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ABSTRACT

Deep Neural Networks (DNNs) have been shown vulnerable to adversarial at-
tacks, which could produce adversarial samples that easily fool the state-of-the-art
DNNs.The harmfulness of adversarial attacks calls for the defense mechanisms
under fire. However, the relationship between adversarial attacks and defenses
is like spear and shield.Whenever a defense method is proposed, a new attack
would be followed to bypass the defense immediately.Devising a defense against
new attacks (zero-day attacks) is proven to be challenging.We tackle this chal-
lenge by characterizing the intrinsic properties of adversarial samples, via mea-
suring the norm of the perturbation after a counterattack. Our method is based
on the idea that, from an optimization perspective, adversarial samples would be
closer to the decision boundary; thus the perturbation to counterattack adversar-
ial samples would be significantly smaller than normal cases. Motivated by this,
we propose AttackDist, an attack-agnostic property to characterize adversar-
ial samples. We first theoretically clarify under which condition AttackDist
can provide a certified detecting performance, then show that a potential appli-
cation of AttackDist is distinguishing zero-day adversarial examples with-
out knowing the mechanisms of new attacks. As a proof-of-concept, we evaluate
AttackDist on two widely used benchmarks. The evaluation results show that
AttackDist can outperform the state-of-the-art detection measures by large
margins in detecting zero-day adversarial attacks.

1 INTRODUCTION

Deep Neural Networks (DNNs) have flourished in recent years, and achieve outstanding perfor-
mance in a lot of extremely challenging tasks, such as computer vision (He et al. (2016)), machine
translation (Singh et al. (2017)), automatic speech recognition (Tüske et al. (2014)) and bioinfor-
matics (Choi et al. (2016)). In spite of excellent performance, recent research shows that DNNs
are vulnerable to adversarial samples (Dvorsky (2019)), of which the difference is unnoticeable for
humans, but easily leading the DNNs to wrong predictions. This vulnerability hinders DNNs from
applying in many sensitive areas, such as autonomous driving, finance, and national security.

To eliminate the impact of adversarial samples, researchers have proposed a number of techniques
to help DNNs detect and prevent adversarial attacks. Existing adversarial defense techniques could
be classified into two main categories: (1) adversarial robustness model retraining (Tramèr et al.
(2017); Ganin et al. (2016); Shafahi et al. (2019)) and (2) statistical-based adversarial samples de-
tection (Grosse et al. (2017); Xu et al. (2017); Meng & Chen (2017)). However, while adversarial
model retraining improves defense abilities, it also leads to huge costs during retraining process, es-
pecially when the number of the parameters in current models grows larger and larger again. As for
statistical-based adversarial samples detection techniques, one severe shortcoming is that all these
techniques require prior knowledge about the adversarial samples, which is not realistic in most real-
world cases. For example, LID (Ma et al. (2018)) and Mahalanobis (Lee et al. (2018)) need to train
logic regression detectors on validation datasets. To make matters worse, adversarial attacks and
defenses are just like the relationship between spear and shield. Defensive techniques that perform
well against existing attacking methods will always be bypassed by new attack mechanisms, which
makes defending zero-day attacks a challenging but urgent task.

To address this challenge, we propose AttackDist, an attack-agnostic adversarial sample de-
tection technique via counterattack. Our method is based on insight that, from the perspective of

1



Under review as a conference paper at ICLR 2021

optimization theory, the process of searching adversarial perturbations is a non-convex optimization
process. Then the adversarial perturbations generated by the attack algorithm should be close to
the optimal solution δ∗ (See Definition 1). Due to the property that optimal solution δ∗ is close to
the decision boundary (Lemma 1). Thus, if we apply the counter attack on adversarial samples, the
perturbation would be significantly smaller the original samples. Figure 1 shows an example of our
intuition, if we attack an adversarial sample, then the adversarial perturbation d2 would be much
smaller than the adversarial perturbation of attacking a normal point d1. Thus by measuring the size
of adversarial perturbation, we could differentiate normal points and adversarial samples.

!r `
r

d1
d2

normal point !
" from attacking !

# from attacking "

optimal solution of equation 1

adversarial perturbation for "

d2

d1
adversarial perturbation for "

r attack radius 

decision boundary

Figure 1: An example of our intuition.

To demonstrate the effectiveness of
AttackDist, we first analyze the
norm of adversarial perturbation for
normal points and adversarial points
theoretically, and give the conditions
under which AttackDist could
provide a guaranteed detecting per-
formance (Theorem 3). In addition
to theoretical analysis, we also im-
plement AttackDist on two fa-
mous and widely-used benchmarks,
MNIST (Deng (2012)) and Cifar-
10 (Krizhevsky et al.), and com-
pare with four state-of-the-art tech-
niques, Vinalla (Hendrycks & Gim-
pel (2016)), KD (Feinman et al. (2017)), MC(Gal & Ghahramani (2016)) and Mahalanobis (Lee
et al. (2018)). The experimental results show that AttackDist performs better than existing works
in detecting zero-day adversarial attacks without requiring the prior-knowledge about the attacks.

In brief, we summarize our contributions as follows:

• We formally prove a general instinct property of adversarial samples (i.e., adversarial sam-
ples are close to the decision boundary), which could be leveraged for detecting future
advanced (less noticeable) adversarial attacks. And with more unnoticeable attacks, this
property would contribute more to adversarial sample detection.

• We propose AttackDist, an attack-agnostic technique for detecting zero-day adversarial
attacks. We theoretically prove when the adversarial perturbation satisfies the given condi-
tion, AttackDist could have a guaranteed performance in detecting adversarial samples.

• We implement AttackDist on two widely used datasets, and compare with four state-
of-the-art approaches, the experiment results show AttackDist could achieve the state
of the art performance in most cases. Especially for detecting `2 adversarial attacks,
AttackDist could achieve 0.99, 0.98, 0.96 AUROC score and 0.99, 0.92, 0.90 Accu-
racy for tree different adversarial attacks.

2 BACKGROUND

In this section, we first define the notations used through the paper, then give a brief review to
adversarial attack and adversarial defense. Finally, we introduce our assumptions about the attackers
and the defenders.

2.1 NOTATIONS

Let f(·) : X → Y denote a continuous classifier, where X is the input space consisting of d-
dimensional vectors, and Y is the output space with K labels. The classifier provides prediction on
a point x based on arg maxr=1,2,...K fr(x). We then follow () to define adversarial perturbations.
Let ∆(·) denote a specific attack algorithm (e.g., FGSM, CW). As shown in Equation 1, given
point x and target classifier f , the adversarial perturbation ∆(x, f) provided by ∆(·) is a minimal
perturbation that is sufficient to change the original prediction f(x) (for shorthand, we use ∆(x) to
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represent ∆(x, f) throughout the paper).
∆(x, f) = minδ ||δ||p s.t. f(x+ δ) 6= f(x) (1)

Adversarial samples are the points that applying the adversarial perturbations on the original points
(i.e., xadv = x+ ∆(x)).
Definition 1. Attack Distance: We define attack distance (AttackDist) of a point x as `p norm
of the adversary perturbation.

AttackDist(x) = ||xadv − x||p = ||∆(x)||p (2)
Definition 2. Optimal Adversarial Perturbation: Given x and f , the optimal adversarial pertur-
bation δ∗(x) is the most optimal solution of Equation 1. In other words, δ∗(x) satisfy Equation
3.

||δ∗(x)||p ≤ ||∆(x)||p s.t. f(x+ ∆(x)) 6= f(x) ∧ f(x+ δ∗(x)) 6= f(x) (3)
Definition 3. Optimal Adversarial Sample: Given x and f ,we define the optimal adversarial sample
x∗ = x+δ∗(x), that is applying the optimal adversarial perturbation δ∗(x) on normal point x (Note
x∗ is not a constant point, it is a function of x).
Definition 4. Decision Boundary: We define the decision boundaryB of classifier f as the collection
of points which have the same prediction on different labels. More specifically, it satisfy Equation 4.

B = {x| ∃i, j (1 ≤ i, j ≤ K) ∧ (i 6= j) fk={1,2,··· ,K}(x) ≤ fi(x) = fj(x)} (4)

Then letD(x, f) = minb∈B ||x−b||p (shorthand asD(x)) denote the minimal distance from point x
to the decision boundary. And we define all points on the decision boundary are adversarial samples.
Because according to the definition of decision boundary B, any points belong to B would provide
more than one prediction results, which means it contains at least one prediction is contradict with
the ground truth.
Lemma 1. The optimal adversarial sample x∗ belongs to decision boundary B, in other words, the
relationship between δ∗(x) and D(x) is ||δ∗(x)||p = D(x).

We prove lemma 1 by contradiction, assume the optimal adversarial samples x∗ does not belong to
B (e.g., x∗ /∈ B), then we want to prove x∗ is not the most optimal adversarial samples generated
from x (i.e., there exists x∗ satisfies Equation 5).

||x∗ − x||p < ||x∗ − x||p s.t. f(x) 6= f(x∗) (5)

Proof. Let f(x) = i, f(x∗) = j and i 6= j. If we connect the point x and x∗ to get a line, then
there must be a point x∗ on the line satisfies Equation 5. We prove it by constructing the function
g(x) = fi(x)−fj(x), obviously, g(x) > 0 and g(x∗) < 0. Due to the continuous of f , from x to x∗,
there exists a point g(P ) = 0 and P 6= x∗ ∧P 6= x. Then, we need to show that point P is the point
we want (i.e., P = x∗). Obviously, ||P − x||p < ||x∗ − x||p because P is a middle point of straight
line with x and x∗ as endpoints, then we only need to prove P would get different prediction with x.
There are two conditions of the prediction on point P : (1) f(P ) = i; (2) f(P ) 6= i. For condition 1,
due to g(P ) = 0 = fi(P )−fj(P ) and f(P ) = i, then P satisfies the definition of decision boundary
B, so P would have a different prediction with x (We define all points on the decision boundary are
adversarial samples). For condition 2, f(P ) 6= i = f(x), obviously, P is the adversarial sample for
x.

Next, we introduce the definition of r-attack, to measure the the optimization capabilities of an
attack algorithm. Although the definition of adversary samples is to optimize the Equation 1, but
none attack algorithm could always obtain the most optimal solution δ∗(x). We define r-attack, to
measure how close the adversarial samples generated by one specific attack algorithm to the optimal
solution δ∗.
Definition 5. r-attack: we define attack algorithm ∆r(·) as an r-attack algorithm if all perturbations
it produced are lying in a sphere centered on optimal adversarial perturbation with radius r.

∆r is r-attack ⇐⇒ ∀x ∈ X ||∆(x)− δ∗(x)||p ≤ r (6)

From the definition of r-attack, we could see more advanced attacks (more unnoticeable attack) are
attacks with less r. The best attack could always produce δ∗(x), whose r = 0. As the goal of the
attackers is to create less noticeable samples to evade the human-beings. Then they tend to develop
the more advanced attack algorithms with smaller r. Later, we would show how AttackDist
leverage this point (Theorem 3) to detect more unnoticeable attacks.
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2.2 ADVERSARIAL ATTACKS & ADVERSARIAL DEFENSES

Many existing works have been proposed for crafting adversarial examples to fool the DNNs, we
introduce a selection of such work here. The Fast Gradient Method (Goodfellow et al. (2014a))
search the adversarial samples by a small amount along the direction of gradients. The CW (Carlini
& Wagner (2017)) attack, model the adversarial samples generation as a optimization problem and
iteratively search the optimal solution. And the Deep Fool (Moosavi-Dezfooli et al. (2016)) attack,
which is designed to estimate the distance of one sample to the decision boundary.

We then follow the definition of zero-day vulnerabilities (Ablon & Bogart (2017)) to define zero-day
adversarial attacks. A zero-day adversarial attack is one attack algorithm that is unknown to those
who should be interested in mitigating the attacks (e.g., the adversary sample detectors).

Besides the adversarial attack techniques, a number of defense techniques also have been introduced
to reduce the harms of adversarial samples. For example, KD (Feinman et al. (2017)) estimate the
kernel-density of the training dataset and use the estimated kernel-density to distinguish normal
samples and adversarial samples. LID, which estimate the local intrinsic dimensionality of normal,
noisy and adversarial samples, and train a logic regression detector to characterize the subspace
of adversarial samples. However, LID needs the prior-knowledge of adversarial attacks to train the
detectors, thus can not be applied for detecting zero-day adversarial attacks.

2.3 THREAT MODEL

In this paper, we assume the attackers could complete access to the neural networks and could apply
white-box attacks. For the detectors, they could know some attack algorithms, but when a new attack
is proposed, the detectors don’t know anything about the mechanism of the new proposed attacks.

3 APPROACH

Our aim is to gain a intrinsic properties of adversarial perturbations, and derive potential provide
new directions for new advanced attacks. We begin by providing a theory analysis of the bounds
of the boundary distance (AttackDist) of r-attack adversarial samples. After that, we show how
AttackDist could be efficiently estimated through applying a counter attack. Finally, we show
why AttackDist could differential normal samples and adversarial samples; and the condition,
under which AttackDist could have a certificated detection performance.

3.1 ATTACKDIST OF ADVERSARIAL SAMPLES

Let x is a normal input, we first apply algorithm ∆r1 to attack x to generate adversary sample y, and
apply a different algorithm ∆r2 to attack y to generate adversary sample z (i.e., y = x + ∆r1(x),
z = y + ∆r2(y)). We first provide our motivation by analysing the attack distance of x and y.

||y − x||p = ||∆r(x)||p ≥ ||δ∗(x)||p = D(x)

||∆r(x)||p ≤ ||∆r(x)− δ∗(x)||p + ||δ∗(x, f)||p ≤ r1 +D(x)
(7)

In the first line of Equation 7, we measure the lower bound of the adversarial perturbation. The
first inequality ||∆r(x)||p ≥ ||δ∗(x)||p is due to the definition of δ∗(x) (See Definition 2), and
the second equality ||δ∗(x)||p = D(x) is due to Lemma 1. In the second line of Equation 7, we
measure the upper bound of the adversarial perturbation. The first inequality is due to the triangle
inequality (i.e., ||A + B||p ≤ ||A||p + ||B||p). Then because of the definition of r-attack, we have
||∆r1(x)− δ∗(x)||p ≤ r1. We then assume the random variables D(x) for normal points belongs to
a Gaussian distribution.

D(x) ∼ N (µ, σ) ∀x ∈ X
After the analysis the bound of the adversarial perturbation for normal point x, we then analysis the
bound of the adversarial perturbation for adversarial sample y.
Theorem 2. If y is a adversary sample generated by x through r1-attack, and z is the adversary
sample generated by y through r2-attack then D(y) ≤ r1 and ||z − y||p ≤ r1 + r2
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D(y) = min(y,B) ≤ ||y − x∗||p ≤ r1
||z − y||p = ∆r2(y) ≤ r2 +D(y) ≤ r1 + r2

(8)

Proof. As shown in the first line in Equation 8, the distance of y to decision boundary B is the
minimum distance of y to any points in B. And x∗ is the points belongs to the decision boundary
B (Lemma 1), thenmin(y,B) ≤ ||y−x∗||p. And according to the definition of r-attack, ||y−x∗||p ≤
r1 holds. ∆r2(y) ≤ r2 +D(y) in second line of Equation is because the second line of Equation 7,
we just replace x with y, and r1 with r2.

Theorem 3. If we have known a attack with r1 ≤ 1
2 (µ − 3σ), where µ and σ are the parameters

of the Gaussian Distribution for D(x). Then for any advanced attacks (less noticed attack) with
r2 ≤ r1, we have 99.86% probability that using the attack distance could correctly distinguish
normal samples and adversary samples.

Proof. Combining Equation 7 and 8. The lower bound for ||y − x||p = D(x) ∼ N (µ, σ), and the
upper bound for ||z− y||p is r1 + r2. If r1 ≤ 1

2 (µ− 3σ) and r2 ≤ r1, then r1 + r2 ≤ 2r1 ≤ µ− 3σ.
According to the cumulative distribution function (CDF) of Gaussian Distribution, the probability
of D(x) ≤ µ−3σ is less than 0.14%. In other words, the lower bound of ||y−x||p have the 99.86%
probability larger than the upper bound of ||z − y||p, which means it at least have the 99.86%
detection accuracy.

3.2 USING ATTACKDIST TO CHARACTERIZE ADVERSARIAL EXAMPLES

We next describe how AttackDist can serve as property to distinguish adversarial examples
without the prior-knowledge about the zero-day attacks. Our methodology only requires one known
attack algorithm ∆known for implementing the counter-attack. There are two main steps to calculate
AttackDist.

1) Applying counter-attack: for the point x under detection, we first attack x with the known
attack algorithm ∆known to generate y = x+ ∆known(x).

2) AttackDist Estimation: We estimate AttackDist of point x by measuring the norm
of the adversarial perturbation ||y − x||p.

4 EVALUATION

In this section, we demonstrate the effectiveness of our method in distinguishing adversary sam-
ples generated by three attack algorithms on two widely used datasets. Our code is available at
https://github.com/anonymous2021/AttackDist

4.1 EXPERIMENTAL SETUP

Datasets and Models: We evaluate our method on MNIST (Deng (2012)) and CIFAR-
10 (Krizhevsky et al.) datasets. We use the standard DNN model for each dataset. For MNIST we
choose LeNet-5 (LeCun et al. (2015)) architecture which reaches 98.6% accuracy on the testing set.
On CIFAR-10, we train a ConNet (Carlini & Wagner (2017)) with 87.8% accuracy. The details of
the model and the training setup could be found in Appendix A.

Attack Algorithms: We generate adversarial examples with white-box attack methods. Specifically,
We consider three different attack algorithms for both `2 and `∞ bounded adversarial examples. The
selected attack algorithms include (see also references within):

• `2 bounded adversarial attacks
– BrendelBethgeAttack (BB) (Brendel et al. (2019))
– CarliniWagnerAttack (CW) (Carlini & Wagner (2017))
– DeepFoolAttack (DF) (Moosavi-Dezfooli et al. (2016))

• `∞ bounded adversarial attacks
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– ProjectedGradientDescentAttack (PGD) ( Madry et al. (2017))
– BasicIterativeAttack (BIM) (Kurakin et al. (2016))
– FastGradientSignAttack (FGSM) (Goodfellow et al. (2014b))

The reason we select completely different attack algorithms for `2 and `∞ bounded adversarial
examples is that these algorithms are designed for different `p norm purpose.

Evaluation Metric: We first point out that comparing detectors just through accuracy is not enough.
For adversary samples detection, we have two classes, and the detector outputs a score for both the
positive and negative classes. If the positive class is far more likely than the negative one, a detec-
tor would obtain high accuracy by always guessing the positive class, which can cause misleading
results. To address this issue, besides accuracy, we also consider four different metrics. we consider
the trade-off between false negatives (FN) and false positives (FP), the trade-off between preci-
sion and recall and the trade-off between true negative rate (TNR) and true positive rate (TPR),
and employ Area Under the Receiver Operating Characteristic curve (AUROC), Area Under the
Precision-Recall curve (AUPR), TNR at 90% true positive rate TPR (TNR@90) and TNR at 99%
true positive rate TPR (TNR@99) as our evaluation metrics.

• TNR@90 Let TP, TN, FP, and FN denote true positive, true negative, false positive and
false negative, respectively. We measure TNR = TN / (FP+TN), when TPR is 90%.

• TNR@99 We also measure TNR, when TPR is 99%.
• AUROC is a threshold-independent metric. The ROC curve shows the true positive rate

against the false positive rate. A “perfect” detector corresponds to 100% AUROC.
• AUPR is also a threshold-independent metric. The PR curve plots the precision and recall

against each other. A “perfect” detector has an AUPR of 100%.
• Accuracy We enumerate all possible thresholds τ on the test dataset and select the best

accuracy for evaluation.

Comparison Baseline: There are many existing works could defense the adversarial attacks. How-
ever, as we discussed earlier, some of them need prior knowledge about the attacks to train the
detector, as our goal is to detect zero-day adversarial attacks without the prior-knowledge, then we
only consider four different approaches that require no prior knowledge of the attacks as baselines.
We briefly introduce each baseline, more details about the comparison baselines could be found in
related works (Hendrycks & Gimpel (2016); Feinman et al. (2017); Gal & Ghahramani (2016); Lee
et al. (2018)).

• Vanilla (Hendrycks & Gimpel (2016)): Vanilla is a baseline which defines a confidence
score as a maximum value of the posterior distribution. Existing works also find it could be
used to detect adversary samples.

• KD (Feinman et al. (2017)): Kernel Density (KD) estimation is proposed to identify ad-
versarial subspaces. Existing works () demonstrated the usefulness of KD-based adversary
samples detection, taking advantage of the low probability density generally associated
with adversarial subspaces.

• MC(Gal & Ghahramani (2016)): MC Drop represeent the model uncertainty for a specific
input activate the dropout layer in the testing phase.

• Mahalanobis (Lee et al. (2018)): Mahalanobis using Mahalanobis distance on the fea-
tures (the output in the hidden layer) learned by the target DNNs to distinguish adversarial
samples, it is an approach based on uncertainty measurement.

For the baseline KD, it needs to tune the hyperparameters for computing. We follow (Ma et al.
(2018)) to set the optimal bandwidths chosen for MNIST, CIFAR-10 as 3.79 and 0.26, respectively.
As for MC, we activate the dropout layer and run 300 times. For Mahalanobis, it need selects the
features in the hidden layer to a Gaussian model. For MNIST, we select features before the last fully
connected layer, and for CIFAR-10, we select the last two layers.

Experiment Process:

Since our approach is based on counterattack, we need to use a known attack algorithm during the
implementation, which is easy to meet because there are a variety of open-source attack algorithms.
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Figure 2: The Distribution and Probability density function of AttackDist of two hundreds ran-
dom selected data

Table 1: The Experiment Results of `2 norm Attacks On CIFAR-10 Dataset

TNR@99 TNR@90 AUROC AUPR AccAttack Baselines BB CW DF Ave BB CW DF Ave BB CW DF Ave BB CW DF Ave BB CW DF Ave
Vinalla 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.95 0.95 0.95 0.95 0.31 0.31 0.31 0.31 0.50 0.50 0.50 0.50
MC 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.97 0.97 0.97 0.97 0.32 0.32 0.32 0.32 0.50 0.50 0.50 0.50
KD 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.72 0.72 0.72 0.72 0.37 0.37 0.37 0.37 0.50 0.50 0.50 0.50
Ma 0.05 0.05 0.05 0.05 0.16 0.15 0.16 0.16 0.51 0.51 0.51 0.51 0.49 0.49 0.49 0.49 0.53 0.53 0.53 0.53

BB

ours 0.64 0.74 0.80 0.72 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.98 0.99 0.99 0.99
Vinalla 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.94 0.94 0.94 0.94 0.32 0.32 0.32 0.32 0.50 0.50 0.50 0.50
MC 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.96 0.96 0.96 0.96 0.32 0.32 0.32 0.32 0.50 0.50 0.50 0.50
KD 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.70 0.70 0.70 0.70 0.37 0.37 0.37 0.37 0.50 0.50 0.50 0.50
Ma 0.04 0.04 0.04 0.04 0.16 0.16 0.16 0.16 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.53 0.53 0.54 0.53

CW

ours 0.63 0.75 0.74 0.70 0.93 0.94 0.94 0.94 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.92 0.92 0.92 0.92
Vinalla 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.93 0.93 0.93 0.93 0.32 0.32 0.32 0.32 0.50 0.50 0.50 0.50
MC 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.94 0.94 0.94 0.94 0.32 0.32 0.32 0.32 0.50 0.50 0.50 0.50
KD 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.03 0.69 0.69 0.69 0.69 0.38 0.38 0.38 0.38 0.50 0.50 0.50 0.50
Ma 0.05 0.05 0.05 0.05 0.19 0.17 0.19 0.18 0.52 0.52 0.52 0.52 0.49 0.50 0.50 0.50 0.54 0.54 0.55 0.54

DF

ours 0.34 0.39 0.42 0.39 0.89 0.89 0.89 0.89 0.95 0.96 0.96 0.96 0.95 0.95 0.96 0.95 0.89 0.90 0.90 0.90
Vinalla 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.94 0.94 0.94 0.94 0.55 0.55 0.55 0.55 0.75 0.75 0.75 0.75
MC 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.96 0.96 0.96 0.96 0.55 0.55 0.55 0.55 0.75 0.75 0.75 0.75
KD 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.70 0.70 0.70 0.70 0.63 0.63 0.63 0.63 0.75 0.75 0.75 0.75
Ma 0.04 0.05 0.04 0.04 0.16 0.16 0.16 0.16 0.51 0.51 0.51 0.51 0.75 0.75 0.75 0.75 0.76 0.76 0.76 0.76

Mix

ours 0.54 0.51 0.58 0.55 0.93 0.94 0.94 0.94 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.93 0.94 0.94 0.93

In our experiments, we literally treat one attack algorithms as known attack algorithm, and the
other two algorithms as the zero-day attacks to generate adversary samples, then evaluate whether
AttackDist could detect the generated zero-day adversary samples. For example, we use PGDM
as the known attack and treat it as our approach’s input, then use the rest attack algorithms to generate
zero-day adversarial samples for evaluation. The detail implementation of our attack and attack
success rates can be find in Appendix B.

4.2 BOUNDARYDIST CHARACTERISTICS OF ADVERSARIAL SAMPLES

We provide empirical results showing the AttackDist characteristics of adversarial samples
crafted by the mentioned attacks. We use CW attack algorithm to counter attack the adversarial sam-
ples generated by CW, DF, BB and the normal samples, and measure the AttackDist to show
how AttackDist could distinguish normal samples and adversarial samples. The left subfigure
in Figure 2 shows the AttackDist of 200 randomly selected normal, and adversarial examples
from the MNIST dataset. Left figure shows the `2 norm attack and right figure shows the `inf norm
attack. Red circle points represent the normal points, while different color square points represents
the different adversarial samples. We observe that AttackDist scores of adversarial examples
are significantly smaller than those of normal examples, especially for the `inf norm attacks. This
supports our expectation that the perturbation to counterattack adversarial samples would be sig-
nificantly smaller than normal cases. The right subfigure in Figure 2 shows the probability density
function (PDF) of normal, and adversarial examples. Clearly, the distribution of normal samples and
adversarial smaples are totally different. The different PDFs suggest that by selecting a property
threshold, AttackDist could correctly detect the adversarial samples.

4.3 EXPERIMENTAL RESULTS

Due to the limit of space, we only present the results for CIFAR-10, the results about MNIST could
be found in Appendix C.
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4.3.1 `2 ATTACK

Table 1 shows our experimental results to detect `2 norm adversarial attacks on CIFAR-10 dataset.
For almost all cases, our approach outperforms the baselines for great margins, especially for
NTR@99, when the requirement of TNR is 0.99, the performances of baselines are almost zero,
which means the existing works fail to detect the new adversarial attacks without the prior-
knowledge. However, AttackDist could still have a a 0.54, 051, 0.58 NTR for mixed adversarial
attacks. As for the metric NTR@90, which is a slightly loose requirement than NTR99. At this sce-
nario, the performance of the baseline is no-longer zero, however, they still have a poor performance,
while AttackDist almost have a perfect performance with 0.93, 0.94, 0.94 for mixed attacks.
Another interesting finding is that AttackDist almost keep the same performance with different
attack algorithms we choose to implementing the counter-attack. This means AttackDist is not
sensitive with the adversarial attack algorithms for counter-attacking.

4.3.2 `∞ ATTACK

Table 2: The Experiment Results of `∞ norm Attacks On CIFAR-10 Dataset

TNR@99 TNR@90 AUROC AUPR AccAttack Baselines BB CW DF Ave BB CW DF Ave BB CW DF Ave BB CW DF Ave BB CW DF Ave

Vinalla 0.02 0.02 0.02 0.02 0.19 0.19 0.19 0.19 0.57 0.57 0.57 0.57 0.53 0.53 0.53 0.53 0.57 0.57 0.57 0.57
MC 0.02 0.02 0.02 0.02 0.18 0.18 0.18 0.18 0.58 0.58 0.58 0.58 0.55 0.55 0.55 0.55 0.57 0.57 0.57 0.57
KD 0.00 0.00 0.00 0.00 0.08 0.08 0.08 0.08 0.54 0.54 0.54 0.54 0.47 0.47 0.47 0.47 0.50 0.50 0.50 0.50
Ma 0.02 0.01 0.01 0.01 0.10 0.10 0.09 0.10 0.51 0.50 0.50 0.50 0.51 0.51 0.50 0.51 0.53 0.53 0.52 0.52

BB

ours 0.06 0.05 0.19 0.10 0.18 0.17 0.19 0.18 0.54 0.55 0.54 0.54 0.45 0.45 0.45 0.45 0.55 0.55 0.55 0.55
Vinalla 0.06 0.06 0.06 0.06 0.29 0.29 0.29 0.29 0.67 0.67 0.67 0.67 0.63 0.63 0.63 0.63 0.64 0.64 0.64 0.64
MC 0.04 0.04 0.04 0.04 0.25 0.25 0.25 0.25 0.65 0.65 0.65 0.65 0.60 0.60 0.60 0.60 0.63 0.63 0.63 0.63
KD 0.00 0.00 0.00 0.00 0.07 0.07 0.07 0.07 0.59 0.59 0.59 0.59 0.43 0.43 0.43 0.43 0.50 0.50 0.50 0.50
Ma 0.01 0.01 0.01 0.01 0.08 0.08 0.06 0.07 0.50 0.50 0.50 0.50 0.53 0.54 0.52 0.53 0.54 0.55 0.54 0.55

CW

ours 0.06 0.04 0.19 0.10 0.14 0.13 0.19 0.15 0.62 0.62 0.61 0.62 0.41 0.41 0.41 0.41 0.53 0.53 0.52 0.53
Vinalla 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.03 0.69 0.69 0.69 0.69 0.38 0.38 0.38 0.38 0.50 0.50 0.50 0.50
MC 0.00 0.00 0.00 0.00 0.04 0.04 0.04 0.04 0.68 0.68 0.68 0.68 0.39 0.39 0.39 0.39 0.50 0.50 0.50 0.50
KD 0.00 0.00 0.00 0.00 0.07 0.07 0.07 0.07 0.55 0.55 0.55 0.55 0.46 0.46 0.46 0.46 0.50 0.50 0.50 0.50
Ma 0.02 0.01 0.03 0.02 0.12 0.11 0.16 0.13 0.50 0.52 0.51 0.51 0.48 0.47 0.50 0.48 0.52 0.51 0.54 0.52

DF

ours 0.06 0.06 0.19 0.10 0.33 0.33 0.35 0.34 0.70 0.70 0.70 0.70 0.64 0.64 0.64 0.64 0.65 0.66 0.65 0.65
Vinalla 0.01 0.01 0.01 0.01 0.10 0.10 0.10 0.10 0.52 0.52 0.52 0.52 0.76 0.76 0.76 0.76 0.75 0.75 0.75 0.75
MC 0.01 0.01 0.01 0.01 0.09 0.09 0.09 0.09 0.52 0.52 0.52 0.52 0.76 0.76 0.76 0.76 0.75 0.75 0.75 0.75
KD 0.00 0.00 0.00 0.00 0.07 0.07 0.07 0.07 0.56 0.56 0.56 0.56 0.71 0.71 0.71 0.71 0.75 0.75 0.75 0.75
Ma 0.01 0.01 0.01 0.01 0.10 0.10 0.10 0.10 0.50 0.50 0.50 0.50 0.76 0.75 0.76 0.75 0.75 0.75 0.75 0.75

Mix

ours 0.06 0.04 0.19 0.10 0.16 0.17 0.20 0.18 0.51 0.51 0.52 0.51 0.75 0.75 0.75 0.75 0.76 0.76 0.73 0.75

Table 2 shows our experimental results to detect `∞ norm adversarial attacks on CIFAR-10 dataset.
The performance of detecting `∞ norm adversarial attacks is much worse than `2 attacks. However,
AttackDist still achieve a competitive performance, one possible reason that AttackDist can
not have a good performance as `2 attacks is the condition in Theorem 3 is no longer hold for `∞
attacks. The existing works (Carlini & Wagner (2017)) studied the size of adversarial perturbation
for `2 and `∞ attacks. On CIFAR-10 dataset, `∞ = 0.013 is enough to achieve the average 100%
success attack rate, while `2 needs to be larger than 0.33. However, consider the different maximum
distance on `2 and `∞ norm (i.e., the maximum `2 norm for CIFAR-10 is 32× 32× 3 = 3072 while
the maximum `∞ is 1). Then the relative r for `2 norm attacks would be smaller, which means the
`2 could produce more unnoticeable adversarial samples.

5 DISCUSSIONS AND CONCLUSIONS

In this paper, we proposed AttackDist to address the challenge of detecting zero-day adversarial
attacks. From the perspective of optimization theory, we try to understand the general intrinsic prop-
erties of adversarial samples rather than statistically analysis the hidden feature of existing adver-
sarial samples. Trough counter attack the normal samples and the adversarial samples, we analysis
the norm of the adversarial perturbation of normal samples and adversarial samples theoretically,
and give the condition under which AttackDist would have a guaranteed performance for any
advanced attacks. In particular, AttackDist performs better than the existing works in detecting
zero-day adversarial samples.
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A MODEL ARCHITECTURE AND TRAINING SETUP

Table 3: The Model Architecture we used in our experiments

Layer Type MNIST CIFAR-10

Convolution + ReLU 5 × 5 × 6 3 × 3× 64
Convolution + ReLU 3 × 3 × 64

Max Pooling 2 × 2 2 × 2
Convolution + ReLU 5 × 5 × 16 3 × 3 × 128
Convolution + ReLU 3 × 3 × 128

Max Pooling 2 × 2 2 × 2
Fully Connected + ReLU 128 128
Fully Connected + ReLU 80 128

softmax 10 10

The model architecture we used is listed in Table 3, for MNIST and CIFAR-10, the training dataset
is 50,000 and we randomly select 1,000 from the testing dataset for evaluation. We set the learning
rate as 0.01, with the momentum is 0.9.
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B ADVERSARIAL SAMPLES GENERATION

We implement the listed attack algorithms through the python library foolbox (Rauber et al.
(2020)), which is a popular library for evaluating the robustness of DNNs. For MNIST dataset,
we set hyper-parameter ε as 3 and 0.25 for `2 and `inf ; for CIFAR-10 dataset, we set ε as 0.35 and
0.015 for `2 and `inf . The attack success rates for each attack algorithms are listed in Table 4.

Table 4: Attack Success Rate for Each Attack Algorithms

Dataset `2 `inf
BB CW DF PGD BIM FGM

MNIST 1.000 1.000 0.997 0.983 0.953 0.773
CIFAR10 0.978 0.981 0.908 0.943 0.967 0.811

C EXPERIMENTAL RESULTS FOR MNIST BENCHMARK

Table 5: Results for MNIST on L2

TNR@99 TNR@90 AUROC AUPR AccAttack Baselines BB CW DF Ave BB CW DF Ave BB CW DF Ave BB CW DF Ave BB CW DF Ave
Vinalla 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.31 0.31 0.31 0.31 0.50 0.50 0.50 0.50
MC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.96 0.96 0.96 0.31 0.31 0.31 0.31 0.50 0.50 0.50 0.50
KD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.98 0.98 0.98 0.31 0.31 0.31 0.31 0.50 0.50 0.50 0.50
Ma 0.18 0.18 0.18 0.18 0.43 0.43 0.43 0.43 0.69 0.69 0.69 0.69 0.61 0.61 0.61 0.61 0.67 0.67 0.67 0.67

BB

tool 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Vinalla 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.31 0.31 0.31 0.31 0.50 0.50 0.50 0.50
MC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.96 0.96 0.96 0.31 0.31 0.31 0.31 0.50 0.50 0.50 0.50
KD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.98 0.98 0.98 0.31 0.31 0.31 0.31 0.50 0.50 0.50 0.50
Ma 0.21 0.21 0.21 0.21 0.43 0.43 0.43 0.43 0.70 0.70 0.70 0.70 0.62 0.62 0.62 0.62 0.67 0.67 0.67 0.67

CW

tool 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Vinalla 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.31 0.31 0.31 0.31 0.50 0.50 0.50 0.50
MC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.96 0.96 0.96 0.31 0.31 0.31 0.31 0.50 0.50 0.50 0.50
KD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.98 0.98 0.98 0.31 0.31 0.31 0.31 0.50 0.50 0.50 0.50
Ma 0.19 0.19 0.19 0.19 0.42 0.42 0.42 0.42 0.68 0.68 0.68 0.68 0.60 0.60 0.60 0.60 0.66 0.66 0.66 0.66

DF

tool 0.98 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99
Vinalla 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.54 0.54 0.54 0.54 0.75 0.75 0.75 0.75
MC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.96 0.96 0.96 0.55 0.55 0.55 0.55 0.75 0.75 0.75 0.75
KD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.98 0.98 0.98 0.54 0.54 0.54 0.54 0.75 0.75 0.75 0.75
Ma 0.19 0.19 0.19 0.19 0.43 0.43 0.43 0.43 0.69 0.69 0.69 0.69 0.82 0.82 0.82 0.82 0.80 0.80 0.80 0.80

Mix

tool 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

Table 6: Results for MNIST on Linf

TNR@99 TNR@90 AUROC AUPR AccAttack Baselines BB CW DF Ave BB CW DF Ave BB CW DF Ave BB CW DF Ave BB CW DF Ave
Vinalla 0.02 0.02 0.02 0.02 0.14 0.14 0.14 0.14 0.58 0.58 0.58 0.58 0.57 0.57 0.57 0.57 0.58 0.58 0.58 0.58
MC 0.01 0.01 0.01 0.01 0.16 0.16 0.16 0.16 0.55 0.55 0.55 0.55 0.51 0.51 0.51 0.51 0.56 0.56 0.56 0.56
KD 0.00 0.00 0.00 0.00 0.07 0.07 0.07 0.07 0.64 0.64 0.64 0.64 0.40 0.40 0.40 0.40 0.50 0.50 0.50 0.50
Ma 0.03 0.03 0.00 0.02 0.19 0.19 0.07 0.15 0.57 0.57 0.57 0.57 0.56 0.56 0.44 0.52 0.56 0.56 0.50 0.54

BB

tool 0.01 0.05 0.23 0.10 0.67 0.63 0.23 0.51 0.82 0.81 0.71 0.78 0.73 0.73 0.64 0.70 0.80 0.79 0.71 0.77
Vinalla 0.03 0.03 0.03 0.03 0.16 0.16 0.16 0.16 0.59 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58
MC 0.03 0.03 0.03 0.03 0.19 0.19 0.19 0.19 0.56 0.56 0.56 0.56 0.53 0.53 0.53 0.53 0.57 0.57 0.57 0.57
KD 0.00 0.00 0.00 0.00 0.07 0.07 0.07 0.07 0.64 0.64 0.64 0.64 0.39 0.39 0.39 0.39 0.50 0.50 0.50 0.50
Ma 0.02 0.02 0.00 0.01 0.19 0.19 0.07 0.15 0.57 0.57 0.57 0.57 0.56 0.56 0.44 0.52 0.56 0.56 0.50 0.54

CW

tool 0.01 0.05 0.23 0.10 0.54 0.36 0.23 0.38 0.78 0.77 0.71 0.75 0.70 0.70 0.64 0.68 0.76 0.77 0.71 0.75
Vinalla 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.88 0.88 0.88 0.34 0.34 0.34 0.34 0.50 0.50 0.50 0.50
MC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.83 0.83 0.83 0.35 0.35 0.35 0.35 0.50 0.50 0.50 0.50
KD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.92 0.92 0.92 0.32 0.32 0.32 0.32 0.50 0.50 0.50 0.50
Ma 0.01 0.01 0.06 0.02 0.25 0.25 0.26 0.25 0.51 0.51 0.51 0.51 0.45 0.45 0.47 0.46 0.58 0.58 0.59 0.58

DF

tool 0.01 0.05 0.23 0.10 0.77 0.78 0.72 0.75 0.91 0.91 0.90 0.91 0.92 0.92 0.91 0.92 0.87 0.88 0.86 0.87
Vinalla 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.57 0.57 0.57 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.75
MC 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.57 0.57 0.57 0.57 0.72 0.72 0.72 0.72 0.75 0.75 0.75 0.75
KD 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.73 0.73 0.73 0.73 0.62 0.62 0.62 0.62 0.75 0.75 0.75 0.75
Ma 0.02 0.02 0.00 0.02 0.22 0.22 0.11 0.18 0.54 0.54 0.54 0.54 0.76 0.76 0.71 0.74 0.75 0.75 0.75 0.75

Mix

tool 0.01 0.05 0.23 0.10 0.62 0.63 0.23 0.49 0.84 0.83 0.77 0.81 0.92 0.92 0.90 0.92 0.85 0.84 0.78 0.82

11


	Introduction
	Background
	Notations
	Adversarial Attacks & Adversarial Defenses 
	Threat Model

	Approach
	AttackDist of Adversarial samples
	Using AttackDist to Characterize Adversarial Examples

	Evaluation
	Experimental Setup
	BoundaryDist Characteristics of Adversarial samples
	Experimental Results
	 Attack
	 Attack


	Discussions And Conclusions
	Model Architecture and Training Setup
	Adversarial Samples Generation
	Experimental Results for MNIST BENCHMARK

