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Abstract

Top-k planning, the task of finding k top-cost plans, is a key
formalism for many planning applications and K∗ search
is a well-established approach to top-k planning. The algo-
rithm iteratively runs A∗ search and Eppstein’s algorithm un-
til a sufficient number of plans is found. The performance
of K∗ algorithm is therefore inherently limited by the per-
formance of A∗, and in order to improve K∗ performance,
that of A∗ must be improved. In cost-optimal planning, orbit
space search improves A∗ performance by exploiting sym-
metry pruning, essentially performing A∗ in the orbit space
instead of state space. In this work, we take a similar approach
to top-k planning. We show theoretical equivalence between
the goal paths in the state space and in the orbit space, al-
lowing to perform K∗ search in the orbit space instead, re-
constructing plans from the found paths in the orbit space.
We prove that our algorithm is sound and complete for top-k
planning and empirically show it to achieve state-of-the-art
performance, overtaking all existing to date top-k planners.
The code is available at https://github.com/IBM/kstar.

Introduction
Top-k planning is essential to many planning applications,
including malware detection (Boddy et al. 2005), hypothesis
generation (Sohrabi et al. 2016), scenario planning (Sohrabi
et al. 2018), and machine learning pipeline generation (Katz
et al. 2020). There are currently three main approaches to
top-k planning. The last one chronologically is based on a
so-called symbolic search (Speck, Mattmüller, and Nebel
2020). Another approach to top-k planning is called For-
bid Iterative (FI). It is based on iteratively reformulating the
input task, excluding the previously found plans from the
task plans space (Katz et al. 2018b). The third approach is
based on a K∗ search (Aljazzar and Leue 2011). In plan-
ning, it was first implemented within a planner for an SPPL
language (Riabov and Liu 2006), with some simplifications
(Riabov, Sohrabi, and Udrea 2014). Later, a similar vari-
ant was implemented within a PDDL planner (Katz et al.
2018b), and most recently the original variant of Aljazzar
and Leue (2011) was implemented on top of a PDDL plan-
ner (Lee, Katz, and Sohrabi 2023). That last variant signifi-
cantly improves the performance ofK∗ search, compared to
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the previous one and for the first time allows for using incon-
sistent heuristics. It works in two interchanging phases, A∗
search and Eppstein’s k shortest paths algorithm (Eppstein
1998) on the developed search space. Thus, the performance
of K∗ algorithm is inherently limited by that of A∗ and in
order to improve K∗ performance, one must improve A∗.

In cost-optimal planning, the issue of A∗ performance
was tackled, among other, by using search space pruning
techniques. Two main such techniques are partial order re-
duction (Wehrle and Helmert 2012) and symmetry based
search pruning (Pochter, Zohar, and Rosenschein 2011;
Domshlak, Katz, and Shleyfman 2012). For the latter, two
search algorithms were suggested, DKS (Domshlak, Katz,
and Shleyfman 2012) and orbit space search (OSS) (Domsh-
lak, Katz, and Shleyfman 2015). While DKS performs the
search in problem state space, pruning states that deem sym-
metric to the previously encountered ones, OSS is essentially
performing A∗ search in a so-called orbit space instead of
the state space. In the orbit space, nodes correspond to equiv-
alence classes of states, with the equivalence relation based
on detecting states as symmetric. In both algorithms, the
symmetry detection is done via so-called canonical states.
While there is no clear dominance of one of the methods
over the other, DKS requires storing two states per search
node, the actual state and the canonical one. OSS, on the
other hand, requires only storing the canonical state. Thus,
in principle, it should have a smaller memory consumption.

In this work, we take a similar approach to top-k plan-
ning. First, as K∗ requires transforming the input planning
task into a task with a single goal state, we propose a trans-
formation into a planning task with a single goal state that
preserve the symmetries of the input task. Next, focusing on
the orbit space search, we establish the theoretical grounds
for performing K∗ search in the orbit space. We do that by
showing the equivalence between the goal paths in the state
space and the orbit space. These goal paths in the orbit space
can then be cast into actual plans. We then prove that our
suggested algorithm is sound and complete for top-k plan-
ning. Last, we perform an extensive empirical evaluation of
the proposed algorithm with a variety of admissible heuris-
tics, both consistent and inconsistent, and comparing to all
existing top-k planners. Our evaluation shows the new ap-
proach to be competitive with the current state-of-the-art.



Background
This section introduces necessary concepts in top-k plan-
ning, K∗ search algorithm for top-k planning, and OSS for
cost optimal planning.

Top-k Classical Planning
A planning task Π = 〈V ,O, s0, s?〉 in SAS+ formalism
(Bäckström and Nebel 1995) consists of a finite set of finite-
domain state variables V , a finite set of actions O, an ini-
tial state s0, and the goal s?. Each variable v ∈ V is as-
sociated with a finite domain dom(v) of values. An assign-
ment of a value d ∈ dom(v) to a variable v ∈ V denoted
by a pair 〈v, d〉 is called fact, and the set of all facts is de-
noted by F . A partial assignment p maps a subset of vari-
ables vars(p) ⊆ V to values in their domains. For a vari-
able v ∈ V and partial assignment p, the value of v in p is
denoted by p[v] if v ∈ vars(p) and we say p[v] is unde-
fined otherwise. A full assignment s is called a state, and
the set of all states is denoted by S. State s is consistent
with a partial assignment p if they agree on all variables in
vars(p), denoted by p ⊆ s. Each action o in O is a pair
〈pre(o), eff (o)〉, where pre(o) and eff (o) are partial assign-
ments called precondition and effect. Further, o has an asso-
ciated non-negative cost denoted by cost(o) ∈ R0+. An ac-
tion o is applicable in state s if pre(o) ⊆ s. Applying o in s
results in a state denoted by sJoK, where sJoK[v] = eff (o)[v]
for all v ∈ vars(eff ) and sJoK[v] = s[v] for all other vari-
ables. An action sequence π = 〈o1, . . . , on〉 is applicable in
state s if there are states 〈s0, . . . , sn〉 such that oi is appli-
cable in si−1 and si−1JoiK = si for 0 ≤ i ≤ n. We denote
sn by sJπK. An action sequence with s? ⊆ s0JπK is called a
plan. The cost of a plan π, denoted by cost(π) is the summed
cost of the actions in the plan. The set of all plans is denoted
by PΠ, and an optimal plan is a plan in PΠ with the lowest
cost.

Example 1 (Gripper Task) We will use a famous gripper
task introduced by Jana Koehler as a running example
throughout the paper. There is a robot R with two grippers l
and r, and each can carry a ball. The goal is to move four
balls, b1, b2, b3, b4, from room A to room B.

• A state can be represented by seven SAS+variables: one
variable R with dom(R) = {A,B} for encoding the lo-
cation of the robot, four variables, {bi|i ∈ [1..4]} with
dom(bi) = {A,B,R} for encoding the location of the
four balls, and two variables, l and r for grippers with
domain {E, b1, b2, b3, b4} for encoding the object a grip-
per holds, where E represents holding nothing.

• For brevity, we denote a state with five letters, compris-
ing the location of the robot and four balls. Namely,
ARLBB stands for a state with facts: 〈R,A〉, 〈b1, r〉,
〈b2, l〉, 〈b3,B〉, 〈b4,B〉, 〈l, b2〉, and 〈r, b1〉.

• Actions are pick, drop, and move for manipulating the
balls and moving between rooms, abbreviated as follows.
P1LA denotes a pick action taking b1 with the left grip-
per in room A, D2RB denotes a drop action dropping b2
from the right gripper in room B, MAB denotes a move
action moving from room A to B, etc.

Next, we present the top-k planning problem, as defined
by Sohrabi et al.; Katz et al. (2016; 2018b).
Definition 1 (top-k planning problem) Given a classical
planning task Π and a natural number k, top-k planning
problem is finding a set of plans P ⊆ PΠ satisfying the fol-
lowing properties.
1. For all plans π ∈ P , if there exists a plan π′ ∈ PΠ such

that C(π′) < C(π), then π′ ∈ P ,
2. |P | ≤ k, and if |P | < k, then P = PΠ.
We say a top-k planning problem 〈Π, k〉 is solvable if |P | =
k and unsolvable if |P | < k. Note that cost-optimal planning
is a special case of top-k planning for k = 1.

K∗ Search for Top-k Planning
Given a top-k planning problem 〈Π, k〉, K∗ applies Epp-
stein’s algorithm (EA) to the search graph revealed by A∗
until the task is solved or proven to be unsolvable. In this
section, we only review necessary concepts and refer to Al-
jazzar and Leue (2011) and Eppstein (1998) for details.

Single Goal State Reformulation of Planning Tasks The
fact that any state consistent to s? is a goal state in a planning
task Π = 〈V ,O, s0, s?〉 calls for a single goal state reformu-
lation sinceK∗ assumes a single terminal node in the search
graph. Katz et al. (2018b) showed such a reformulated task
Πg = 〈Vg,Og, sg0, s

g
?〉, where Vg = V ∪ {vg} with a bi-

nary indicator variable vg for reaching a goal state, Og =
{〈pre(o) ∪ 〈vg, 0〉, eff (o)〉|o ∈ O} ∪ {og} with a zero cost
goal-achieving action og such that pre(og) = s? ∪ {〈vg, 0〉}
and eff (og) = {〈vi, t[vi]〉|vi ∈ vars(t)} ∪ {〈vg, 1〉} for an
arbitrary full state t, sg0 = s0 ∪ {〈vg, 0〉}, and sg? = eff (og).

Implicit Path Representation of Eppstein’s Algorithm
A∗ explores a state transition graph TΠ = 〈S, E〉 com-
prised of nodes associated with states S and edges E ,
induced by operators O, namely, {〈s, sJoK; o〉|pre(o) ∈
s ∀s ∈ S,∀o ∈ O}. Denoting by GA∗ an explicit search
graph revealed by A∗, EA uses an implicit path repre-
sentation relative to the shortest path tree TA∗ using a se-
quence of “side-tracked” edges (STE), the edges of GA∗
that are not in TA∗ . For each STE (u, v), we can compute
the deviation cost δ(u, v) against the cost of the incom-
ing edge toward v in TA∗ by δ(u, v) = g(u) +cost(o)−
g(v) iff v = uJoK. We denote an arbitrary goal reaching
path from sg0 in GA∗ by ρA∗(s

g
0, s

g
?), and the unique path

from u to v in TA∗ by ρ∗A∗(u, v) if it exists. Then, any
ρA∗(s

g
0, s

g
?) can be uniquely represented by an ordered se-

quence of STEs, denoted by SIDETRACKS(ρA∗(s
g
0, s

g
?)) =

〈(u1, v1), . . . , (uq, vq)
〉
, where an STE closer to sg? appears

earlier in the sequence. Namely, ρA∗(s
g
0, s

g
?) can be recon-

structed from SIDETRACKS(ρA∗(s
g
0, s

g
?)) by

ρA∗(s
g
0, s

g
?) = ρ∗A∗(s

g
0, uq) ◦ [◦2i=q{(ui, vi) ◦ ρ∗A∗(vi, ui−1)}]

◦ (u1, v1) ◦ ρ∗A∗(v1, s
g
?),

where ◦ concatenates edges and paths from left to right.
EA performs Dijkstra’s algorithm over its own search

graph, called path graph P (GA∗) in which each node rep-
resents SIDETRACKS(ρA∗(s

g
0, s

g
?)) with the total deviation



cost
∑q
i=1 δ(ui, vi). Therefore, k-shortest paths are found

in the order of their costs.

Orbit Space Search for Cost Optimal Planning
Symmetry breaking techniques (Pochter, Zohar, and Rosen-
schein 2011; Domshlak, Katz, and Shleyfman 2012; Sh-
leyfman et al. 2015) significantly improved heuristic for-
ward state space search for cost optimal classical planning.
Given a planning task Π, and its state transition graph TΠ,
a graph automorphism in the automorphism group of TΠ,
denoted by Aut(TΠ), permutes states while preserving the
adjacency between states. Any subgroup of Aut(TΠ) parti-
tions the state space by orbits, which offers opportunity for
pruning the search space. In this section, we introduce nec-
essary concepts in OSS.

Structural Symmetries and Canonical States
Since state transition graphs are implicit, we find graph au-
tomorphisms from the syntactic structure of planning tasks,
called structural symmetries (Shleyfman et al. 2015), and
follow the definition shown in Sievers et al. (2017).
Definition 2 (Structural Symmetry) Given a planning
task Π = 〈V ,O, s0, s?〉, a structural symmetry is a permu-
tation σ : V ∪ F ∪ O → V ∪ F ∪ O with the following
properties.
1. σ(V) = V and σ(F )=F such that σ(〈v, d〉) = 〈v′, d′〉

implies v′=σ(v),
2. σ(O)=O such that for o ∈O, σ(pre(o)) = pre(σ(o)),
σ(eff (o))=eff (σ(o)), and cost(σ(o))=cost(o),

3. σ(s?)=s?,
where σ({x1, . . . , xn}) :={σ(x1), . . . , σ(xn)}.
Note that the third property ensures that a structural sym-
metry σ stabilizes the goal. In practice, a set of structural
symmetries can be detected by using tools for finding auto-
morphisms of colored digraphs, such as Bliss (Junttila and
Kaski 2007). These structural symmetries are the generators
of the symmetry group Γ, a subgoup of Aut(TΠ).

Given two states s and t, it is crucial to quickly check
whether s and t are symmetric or not for speeding up search.
Unfortunately, finding σ ∈ Γ for s = σ(t) is PSPACE-
hard (Shleyfman and Jonsson 2021). Instead of finding such
σ, Pochter, Zohar, and Rosenschein (2011) proposed to use
canonical form (Emerson and Sistla 1996), which we call
canonical states.
Definition 3 (Canonical States) Given a planning task
Π = 〈V ,O, s0, s?〉 over the states S, and a group Γ of struc-
tural symmetries for Π, canonical state CΓ(s) of s ∈ S is a
state generated by a mapping CΓ : S → S such that for all
s, t ∈ S, CΓ(s) = CΓ(t) iff there exists σ ∈ Γ such that
s = σ(t).
The common choice of CΓ implements a greedy search that
outputs local lexicographically minimum states since find-
ing the global minimum is NP-hard (Luks 1993). Never-
theless, missing to match structurally symmetric states only
skips pruning symmetric states and it doesn’t forfeit the
soundness and completeness of search (Domshlak, Katz, and
Lefler 2012).
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Figure 1: Gripper example: TRACE-FORWARD algo-
rithm.

Example 2 (Sturctural Symmetries in Gripper Task)
Using the tools mentioned above, we can find a structural
symmetries group with four generators as follows. Each
of these structural symmetries is of order 2, meaning if
σ(x) = y then also σ(y) = x must hold, so for brevity we
describe only one of these. For unmentioned elements x, we
have σ(x) = x.

1. Permuting the left gripper l and the right gripper r:
σlr(l) = r, ∀d ∈ dom(l), σlr(〈l, d〉) = 〈r, d〉,
∀X ∈ {1..4}, ∀Y ∈ {A,B}, σlr(PXYL) = PXYR,
∀X∈{1..4}, ∀Y∈{A,B}, σlr(DXYL) = DXYR,

2. permuting balls b1 and b2: σ12(b1)=b2, ∀d∈dom(b1),
σ12(〈b1, d〉) = 〈b2, d〉, ∀v∈{l, r}, σ12(〈v, b1〉) = 〈v, b2〉,
∀X ∈ {A,B}, ∀Y ∈ {L,R}, σ12(P1XY) = P2XY,
∀X ∈ {A,B}, ∀Y ∈ {L,R}, σ12(D1XY) = D2XY,

3. σ23, permuting balls b2 and b3, similarly to the above,
4. σ34, permuting balls b3 and b4, similarly to the above.

Orbit Space Search Unlike A∗, which must expand all
the symmetric states, OSS prunes them and explores a com-
pact canonical state transition graph defined as follows.

Definition 4 (Canonical State Transition Graph) Given
a planning task Π and its state transition graph TΠ(S, E)
over states S with labeled state transitions E induced by
applicable operators in O, we define a canonical state tran-
sition graph T ′Π(S ′, E ′) relative to a structural symmetry
group Γ such that:

1. S ′ = {σ(s)|s ∈ S, CΓ(s) = σ(s)},



2. E ′={〈σi(si), σjσi(sj);σi(o)〉|〈si, sj ; o〉 ∈ E , CΓ(si) =
σi(si), CΓ(sj) = σj(sj)},

where σi ∈ Γ maps state si to its canonical state CΓ(si),
and the transition labels are induced by operators applica-
ble in canonical states.

OSS explores T ′Π(S ′, E ′) by A∗ and traverses an explicit
search graphGOSS, which replaces any generated state swith
its canonical stateCΓ(s). Denoting by ρOSS(u, v) a path from
u to v inGOSS, and by ρ∗OSS(s

′
0, s
′
n) a goal reaching path from

s′0 = CΓ(s0) to a goal state s′n ∈ Ss? , we call a path ρOSS

in GOSS surrogate path, and a sequence of operator labels
in T ′Π surrogate plan, denoted by π′. OSSterminates search
when it reaches a goal state t ∈ Ss? since Γ stabilizes the
goal. The final step is tracing back the optimal surrogate path
ρ∗OSS(CΓ(s0), t) in the search tree TOSS to obtain a surrogate
plan π′, and tracing forward surrogate path to decode an op-
timal plan π from π′. We illustrate the final decoding step
for the gripper task in Figure 1.
Example 3 (TRACE-FORWARD in Gripper Task) A
plan, corresponding to a black trace from the initial state,
is extracted from a surrogate plan, which corresponds to a
blue trace in Figure 1. These red nodes represent canonical
states, while black nodes are the actual states obtained by
applying the actions, when different from the canonical.
Structural symmetries σ1, σ2, and σ3 are obtained from the
canonical mappings and are used to map actions on the
trace into an applicable sequence of actions that is a plan.

Orbit Space K∗ Search
In this section, we present the orbit space K∗ search al-
gorithm (OK∗) for top-k planning, which alternates OSS
and EA. We start by presenting a symmetry preserving
single-goal state reformulation since the earlier reformula-
tion breaks structural symmetries. Then, we show the equiv-
alence between plans of given planing task Π and surrogate
plans reconstructed in EA, which is the basis for the sound-
ness and completeness of OK∗ search algorithm for top-k
planning. We conclude this section by highlighting the dif-
ference between K∗ and OK∗ search algorithms.

Symmetry and Single Goal State Reformulation
Some structural symmetries for the input planning task Π
can disappear in a single goal state reformulated task Πg .
Consider a reformulated gripper task following Katz et al.
(2018b), where its single goal state sg? inherits facts in an ar-
bitrary full state in Π. It is trivial to check a structural sym-
metry permuting ball b1 and b2 shown in Example 2 fails to
stabilize sg? if {〈b1,A〉, 〈b2,B〉} ⊆ sg?. In order to preserve
the structural symmetries of Π, we propose a new single goal
state reformulation.
Proposition 1 A single goal state planning task Πg =
〈Vg,Og, sg0, s

g
?〉 can be obtained from a planning task Π =

〈V ,O, s0, s?〉 as follows.
• Vg={v | v ∈ V}∪{vg}, where dom(v)=dom(v)∪{U}

and dom(vg) = {I,U},
• sg0 = s0 ∪ {〈vg, I〉},
• sg? = {〈vg,U〉} ∪ {〈v,U〉 | v ∈ V},

• Og={〈pre(o) ∪ {〈vg, I〉}, eff (o)〉|o ∈ O} ∪ {og}, where
pre(og)=s? ∪ {〈vg, I〉}, eff (og)=s

g
?, and cost(og) = 0.

The cost of existing actions remains the same.

Note that the additional goal-achieving zero-cost action
og can be applied only once when the original goal was
achieved. No action is applicable in the new goal state, and
therefore there is one-to-one correspondence between the
plans of Π and those of Πg .

Theorem 1 Given a planning task Π = 〈V ,O, s0, s?〉
and the reformulated task Πg = 〈Vg,Og, sg0, s

g
?〉 shown

in Proposition 1, there exists a bijective mapping between
structural symmetries of Π and of Πg .

Proof: A structural symmetry σg of Πg stabilizes sg? by def-
inition, and it also stabilizes og since eff (og) = sg?. Thus,
〈vg, I〉 in pre(og) is mapped to itself, and so is the fact
〈vg,U〉. σg restricted to V , F , and O is a structural symme-
try of Π. In the other direction, let σ be a structural symmetry
of Π. We extend σ to σg of Vg , F g , and Og as follows. The
variable vg and its facts 〈vg, I〉 and 〈vg,U〉, as well as the
action og are mapped to themselves. Each extra fact 〈v,U〉
for the variable v other than vg is mapped to 〈σ(v),U〉. It is
trivial to see that σg satisfies all properties of the structural
symmetries in Definition 2. �

Plans in State Space and Orbit Space
OSS has shown its practical merit for cost-optimal plan-
ning (Alkhazraji et al. 2014; Sievers and Katz 2018; Katz
et al. 2018a). The computation gain compared to A∗ stems
from the fact that OSS explores a significantly smaller search
space when symmetries are detected. In cost-optimal plan-
ning, or top-k planning with k = 1, it is sufficient for only
one optimal plan to be preserved while pruning symmetric
states. For top-k planning in general, however, all plans need
to be preserved while pruning symmetric states.

Proposition 2 Given a planning task Π = 〈V ,O, s0, s?〉,
let P denote the set of all plans in the state transition graph
TΠ, and P ′ denote the set of all surrogate plans in the canon-
ical state transition graph T ′Π relative to a structural sym-
metry group Γ of the planning task Π. Then, there exists a
bijective mapping between plans in P and surrogate plans
in P ′.

Proof: We define a bijective mapping Φ between plan traces
(state action sequences) in TΠ and in T ′Π, from which the
desired mapping can be straightforwardly extracted. Given
a plan π = 〈o1, . . . , on〉 in P that traverses a sequence of
states 〈s0, s1, . . . , sn〉 over the state transition graph TΠ, let
us consider a sequence φ = 〈s0, o1, s1, . . . , on, sn〉, and a
mapping Φ that maps φ to φ′ = 〈s′0, o′1, s′1, . . . , o′n, s′n〉 as
follows.

• s′0 = CΓ(s0) and σ0 is such that σ0(s0) = CΓ(s0),
• o′1 = σ0(o1),
• s′i = CΓ(s′i−1Jo′iK) and σi is such that σi(s′i−1Jo′iK) =
CΓ(s′i−1Jo′iK), and

• o′i+1 = σ0:i(oi+1), where σ0:i := σi ◦ σi−1 ◦ · · · ◦ σ0.
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Figure 2: The visualization of the mapping between the plan π = o1 . . . on and a surrogate plan.

Given that, we can also derive that s′i = σ0:i(si). Fig-
ure 2 depicts the mapping described above. The plan π
and its corresponding sequence φ on the left is mapped
to the sequence φ′ of red states and blue action edges,
which corresponds to the surrogate plan 〈o′1, . . . , o′n〉.
To see that φ′ corresponds to a surrogate plan, observe
that (i) each state σ0:i(si) is a canonical state, (ii) the
action σ0:i(oi+1) is applicable in σ0:i(si) since oi+1 is
applicable in si, and (iii) applying σ0:i(oi+1) in σ0:i(si)
results in a state σ0:i(siJoi+1K) = σ0:i(si+1), whose
canonical state is σ0:i+1(si+1). Finally, since sn is a
goal state, so is s′n = σ0:n(sn). We show now that Φ
is injective. For sequences φ1 = 〈s1

0, o
1
1, s

1
1, . . . , o

1
n, s

1
n〉

and φ2 = 〈s2
0, o

2
1, s

2
1, . . . , o

2
n, s

2
n〉 with s1

0 = s2
0 = s0, if

Φ(φ1) = Φ(φ2), then we show by induction that the two se-
quences must be equivalent. Note that Φ(φ1) can be written
as 〈σ1

0(s0), σ1
0(o1

1), σ1
0:1(s1

1), . . . , σ1
0:n−1(o1

n), σ1
0:n(sn)〉,

and Φ(φ2) in a similar way. Base: s1
0 = s2

0 = s0 and
σ1

0(s0) = σ2
0(s0) = CΓ(s0). Therefore σ1

0 = σ2
0 . Step:

if s1
i = s2

i and σ1
i = σ2

i for i ≤ m, we show that
o1
m+1 = o2

m+1 and s1
m+1 = s2

m+1. From the equivalence
of Φ(φ1) and Φ(φ2), we have σ1

0:m(o1
m+1) = σ2

0:m(o2
m+1).

Since σ1
0:m = σ2

0:m, we must have o1
m+1 = o2

m+1. Since φ1

and φ2 correspond to plans, we have s1
m+1 = s1

mJo1
m+1K

and s2
m+1 = s2

mJo2
m+1K, giving us s1

m+1 = s2
m+1.

We conclude by showing that Φ is surjective. For a sur-
rogate plan π′ = 〈o′1, . . . , o′m〉 and its corresponding se-
quence φ′ = 〈s′0, o′1, s′1, . . . , o′n, s′n〉, we have s′0 = CΓ(s0)
and s′i = CΓ(s′i−1Jo′iK). Let σ0 be such that σ0(s0) =
s′0 = CΓ(s0) and for 1 ≤ i ≤ n, let σi be such that
σi(s

′
i−1Jo′iK) = s′i. Let oi = σ−1

0:i−1(o′i) be the actions
that are obtained by applying the inverse of the structural
symmetry σ0:i−1 to o′i. We show that π = 〈o1, . . . , on〉
is a plan and for its corresponding sequence φ we have
Φ(φ) = φ′. Let si = σ−1

0:i (s′i). First, observe that s0 =

σ−1
0 (s′0). We need to show that (i) oi is applicable in
si−1 and (ii) applying oi in si−1 results in si. For (i) we
know that o′i is applicable in s′i−1 and for any σ ∈ Γ,
σ(o′i) is applicable in σ(s′i−1), and in particular for σ−1

0:i−1.

Algorithm 1 OK∗ Search

Require: Reformulated planning task Πg , k
Ensure: Top-k solution

1: Initialize OSS search
2: P ← ∅
3: while True do
4: while ¬

(
OPENOSS= ∅ ∨ SWITCH-TO-EA( )

)
do

5: Expand an OSS node
6: PREPAREEA()
7: while ¬

(
OPENEA= ∅ ∨ SWITCH-TO-OSS( )

)
do

8: Expand an EA node n
9: Reconstruct surrogate plan π′ from n

10: P ← P ∪ { TRACE-FORWARD(π′)}
11: if |P | = k then return P
12: if OPENOSS= ∅ ∧ OPENEA= ∅ then return P

For (ii), s′i = σi(s
′
i−1Jo′iK) and therefore σ−1

i (s′i) =

s′i−1Jo′iK. Now, si−1JoiK = σ−1
0:i−1(s′i−1)Jσ−1

0:i−1(o′i)K =

σ−1
0:i−1(s′i−1Jo′iK) = σ−1

0:i−1(σ−1
i (s′i)) = σ−1

0:i (s′i) = si. �

Implicit Path Representation in Orbit Space
Given a single goal state reformulated planning task Πg =
〈Vg,Og, sg0, s

g
?〉, EA inK∗ builds path graph P (GA∗) from

an explicit search graph GA∗ of A∗ by exploring TΠg (S, E).
When EA traverses a path graph P (GOSS) derived from
an explicit search graph GOSS of OSS, the implicit path
representation of EA is defined relative to the canonical
state transition graph T ′Πg (S ′, E ′). Nevertheless, for any goal
reaching surrogate path ρOSS(CΓ(sg0), sg?), the implicit path
representation SIDETRACKS(ρOSS(CΓ(sg0), sg?)) still holds
becauseGOSS is merely another digraph. Therefore, any path
graph node generated by EA in orbit space can be safely re-
constructed to a surrogate path, which in turn, decoded back
to a plan in the state space as shown in Proposition 2.

Orbit Space K∗ Search Algorithm
Algorithm 1 shows OK∗ search algorithm for top-k plan-
ning, which takes a single goal state reformulated task Πg



LMcut M&S CEGAR iPDB BLIND

SymK FI K∗ OK∗ (+)K∗ K∗ OK∗ K∗ OK∗ K∗ OK∗ K∗ OK∗

SymK 0 36 27 20 33 34 28 36 31 30 25 46 37
FI 20 0 19 6 29 30 23 27 20 21 14 31 26

LMcut K∗ 26 37 0 1 32 34 28 30 30 17 15 46 40
OK∗ 32 45 30 0 45 47 35 45 36 30 19 57 50

M&S
(+)K∗ 17 29 15 8 0 6 2 25 16 11 8 41 29
K∗ 17 30 12 6 2 0 0 22 12 7 5 41 27
OK∗ 20 34 23 12 22 24 0 31 23 20 9 48 41

CEGAR
K∗ 19 31 11 9 20 22 20 0 8 10 10 39 28
OK∗ 23 34 22 10 30 32 22 25 0 23 9 48 33

iPDB
K∗ 30 38 22 19 35 36 32 32 28 0 1 48 38
OK∗ 34 41 33 25 44 47 35 41 36 22 0 54 46

BLIND
K∗ 11 28 3 1 7 7 7 2 1 3 2 0 0
OK∗ 15 31 14 3 17 17 7 19 2 12 2 29 0

Overall Coverage 892 652 933 1022 786 769 834 803 868 862 932 587 695

Table 1: Pair-wise domain level comparison of top-k planners for k = 1000. Each entry in the table represents the number of
domains where the row configuration achieves better coverage than the column one. The last row depicts the overall coverage.

and k as input. Initialization steps for OSS detects structural
symmetries of Πg and creates necessary data structure to ex-
plore the canonical state transition graph T ′Πg (line 1). After
initializing P to store found plans (line 2), OK∗ alternates
OSS (line 4–5) and EA (line 7–11). OSS explores T ′Πg until
it exhausts the search space or SWITCH-TO-EA() triggers to
stop expanding nodes in OSS. The latter happens when either
the lowest f value in the OSS queue is no smaller than the one
in the EA queue, or a pre-defined threshold on the number
of expanded nodes since previous switch is reached. Before
initiating EA, PREPAREEA() builds necessary data struc-
tures such as OPENEA and heap graphs (Eppstein 1998).
EA traverses the path graph of the sub-graph of T ′Πg de-
veloped by OSS. For a path graph node, OK∗ first recon-
structs surrogate plan π′, and then decodes it to a plan π by
TRACE-FORWARD (Domshlak, Katz, and Shleyfman 2015).
If the lowest f value in the OSS queue is smaller than the
one in the EA queue, SWITCH-TO-OSS() triggers, forcing a
switch back to OSS. All the changes from the K∗ algorithm
are marked in blue.OK∗ terminates either when it finds top-
k plans for a solvable top-k problem (line 11) or it exhausts
both open lists before finding k plans for an unsolvable top-k
problem (line 12).

Theorem 2 Algorithm 1 (OK∗) is sound and complete for
top-k planning.

Proof: Let Π be a planning task and let P ⊆ PΠ be the set
of plans found by Algorithm 1 for k. We show that P is a
solution to top-k planning problem. First, if |P | < k, then
the algorithm terminated in line 12. Thus, it has exhausted
the orbit space and reconstructed plans that correspond to
all surrogate plans in the orbit space. From Proposition 2
we have an isomorphism between the (finite) set of surro-
gate plans in the orbit space and PΠ, the set of plans of Π.
Therefore, we must have P = PΠ.

Now, suppose the algorithm terminated in line 11 and let
ρ′ be the surrogate path extracted last before the termina-
tion. Then for all π ∈ P , we have cost(π) ≤ cost(ρ′),

since EA nodes are expanded in the order of their costs.
Assume to the contrary that there exists a plan π 6∈ P ,
such that cost(π) < cost(π′) for some π′ ∈ P . Then, ac-
cording to Proposition 2, let ρ be the surrogate plan that
corresponds to π. Since π 6∈ P , EA did not expand the
node that corresponds to ρ yet. However, note that we have
cost(ρ) < cost(ρ′), contradicting the expansion order of
EA. �

Experimental Evaluation
To empirically evaluate the effectiveness of using structural
symmetries with K∗, we have implemented our suggested
algorithm OK∗ on top of an existing K∗ implementation
(Lee, Katz, and Sohrabi 2023) within the Fast Downward
planning system (Helmert 2006). All experiments were per-
formed on Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
machines, with the timeout of 30 minutes and memory limit
of 8GB per run. The benchmark set consists of all bench-
marks from optimal tracks of International Planning Compe-
titions 1998-2018, a total of 1827 tasks in 65 domains. We
have experimented with four admissible heuristics, LMcut
(Helmert and Domshlak 2009), merge-and-shrink abstrac-
tion (denoted by M&S) (Helmert, Haslum, and Hoffmann
2007), counterexample-guided Cartesian abstraction refine-
ment (denoted by CEGAR) (Seipp and Helmert 2018), and
pattern database heuristic iPDB (Haslum et al. 2007), as well
as with the blind heuristic. We measure the total time for
finding the top-k solution for a given k, as well as the cover-
age: 1 per task if the top-k solution was found, 0 otherwise.
In addition to comparing OK∗ to K∗ with the aforemen-
tioned heuristics, we compare to the planners that implement
the other two approaches to top-k planning, bi-directional
symbolic search (SymK) (Speck, Mattmüller, and Nebel
2020) and Forbid Iterative (FI) (Katz et al. 2018b). Follow-
ing previous work, all planners are using the same translator
and no additional preprocessing, as the preprocessing can
remove some actions that could otherwise be part of valid
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Figure 3: Anytime performance of selected configurations.

plans. The merge-and-shrink abstraction performs an opti-
mization, pruning abstract states that are unreachable from
the (abstract) initial state. This optimization must be turned
off when using orbit space search. In our experiments, we
compare to both with and without the optimization when us-
ing K∗. To differentiate the two, we mark the configuration
with the optimization by (+).

Table 1 shows the pairwise comparison of the tested ap-
proaches for k = 1000. Each entry denotes the number of
domains where the row planner achieves a better summed
coverage than the column planner. Additionally, the last row
denotes the overall coverage for each planner. The winners
are marked in bold. For the pairwise comparison, the value
in (x,y) is bolded if it is larger than the value in (y,x), that
is planner x excelled over planner y in more domains than
planner y excelled over planner x. First, note that there are
a few instances solved by K∗ but not by OK∗, specifically
25 for the CEGAR heuristic and one for each of the other
heuristic. While a few of these instances are due to mi-
nor time fluctuations, the rest appear to be due to (abstrac-
tion based) heuristics not being as informative on canoni-
cal states as on states reachable from the initial state. De-
spite that shortcoming, we observe that OK∗ consistently
significantly outperforms K∗. The largest overall coverage
increase occurs for the blind heuristic, 108 tasks. Next is
LMcut with 89 tasks, iPDB with 70 tasks, and CEGAR and
M&S with 65 tasks each. The best performing overall config-
uration is OK∗ with LMcut heuristic, passing SymK by 130
tasks overall. Looking at domain level performance, LMcut
wins over SymK in 32 domains and loses in 20, showing su-
perior performance. Comparing to other configurations on a
domain level coverage, LMcut almost always wins in more
domains than it loses in. The only exception is OK∗ with
iPDB, which is the best domain level performer, always win-
ning in more domains than it is losing in and winning over
LMcut in 25 domains, loosing in 19.

As many planning applications might require a shorter
planning time, we test the any-time performance of OK∗
compared to the other approaches. The results for top-k cov-
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erage for k = 1000 as a function of time are depicted in Fig-
ure 3. The lines for the same heuristic are depicted with the
same color, solid line for OK∗ and dashed line for K∗. Our
first observation is that for all heuristics and all timeouts, the
configurations that run OK∗ significantly outperform the
K∗ configurations. The overall best performer for almost all
tested timeouts is OK∗ with LMcut heuristic. Only between
100 and 150 seconds it loses the first place to OK∗ with
iPDB. For these timeouts, the difference in overall coverage
between the two approaches peaks at 6 tasks. Somewhat sur-
prisingly, for small timeouts of up to 45 seconds, the second
best is K∗ with LMcut. From 50 seconds to 1700 seconds,
OK∗ with iPDB is the second best. From 1700 till 1760 it
is tied with K∗ with LMcut, which takes the lead for the
last 40 seconds. It is worth mentioning that OK∗ with iPDB
achieves almost its maximal coverage (922 out of 932) and
levels out in under 400 seconds. The coverage of OK∗ with
LMcut, on the other hand, keeps rising up with more allo-
cated time.

Finally, to test the performance of our approach for
smaller k values, Figure 4 depicts the top-k coverage as a
function of k. Note here that for very small values of k, FI
still outperforms all other approaches. For k = 1, as in cost-
optimal planning, FI achieves the overall coverage of 1056
vs. 1036 for OK∗ with LMcut. Since FI uses internally OSS
with LMcut and partial order reduction, and OK∗ for k = 1
is essentially equivalent to OSS, the difference stems from
our methods not being able yet to benefit from partial or-
der reduction. As FI needs to iteratively run a cost-optimal
planner, it quickly loses its benefit and OK∗ with LMcut
takes the lead already for k = 5 and keeps the first place for
all k ≥ 5. FI keeps the second place until k = 72, where
OK∗ with iPDB catches up, keeping the second place from
that point onward. SymK takes the third place starting from
k = 107. It is worth noting thatOK∗ configurations (as well
as SymK and K∗) do not lose much coverage when going to
larger k values, allowing to generate many plans quickly.



Conclusions and Future Work
In this work, we exploit structural symmetries to improve
the performance of K∗ search. For that, we propose a new
single-goal planning task transformation that preserves the
symmetries of the input task. We formally prove a property
of the orbit space that allows us to apply K∗ to it. We show
that the proposed algorithm is sound and complete for top-
k planning and perform an experimental evaluation that es-
tablishes our approach as the new state of the art for top-k
planning.

In the future work we intend to further improve OK∗
for top-k planning by integrating another pruning technique,
partial order reduction (Wehrle and Helmert 2012). In con-
trast to symmetry based pruning, applying partial order re-
duction does prune some of the goal paths in the search
space (Katz and Lee 2023), and therefore great care must be
taken to ensure that all plans can be found. Another promis-
ing direction is integrating symmetries explicitly into Epp-
stein’s algorithm, to reduce both the computational effort
and the memory consumption required for storing all paths
by storing symmetric paths within the same node.
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