
Under review as a conference paper at ICLR 2021

STOCHASTIC CANONICAL CORRELATION ANALYSIS:
A RIEMANNIAN APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

We present an efficient stochastic algorithm (RSG+) for canonical correlation
analysis (CCA) derived via a differential geometric perspective of the underlying
optimization task. We show that exploiting the Riemannian structure of the problem
reveals natural strategies for modified forms of manifold stochastic gradient descent
schemes that have been variously used in the literature for numerical optimization
on manifolds. Our developments complement existing methods for this problem
which either require O(d3) time complexity per iteration with O( 1√

t
) convergence

rate (where d is the dimensionality) or only extract the top 1 component with O( 1
t )

convergence rate. In contrast, our algorithm achieves O(d2k) runtime complexity
per iteration for extracting top k canonical components with O( 1

t ) convergence
rate. We present our theoretical analysis as well as experiments describing the
empirical behavior of our algorithm, including a potential application of this idea
for training fair models where the label of protected attribute is missing or otherwise
unavailable.

1 INTRODUCTION

Canonical correlation analysis (CCA) is a popular method for evaluating correlations between two
sets of variables. It is commonly used in unsupervised multi-view learning, where the multiple
views of the data may correspond to image, text, audio and so on Rupnik & Shawe-Taylor (2010);
Chaudhuri et al. (2009); Luo et al. (2015). Classical CCA formulations have also been extended to
leverage advances in representation learning, for example, Andrew et al. (2013) showed how the
CCA can be interfaced with deep neural networks enabling modern use cases. Many results over
the last few years have used CCA or its variants for problems including measuring representational
similarity in deep neural networks Morcos et al. (2018), speech recognition Couture et al. (2019), etc.

The goal in CCA is to find linear combinations within two random variables X and Y which have
maximum correlation with each other. Formally, the CCA problem is defined in the following
way. Given a pair of random variables, a dx-variate random variable X and a dy-variate random
variable Y, with unknown joint probability distribution, find the projection matrices U ∈ Rdx×k and
V ∈ Rdy×k, with k ≤ min{dx, dy}, such that the correlation is maximized:

maximize trace
(
UTEX,Y

[
XTY

]
V
)

s.t. UTEX

[
XTX

]
U = Ik, V

TEY

[
Y TY

]
V = Ik (1)

Here, X,Y are samples of X and Y respectively. The objective function in (1) is the expected cross-
correlation in the projected space and the constraints specify that different canonical components
should be decorrelated. Let CX = EX[XTX] and CY = EY[Y TY ] be the covariance matrices,
and CXY = E(X,Y)[X

TY ] denote cross-covariance. Let us define the whitened covariance T :=

C
−1/2
X CXY C

−1/2
Y and Φk (and Ψk) contains the top-k left (and right) singular vectors of T . It is

known Golub & Zha (1992) that the optimum of (1) is achieved at U∗ = C
−1/2
X Φk, V ∗ = C

−1/2
Y Ψk.

In practice, we may be given two views of N samples as X ∈ RN×dx and Y ∈ RN×dy . A natural
approach to solving CCA is based on on the following sequence of steps. We first compute the
empirical covariance and cross-covariance matrices, namely, C̃X = 1/NXTX , C̃Y = 1/NY TY and
C̃XY = 1/NXTY . We then calculate the empirical whitened cross-covariance matrix T̃ , finally,
compute U∗, V ∗ by applying a k-truncated SVD to T̃ .
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Runtime and memory considerations. The above procedure is simple but is only feasible when the
data matrices are small. But in most modern applications, not only are the datasets large but also the
dimension d (let d = max{dx, dy}) of each sample can be quite high, especially if representations
are being learned using deep neural network models. As a result, the computational footprint of
the foregoing algorithm can be quite high. This has motivated the study of stochastic optimization
routines for solving CCA. Observe that in contrast to the typical settings where stochastic optimization
schemes are most effective, the CCA objective does not decompose over samples in the dataset. Many
efficient strategies have been proposed in the literature: for example, Ge et al. (2016); Wang et al.
(2016) present Empirical Risk Minimization (ERM) models which optimize the empirical objective.
More recently, Gao et al. (2019); Bhatia et al. (2018); Arora et al. (2017) describe proposals that
optimize the population objective. To summarize the approaches succinctly, if we are satisfied with
identifying the top 1 component of CCA, effective schemes are available by utilizing either extensions
of the Oja’s rule Oja (1982) to generalized eigenvalue problem Bhatia et al. (2018) or the alternating
SVRG algorithm Gao et al. (2019)). Otherwise, a stochastic approach must make use of an explicit
whitening operation which involves a cost of d3 for each iteration Arora et al. (2017).

Observation. Most approaches either directly optimize (1) or instead a reparametrized or regularized
form Ge et al. (2016); Allen-Zhu & Li (2016); Arora et al. (2017). Often, the search space for U and
V corresponds to the entire Rd×k (ignoring the constraints for the moment). But if the formulation
could be cast in a form which involved approximately writing U and V as a product of several
matrices with nicer properties, we may obtain specialized routines which are tailored to exploit those
properties. Such a reformulation is not difficult to derive – where the matrices used to express U and
V can be identified as objects that live in well studied geometric spaces. Then, utilizing the geometry
of the space and borrowing relevant tools from differential geometry leads to an efficient approximate
algorithm for top-k CCA which optimizes the population objective in a streaming fashion.

Contributions. (a) First, we re-parameterize the top-k CCA problem as an optimization problem on
specific matrix manifolds, and show that it is equivalent to the original formulation in equation 1.
(b) Informed by the geometry of the manifold, we derive stochastic gradient descent algorithms for
solving the re-parameterized problem with O(d2k) cost per iteration and provide convergence rate
guarantees. (c) This analysis provides a direct mechanism to obtain an upper bound on the number of
iterations needed to guarantee an ε error w.r.t. the population objective for the CCA problem. (d) The
algorithm works in a streaming manner so it easily scales to large datasets and we do not need to
assume access to the full dataset at the outset. (e) We present empirical evidence for both the standard
CCA model and the DeepCCA setting Andrew et al. (2013), describing advantages and limitations.

2 STOCHASTIC CCA: REFORMULATION, ALGORITHM AND ANALYSIS

The formulation of Stochastic CCA and the subsequent optimization scheme will seek to utilize
the geometry of the feasible set for computational gains. Specifically, we will use the following
manifolds (please see Absil et al. (2007) for more details):

(a) Stiefel: St(p, n). The manifold consists of n× p, with p < n, column orthonormal matrices, i.e.,
St(p, n) =

{
X ∈ Rn×p|XTX = Ip

}
.

(b) Grassmanian: Gr(p, n). The manifold consists of p-dimensional subspaces in Rn, with p < n.
(c) Rotations: SO(n). the manifold/group consists of n × n special orthogonal matrices, i.e.,

SO(n) =
{
X ∈ Rn×n|XTX = XXT = In, det(X) = 1

}
.

We summarize certain geometric properties/operations for these manifolds in the Appendix but have
been leveraged in recent works for other problems also Li et al. (2020); Rezende et al. (2020).

Let us recall the objective function for CCA as given in (1). We denote X ∈ RN×dx as the matrix
consisting of the samples {xi} drawn from a zero mean random variable X ∼ X and Y ∈ RN×dy

denotes the matrix consisting of samples {yi} drawn from a zero mean random variable Y ∼ Y . For
notational and formulation simplicity, we assume that dx = dy = d in the remainder of the paper
although the results hold for general dx and dy .

Let CX , CY be the covariance matrices of X, Y. Also, let CXY be the cross-correlation matrix
between X and Y. Then, we can write the CCA objective as

max
U,V

F = trace
(
UTCXY V

)
subject to UTCXU = Ik V TCY V = Ik (2)
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Here, U ∈ Rd×k (V ∈ Rd×k) is the matrix consisting of {uj} ({vj}) , where ({uj} , {vj}) are the
canonical directions. The constraints in equation 2 are called whitening constraints.

Let us define matrices Ũ , Ṽ ∈ Rd×k which lie on the Stiefel manifold, St(k, d). Also, let Su, Sv ∈
Rk×k denote upper triangular matrices and Qu, Qv ∈ SO(k). We can rewrite the above equation
and the constraint as follows.

A Reformulation for CCA

max
Ũ,Ṽ ,Su,Sv,Qu,Qv

U=ŨQuSu; V=Ṽ QvSv

F̃ = trace
(
UTCXY V

)
(3a)

subject to UTCXU = Ik; V TCY V = Ik (3b)

Ũ , Ṽ ∈ St(k, d); Qu, Qv ∈ SO(k); Su, Sv is upper triangular

Here, we will maximize (3a) with respect to Ũ , Ṽ , Su, Sv , Qu, and Qv satisfying equation 3b.

Main adjustment from (2) to (3): In (2), while U and V should decorrelateCX andCY respectively,
the optimization/search is unrestricted and treats them as arbitrary matrices. In contrast, equation 3
additionally decomposes U and V as U = ŨQuSu and V = Ṽ QvSv with the components as
structured matrices. Hence, the optimization is regularized.

The above adjustment raises two questions: (i) does there exist a non-empty feasible solution set for
(3)? (ii) if a solution to (3) can be found (which we will describe later), how “good” is this solution
for the CCA objective problem, i.e., for (2)?

Existence of a feasible solution: We need to evaluate if the constraints in (3b) can be satis-
fied at all. Observe that by using Ũ to be the top-k principal directions of X , Su to be the
1/
√

top-k eigen values of CX and Qu to be any orthogonal matrix, we can easily satisfy the “whiten-
ing constraint” and hence ŨQuSu is a feasible solution of U in (3) and similarly for V . From this
starting point, we can optimize the objective while ensuring that we maintain feasibility.

Is the solution for equation 3 a good approximation for equation 2?: We can show that under
some assumptions, the estimator for canonical correlation, i.e., solution of equation 3, is consistent,
i.e., solves equation 2. We will state this formally shortly.

Before characterizing the properties of a solution for equation 3, we first provide some additional
intuition behind equation 3 and describe how it helps computationally.

Intuition behind the decomposition U = ŨQuSu: A key observation is the following. Recall that
by performing principal component analysis (PCA), the resultant projection matrix will exactly satisfy
the decorrelation condition needed for the “whitening constraint” in equation 2 (projection matrix
consists of the eigen-vectors of XTX). A natural question to ask is: Can we utilize streaming PCA
algorithm to help us obtain an efficient streaming CCA algorithm? Let us assume that our estimate for
canonical correlation directions, i.e., solutions of equation 3, lies in the principal subspace calculated
above. If so, we can use the decomposition U = ŨAu (analogously for V ), where Ũ contains the
principal directions, i.e., ∈ St(k, d) and Au is a full rank k × k matrix containing the coefficients
of the span. But maintaining the full rank constraint during optimization is hard, so we further
decompose Au into Au = QuSu with Qu ∈ SO(k); Su is upper triangular. Additionally, we ensure
the diagonal of Su to be non-zero to maintain full-rank of Su. During optimization, we can maintain
the non-zero diagonal entries by optimizing the log of the diagonal entries instead.

Why equation 3 helps? First, we note that CCA seeks to maximize the total correlation under the
constraint that different components are decorrelated. The difficult part in the optimization is to ensure
decorrelation, which leads to a higher complexity in existing streaming CCA algorithms. On the
contrary, in equation 3, we separate equation 2 into finding the PCs and finding the linear coefficients
for the span of principal directions. Then, by utilizing an efficient streaming PCA algorithm, a
lower complexity can be achieved. We will defer describing the specific details of the optimization
itself until the next sub-section. First, we will show formally why substituting equation 2 with
equation 3a–equation 3b is sensible under some assumptions.
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2.1 HOW TO USE THE REFORMULATION IN EQUATION 3?
We first start by stating some mild assumptions needed for the analysis.

Assumptions: (a) The random variables X ∼ N (0,Σx) and Y ∼ N (0,Σy) with Σx � cId and
Σy � cId for some c > 0. (b) The samples X and Y drawn from X and Y respectively have zero
mean. (c) For a given k ≤ d, Σx and Σy have non-zero top-k eigen values.

A high-level solution to optimize F̃ in equation 3: Recall the following scheme which we briefly
summarized earlier.

(a) Initialize Ũ , Ṽ ∈ St(k, d) as the top-k eigen vectors of CX = (1/N)XTX and CY =
(1/N)Y TY respectively; Initialize Qu and Qv to be random SO(k) matrices;

(b) Set Su and Sv to be diagonal matrices with the diagonal entries to be the square root of
the inverse of the top-k eigen values (to satisfy upper-triangular property);

Observe that with this initialization, the constraints in equation 3b are satisfied. With
a feasible solution for U and V in hand, we may optimize equation 3a while satisfying
equation 3b. The specific details of how this is done is not critical at this point as long as we
assume that a suitable numerical optimization scheme exists and can be implemented.

With the component matrices, we can construct the solution as U = ŨQuSu and V = Ṽ QvSv .

Why the solution makes sense? We now show how the presented solution, assuming access to an
effective numerical procedure, approximates the CCA problem presented in equation 2. We formally
state the result in the following theorem with a sketch of proof (appendix includes the full proof) by
first stating the following proposition and a definition.

Definition 1. A random variable X is called sub-Gaussian if the norm given by ‖X‖? :=
inf {d ≥ 0|EX [exp (trace(XTX)/d2)] ≤ 2} is finite. Let U ∈ Rd×k, then XU is sub-Gaussian Ver-
shynin (2017).

Proposition 1 (Reiß et al. (2020)). Let X be a random variable which follows a sub-Gaussian
distribution. Let X̂ be the approximation of X ∈ RN×d (samples drawn from X ) with the top-k
principal vectors. Let C̃X be the covariance of X̂ . Also, assume that λi is the ith eigen value of
CX for i = 1, · · · , d− 1 and λi ≥ λi+1 for all i. Then, the PCA reconstruction error, denoted by
Ek = ‖X − X̂‖ (in the Frobenius norm sense) can be upper bounded as follows

Ek ≤ min

(√
2k‖∆‖2,

2‖∆‖22
λk − λk+1

)
, where ∆ = CX − C̃X .

The aforementioned proposition suggests that the error between the data matrix X and the recon-
structed data matrix X̂ using the top-k principal vectors is bounded.

Recall from (2) and (3) that the value of the CCA objective is denoted by F and F̃ . The following
theorem states that we can bound the error, E = ‖F − F̃‖ (proof is in the Appendix). The proof
includes upper-boundingE by the reconstruction error of the data projected on the principal directions
using Prop. 1.

Theorem 1. Using the hypothesis and assumptions above, the approximation error E = ‖F − F̃‖ is
bounded and goes to zero while the whitening constraints in equation 3b are satisfied.

Now, the only unresolved issue is an optimization scheme for equation 3a that keeps the constraints
in equation 3b satisfied by leveraging the geometry of the feasible set.

2.2 HOW TO NUMERICALLY OPTIMIZE (3A) SATISFYING CONSTRAINTS IN (3B)?

Overview. We now describe how to maximize the formulation in equation 3a–equation 3b with
respect to Ũ , Ṽ , Qu, Qv, Su and Sv. We will first compute top-k principal vectors to get Ũ and Ṽ .
Then, we will use a gradient update rule to solve for Qu, Qv, Su and Sv to improve the objective.
Since all these matrices are “structured”, care must be taken to ensure that the matrices remain
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on their respective manifolds – which is where the geometry of the manifolds will offer desirable
properties. We re-purpose a Riemannian stochastic gradient descent (RSGD) to do this, so call
our algorithm RSG+. Of course, more sophisticated Riemannian optimization techniques can be
substituted in. For instance, different Riemannian optimization methods are available in Absil et al.
(2007) and optimization schemes for many manifolds are offered in PyManOpt Boumal et al. (2014).

The algorithm block is presented in Algorithm 1 (a direct implementable block for the algo-
rithm including the expression for gradients is presented in the Appendix A.3). Let F̃pri =

trace
(
UTCXU)

)
+ trace

(
V TCY V )

)
be the contribution from the principal directions which we

used to ensure the “whitening constraint”. Let F̃can = trace
(
UTCXY V

)
be the contribution from

the canonical correlation directions. The algorithm consists of four main blocks denoted by different
colors, namely (a) the Red block deals with gradient calculation of the objective function where we
calculate the top-k principal vectors (denoted by F̃pri) with respect to Ũ , Ṽ ; (b) the Green block
describes calculation of the gradient corresponding to the canonical directions (denoted by F̃can) with
respect to Ũ , Ṽ , Su, Sv, Qu and Qv; (c) the Gray block combines the gradient computation from
both F̃pri and F̃can with respect to unknowns Ũ , Ṽ , Su, Sv , Qu and Qv; and finally (d) the Blue block
performs a batch update of the canonical directions F̃can using Riemannian gradient updates.

Gradient calculations. The gradient update for Ũ , Ṽ is divided into two parts (a) The (Red block)
gradient updates the “principal” directions (denoted by ∇Ũ F̃pri and ∇Ṽ F̃pri), which is specifically
designed to satisfy the whitening constraint. Since this requires updating the principal subspaces,
so, the gradient descent needs to proceed on the manifold of subspaces, i.e., on the Grassmannian.
(b) The (green block) gradient from the objective function in equation 3, is denoted by ∇Ũ F̃can and
∇Ṽ F̃can. In order to ensure that the Riemannian gradient update for Ũ and Ṽ stays on the manifold
St(k, d), we need to make sure that the gradients, i.e.,∇Ũ F̃can and∇Ṽ F̃can lies in the tangent space
of St(k, d). In order to do that, we need to first calculate the Euclidean gradient and then project on
to the tangent space of St(k, d).

The gradient updates for Qu, Qv, Su, Sv are given in the green block, denoted by∇Qu
F̃can,∇Qv

F̃can,
∇Su F̃can and ∇Sv F̃can. Note that unlike the previous step, this gradient only has components from
canonical correlation computation. As before, this step requires first computing the Euclidean gradient
and then projecting on to the tangent space of the underlying Riemannian manifolds involved, i.e.,
SO(k) and the space of upper triangular matrices.

Finally, we get the gradient to update the canonical directions by combining the gradients which is
shown in gray block. With these gradients we can perform a batch update as shown in the blue block.
Using convergence results presented next in Propositions 2–3, this scheme can be shown (under some
assumptions) to approximately optimize the CCA objective in equation 2.

We can now move to the convergence properties of the algorithm. We present two results stating the
asymptotic proof of convergence for top-k principal vectors and canonical directions in the algorithm.

Proposition 2 (Chakraborty et al. (2020)). (Asymptotically) If the samples, X , are drawn from a
Gaussian distribution, then the gradient update rule presented in Step 5 in Algorithm 1 returns an
orthonormal basis – the top-k principal vectors of the covariance matrix CX .

Proposition 3. (Bonnabel (2013)) Consider a connected Riemannian manifoldM with injectivity
radius bounded from below by I > 0. Assume that the sequence of step sizes (γl) satisfy the condition
(a)
∑
γ2
l < ∞ (b)

∑
γl = ∞. Suppose {Al} lie in a compact set K ⊂ M. We also suppose that

∃D > 0 such that, gAl

(
∇Al

F̃ ,∇Al
F̃
)
≤ D. Then ∇Al

F̃ → 0 and l→∞.

Notice that in our problem, the manifold M can be Gr(p, n), St(p, n) or SO(p). Hence all the
assumptions in Proposition 3 are satisfied if we guarantee the step sizes satisfy the aforementioned
condition. One example of the step sizes that satisfies the property is γl = 1

l+1 .

2.3 CONVERGENCE RATE AND COMPLEXITY OF THE RSG+ ALGORITHM

In this section, we describe the convergence rate and complexity of the algorithm proposed in
Algorithm 1. Observe that the key component of Algorithm 1 is a Riemannian gradient update. Let
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At be the generic entity needed to be updated in the algorithm using the Riemannian gradient update
At+1 = ExpAt

(
−γt∇At F̃

)
, where γt is the step size at time step t. Also assume {At} ⊂ M for

a Riemannian manifoldM. The following proposition states that under certain assumptions, the
Riemannian gradient update has a convergence rate of O

(
1
t

)
.

Proposition 4. (Nemirovski et al. (2009); Bécigneul & Ganea (2018)) Let {At} lie inside a geodesic
ball of radius less than the minimum of the injectivity radius and the strong convexity radius of
M. AssumeM to be a geodesically complete Riemannian manifold with sectional curvature lower
bounded by κ ≤ 0. Moreover, assume that the step size {γt} diverges and the squared step size

converges. Then, the Riemannian gradient descent update given by At+1 = ExpAt

(
−γt∇At

F̃
)

with a bounded ∇At
F̃ , i.e., ‖∇At

F̃‖ ≤ C <∞ for some C ≥ 0, converges in the rate of O
(

1
t

)
.

All Riemannian manifolds we used, i.e., Gr(k, d), St(k, d) and SO(k) are geodesically complete,
and these manifolds have non-negative sectional curvatures, i.e., lower bounded by κ = 0. Now,
as long as the Riemannian updates lie inside the geodesic ball of radius less than the minimum of
injectivity and convexity radius, the convergence rate for RGD applies in our setting.

Running time. To evaluate time complexity, we must look at the main compute-heavy steps needed.
The basic modules are Exp and Exp−1 maps for St(k, d), Gr(k, d) and SO(k) manifolds (see Table
4 in the appendix). Observe that the complexity of these modules is influenced by the complexity of
svd needed for the Exp map for the St and Gr manifolds. Our algorithm involves structured matrices
of size d× k and k× k, so any matrix operation should not exceed a cost of O(max(d2k, k3)), since
in general d � k. Specifically, the most expensive calculation is SVD of matrices of size d × k,
which is O(d2k), see Golub & Reinsch (1971). All other calculations are dominated by this term.

3 EXPERIMENTS

We first evaluate RSG+ for extracting top-k canonical components on three benchmark datasets and
show that it performs favorably compared with Arora et al. (2017). Then, we show that RSG+ can also
fits into feature learning in DeepCCA Andrew et al. (2013), and can scale to large feature dimensions
where the non-stochastic method fails to. Finally we show that RSG+ can be used to improve fairness
of deep neural networks without needing labels of protected attributes during training.

Algorithm 1: Riemannian SGD based algorithm (RSG+) to compute canonical directions

Input: X ∈ RN×dx , Y ∈ RN×dy , k > 0
Output: U ∈ Rdx×k, V ∈ Rdy×k

1 Initialize Ũ , Ṽ , Qu, Qv, Su, Sv; Partition X,Y into batches of size B. Batch jth denoted by Xj and Yj ;
2 for j ∈

{
1, · · · , bN

B
c
}

do

3

Gradient for top-k principal vectors: calculating∇Ũ F̃pri,∇Ṽ F̃pri

1. Partition Xj (Yj) into L (L = bB
k
c) blocks of size dx × k (dy × k);

2. Let the lth block be denoted by Zx
l (Zy

l );
3. Orthogonalize each block and let the orthogonalized block be denoted by Ẑx

l (Ẑy
l );

4. Let the subspace spanned by each Ẑx
l (and Ẑy

l ) be Ẑx

l ∈ Gr(k, dx) (and Ẑy

l ∈ Gr(k, dy));
5. Update∇Ũ F̃pri and∇Ṽ F̃pri based on Ẑx

l and Ẑy

l respectively.

4

Gradient from equation 3: calculating∇Ũ F̃can,∇Ṽ F̃can,∇Qu F̃can,∇Qv F̃can,∇Su F̃can,∇Sv F̃can

Calculation of the Riemannian gradients of Ũ , Ṽ , Qu, Qv , Su and Sv from equation 3, i.e., objective
from CCA.

5

Gradient to update canonical directions: calculating∇AF̃ where, A ∈ {Ũ , Ṽ , Qu, Qv, Su, Sv}
The final gradients of Ũ and Ṽ is a combination of gradient from objective for principal vectors and CCA;
On the other hand, the gradients for Qu, Qv, Su, Sv is from only CCA objective;

6

Batch update of canonical directions
A = ExpA

(
−γj∇AF̃

)
where, A is a generic entity: A ∈ {Ũ , Ṽ , Qu, Qv, Su, Sv};

7 end
8 U = ŨQuSu and V = Ṽ QvSv;

6
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3.1 CCA ON FIXED DATASETS

Datasets and baseline. We conduct experiments on three benchmark datasets (MNIST LeCun et al.
(2010), Mediamill Snoek et al. (2006) and CIFAR-10 Krizhevsky (2009)) to evaluate the performance
of RSG+ to extract top-k canonical components. To our best knowledge, Arora et al. (2017) is the
only previous work which stochastically optimizes the population objective in a streaming fashion
and can extract top-k components, so we compare our RSG+ with the matrix stochastic gradient
(MSG) method proposed in Arora et al. (2017) (There are two methods proposed in Arora et al.
(2017) and we choose MSG because it performs better in the experiments of Arora et al. (2017)). The
details about the three datasets and how we process them are as follows:

MNIST LeCun et al. (2010): MNIST contains grey-scale images of size 28 × 28. We use its full
training set containing 60K images. Every image is split into left/right half, which are used as the two
views. Mediamill Snoek et al. (2006): Mediamill contains around 25.8K paired features of videos
and corresponding commentary of dimension 120, 101 respectively. CIFAR-10 Krizhevsky (2009):
CIFAR-10 contains 60K 32× 32 color images. Like MNIST, we split the images into left/right half
and use them as two views.

Evaluation metric. We choose to use Proportion of Correlations Captured (PCC) which is widely
used Ma et al. (2015); Ge et al. (2016), partly due to its efficiency, especially for relatively large
datasets. Let Û ∈ Rdx×k, V̂ ∈ Rdy×k denote the estimated subspaces returned by RSG+, and
U∗ ∈ Rdx×k, V ∗ ∈ Rdy×k denote the true canonical subspaces (all for top-k). The PCC is defined
as PCC = TCC(XÛ,Y V̂ )

TCC(XU∗,Y V ∗) , where TCC is the sum of canonical correlations between two matrices.

Performance. See A.4 for the implementation deails. The performance in terms of PCC as a function
of # of seen samples (coming in a streaming way) are shown in Fig. 1, and the runtime is reported in
A.5 . Our RSG+ captures more correlation than MSG Arora et al. (2017) while being 5− 10 times
faster. One case where our RSG+ underperform Arora et al. (2017) is when the top-k eigenvalues are
dominated by the top-l eigenvalues with l < k (Fig. 1b): on Mediamill dataset, the top-4 eigenvalues
of the covariance matrix in view 1 are: 8.61, 2.99, 1.15, 0.37. The first eigenvalue is dominantly large
compared with the rest and our RSG+ performs better for k = 1 and worse than Arora et al. (2017)
for k = 2, 4. We also plot the runtime of RSG+ under different data dimension (set dx = dy = d)
and number of total samples sampled from joint gaussian distribution in A.5.

We implemented the method from Yger et al. (2012) and conduct experiments on the three datasets
above. The results are shown in Table 1. We tune the step size between [0.0001, 0.1] and β = 0.99
as used in their paper. On MNIST and MEDIAMILL, the method performs comparably with ours
except k = 4 case on MNIST where it does not converge well. Since this algorithms also has a
d3 complexity, the runtime is 100× more than ours on MNIST and 20× more on Mediamill. On
CIFAR10, we fail to find a suitable step size for convergence.

3.2 CCA FOR DEEP FEATURE LEARNING

Background and motivation. A deep neural network (DNN) extension of CCA was proposed by
Andrew et al. (2013) and has become popular in the multi-view representation learning tasks. The
idea is to learn a deep neural network as the mapping from original data space to a latent space where
the canonical correlations are maximized. We refer the reader to Andrew et al. (2013) for details of
the task. Since deep neural networks are usually trained using SGD on mini-batches, this requires
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Figure 1: Performance on three datasets in terms of PCC as a function of # of seen samples.
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getting estimate of CCA objective at every iteration in a streaming fashion, thus our RSG+ can be a
natural choice here. We conduct experiments on a noisy version of MNIST dataset to evaluate RSG+.

Table 1: Results of Yger et al. (2012) (on CIFAR-10, our imple-
mentation of Yger et al. (2012) faces convergence issues).

MNIST Mediamill
Performance k = 1 k = 2 k = 4 k = 1 k = 2 k = 4
PCC 0.93 0.81 0.53 0.55 0.61 0.51
Time (s) 575.88 536.46 540.91 41.89 28.66 28.76

Dataset. We follow Wang et al.
(2015a) to construct a noisy ver-
sion of MNIST: View 1 is a ran-
domly sampled image which is
first rescaled to [0, 1] and then
rotated by a random angle from
[−π4 ,

π
4 ]. View 2 is randomly sampled from the same class as view 1. Then we add independent

uniform noise from [0, 1] to each pixel. Finally the image is truncated into [0, 1] to form the view 2.

Table 2: Results of feature learning on MNIST.
N/A means fails to yield a result on our hardware.

Accuracy(%) d = 100 d = 500 d = 1000
DeepCCA 80.57 N/A N/A
Ours 79.79 84.09 86.39

Implementation details. We use a simple
2-layer MLP with ReLU nonlinearity, where
the hidden dimension in the middle is 512
and the output feature dimension is d ∈
{100, 500, 1000}. After the network is trained
on the CCA objective, we use a linear Support
Vector Machine (SVM) to measure classification accuracy on output latent features. Andrew et al.
(2013) uses the closed form CCA objective on the current batch directly, which costs O(d3) memory
and time for every iteration.

Performance. Table 2 shows that we get similar performance when d = 100 and can scale to large
latent dimensions d = 1000 while the batch method Andrew et al. (2013) encounters numerical
difficulty on our GPU resources and Pytorch Paszke et al. (2019) platform in performing eigen-
decomposition of d× d matrix when d = 500, and becomes difficult if d is larger than 1000.

3.3 CCA FOR FAIRNESS

Table 3: Fairness results on CelebA. We applied
CCA on three different layers in Resnet-18 respec-
tively. See A.8 for positions of conv 0, 1, 2.

Accuracy(%) DEO(%) DDP(%)
Unconstrained 76.3 22.3 4.8
Ours-conv0 76.5 17.4 1.4
Ours-conv1 77.7 15.3 3.2
Ours-conv2 75.9 22.0 2.8

Background and motivation. Fairness is be-
coming an important issue to consider in the
design of learning algorithms. A common strat-
egy to make an algorithm fair is to remove the
influence of one/more protected attributes when
training the models, see Lokhande et al. (2020).
Most methods assume that the labels of pro-
tected attributes are known during training but
this may not always be possible. CCA enables considering a slightly different setting, where we may
not have per-sample protected attributes which may be sensitive or hard to obtain for third-parties
Price & Cohen (2019). On the other hand, we assume that a model trained to predict the protected
attribute labels has been trained and is provided. For example, if the protected attribute is gender,
we only assume that a well trained classifier which is trained to predict gender from the samples is
available rather than sample-wise gender values themselves. We next demonstrate that fairness of the
model, using standard measures, can be improved via constraints on correlation values from CCA.

Dataset. CelebA Wang et al. (2015b) consists of 200K celebrity face images from the internet. There
are up to 40 labels, each of which is binary-valued. Here, we follow Lokhande et al. (2020) to focus
on the attactiveness attribute (which we want to train a classifier to predict) and the gender is treated
as “protected” since it may lead to an unfair classifier according to Lokhande et al. (2020).

Method. Our strategy is inspired by Morcos et al. (2018) which showed that canonical correlations
can reveal the similarity in neural networks: when two networks (same architecture) are trained using
different labels/schemes for example, canonical correlations can indicate how similar their features
are. Our observation is the following. Consider a classifier that is trained on gender (the protected
attribute), and another classifier that is trained on attractiveness, if the features extracted by the latter
model share a high similarity with the one trained to predict gender, then it is more likely that the
latter model is influenced by features in the image pertinent to gender, which will lead to an unfairly
biased trained model. We show that by imposing a loss on the canonical correlation between the
network being trained (but we lack per-sample protected attribute information) and a well trained
classifier pre-trained on the protected attributes, we can get a more fair model. This may enable
training fairer models in settings which would otherwise be difficult.
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Implementation details. To simulate the case where we only have a pretrained network on protected
attributes, we train a Resnet-18 He et al. (2016) on gender attribute, and when we train the classifier
to predict attractiveness, we add a loss using the canonical correlations between these two networks
on intermediate layers: Ltotal = Lcross-entropy + LCCA where the first term is the standard cross entropy
term and the second term is the canonical correlation. See A.7 for more details of training/evaluation.

Results. We choose two commonly used error metrics for fairness: difference in Equality of
Opportunity Hardt et al. (2016) (DEO), and difference in Demographic Parity Yao & Huang (2017)
(DDP). See appendix A.6 for more detailed explaination of the two metrics. We conduct experiments
by applying the canonical correlation loss on three different layers in Resnet-18. In Table 3, we can
see that applying canonical correlation loss generally improves the DEO and DDP metrics (lower is
better) over the standard model (trained using cross entropy loss only). Specifically, applying the loss
on early layers like conv0 and conv1 gets better performance than applying at a relatively late layer
like conv2. Another promising aspect of our approach is that is can easily handle the case where
the protected attribute is a continuous variable (as long as a well trained regression network on the
protected attribute is given) while other methods like Lokhande et al. (2020); Zhang et al. (2018)
need to first discretize the variable and then enforce constraints which can be much more involved.

4 RELATED WORK

Stochastic CCA: There has been much interest in designing scalable and provable algorithms for
CCA: Ma et al. (2015) proposed the first stochastic algorithm for CCA, while only local convergence
is proven for non-stochastic version. Wang et al. (2016) designed algorithm which uses alternating
SVRG combined with shift-and-invert pre-conditioning, with global convergence. These stochastic
methods, together with Ge et al. (2016) Allen-Zhu & Li (2016), which reduce CCA problem to
generalized eigenvalue problem and solve it by performing efficient power method, all belongs to
the methods that try to solve empirical CCA problem, it can be seen as ERM approxiamtion of the
priginal population objective, which requires solving numerical optimization of the empirical CCA
objective on a fixed data set. These methods usually assume the access to the full dataset in the
beginning, which is not very suitable for many practical applications where data tend to come in a
streaming way. Recently, there are increasingly interest in considering population CCA problem
Arora et al. (2017) Gao et al. (2019). The main difficulty in population setting is we have limited
knowledge about the objective unless we know the distribution of X and Y. Arora et al. (2017)
handles this problem by deriving an estimation of gradient of population objecitve whose error can
be properly bounded so that applying proximal gradient to a convex relexed objective will provably
converge. Gao et al. (2019) provides tightened analysis of the time complexity of the algorithm in
Wang et al. (2016), and provides sample complexity under certain distribution. The problem we are
trying to solve in this work is the same as that in Arora et al. (2017); Gao et al. (2019): to optimize
the population objective of CCA in a streaming fashion.
Riemannian Optimization: Riemannian optimization is a generalization of standard Euclidean
optimization methods to smooth manifolds, which takes the following form: Given f :M→ R,
solve minx∈M f(x), whereM is a Riemannian manifold. One advantage is that it provides a nice
way to express many constrained optimization problems as unconstrained problems. Applications
include matrix and tensor factorization Ishteva et al. (2011), Tan et al. (2014), PCA Edelman
et al. (1998), CCA Yger et al. (2012), and so on. Yger et al. (2012) rewrites CCA formulation
as Riemannian optimization on Stiefel manifold. In our work, we further explore the ability of
Riemannian optimization framework, decomposing the linear space spanned by canonical vectors
into products of several matrices which lie in several different Riemannian manifolds.

5 CONCLUSIONS

In this work, we presented a stochastic approach (RSG+) for the CCA model based on the observation
that the solution of CCA can be decomposed into a product of matrices which lie on certain structured
spaces. This affords specialized numerical schemes and makes the optimization more efficient. The
optimization is based on Riemannian stochastic gradient descent and we provide a proof for its O( 1

t )

convergence rate with O(d2k) time complexity per iteration. In experimental evaluations, we find
that our RSG+ behaves favorably relative to the baseline stochastic CCA method in capturing the
correlation in the datasets. We also show the use of RSG+ in the DeepCCA setting showing feasibility
when scaling to large dimensions as well as in an interesting use case in training fair models.
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A APPENDIX

A.1 A BRIEF REVIEW OF RELEVANT DIFFERENTIAL GEOMETRY CONCEPTS

To make the paper self-contained, we briefly review certain differential geometry concepts. We only
include a condensed description – needed for our algorithm and analysis – and refer the interested
reader to Boothby (1986) for a comprehensive and rigorous treatment of the topic.

Figure 2: Schematic description of an exemplar
manifold (M) and the visual illustration of Exp and
Exp−1 map.

Riemannian Manifold: A Riemannian manifold,
M, (of dimension m) is defined as a (smooth) topo-
logical space which is locally diffeomorphic to the
Euclidean space Rm. Additionally,M is equipped
with a Riemannian metric g which can be defined
as gX : TXM× TXM→ R, where TXM is the
tangent space at X ofM, see Fig. 2.

If X ∈ M, the Riemannian Exponential map at
X , denoted by ExpX : TXM → M is defined
as γ(1) where γ : [0, 1] → M. We can find γ by solving the following differential equation:
γ(0) = X, (∀t0 ∈ [0, 1])dγdt

∣∣∣
t=t0

= U. In general ExpX is not invertible but the inverse Exp−1
X :

U ⊂ M → TXM is defined only if U = Br(X), where r is called the injectivity radius Boothby
(1986) ofM. This concept will be useful to define the mechanics of gradient descent on the manifold.

In our reformulation, we will shortly make use of the following manifolds, specifically, when
decomposing U and V into a product of several matrices. (a) St(p, n): the manifold consists of n× p
column orthonormal matrices (b) Gr(p, n): the manifold consists of p-dimensional subspaces in Rn

(c) SO(n), the manifold/group consists of n×n special orthogonal matrices, i.e., space of orthogonal
matrices with determinant 1.

Differential Geometry of SO(n): SO(n) is a compact Riemannian manifold, hence by the Hopf-
Rinow theorem, it is also a geodesically complete manifold Helgason (2001). Its geometry is well
understood and we recall a few relevant concepts here and refer the reader to Helgason (2001) for
details. SO(n) has a Lie group structure and the corresponding Lie algebra, so(n), is defined as,
so(n) = {W ∈ Rn×n|WT = −W}. In other words, so(n) (the set of Left invariant vector fields
with associated Lie bracket) is the set of n×n anti-symmetric matrices. The Lie bracket, [, ], operator
on so(n) is defined as the commutator, i.e., for U, V ∈ so(n), [U, V ] = UV − V U . Now, we
can define a Riemannian metric on SO(n) as follows: 〈U, V 〉X = trace

(
UTV

)
where, U, V ∈

TX(SO(n)), X ∈ SO(n). Note that, it can be shown that this is a bi-invariant Riemannian metric.
Under this bi-invariant metric, now we define the Riemannian exponential and inverse exponential
map as follows. Let, X,Y ∈ SO(n), U ∈ TX(SO(n)). Then, Exp−1

X (Y ) = X log(XTY ) and
ExpX(U) = X exp(XTU) where, exp, log are the matrix exponential and logarithm respectively.

Differential Geometry of the Stiefel manifold: The set of all full column rank (n× p) dimensional
real matrices form a Stiefel manifold, St(p, n), where n ≥ p. A compact Stiefel manifold is
the set of all column orthonormal real matrices. When p < n, St(p, n) can be identified with
SO(n)/SO(n− p). Note that, when we consider the quotient space, SO(n)/SO(n− p), we assume
that SO(n−p) ' F (SO(n−p)) is a subgroup of SO(n), where, F : SO(n−p)→ SO(n) defined

by X 7→
[
Ip 0
0 X

]
is an isomorphism from SO(n− p) to F (SO(n− p)).

Differential Geometry of the Grassmannian Gr(p, n): The Grassmann manifold (or the Grass-
mannian) is defined as the set of all p-dimensional linear subspaces in Rn and is denoted by Gr(p, n),
where p ∈ Z+, n ∈ Z+, n ≥ p. Grassmannian is a symmetric space and can be identified with the
quotient space SO(n)/S (O(p)×O(n− p)), where S (O(p)×O(n− p)) is the set of all n × n
matrices whose top left p × p and bottom right n − p × n − p submatrices are orthogonal and all
other entries are 0, and overall the determinant is 1. A point X ∈ Gr(p, n) can be specified by a basis,
X . We say that X = Col(X) if X is a basis of X , where Col(.) is the column span operator. It is
easy to see that the general linear group GL(p) acts isometrically, freely and properly on St(p, n).
Moreover, Gr(p, n) can be identified with the quotient space St(p, n)/GL(p). Hence, the projection
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map Π : St(p, n)→ Gr(p, n) is a Riemannian submersion, where Π(X) , Col(X). Moreover, the
triplet (St(p, n),Π,Gr(p, n)) is a fiber bundle.

At every point X ∈ St(p, n), we can define the vertical space, VX ⊂ TXSt(p, n) to be Ker(Π∗X).
Further, given gSt, we define the horizontal space, HX to be the gSt-orthogonal complement of
VX . Now, from the theory of principal bundles, for every vector field Ũ on Gr(p, n), we define
the horizontal lift of Ũ to be the unique vector field U on St(p, n) for which UX ∈ HX and
Π∗XUX = ŨΠ(X), for all X ∈ St(p, n). As, Π is a Riemannian submersion, the isomorphism
Π∗X |HX

: HX → TΠ(X)Gr(p, n) is an isometry from (HX , gSt
X) to (TΠ(X)Gr(p, n), gGr

Π(X)). So,
gGr

Π(X) is defined as:

gGr
Π(X)(ŨΠ(X), ṼΠ(X)) = gSt

X(UX , VX) = trace((XTX)−1UTXVX) (4)

where, Ũ , Ṽ ∈ TΠ(X)Gr(p, n) and Π∗XUX = ŨΠ(X), Π∗XVX = ṼΠ(X), UX ∈ HX and VX ∈ HX .

We covered the exponential map and the Riemannian metric above, and their explicit formulation for
manifolds listed above is provided for easy reference in Table 4.

gX (U, V ) ExpX (U) Exp−1
X (Y )

St(p, n) Kaneko et al. (2012) trace
(
UTV

)
Ũ Ṽ T , (Y −X)−X(Y −X)TX

ŨSṼ T = svd(X + U)

Gr(p, n) Absil et al. (2004) trace
(

Π−1
∗ (U)

T
Π−1
∗ (V )

)
Û V̂ T , Ȳ

(
X̄T Ȳ

)−1 − X̄ ,

Û ŜV̂ T = svd(X̄ + U) X = Π(X̄), Y = Π(Ȳ )
SO(n) Subbarao & Meer (2009) trace

(
XTUXTV

)
Xexpm

(
XTU

)
X logm

(
XTY

)
Table 4: Explicit forms for some operations we need. Π(X) returns X’s column space; Π∗ is Π’s differential.

A.2 PROOF OF THEOREM 1

We first restate the assumptions from section 3.1:

Assumptions: (a) The random variables X ∼ N (0,Σx) and Y ∼ N (0,Σy) with Σx � cId and
Σy � cId for some c > 0. (b) The samples X and Y drawn from X and Y respectively have zero
mean. (c) For a given k ≤ d, Σx and Σy have non-zero top-k eigen values.

Let F be the trace value solution for Eq. (2), and F̃ be the trace value solution for Eqs. equation 3a,
equation 3b, we next restate Theorem 1 and give its proof:

Theorem. Under the assumptions and notations above, the approximation error E = ‖F − F̃‖ is
bounded and goes to zero while the whitening constraints in equation 3b are satisfied.

Proof. Let Qu, Su, Qv, Sv be the solutions for Eqs. equation 3a and equation 3b, Ũ , Ṽ be matrices
consisting of top-k eigen vectors of (1/N)XTX and (1/N)Y TY respectively, U, V be solutions for
equation 2. Let X̃u = XŨQuSu and Ỹv = Y Ṽ QvSv. Also let Xu = XU and Yv = Y V . Observe
that mean of Xu, Yv, X̃u and Ỹv are zero. Moreover the sample covariance of Xu and Yv are given by
UTCXU and V TCY V respectively. Thus by the constraint in equation 2, XT

uXu = Ik and Y Tv Yv =
Ik. Let these covariance matrices be denoted by C(Xu) and C(Yv) respectively. Analogously
the sample covariance of X̃u and Ỹv are given by STuQ

T
u Ũ

TCX ŨQuSu and STv Q
T
v Ṽ

TCY ŨQvSv
respectively. Let these covariance matrices be denoted by C(X̃u) and C(Ỹv) respectively.

Using Def. 1, we know Xu, Xv , X̃u and Ỹv follow sub-Gaussian distributions.

Let F = trace
(
UTCXY V

)
which can be rewritten as F = trace

(
XT
u Yv

)
. Moreover, let F̃ =

trace
(
STuQ

T
u Ũ

TCXY Ṽ QvSv

)
which similarly can be rewritten by F̃ = trace

(
X̃T
u Ỹv

)
.

Consider the approximation error between the objective functions as E = |F − F̃ |. We can rewrite
E = |trace

(
XT
u Yv

)
− trace

(
X̃T
u Ỹv

)
|. Due to von Neumann’s trace inequality and Cauchy–Schwarz
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inequality, we have

E = |trace
(
X̃T
u Ỹv −XT

u Yv

)
|

≤ |trace
((

X̃u −Xu

)T (
Ỹv − Yv

))
| (using Von Neumann’s trace inequality)

≤
∑
i

σi(X̃u −Xu)σi(Ỹv − Yv)

≤ ‖
(
X̃u −Xu

)
‖F ‖

(
Ỹv − Yv

)
‖F (using Cauchy-Scwartz’s inequality) (A.1)

where σi(A) denote the i th singular value of matrix A and ‖ • ‖F denotes the Frobenius norm.

Now, using Proposition 1, we get

‖
(
X̃u −Xu

)
‖F ≤ min

(√
2k‖∆x‖2,

2‖∆x‖22
λxk − λxk+1

)
‖
(
Ỹv − Yv

)
‖F ≤ min

(√
2k‖∆y‖2,

2‖∆y‖22
λyk − λ

y
k+1

)
(A.2)

where, ∆x = C(Xu)− C(X̃u), ∆y = C(Yv)− C(Ỹv). Here λxs and λys are the eigen values of
C(Xu) and C(Yv) respectively. Now, assume that C(Xu) = Ik and C(Yv) = Ik as Xu and Yv are
solutions of Eq. equation 2. Furthermore assume λxk − λxk+1 ≥ Λ and λyk − λ

y
k+1 ≥ Λ for some

Λ > 0. Then, we can rewrite Eq. equation A.1 as

E ≤ min

(
√

2k‖Ik − C(X̃u)‖2,
2‖Ik − C(X̃u)‖22

Λ

)
min

(
√

2k‖Ik − C(Ỹv)‖2,
2‖Ik − C(Ỹv)‖22

Λ

)

And as C(X̃u) → Ik or C(Ỹv) → Ik, E → 0. Observe that, the limiting conditions for C(X̃u)

and C(Ỹv) can be satisfied by the “whitening” constraint. In other words, as C(Xu) = Ik and
C(Yv) = Ik, C(X̃u) and C(Ỹv) converge to C(Xu) and C(Yv), the approximation error goes to
zero.

A.3 RSG+ ALGORITHM

Here we show our algorithm with more details about the gradients in every step in Alg.2.

A.4 IMPLEMENTATION DETAILS OF CCA ON FIXED DATASET

Implementation details. On all three benchmark datasets, we only passed the data once for both
our RSG+ and MSG Arora et al. (2017) and we use the code from Arora et al. (2017) to produce
MSG results. We conducted experiments on different dimensions of target space: k = 1, 2, 4. The
choice of k is motivated by the fact that the spectrum of the datasets decays quickly. Since our RSG+
processes data in small blocks, we let data come in mini-batches (mini-batch size was set to 100).

A.5 RUNTIME OF RSG+ AND BASELINE METHODS

The runtime comparison of RSG+ and MSG is reported in Table 5. Our algorithm is 5–10 times
faster.

We also plot the runtime of our algorithm under different data dimension (set dx = dy = d) and
number of total samples sampled from joint gaussian distribution in Fig. 3.

A.6 ERROR METRICS FOR FAIRNESS

Equality of Opportunity (EO) Hardt et al. (2016): A classifier h is said to satisfy EO if the
prediction is independent of the protected attribute s (in our experiment s is a binary variable where
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Algorithm 2: Riemannian SGD based algorithm (RSG+) to compute canonical directions

Input: X ∈ RN×dx , Y ∈ RN×dy , k > 0
Output: U ∈ Rdx×k, V ∈ Rdy×k

1 Initialize Ũ , Ṽ , Qu, Qv, Su, Sv ;
2 Partition data X,Y into batches of size B. Let jth batch be denoted by Xj and Yj ;
3 for j ∈

{
1, · · · , bN

B
c
}

do

4

Gradient for top-k principal vectors: calculating∇Ũ F̃pri,∇Ṽ F̃pri

1. Partition Xj (Yj) into L (L = bB
k
c) blocks of size dx × k (dy × k);

2. Let the lth block be denoted by Zx
l (Zy

l );
3. Orthogonalize each block and let the orthogonalized block be denoted by Ẑx

l (Ẑy
l );

4. Let the subspace spanned by each Ẑx
l (and Ẑy

l ) be Ẑx

l ∈ Gr(k, dx) (and Ẑy

l ∈ Gr(k, dy));

∇Ũ F̃pri = −
∑
l

Exp−1

Ũ

(
Ẑx

l

)
∇Ṽ F̃pri = −

∑
l

Exp−1

Ṽ

(
Ẑy

l

)
(5)

5

Gradient from equation 3: calculating∇Ũ F̃can,∇Ṽ F̃can,∇Qu F̃can,∇Qv F̃can,∇Su F̃can,∇Sv F̃can

∇Ũ F̃can = ∂F̃

∂Ũ
− Ũ ∂F̃

∂Ũ

T
Ũ ∇Ṽ F̃can = ∂F̃

∂Ṽ
− Ṽ ∂F̃

∂Ṽ

T
Ṽ ;

∇Qu F̃can = ∂F̃
∂Qu
− ∂F̃

∂Qu

T
∇Qv F̃can = ∂F̃

∂Qv
− ∂F̃

∂Qv

T
;

∇Su F̃can = Upper
(

∂F̃
∂Su

)
∇Sv F̃can = Upper

(
∂F̃
∂Sv

)
;

Here, Upper returns the upper triangular matrix of the input matrix and ∂F̃

∂Ũ
, ∂F̃

∂Ṽ
, ∂F̃
∂Qu

, ∂F̃
∂Qv

, ∂F̃
∂Su

, ∂F̃
∂Sv

give the Euclidean gradients. For completeness, the closed form expression of the gradients is,

∂F̃

∂Ũ
= −CXY Ṽ QvSvQ

T
uS

T
u

∂F̃

∂Qu
= −ŨTCXY Ṽ QvSvS

T
u

∂F̃

∂Su
= −QT

u Ũ
TCXY Ṽ QvSv

∂F̃

∂Ṽ
= −CY X ŨQuSuQ

T
v S

T
v

∂F̃

∂Qv
= −Ṽ TCY X ŨQuSuS

T
v

∂F̃

∂Sv
= −ST

uQ
T
u Ũ

TCXY Ṽ Qv

(6)

6

Gradient to update canonical directions
∇Ũ F̃ = ∇Ũ F̃pri +∇Ũ F̃can ∇Ṽ F̃ = ∇Ṽ F̃pri +∇Ṽ F̃can;
∇X F̃ = ∇X F̃can where, X is a generic entity: X ∈ {Qu, Qv, Su, Sv};

7

Batch update of canonical directions
A = ExpA

(
−γj∇AF̃

)
where, A is a generic entity: A ∈ {Ũ , Ṽ , Qu, Qv, Su, Sv};

8 end
9 U = ŨQuSu and V = Ṽ QvSv;
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Figure 3: Runtime of RSG+ under different data dimensions and size of datasets.
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Table 5: Wallclock runtime of one pass through the data of our RSG+ and MSG on MNIST, Mediamill
and CIFAR (average of 5 runs).

MNIST Mediamill CIFAR
Time (s) k = 1 k = 2 k = 4 k = 1 k = 2 k = 4 k = 1 k = 2 k = 4
RSG+ (Ours) 4.16 4.24 4.71 1.89 1.60 1.44 14.80 17.22 22.10
MSG 35.32 42.09 49.17 11.59 14.21 17.34 80.21 100.80 106.55

s = 1 stands for Male and s = 0 stands for Female) for classification label y ∈ {0, 1}. We use the
difference of false negative rate (conditioned on y = 1) across two groups identified by protected
attribute s as the error metric, and we denote it as DEO.

Demographic Parity (DP) Yao & Huang (2017): A classifier h satisfies DP if the likelihodd of
making a misclassification among the positive predictions of the classifier is independent of the
protected attribute s. We denote the difference of demographic parity between two groups identified
by the protected attribute as DDP.

A.7 IMPLEMENTATION DETAILS OF FAIRNESS EXPERIMENTS

Implementation details. The network is trained for 20 epochs with learning rate 0.01 and batch
size 256. We follow Donini et al. (2018) to use NVP (novel validation procedure) to evaluate our
result: first we search for hyperparameters that achieves the highest classification score and then
report the performance of the model which gets minimum fairness error metrics with accuracy within
the highest 90% accuracies. When we apply our RSG+ on certain layers, we first use randomized
projection to project the feature into 1k dimension, and then extract top-10 canonical components for
training. Similar to our previous experiments on DeepCCA, the batch method does not scale to 1k
dimension.

A.8 RESNET-18 ARCHITECTURE AND POSITION OF CONV-0,1,2 IN TABLE 3

The Resnet-18 contains a first convolutional layer followed by normalization, nonlinear activation,
and max pooling. Then it has four residual blocks, followed by average polling and a fully connected
layer. We denote the position after the first convolutional layer as conv0, the position after the first
residual block as conv1 and the position after the second residual block as conv2. We choose early
layers since late layers close to the final fully connected layer will have feature that is more directly
relevant to the classification variable (attractiveness in this case).
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