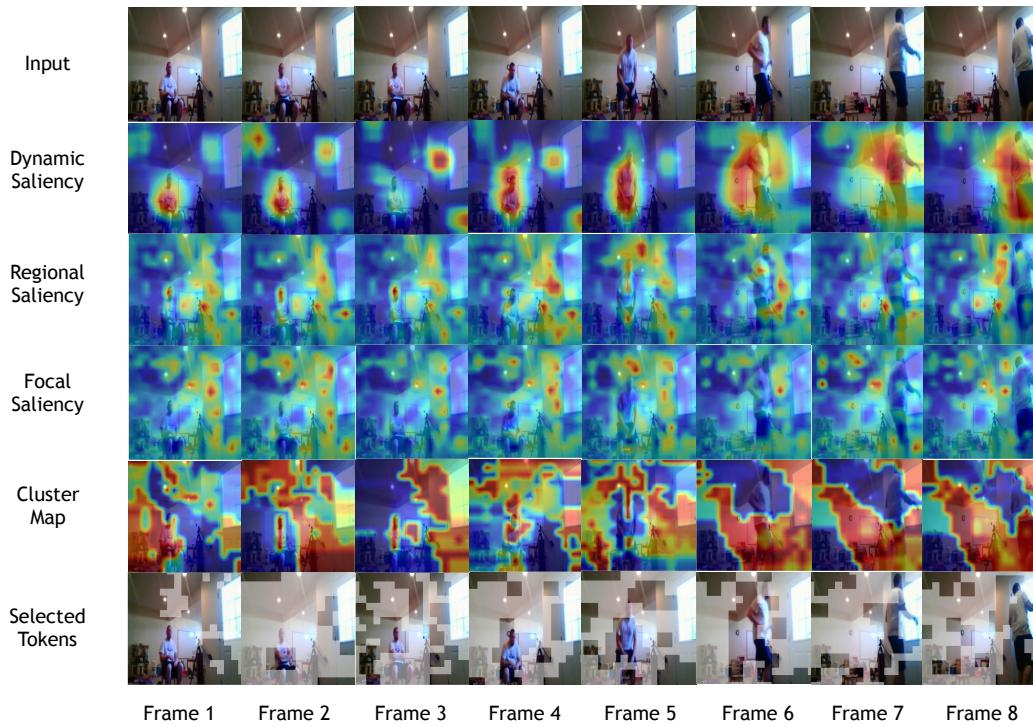
406 407 Table 3: Compatibility analysis with FastV on LongVideoBench.

Model	Method	Final Retain (%)	LongVideoBench Acc.
Qwen2.5-VL-7B	Vanilla	100%	59.8
	FastV (25%)	25%	57.7
	Ours (25%)	25%	58.0
	Ours (50%) + FastV (50%)	25%	58.9
InternVL3.5-14B	Vanilla	100%	63.1
	FastV (25%)	25%	59.2
	Ours (25%)	25%	60.2
	Ours (50%) + FastV (50%)	25%	59.4

419 For Qwen2.5-VL-7B, we observe a clear synergistic effect. The combined approach at a 25% final
420 retention ratio achieves a score of 58.9, outperforming both our standalone pruner (58.0) and the
421 projected score for FastV at the same ratio. This suggests that our perceptual-based pruning provides
422 a cleaner, more condensed input for FastV, allowing its own reduction mechanism to operate more
423 effectively on the most important tokens.
424

425 Conversely, for InternVL3.5-14B, we observe a slight interference effect. The combined approach
426 (59.4) underperforms our standalone TFS-Pruner at the same final ratio (60.2). We hypothesize this
427 may occur because our TFS pruning process, while preserving what is perceptually salient, might
428 inadvertently remove tokens that have higher important scores during prefill stage.
429

430 In summary, this analysis indicates that while our TFS-Pruner can be effectively combined with
431 orthogonal methods, the interaction is complex and may be model-dependent. This underscores the
432 strength of our TFS-Pruner as a powerful standalone method, and suggests that cascaded pruning
strategies are a promising but nuanced avenue for future research.

432 4.5 QUALITATIVE ANALYSIS
433434 To provide an intuitive understanding of our method’s decision-making process, we present a series
435 of qualitative results in Figure 2. The visualization showcases our framework’s ability to decompose
436 complex scenes into meaningful perceptual components and retain a diverse set of salient tokens.
437438 Dynamic Saliency captures the movement of the person and light changes. Regional Saliency tends
439 to modeling the edge of entities, while it is hard to capture the complex details inside entities (book-
440 case in the lower left corner), which could be addressed by Focal Saliency. As shown in the **Cluster**
441 **Map**, our location-aware clustering successfully segments the scene into semantically coherent en-
442 tities, assigning distinct labels to both dynamic and static entities.
443468 Figure 2: Qualitative results of our method on sample frames. From top to bottom: Input Frame,
469 Dynamic Saliency (S_M), Regional Saliency (S_R), Focal Saliency (S_F), Cluster Map (each color
470 represents a distinct entity), and the final Selected Tokens overlaid on the frame. Our method
471 correctly identifies and preserves a diverse set of tokens corresponding to the most salient static and
472 dynamic entities.
473
474
475476 5 CONCLUSION
477478 In this work, we addressed the prohibitive computational cost of applying LVLMs to video by
479 proposing a novel, training-free token pruning framework. Our approach is centered on the Tri-
480 Factor Saliency (TFS) model, which validates our core hypothesis that a compact, low-dimensional
481 representation—decomposed into dynamic, regional, and focal saliency—is sufficient for guiding
482 a sophisticated, diversity-aware pruning strategy. Our extensive experiments demonstrate that this
483 principled method can prune up to 75% of tokens while retaining a high degree of the original
484 model’s performance across multiple benchmarks and models. Future work could focus on unifying
485 our task-agnostic perceptual model with task-aware signals or model-specific architectural priors,
486 and extending the pruning framework to an information-preserving token merging paradigm.
487

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Saeed Ranjbar Alvar, Gursimran Singh, Mohammad Akbari, and Yong Zhang. Divprune: Diversity-
492 based visual token pruning for large multimodal models. 2025. URL <https://arxiv.org/abs/2503.02175>.

493

494 Kazi Hasan Ibn Arif, JinYi Yoon, Dimitrios S. Nikolopoulos, Hans Vandierendonck, Deepu John,
495 and Bo Ji. Hired: Attention-guided token dropping for efficient inference of high-resolution
496 vision-language models, 2024. URL <https://arxiv.org/abs/2408.10945>.

497

498 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
499 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
500 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
501 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*
502 *preprint arXiv:2502.13923*, 2025.

503 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
504 Hoffman. Token merging: Your ViT but faster. In *International Conference on Learning Repre-
505 sentations*, 2023.

506

507 Qingqing Cao, Bhargavi Paranjape, and Hannaneh Hajishirzi. Pumer: Pruning and merging tokens
508 for efficient vision language models, 2023. URL <https://arxiv.org/abs/2305.17530>.

509

510 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
511 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
512 language models, 2024.

513

514 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
515 Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluat-
516 ing large multi-modality models. In *Proceedings of the 32nd ACM International Conference on
Multimedia*, pp. 11198–11201, 2024.

517

518 Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
519 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
520 tion benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024.

521

522 Xiaohu Huang, Hao Zhou, and Kai Han. Prunevid: Visual token pruning for efficient video large
523 language models. In *arXiv*, 2024.

524

525 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li,
526 Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer, 2024a. URL <https://arxiv.org/abs/2408.03326>.

527

528 Duo Li, Zuhao Yang, and Shijian Lu. Todre: Visual token pruning via diversity and task awareness
529 for efficient large vision-language models, 2025. URL <https://arxiv.org/abs/2505.18757>.

530

531 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
532 Ping Luo, Limin Wang, and Yu Qiao. Mvbench: A comprehensive multi-modal video under-
533 standing benchmark. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR)*, pp. 22195–22206, June 2024b.

534

535 Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization
536 for deep neural network acceleration: A survey, 2021. URL <https://arxiv.org/abs/2101.09671>.

537

538 Zhihang Lin, Mingbao Lin, Luxi Lin, and Rongrong Ji. Boosting multimodal large language models
539 with visual tokens withdrawal for rapid inference. In *Proceedings of the AAAI Conference on
Artificial Intelligence*, volume 39, pp. 5334–5342, 2025.

540 Yuanxin Liu, Shicheng Li, Yi Liu, Yuxiang Wang, Shuhuai Ren, Lei Li, Sishuo Chen, Xu Sun,
 541 and Lu Hou. Tempcompass: Do video llms really understand videos? *arXiv preprint arXiv:*
 542 *2403.00476*, 2024.

543 Xiaoyi Qu, David Aponte, Colby Banbury, Daniel P Robinson, Tianyu Ding, Kazuhito Koishida,
 544 Ilya Zharkov, and Tianyi Chen. Automatic joint structured pruning and quantization for efficient
 545 neural network training and compression. *arXiv preprint arXiv:2502.16638*, 2025.

546 Yutao Sun, Zhenyu Li, Yike Zhang, Tengyu Pan, Bowen Dong, Yuyi Guo, and Jianyong Wang.
 547 Efficient attention mechanisms for large language models: A survey, 2025. URL <https://arxiv.org/abs/2507.19595>.

548 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 549 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal
 550 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025.

551 Haoming Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
 552 interleaved video-language understanding, 2024. URL <https://arxiv.org/abs/2407.15754>.

553 Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui
 554 He, Jiaqi Wang, Feng Wu, and Dahua Lin. Pyramiddrop: Accelerating your large vision-language
 555 models via pyramid visual redundancy reduction, 2025. URL <https://arxiv.org/abs/2410.17247>.

556 Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gu-
 557 dovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevlm: Visual token sparsi-
 558 fication for efficient vision-language model inference. In *International Conference on Machine
 559 Learning*, 2025.

560 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
 561 Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
 562 understanding. *arXiv preprint arXiv:2406.04264*, 2024a.

563 Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Lunling
 564 Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong,
 565 and Yu Wang. A survey on efficient inference for large language models, 2024b. URL <https://arxiv.org/abs/2404.14294>.

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594
595

A APPENDIX

596
597

A.1 USE OF LARGE LANGUAGE MODELS IN MANUSCRIPT PREPARATION

598
599

We acknowledge the use of a large language model (LLM) assistant (Google Gemini) during the preparation of this manuscript. The LLM was utilized for tasks including but not limited to: improving the grammar, clarity, and style of the text; rephrasing and structuring sentences; and assisting in the initial exploration of related literature. We affirm that the core scientific ideas, the design of the proposed algorithms, the execution and analysis of experiments, and the final conclusions presented in this paper are the original contributions of the human authors. The LLM served as a tool for productivity and refinement, and the intellectual ownership of this work rests entirely with the authors.

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647