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Abstract

It is challenging to guide neural network (NN) learning with prior knowledge.1

In contrast, many known properties, such as spatial smoothness or seasonality,2

are straightforward to model by choosing an appropriate kernel in a Gaussian3

process (GP). Many deep learning applications could be enhanced by modeling4

such known properties. For example, convolutional neural networks (CNNs) are5

frequently used in remote sensing, which is subject to strong seasonal effects. We6

propose to blend the strengths of deep learning and the clear modeling capabilities7

of GPs by using a composite kernel that combines a kernel implicitly defined by a8

neural network with a second kernel function chosen to model known properties9

(e.g., seasonality). Then, we approximate the resultant GP by combining a deep10

network and an efficient mapping based on the Nyström approximation, which we11

call Implicit Composite Kernel (ICK). ICK is flexible and can be used to include12

prior information in neural networks in many applications. We demonstrate the13

strength of our framework by showing its superior performance and flexibility14

on both synthetic and real-world data sets. The code is available at: https:15

//anonymous.4open.science/r/ICK_NNGP-17C5/.16

1 Introduction17

In complex regression tasks, input data often contains multiple sources of information. These sources18

can be presented in both high-dimensional (e.g. images, audios, texts, etc.) and low-dimensional19

(e.g. timestamps, spatial locations, etc.) forms. A common approach to learn from high-dimensional20

information is to use neural networks (NNs) [21, 33], as NNs are powerful enough to capture the21

relationship between complex high-dimensional data and target variables of interest. In many areas,22

NNs are standard practice, such as the dominance of Convolutional Neural Networks (CNNs) for23

image analysis [26, 61, 62]. In contrast, for low-dimensional information, we usually have some24

prior knowledge on how the information relates to the predictions. As a concrete example, consider25

a remote sensing problem where we predict ground measurements from satellite imagery with26

associated timestamps. A priori, we expect the ground measurements to vary periodically with27

respect to time between summer and winter due to seasonal effects. We would typically use a CNN28

to capture the complex relationship between the imagery and the ground measurements. In this case,29

we want to guide the learning of the CNN with our prior knowledge about the seasonality. This is30

challenging because knowledge represented in NNs pertains mainly to correlation between network31

units instead of quantifiable statements [36].32

Conversely, Gaussian processes (GPs) have been used historically to incorporate relevant prior beliefs33

by specifying the appropriate form of its kernel function (or covariance function) [2, 54]. One34

approach to modeling multiple sources of information is to assign a relevant kernel function to each35

source of information respectively and combine them through addition or multiplication, resulting in a36
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composite kernel function [14]. This formulation means that specifying a kernel to match prior beliefs37

on one source of information is straightforward. Such composite kernel learning techniques are38

extensively used in many application areas such as multi-media data [40], neuroimaging [60], spatial39

data analysis, and environmental data analysis [28, 44]. In view of the clear modeling capabilities of40

GP, it is desirable to examine how a NN could be imbued with the same modeling ease.41

In recent years, researchers have come up with a variety of methods to incorporate prior knowledge42

into NNs. These efforts can be broken into many categories, such as those that add prior information43

through loss terms like physics-informed NNs [32, 41]. Here, we focus on the major category of those44

methods that build integrated models of NNs and GPs with various structures [50, 57, 58]. Related45

to our proposed methodology, Pearce et al. [43] exploited the fact that a Bayesian neural network46

(BNN) approximates a GP to construct additive and multiplicative kernels, but they were limited47

to specific predefined kernels. Matsubara et al. [38] then resolved this limitation by constructing48

priors of BNN parameters based on the ridgelet transform and its dual, but they did not explicitly49

show how their approach works for data with multiple sources of information. To our knowledge,50

none of these existing approaches allows a modeler to choose any appropriate kernel of known prior51

information from multiple sources. We address this limitation by presenting a simple yet novel52

Implicit Composite Kernel (ICK) framework, which processes high-dimensional information using a53

kernel implicitly defined by a neural network and low-dimensional information using a chosen kernel54

function. The low-dimensional kernels are mapped into the neural network framework to create a55

straightforward and simple-to-learn implementation. Our key results and contributions are:56

• We analytically show our ICK framework, under reasonable assumptions, is approximately57

equivalent to a Gaussian process regression (GPR) model with a composite kernel a priori.58

• We demonstrate that our ICK framework yields better performance on both prediction and59

forecasting tasks even with very limited data.60

• We compare to joint deep learning models, such as a neural network-random forest joint61

model, to show that ICK can flexibly capture the patterns of the low-dimensional information62

without deliberately designing a pre-processing procedure or complex NN structures.63

Based on these contributions, we believe ICK will be useful in the context of learning from complex64

hybrid data with prior knowledge, especially in the field of remote sensing and spatial statistics.65

2 Related Work66

Equivalence between NNs and GPs The equivalence between GPs and randomly initialized single-67

layer NNs with infinite width was first shown by Neal [42]. With the development of modern deep68

learning, researchers further extended this relationship to deep networks [34, 39] and convolutional69

neural networks (CNNs) [17]. This relationship is crucial for proving the resemblance between GPR70

and our ICK framework, which will be discussed in Section 4.1.71

NNs with prior knowledge As mentioned before, one approach to equip NNs with prior knowledge72

is to modify the loss function. For example, Lagaris et al. [32] solved differential equations (DEs)73

using NNs by setting the loss to be a function whose derivative satisfies the DE conditions. Another74

approach is to build integrated models of NNs and GPs. For example, Wilson et al. [58] implemented75

a regression network with GP priors over latent variables and made inference by approximating76

the posterior using Variational Bayes or sampling from the posterior using Gibbs sampling scheme.77

Garnelo et al. [16] introduced a class of neural latent variable models called Neural Processes (NPs)78

which are capable of learning efficiently from the data and adapting rapidly to new observations. Zhu79

et al. [10] proposed NeuralEF which can accurately approximately kernel functions by using a series80

of objective functions parameterized by NNs under the principle of eigen-decomposition.81

GP with composite kernels Composite kernel GPs are widely used in both machine learning82

[14, 54] and geostatistical modeling [9, 18]. GPR in geostatistical modeling is also known as kriging83

[27, 31], which serves as a surrogate model to replace expensive function evaluations. The inputs for84

a composite GP are usually low-dimensional (e.g. spatial distance) as GPs do not scale well with the85

number of samples for high-dimensional inputs [4, 5]. To overcome this issue, Pearce et al. [43] and86

Matsubara et al. [38] developed BNN analogue for composite GPs. Similar to these studies, our ICK87

framework can also be viewed as a simulation for composite GPs.88
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Approximation methods for GP For large data sets, approximation methods are needed as exact89

kernel learning and inference scales O(N3). Nyström low-rank matrix approximation [12, 53] and90

Random Fourier Features [45, 46] are two of the most commonly used methods. A common technique91

is to choose inducing points as pseudo-inputs to efficiently approximate the full kernel matrix [49, 23].92

Our work is inspired by these approximation techniques and we use them as transformation functions93

to map the kernel matrix into latent space representations in Section 4.2.94

3 Background95

Before elaborating on the details of our ICK framework, we introduce our notation, briefly go over96

the concepts of composite GPs, and describe the relationship between GPs and NNs.97

3.1 Problem Setup98

To formalize the problem, we have a training data set which contains N data points X =99

[xi]
N
i=1 = [x1,x2, ...,xN ]T and the corresponding labels of these data points are y = [yi]

N
i=1 =100

[y1, y2, ..., yN ]T where yi ∈ R. Each data point xi =
{
x

(1)
i , x

(2)
i , ..., x

(M)
i

}
is composed of informa-101

tion from M different sources where the mth source of information of the ith data point is denoted as102

x
(m)
i ∈ RDm . Our goal is to learn a function ŷi = f(xi) :

{
RD1 ,RD2 , ...,RDM

}
→ R which takes103

in a data point xi and outputs a predicted value ŷi.104

3.2 Composite GPs105

A Gaussian process (GP) describes a distribution over functions [54]. A key property of GP is that106

it can be completely defined by a mean function µ(x) and a kernel function K(x,x′). The mean107

function µ(x) is often assumed to be zero for simplicity. In that case, the outcome function is108

f(x) ∼ GP (0,K(x,x′)) . (1)

Any finite subset of these random variables has a multivariate Gaussian distribution with mean 0109

and kernel matrix K whose entries can be calculated as Kij = K(xi,xj). In many situations, the110

full kernel function is built by a composite kernel by combining simple kernels through addition111

Kcomp(x,x′) = K1(x,x′) + K2(x,x′) or multiplication Kcomp(x,x′) = K1(x,x′)K2(x,x′)112

[14]. A useful property that ICK exploits is that K1 and K2 can take different subparts of x as113

their inputs. For example, Kcomp(x,x′) = K1

(
x(1), x(1)′

)
+K2

(
x(2), x(2)′

)
or Kcomp(x,x′) =114

K1

(
x(1), x(1)′

)
K2

(
x(2), x(2)′

)
. Other methods such as functional mapping are also valid if the115

resulting kernel matrix K is positive semidefinite (PSD) for all possible choices of data set X [47].116

3.3 Correspondence between GPs and NNs117

Neal [42] proved that a single-hidden layer network with infinite width is exactly equivalent to a GP118

over data indices i = 1, 2, ..., N under the assumption that the weight and bias parameters of the119

hidden layer are i.i.d. Gaussian with zero mean. Lee et al. [34] and Garriga et al. [17] then extended120

this statement to deep neural networks and convolutional neural networks (CNNs), respectively.121

However, if the width (or the number of channels) of a network is finite, then these results state that122

the network approximately converges to a GP with zero mean as in the following lemma.123

Lemma 1 Let z = fNN
(
x(1)

)
: RD1 → Rp be the latent representation extracted from x(1) where124

p is the dimension of the extracted representation and fNN is a neural network with finite width125

and zero-mean i.i.d. parameters. The kth entry of this representation will approximately follow a126

NN-implied GP127

zk = fNN

(
x(1)

)
k
∼ GPapprox

(
0,KNN

(
x(1), x(1)′

))
. (2)

That is to say, the kth component zk of the representation extracted by the network has zero mean128

Ep(θ(1))
[
z

(1)
ik

]
= 0 for all i = 1, 2, ..., N where θ represents the network parameters. The co-129

variance between z(1)
ik and z(1)

jk for different data indices i, j = 1, 2, ..., N can be approximated as130
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Figure 1: Given data contain-
ing 2 sources of information x(1)

and x(2), we can process the
data using either (Left) a com-
posite Gaussian process regres-
sion (GPR) model or (Right)
our ICK framework where x(1)

is processed with a neural net-
work fNN(·) and x(2) is pro-
cessed with g(·) where g(·) con-
sists of a kernel function K2

and some transformation which
maps the kernel matrix K2 into
the latent space.

cov
(
z

(1)
ik , z

(1)
jk

)
= Ep(θ(1))

[
z

(1)
ik z

(1)
jk

]
≈ KNN

(
x

(1)
i , x

(1)
j

)
where x(1)

i and x(1)
j are the correspond-131

ing inputs for the network and KNN is the kernel function implied by the network.132

4 Implicit Composite Kernel (ICK) Framework133

We show the structure of a composite GPR model and our ICK framework in Figure 1. To make134

the illustration clear, we limit ourselves to data with information from 2 different sources x =135 {
x(1), x(2)

}
where x(1) is high-dimensional and x(2) is low-dimensional (i.e. D1 � D2) with some136

known relationship with the target y. We are inspired by composite GPR, which computes 2 different137

kernel matrices K1 and K2 and then combines them into a single composite kernel matrix Kcomp.138

However, as discussed before, it is more suitable to use a NN to learn from the high dimensional139

information x(1). In our ICK framework, we process x(1) with a NN fNN(·) : RD1 → Rp and x(2)140

with a mapping g(·) : RD2 → Rp which consists of a kernel function K2 followed by a kernel-141

to-latent-space transformation (described in Section 4.2), resulting in two latent representations142

z(1), z(2) ∈ Rp. Then, we make a prediction ŷ by doing an inner product between these two143

representations ŷ = fNN
(
x(1)

)
· g
(
x(2)

)
. Finally, the parameters of both the NN and the kernel144

function are learned via gradient-based optimization methods [3, 30].145

In the sections below, we first analytically show that our ICK framework is approximately equivalent146

to a composite GPR model a priori using a multiplicative kernel between the kernel implicitly defined147

by the NN on x(1) and the chosen kernel on x(2). This theory is used to motivate the model form.148

The model will deviate from the GP solution after learning, but we note that recent work suggests149

that the predictions from a trained NN may not vary too much from its GP equivalent [34]. We then150

show how we implement the kernel-to-latent-space transformation in detail. Here, we note that we151

apply ICK for multiplicative kernels but note that an additive kernel may be constructed using the152

methods of Pearce et al. [43].153

4.1 Resemblance between Composite GPR and ICK154

We will analytically prove the following theorem for data with information from 2 different sources155

x =
{
x(1), x(2)

}
for clarity, and we note this theorem can be straightforwardly extended to M > 2.156

Theorem 1 Let fNN : RD1 → Rp be a NN function with random weights and g : RD2 → Rp be a157

mapping function, and define an inner product ŷ between the representations z(1) = fNN
(
x(1)

)
and158

z(2) = g
(
x(2)

)
. Then this inner product approximately follows a composite GPR model159

ŷ = fICK

(
x(1), x(2)

)
= fNN

(
x(1)

)
· g
(
x(2)

)
∼ GPapprox

(
0,K

(1)
NN K

(2)
)
, (3)

if g includes the following deterministic kernel-to-latent-space transformation160

K(2)
(
x

(2)
i , x

(2)
j

)
≈ z

(2)
i

T
z

(2)
j = g

(
x

(2)
i

)T
g
(
x

(2)
j

)
, (4)
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where K(1)
NN is a NN-implied kernel and K(2) is any valid kernel of our choice.161

To prove Theorem 1, we first make the following assumption.162

Assumption 1 For latent representations z(m)
i and z

(m)
j extracted from different data points xi and163

xj where i 6= j and m ∈ {1, 2}, the interactions between different entries of z(m)
i and z

(m)
j can be164

reasonably ignored. In other words, let θ(m) be the parameters of the network or the kernel function165

which takes in x(m) and outputs z(m), we have Ep(θ(m))

[
z

(m)
ik z

(m)
jl

]
= 0 for all k 6= l.166

With Assumption 1 and Lemma 1, let Θ =
{
θ(1), θ(2)

}
represent the parameters of the ICK frame-167

work, we can calculate the covariance between ŷi and ŷj for different data indices i 6= j as follows168

cov(ŷi, ŷj) = Ep(Θ)[ŷiŷj ]− Ep(Θ)[ŷi]Ep(Θ)[ŷj ] (5)

= Ep(Θ)

[(∑p
k=1 z

(1)
ik z

(2)
ik

)(∑p
k=1 z

(1)
jk z

(2)
jk

)]
(6)

= Ep(Θ)

[∑p
k=1

∑p
l=1 z

(1)
ik z

(1)
jl z

(2)
ik z

(2)
jl

]
(7)

= Ep(Θ)

[∑p
k=1 z

(1)
ik z

(1)
jk z

(2)
ik z

(2)
jk

]
(8)

=
∑p
k=1 Ep(θ(1))

[
z

(1)
ik z

(1)
jk

]
Ep(θ(2))

[
z

(2)
ik z

(2)
jk

]
(9)

≈ K(1)
NN

(
x

(1)
i , x

(1)
j

)∑p
k=1 Ep(θ(2))

[
z

(2)
ik z

(2)
jk

]
. (10)

Here, from Equation 5 to Equation 6, we use the statement Ep(θ(1))
[
z

(1)
ik

]
= 0 from Lemma 1 and the169

independence between θ(1) and θ(2), which leads to Ep(Θ)[ŷi] = Ep(Θ)[ŷj ] = 0. From Equation 7 to170

Equation 8, we get rid of all the cross terms under Assumption 1. From Equation 8 to Equation 9, we171

again make use of the independence between θ(1) and θ(2). From Equation 9 to Equation 10, we use172

the statement Ep(θ(1))
[
z

(1)
ik z

(1)
jk

]
≈ KNN

(
x

(1)
i , x

(1)
j

)
from Lemma 1. If the kernel-to-latent-space173

transformation in g(·) is deterministic, we can remove the expectation sign from the summation term174

in Equation 10 and the covariance can be further expressed as175

cov(ŷi, ŷj) ≈ K(1)
NN

(
x

(1)
i , x

(1)
j

)(
z

(2)
i

T
z

(2)
j

)
= K

(1)
NN

(
x

(1)
i , x

(1)
j

)
K(2)

(
x

(2)
i , x

(2)
j

)
, (11)

which means that ŷ approximately follows a GP with composite kernel Kcomp(xi,xj) =176

K
(1)
NN

(
x

(1)
i , x

(1)
j

)
K(2)

(
x

(2)
i , x

(2)
j

)
a priori. This completes our proof of Theorem 1.177

4.2 Kernel-to-latent-space Transformation178

We now show how we can construct an appropriate mapping g(·) that approximately satisfies the179

assumed form of (4) and is used in the derivation of ICK from (10) to (11). Here we adopt two180

methods, Nyström approximation and Random Fourier Features (RFF), to map the kernel matrix into181

the latent space. Below, we give the formulations and results for the Nyström method, and give the182

methods and results for RFF in Appendix B. According to Yang et al. [59], the Nyström method183

will yield much better performance than RFF if there exists a large gap in the eigen-spectrum of the184

kernel matrix. In our applications, we also observe a large eigen-gap (see details in Appendix C)185

and Nyström method does generalize much better than RFF. We name our framework with Nyström186

method and random Fourier Features ICKy and ICKr, respectively.187

4.2.1 Nyström Method188

The main idea of Nyström method [53] is to approximate the kernel matrix K ∈ RN×N with a much189

smaller low-rank matrix Kq ∈ Rq×q where q � N so both the computational and space complexity190

of kernel learning can be significantly reduced191

K ≈ K̂ = KnqK
−1
q KT

nq. (12)
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The entries of Kq and Knq can be calculated as (Kq)ij = K(x̂i, x̂j), i, j ∈ {1, 2, ..., q} and192

(Knq)ij = K(xi, x̂j), i ∈ {1, 2, ..., N}, j ∈ {1, 2, ..., q}, respectively. x represents the original193

data points and x̂ represents pre-defined inducing points (or pseudo-inputs [49]). In our study, these194

inducing points are chosen by defining an evenly spaced vector over the range of original data points.195

By performing Cholesky decomposition K−1
q = UTU , where U ∈ Rq×q , K̂ is196

K̂ = KnqK
−1
q KT

nq = KnqU
TUKT

nq =
(
UKT

nq

)T (
UKT

nq

)
. (13)

Therefore, if we set the number of inducing points to be q = p, then we can use zi , U
(
KT
np

)
:,i

197

as a kernel-to-latent-space transformation because each element in K approximately satisfies (4)198

as stated in Theorem 1: K (xi, xj) = Kij ≈ K̂ij = zTi zj . Conveniently, modern deep learning199

frameworks can propagate gradients through the Cholesky operation, making it straightforward to200

update the kernel parameters with gradient methods. Note that as we increase the number of inducing201

points p, the approximation error between K and K̂ decreases. However, it is not recommended to202

set p very large as updating the Cholesky decomposition requires O(p3) . The empirical impact of203

p on computational time and performance is shown in Appendix E. In our experiments, only mild204

values of p are necessary and the impact on computational is relatively small.205

5 Experimental Results206

We evaluate ICKy on 3 different data sets: a synthetic data set, a remote sensing data set, and a data207

set obtained from UCI Machine Learning Repository [13]. Note that in all the 3 experiments, our208

ICKy framework only consists of 2 kernels (i.e. M = 2), one NN-implied kernel and one chosen209

kernel function with trainable parameters. To verify that ICKy can work with more than 2 kernels,210

we create another synthetic data set with 3 kernels and show the corresponding results in Appendix211

A. In addition, the experimental results for ICKr is provided in Appendix B. All experiments are212

conducted on a computer cluster equipped with a GeForce RTX 2080 Ti GPU. The implementation213

details of all the experiments in this section are provided in Appendix G.214

5.1 Synthetic Data215

To verify that ICKy can simulate a multiplicative kernel, we create a synthetic data set y ∼216

GP(0,K1K2) containing 3000 data points where x(1) ∈ [0, 1] is the input for the linear kernel217

K1 and x(2) ∈ [0, 2] is the input for the spectral mixture kernel [56] K2 with 2 components. With218

ICKy, we process x(1) with a single-hidden-layer NN and x(2) with a spectral mixture kernel function.219

We evaluate ICKy on both a prediction task (where we first randomly shuffle the data points and do a220

50:50 train-test split) and a forecasting task (where we use only the data points with x(2) < 0.6 for221

training and the rest for testing).222

We then compare ICKy with two models: a plain multi-layer perceptron (MLP) applied to the223

concatenated features and a novel multi-layer perceptron-random forest (MLP-RF) joint model224

employed by Zheng et al. [61] where MLP learns from x(1) and RF learns from x(2). We believe225

MLP-RF serves as a good benchmark model as it is a joint model with similar architecture to our226

ICKy framework. To see how ICKy simulates the spectral mixture kernel, we plot only x(2) against227

the predicted value of y as shown in Figure 2. As can be seen from the figure, in the prediction task228

(top row), plain MLP only captures the linear trend. MLP-RF only captures the mean of the spectral229

mixture components. In contrast, our ICKy framework captures both the mean and the variance of the230

spectral mixture kernel. In the forecasting task (bottom row), ICKy also outperforms plain MLP and231

MLP-RF as it approximately captures the rising trend in the range of x(2) ∈ [0.6, 1]. When x(2) > 1,232

ICKy is unable to confidently extrapolate, so it starts to "fail gracefully," by which we mean that the233

prediction reverts to the mean of the prior (e.g., no observed information case.), just as would be234

expected in a GP. However, we do not evaluate the posterior distribution to get a full sense of the235

posterior uncertainty.236

We also test plain MLP, MLP-RF, and ICKy on the prediction task using different number of training237

samples. As displayed in Figure 3, ICKy yields the smallest error among all the 3 frameworks even238

with very limited data. In addition, to test the robustness of ICKy, we conduct the same experiments239

on another synthetic data set in Appendix D to confirm that ICKy can simulate an additive kernel.240
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Figure 2: Prediction (top row) and forecasting (bottom row) of y ∼ GP(0,K1K2), where x(1) is
input to a linear kernel K1 and x(2) is input to a spectral mixture kernel K2. We plot x(2) against the
predicted y. We show results from a plain MLP (left column), MLP-RF (middle left column), and
ICKy framework (middle right column), and we compare to the true values of y (right column).

5.2 Remote Sensing Data241

Figure 3: Prediction error of plain MLP, MLP-
RF, and ICKy with different amount of train-
ing data generated by y = GP(0,K1K2).

We believe ICKy will be particularly useful for re-242

mote sensing applications. In this experiment, we243

collect remote sensing data from 51 air quality moni-244

toring (AQM) stations located in the National Capital245

Territory (NCT) of Delhi and its satellite cities over246

the period from January 1, 2018 to June 30, 2020 (see247

Appendix F for notes on data availability). Each data248

point x = {x, t} contains 2 sources of information:249

a three-band natural color (red-blue-green) satellite250

image x as the high-dimensional information and251

the corresponding timestamp as the low-dimensional252

information. Note that we convert the timestamps253

into numerical values t (where the day 2018-01-01254

corresponds to t = 0) before feeding them into the255

models. Our goal is to predict the ground-level PM2.5256

concentration ŷ = f(x, t) using both sources of in-257

formation.258

We split the train and test data set based on t. Specifically, we use all the data points with t ≥ 500 for259

testing and the rest for training. As PM2.5 varies with time on a yearly basis, we use an exponential-260

sine-squared kernel with a period of T = 365 (days) to process the low-dimensional information261

t. The satellite images are processed with a CNN. Figure 4 shows the true versus the forecasted262

PM2.5 values by both ICKy and 2 benchmarks: a Convolutional Neural Network-Random Forest263

(CNN-RF) joint model [61, 62] (similar to the MLP-RF model in Section 5.1, where RF learns the264

temporal variation of PM2.5 and CNN captures the spatial variation of PM2.5 from satellite images)265

and a carefully designed CNN-RF model that maps t into two new features, sin(2πt/365) and266

cos(2πt/365), to explicitly model seasonality. As can be seen, ICKy outperforms both benchmarks267

with the highest correlation coefficients and the lowest errors on the forecasting task. Specifically,268

regular CNN-RF joint model fails to forecast PM2.5 as shown in Figure 4a. After including seasonality,269

CNN-RF performs significantly better as shown in Figure 4b, but the forecasted PM2.5 values are still270

less smooth than those from ICKy (Figure 4c) due to the discontinuous nature of the RF regressor271

[6, 19]. We also visualize these results in the form of time series in Appendix F272
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Table 1: Correlation and error statistics of ICKy and other joint deep models with both convolutional
and attention-based architectures on the PM2.5 forecasting task

Spearman R ↑ Pearson R ↑ RMSE ↓ MAE ↓
CNN-RF [61] 0.48 0.32 70.09 54.28
ViT-RF [11] 0.42 0.32 70.58 55.15

Seasonal CNN-RF 0.65 0.73 52.60 39.25
Seasonal ViT-RF 0.66 0.74 49.92 36.22

Seasonal DeepViT-RF [63] 0.68 0.76 48.87 35.32
Seasonal MAE-ViT-RF [22] 0.68 0.76 48.43 34.92

CNN-ICKy 0.70 0.77 47.15 32.84
ViT-ICKy 0.66 0.77 47.17 34.00

DeepViT-ICKy 0.62 0.73 48.68 34.10

We note that the inner product operation in ICK is similar in mathematical structure to attention-based273

mechanisms [51] popular in many deep learning frameworks. Therefore, we compare ICKy with274

4 attention-based benchmarks that we constructured based off of a Vision Transformer (ViT) [11]275

architecture, including ViT-RF, Seasonal ViT-RF, Seasonal DeepViT-RF [63], and Seasonal MAE-276

ViT-RF where ViT is pre-trained by a Masked Autoencoder [22], as displayed in Table 1. These use277

the same RF and sinsusoidal mappings as described previously to input the temporal information into278

the model. We note that we are unaware of Vision Transformers being used in this manner, and that279

all these models represent novel formulations. It can be observed that standard ViT-RF model fails to280

forecast PM2.5 without seasonality incorporated, just as in CNN-RF. After introducing seasonality281

by mapping t into sinusoidal features, ViT-based joint models yield higher correlation and smaller282

error than CNN-RF but still underperform CNN-based ICKy. We also considered using a ViT-based283

architecture for the CNN ICKy, and observed similar performance in these ICKy variants.284

5.3 UCI Machine Learning Repository Data285

To see if our ICKy framework generalizes to other domains, we acquire another data set containing286

the normalized productivity and corresponding features of garment workers from the UCI Machine287

Learning Repository. Imran et al. [1] employed a dense MLP with 2 hidden layers to predict the288

worker productivity with collected features such as date, team number, targeted productivity, etc. To289

test our ICKy framework, we separate out the date and use it as the low-dimensional information.290

The rest of the features (excluding the temporal information) are then concatenated together to291

serve as the high-dimensional information. Observing that the daily averaged worker productivity292

has an approximate monthly trend, we again use an exponential-sine-squared kernel. The network293

architecture of ICKy is the same as that of the two-hidden-layer MLP benchmark. To demonstrate294

the strength of ICKy compared to other methods that equip NNs with GPs, we also add 2 additional295

benchmarks here: a Gaussian Neural Process (GNP) [7] and an Attentive Gaussian Neural Process296

(AGNP) [29]. Based on the results shown in Table 2, ICKy has the best performance when the297

period parameter of the kernel is set to be T = 30 (days) and it outperforms both MLP and NP298

benchmarks by almost one order of magnitude. When we set T = 2 or T = 7, this improvement is299

less significant, which aligns with our initial observation that the daily averaged productivity has a300

monthly seasonal trend. It is also worth noting that the GNP benchmarks here yield larger errors than301

MLPs. A possible explanation is that GNP does not allow explicit assignment of a stationary kernel302

(as the kernel models a posterior covariance) so it is hard for GNP to identify specific patterns in the303

data such as seasonality without being given the pattern a priori.304

Table 2: Prediction error of actual worker productivity on the test data set with ICKy and other
benchmark models (MLPs and NPs)

MSE ↓ (∗10−3) MAE ↓ (∗10−2) MAPE ↓
MLP [1] 20.16 ± 1.26 9.93 ± 0.36 17.30 ± 0.82

Cyclic MLP 20.97 ± 1.98 10.16 ± 0.77 17.48 ± 1.37
GNP [7, 37] 57.25 ± 4.31 19.39 ± 0.94 29.58 ± 1.63
AGNP [29] 43.11 ± 5.95 14.38 ± 0.88 22.59 ± 1.42

ICKy, T = 2 3.43 ± 1.42 4.85 ± 1.00 6.74 ± 1.37
ICKy, T = 7 0.44 ± 0.13 1.43 ± 0.15 2.22 ± 0.21
ICKy, T = 30 0.31 ± 0.09 1.17 ± 0.14 1.79 ± 0.22
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Figure 4: Density plots of the true PM2.5 concentrations against the forecasted PM2.5 concentrations
for t ≥ 500 using (a) a CNN-RF joint model [61, 62], (b) a CNN-RF joint model with seasonality
incorporated, and (c) our ICKy framework

6 Discussion305

Efficiency, Flexibility, and Generalization Compared to exact composite GP models which scale306

O(N3), the training process of our ICK framework is more efficient as it leverages standard back-307

propagation to learn both the paramters of NN and the kernel function. In addition, the network308

architecture of ICK can be very simple, as can be seen in all 3 experiments of ours, which further309

reduces its time and space complexity. Besides efficiency, our ICK framework is more flexible310

compared to other joint models (i.e. BNNs and CNN-RF). To be specific, the BNNs implemented by311

Pearce et al. [43] cannot simulate complicated kernels such as the spectral mixture kernel we use312

in Section 5.1. The CNN-RF joint model implemented by Zheng et al. [61] requires us to carefully313

design the input pre-processing procedure. Also, ICK generalizes well to unseen data even with314

very limited training samples. There is a potential concern that ICKy may run into computational315

challenges when a large number of inducing points are required. This was not a problem in our316

experiments, but in large scale models this could be tackled by considering conjugate gradient317

methods, which have been recently popular in GP inference [15].318

Limitations A major limitation of ICK lies in our method of combining latent representations as the319

nature of inner product (i.e. the effect of multiplying small numbers) may cause vanishing gradient320

problems when we have a large number of sources of information (i.e. M is large). Furthermore,321

this paper only discusses the theoretical relationship between ICK and composite GPR a priori. This322

relationship will not exactly hold true a posteriori, although empirical results [34] and theoretical323

results [24] in slightly different contexts suggest that they may be close. Future work will evaluate324

this gap by exploring Bayesian neural networks and a posteriori properties.325

Broader Impacts We believe our framework is extensively applicable to regression problems in326

many fields of study involving high-dimensional data and multiple sources of information with327

perceptible trends, such as remote sensing, spatial statistics, or clinical diagnosis.328

7 Conclusion329

This paper presents a novel yet surprisingly simple Implicit Composite Kernel (ICK) framework to330

learn from hybrid data containing both high-dimensional information and low-dimensional informa-331

tion with prior knowledge. We first analytically show the resemblance between ICK and composite332

GPR models and then conduct experiments using both synthetic and real-world data. It appears333

that ICK outperforms various benchmark models in our experiments with lowest prediction errors334

and highest correlations even with very limited data. Overall, we show that our ICK framework is335

exceptionally powerful when learning from hybrid data with our prior knowledge incorporated, and336

we hope our work can inspire more future research on joint machine learning models, enhancing their337

performance, efficiency, flexibility, and generalization capability.338
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Figure A1: Scatter plots of the true values of y against the predicted values of y using our ICKy
framework with (a) one source, (b) 2 sources, and (c) 3 sources of information

Figure A2: Given data containing M sources of information x =
{
x(1), x(2), ..., x(M)

}
, we can

process the data using our ICK framework where high-dimensional information (e.g. x(1) in the
figure) is processed using a neural network and low-dimensional information (e.g. x(2) in the figure)
is processed using a kernel function followed by Nyström or RFF transformation.

A ICK with More Than Two Kernels529

Besides the visualization presented in Figure 1, we also show our ICK framework for processing data530

x =
{
x(1), x(2), ..., x(M)

}
with M > 2 sources of information in Figure A2. Here K(2), ...,K(M)531

represent different types of kernels with trainable parameters. The final prediction is calculated by a532

chained inner product of all extracted representations ŷ =
∑p
k=1

∏M
m=1 z

(m)
k .533

To confirm that ICKy can work with more than 2 kernels, we construct another synthetic data set534

containing 3000 data points in total. Each input x =
{
x(1), x(2), x(3)

}
has 3 sources of information.535

The output y is generated by y = x(3) tanh
(
2x(1) cos2

(
πx(2)/50

))
+ ε where ε is a Gaussian noise536

term. We process x(1) with a small single-hidden-layer NN, x(2) with an exponential sine squared537

kernel, and x(3) with a radial-basis function (RBF) kernel. Figure A1 shows the prediction results538

as we progressively add more sources of information into our ICKy framework with corresponding539

kernel functions. It can be observed that ICKy yields both smallest error and highest correlation540
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Figure B1: Scatter plots of the true values of y against the predicted values of y using our ICKr
framework with (a) one source of information, (b) 2 sources of information, and (c) 3 sources of
information. Note that here we use RFF for kernel-to-latent-space transformation.

with information from all 3 different sources. Hence, ICKy works well with the M = 3 case and the541

regression performance is improved as we add in more information related to the target.542

B Random Fourier Features543

B.1 Methodology544

Random Fourier Features (RFF) is another popular approximation method used for kernel learning545

[45]. Unlike the Nyström method which approximates the entire kernel matrix, RFF directly ap-546

proximates the kernel function K using some randomized feature mapping φ : RDm → R2dm such547

that K
(
x

(m)
i , x

(m)
j

)
≈ φ

(
x

(m)
i

)T
φ
(
x

(m)
j

)
. To obtain the feature mapping φ, based on Bochner’s548

theorem, we first compute the Fourier transform p of kernel K549

p(ω) =
1

(2π)Dm

∫ +∞

−∞
e−jω

T δK(δ)dδ, (14)

where δ = x
(m)
i − x(m)

j . Then we draw dm i.i.d. samples ω1, ω2, ..., ωdm from p(ω) and construct550

the feature mapping φ as follows551

φ
(
x(m)

)
≡

d−1/2
m

[
cos
(
ωT1 x

(m)
)
, ..., cos

(
ωTdmx

(m)
)
, sin

(
ωT1 x

(m)
)
, ..., sin

(
ωTdmx

(m)
)]
.

(15)

Since φ
(
x(m)

)
∈ R2dm , we need to set dm = p/2 when using RFF as a kernel-to-latent-space552

transformation. In addition, since RFF involves sampling from a distribution, the kernel parameters553

are thus not directly differentiable and we need to apply a reparameterization trick [35] to learn those554

parameters.555

B.2 Experimental Results556

B.2.1 Synthetic Data557

We use the same toy data set where each data point x =
{
x(1), x(2), x(3)

}
contains 3 sources of558

information as described in Appendix A. Also, we use the same types of kernels as those in ICKy as559

discussed in Appendix A. The only difference here is that we use RFF instead of Nyström method to560

transform the kernel matrix into the latent space in ICKr framework.561

The results are displayed in Figure B1. It can be observed that when we add in only the side562

information x(2) along with the exponential sine squared kernel, both the correlation and the predictive563

performance are improved (though not as good as the results from ICKy as shown in Figure A1).564
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Figure B2: Density plots of the true PM2.5 concentrations against the forecasted PM2.5 concentrations
for t ≥ 500 using our ICK framework with (a) ICKy and (b) ICKr

However, after we further include x(3) with the RBF kernel, we realize that the parameters of ICKr565

become very hard to optimize and it fails to make valid predictions and starts to guess randomly566

around zero.567

B.2.2 Remote Sensing Data568

We also try ICKr on the forecasting task using the remote sensing data (see Section 5.2) and compare569

the results with those from ICKy. Each data point x = {x, t} contains a satellite image x as the570

high-dimensional information and its corresponding timestamp t as the low-dimensional information.571

The satellite images are processed with a two-layer CNN and the timestamps are processed with an572

exponential-sine-squared kernel with a period of T = 365 (days). As can be observed from Figure573

B2, ICKr yields much higher error compared to ICKy.574

C Estimated Kernel Matrix and its Eigen-spectrum575

(a) K true (b) K ICKy (c) |K true −K ICKy|

Figure C1: Visualization of (a) True matrix (b) estimated matrix by our ICKy framework, and (c)
absolute difference between the true and estimated matrix for the spectral mixture kernel

We first examine whether ICKy can retrieve the spectral mixture kernel in the prediction task. After576

fitting the parameters of the spectral mixture kernel in ICKy, we compute the kernel matrix KICKy577

using these learned parameters and compare it with the true kernel matrix K true by calculating the578

absolute difference between them as displayed in Figure C1. As can be observed, KICKy and K true579

are similar and their absolute difference is relatively small, indicating that ICKy can approximately580

retrieve the spectral mixture kernel.581
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Figure C2: Eigenvalues of the kernel matrix
computed from the first 4 batches of training
data

Yang et al. [59] studied the fundamental difference582

between Nyström method and Random Fourier Fea-583

tures (RFF). They conclude that Nyström-method-584

based approaches can yield much better generaliza-585

tion error bound than RFF-based approaches if there586

exists a large gap in the eigen-spectrum of the kernel587

matrix. This phenomenon is mainly caused by how588

these two methods construct their basis functions. In589

particular, the basis functions used by RFF are sam-590

pled from a Gaussian distribution that is independent591

from the training examples, while the basis functions592

used by the Nyström method are sampled from the593

training samples so they are data-dependent. In our594

synthetic data experiments, we train our ICK frame-595

work using a batch size of 50. The eigenvalues of the596

kernel matrices computed from the first 4 batches of597

the synthetic data set are displayed in Figure C2. It598

can be observed that the first few eigenvalues of the599

kernel matrix are much larger than the remaining eigenvalues. Namely, there exists a large gap in the600

eigen-spectrum of the kernel matrix, which helps explain why ICKy has a much better performance601

than ICKr.602
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Figure D1: Prediction (top row) and forecasting (bottom row) of y ∼ GP(0,K1 +K2), where x(1)

is input to a linear kernel K1 and x(2) is input to a spectral mixture kernel K2. Here we only plot
x(2) against the predicted y. We implement 3 types of models: plain MLP (left column), MLP-RF
(middle left column), and our ICKy framework (middle right column), and we compare the results
with the true values of y (right column).

D Simulation of an Additive Kernel603

Figure D2: Prediction error of plain MLP,
MLP-RF, and ICKy with different amount of
training data generated by y ∼ GP(0,K1 +
K2)

While ICK is designed to capture multiplicative ker-604

nels, we evaluated how well it could capture addi-605

tive kernels. We conduct experiments using another606

synthetic data set generated by an additive kernel607

y ∼ GP(0,K1 +K2) with the same training settings.608

As shown in Figure D1, ICKy again outperforms609

plain MLP and MLP-RF in both the prediction and610

the forecasting tasks. Moreover, we again test plain611

MLP, MLP-RF, and ICKy on the prediction task using612

different number of training samples. As displayed613

in Figure D2, ICKy yields the smallest error among614

all the 3 frameworks. Also, the performance gap615

between ICKy and the other 2 benchmark models616

shrink as we feed in more training data. Therefore,617

we conclude ICKy is robust enough to simulate both618

additive and multiplicative kernels.619

E Number of Inducing Points620

As discussed in Section 4.2.1, as we increase the number of inducing points p, we expect the621

approximation error between the true kernel matrix K and the approximated kernel matrix K̂ to622

decrease. Here, we empirically show how the value of p impacts our predictions. In Figure E1a, we623

plot the prediction error of ŷ = fICKy
(
x(1), x(2), x(3)

)
against the number of inducing points using624

the synthetic data generated in Appendix A. As can be observed, the prediction error drops sharply as625

we raise p from a small value (e.g. p = 2). When p is relatively large, increasing p yields smaller626

improvement on the predictions. Additionally, in Figure E1b, we plot the total training time against627

p. The total training time is dependent on how long a single iteration takes and the total number of628

epochs required. We note that once p > 80 the training time is relatively flat, which is due to the629

fact that the total computation in the Cholesky is less than the computation in the neural network.630

Interestingly, it appears that when p is very small, ICKy takes longer to converge due to the need for631

many more epochs. As we increase p, the training time goes down and then goes up again due to the632
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(a) Prediction error (b) Training time

Figure E1: Plots of (a) prediction error and (b) training time of ŷ = fICKy
(
x(1), x(2), x(3)

)
against

the number of inducing points p

computational complexity, i.e. O(p3), of the Cholesky decomposition. Based on these observations,633

we are overly concerned about the computational complexity for reasonable values of p.634

F Visualization of Remote Sensing Data as Time Series635

To better illustrate the results in Section 5.2, we visualize those results in the form of time series. As636

shown in Figure F1, the plain CNN-RF model does not work as it tends to forecast constant PM2.5637

values. In contrast, both the seasonal CNN-RF model and our ICKy framework captures the overall638

trend of the true daily averaged PM2.5 values, but the forecasted values by ICKy are smoother and639

yield smaller error.640

(a) CNN-RF (b) Seasonal CNN-RF (c) ICKy

Figure F1: Time series visualization of the true against the forecasted daily averaged PM2.5 con-
centrations for t ≥ 500 using (a) a CNN-RF joint model [61, 62], (b) a CNN-RF joint model with
seasonality incorporated, and (c) our ICKy framework

G Experimental Details641

G.1 Synthetic Data642

We use the GPytorch package [15] to generate the synthetic data. Before feeding x(1) into MLP, we643

first map x(1) into higher dimension using an unsupervised algorithm called Totally Random Trees644

Embedding [48]. All the MLP structures in this experiment (including those in MLP-RF and ICKy)645

contain one single fully connected (FC) layer of width 1000, which serves as a simple benchmark646

since a one-hidden-layer MLP can only capture linear relationship between the input and output. For647

model training, we optimize a Mean Squared Error (MSE) objective using Adam optimizer [30] with648

a weight decay of 0.1.649
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Table 3: Model architecture and training details for remote sensing data experiment in Section 5.2
Backbone architecture

details
Output FC layers

dimension Optimizer

CNN-RF # Conv blocks = 1, # Channels = 16,
Kernel size = 3, Stride = 1 1000, 512, 512, 1

Adam
β1 = 0.9
β2 = 0.999

ViT-RF
# Transformer blocks = 6,

# Attention heads = 8,
Dropout ratio = 0.1

1000, 512, 512, 1
Adam
β1 = 0.9
β2 = 0.999

DeepViT-RF
# Transformer blocks = 6,

# Attention heads = 8,
Dropout ratio = 0.1

1000, 512, 512, 1
Adam
β1 = 0.9
β2 = 0.999

MAE-ViT-RF

# Transformer blocks = 6,
# Attention heads = 8,
Dropout ratio = 0.1,
Masking ratio = 0.75

1000, 512, 512, 1
Adam
β1 = 0.9
β2 = 0.999

CNN-ICKy # Conv blocks = 1, # Channels = 16,
Kernel size = 3, Stride = 1 1000, 512, p SGD

momentum = 0.9

ViT-ICKy
# Transformer blocks = 6,

# Attention heads = 8,
Dropout ratio = 0.1

1000, 512, p SGD
momentum = 0.9

DeepViT-ICKy
# Transformer blocks = 6,

# Attention heads = 8,
Dropout ratio = 0.1

1000, 512, p SGD
momentum = 0.9

G.2 Remote Sensing Data650

The model architecture and training details are listed in Table 3. Here p denotes the length of latent651

representations z as discussed in Section 4. Note that we use stochastic gradient descent (SGD)652

optimizer with a momentum of 0.9 for ICKy as we realize that SGD helps ICKy find a local minimum653

on the objective more efficiently. We use MSE objective for ICKy and all benchmark models in this654

experiment.655

G.3 UCI Machine Learning Repository Data656

The MLPs (including the MLP part in ICKy) in this experiment share the same structure as the one657

used in [1], which consist of 3 hidden layers of width 128, 32, and 32, respectively. For plain MLP,658

cyclic MLP, and ICKy, we use the mean absolute error (MAE) objective to put less weight on the659

outliers and thus enhance the model performance. For GNP and AGNP, we maximize a biased Monte660

Carlo estimate of the log-likelihood objective as discussed in [37]. All these objectives are optimized661

by an Adam optimizer with β1 = 0.9 and β2 = 0.999.662

H Adapting ICK for Classification663

While regression tasks are the primary motivation for this paper, there are many ways to adapt GPR664

for classification tasks. For example, a binary classification model can be created by using a sigmoid665

[55] or probit link [8] on the output of the GP. Succinctly, given a function f(x) ∼ GP (0,K(x,x′)),666

the binary outcome probability is be given as p(y = 1|f(x)) = σ(f(x)). Likewise, a multiple667

classification model can be constructed by using a multi-output GP (or multiple GPs) and putting668

the outputs through a softmax function [55] or multinomial probit link [20]. This strategy can be669

summarized by calculating C different functions fc(x) ∼ GP (0,K(x,x′)) for c = 1, ..., C, where670

C is the number of classes, and then calculating the class probabilities through a link function,671

p(y|x) = softmax([f1(x), f2(x), ..., fC(x)]).672

This same logic can be used to construct a multiple classification model from ICKy. Succinctly, let673

rc = fNN,c(x
(1)) � z(2)

c , where fNN,c denotes a neural network specific to the cth class and z(2)
c674

represents the Nyström approximation specific to the kernel for the cth class. We note that often in675
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a multi-output case the kernel parameters are shared, and so z(2)
c would be an identical vector for676

each class. Then, the output probabilities for a data sample as p(y|x) = softmax([r1, . . . , rC ]). This677

framework is learned with a cross-entropy loss.678

To provide proof-of-concept of this multiple classification strategy, we implemented this model on a679

version of Rotating MNIST. In this task, a dataset was created by rotating each image in the dataset680

by a uniform random value φ ∈ [0, 2π), thus creating a dataset with 60,000 images each with an681

associated rotation covariate φ. We implemented the above multiple classification model with a682

periodic kernel over the rotation angle. This strategy yielded an accuracy of 92.3% on the validation683

data. This is lower than methods such as spatial transformers [25] that report accuracy greater than684

99%. However, those models explicitly use the fact that the information is simply rotated, whereas685

ICK is modeling a smooth transformation in the prediction function as a function of angle. This686

ICK classification model is much closer in concept to the way Rotating MNIST is used to evaluate687

unsupervised domain adaptation. While the evaluation strategy is different than our random validation688

set, the state-of-the-art accuracy on unsupervised domain adaption is 87.1% [52]. Due to the lack of689

complete and fair comparisons, we are not claiming that ICKy is state-of-the-art for classification, but690

ICKy’s classification model does seem reasonable and viable based upon this result.691

I Generation, Accessibility, and Restrictions of the Data692

The synthetic data y ∼ GP(0,K1K2) in Section 5.1 and y ∼ GP(0,K1 + K2) in Appendix D693

are generated using the GPyTorch package. The remote sensing data in Section 5.2 is downloaded694

using PlanetScope API whose content is protected by copyright and/or other intellectual property695

laws. To access the data on PlanetScope, the purchase of an end-user license is required. When this696

manuscript is accepted, we will provide the codes we used to acquire the data. The UCI machine697

learning repository data we use in Section 5.3 has an open access license, meaning that the data is698

freely available online.699
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