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Abstract
This paper considers stochastic weakly convex
optimization without the standard Lipschitz con-
tinuity assumption. Based on new robust reg-
ularization (stepsize) strategies, we show that a
wide class of stochastic algorithms, including
the stochastic subgradient method, preserve the
O(1/

√
K) convergence rate with constant fail-

ure rate. Our analyses rest on rather weak as-
sumptions: the Lipschitz parameter can be either
bounded by a general growth function of ∥x∥
or locally estimated through independent ran-
dom samples. Numerical experiments demon-
strate the efficiency and robustness of our pro-
posed stepsize policies.

1. Introduction
This paper studies the stochastic optimization problem

min
x∈Rn

ψ(x) := f(x) + ω(x), (1)

where f(x) := Eξ∼Ξ[f(x, ξ)]. Here, f(x, ξ) is a contin-
uous function in x, with ξ being a random sample drawn
from a particular distribution Ξ. The function ω(x) is
lower-semicontinuous, and its proximal mapping is easy to
evaluate. We assume both f(x, ξ) and ω(x) are weakly
convex functions. A function g is defined as λ-weakly con-
vex if g + λ

2 ∥ · ∥2 is convex, for some λ ≥ 0. When λ
is unspecified, g is called weakly convex. Weak convex-
ity has found many important applications, including phase
retrieval, robust PCA, reinforcement learning, and many
others (Duchi and Ruan, 2019; Charisopoulos et al., 2021;
Wang et al., 2023). And recent years witnessed a surge in
interest regarding weakly convex optimization, leading to
a substantial body of work on efficient algorithms with fi-
nite time complexity guarantees (Davis and Drusvyatskiy,
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2019; Davis et al., 2018b; Deng and Gao, 2021; Davis et al.,
2019; Mai and Johansson, 2020). In particular, under the
global Lipschitz continuity assumption, Davis and Drusvy-
atskiy (2019) develop a model-based approach and analyze
the convergence of several stochastic algorithms under a
unified framework.

While this global Lipschitz assumption is valid for many
problems, such as piece-wise linear functions, it can be
overly restrictive. To illustrate, consider the weakly convex
function ψ(x) = |ex + e−x − 3| whose subgradient ψ′(x)
explodes exponentially as ∥x∥ grows (Figure 1). Hence,
treating the Lipschitz constant as any fixed constant in al-
gorithm design can lead to highly unstable iterations and,
potentially, to the algorithm divergence.
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Figure 1: Exponential growth of ψ(x) = |ex + e−x − 3|

To address this issue, a straightforward strategy is to im-
pose an explicit convex compact set constraint, such as
{x : ∥x∥ ≤ B} to address this issue. However, this in-
troduces extra parameter tuning and may lead to a signif-
icantly overestimated Lipschitz constant. The latter phe-
nomenon is evident in the toy example, where the Lipschitz
constant grows exponentially with the domain set’s diame-
ter. One research direction to deal with non-globally Lips-
chitz settings is shifting from standard Euclidean geometry
to Bregman divergence. Lu (2019) shows that when convex
non-Lipschitz functions exhibit “relative” Lipschitz conti-
nuity under a carefully chosen divergence kernel, mirror
descent still obtains the desired sublinear rate of conver-
gence to optimality defined in the sense of Bregman diver-
gence. However, there are trade-offs to consider. Com-
pared to SGD, a mirror descent update is more expensive,
often involving a nontrivial root-finding procedure. Addi-
tionally, choosing the right kernel is a nuanced and critical
task, heavily reliant on an in-depth understanding of the
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subgradient’s growth dynamics (Davis et al., 2018a; Zhang
and He, 2018).

Alternatively, recent works aim to develop new algo-
rithms/analyses under relaxed Lipschitz assumptions. For
example, Asi and Duchi (2019) show that for the stochas-
tic proximal point method, algorithmic dependency on the
global Lipschitz constant can be relaxed to E[∥f ′(x⋆, ξ)∥2],
which only relies on the optimal solution x⋆. Mai and Jo-
hansson (2021) show that, for stochastic convex optimiza-
tion with quadratic growth, subgradient methods incorpo-
rating a clipping stepsize still ensure convergence, even if
the Lipschitz constant exhibits arbitrary growth. In weakly
convex optimization, Li et al. (2023b) shows that when the
Moreau envelope of objective has a bounded level-set, lo-
cal Lipschitz continuity alone is sufficient to ensure conver-
gence of the subgradient method. Nevertheless, extending
their analysis to stochastic optimization remains challeng-
ing. Grimmer (2019) establish the convergence of normal-
ized subgradient in convex optimization without Lipschitz
continuity by considering an upper bound of the form

f(x)− f(x⋆) ≤ G(∥x− x⋆∥) (2)

where G is a growth function that allows fast growth of f .
In (Zhu et al., 2023), the authors propose a relaxed subgra-
dient bound for weakly convex optimization:

E[∥f ′(x, ξ)∥2] ≤ c0 + c1∥x∥, c0, c1 ≥ 0, (3)

which naturally induces a bound on the local Lipschitz-
ness as a function of ∥x∥. Whether SGD still converges
in case of arbitrary non-Lipschitzness, especially those not
conforming to the bounded assumption in (3), remains an
open area of investigation. The primary difficulty in an-
alyzing stochastic optimization without the standard Lip-
schitz assumption stems from stability issues. We con-
sider a stochastic algorithm stable if it produces iterations
in a bounded set with a probability greater than 0. Unlike
the deterministic case, establishing stability in the face of
randomness is not straightforward, especially when deal-
ing with non-convex functions. This challenge motivates
exploring an appropriate definition of non-Lipschitzness
and the development of efficient algorithms for stochastic
weakly convex optimization in this non-standard setting.

1.1. Contributions

This paper provides an affirmative answer to the question

Can we optimize stochastic weakly convex problems
without assuming global Lipschitz continuity?

We show that carefully chosen robust stepsizes can ef-
fectively adapt to arbitrary non-Lipchitzness in stochastic
model-based weakly convex optimization. Our contribu-
tions are as follows:

1) When the Lipschitz constant is not uniformly bounded
above but instead depends on a general growth func-
tion G(·), we design a novel robust adaptive stepsize
strategy such that stochastic weakly convex optimiza-
tion achieves the O(1/

√
K) convergence rate with a

constant failure probability. Our analysis does not
assume any specific form of G, such as those im-
plied by (3). To our knowledge, this is the first re-
sult of stochastic weakly convex optimization for ar-
bitrary non-Lipschitz objectives. Our analysis applies
to a broad class of model-based algorithms (Davis and
Drusvyatskiy, 2019; Deng and Gao, 2021), including
SGD as a special case. Compared to Davis and Drusvy-
atskiy (2019), our analysis relaxes the global Lipschitz
assumption and makes the model-based framework ap-
plicable to a broader range of settings.

2) Even if the growth function G is unknown, we show that
achieving the same convergence guarantee is still pos-
sible. To this end, we introduce a new robust stepsize
based on the concept of “reference Lipschitz continu-
ity”, which allows us to estimate the Lipschitz parame-
ter of a stochastic model function using local samples.
Our algorithm is highly flexible and can be applied to
most weakly convex problems of interest. Moreover,
our analyses can be extended to solving convex stochas-
tic optimization without Lipschitz continuity. A more
detailed discussion is left to Section E.

Model-based Optimization Model-based optimization,
as proposed by (Davis and Drusvyatskiy, 2019), serves as
a general framework for analyzing stochastic weakly con-
vex optimization. This framework has been leveraged by
several papers (Davis et al., 2018a; Chadha et al., 2022;
Deng and Gao, 2021; Gao and Deng, 2024) to obtain con-
vergence rates for a broad class of algorithms. Our analysis
also builds on this framework and extends it to several al-
gorithms.

Other Related Works Adaptive stepsize and gradient
clipping are two essential tools adopted in our algorithm
framework. On the one hand, stepsize selection has been
an important topic in stochastic optimization, and it has
been justified that adaptive stepsize benefits stochastic first-
order methods both in theory and in practice (Duchi et al.,
2011; Kingma and Ba, 2014; Li and Orabona, 2019; Hin-
ton et al., 2012; Defazio and Mishchenko, 2023; Ivgi et al.,
2023; Malitsky and Mishchenko, 2023). On the other hand,
gradient clipping (Zhang et al., 2019) will be employed as a
technique in the paper. In theory, gradient clipping was ini-
tially identified as a tool to solve problems with generalized
Lipschitz smoothness condition (Li et al., 2023a; Xie et al.,
2023; Zhang et al., 2019). Recent works (Gorbunov et al.,
2020; Koloskova et al., 2023) show that gradient clipping
can effectively deal with problems with heavy-tail noise.
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It is also observed that gradient clipping improves the ro-
bustness and stability of SGD (Mai and Johansson, 2020)
in stochastic convex optimization. In our analysis, a gener-
alized version of gradient clipping is developed to alleviate
the instability arising from stochastic noise.

2. Preliminaries
Notations Throughout the paper ∥ ·∥ and ⟨·, ·⟩ denote the
Euclidean inner product and norm. Subdifferential of f is
given by ∂f(x) := {v : f(y) ≥ f(x)+ ⟨v, y−x⟩+o(∥x−
y∥), y → x} and f ′(x) ∈ ∂f(x) is called a subgradient. A
growth function G(·) is a continuous non-decreasing func-
tion mapping from R+ to R+.

Model Function and Model-based Optimization Our
main algorithm will be presented in a “model-based”
fashion, which encompasses several first-order methods,
including the most widely used (proximal) subgradient
method. Model-based optimization (Davis and Drusvy-
atskiy, 2019) contains two components: a stochastic model
function and a stepsize (regularization) parameter. In each
iteration, we can construct a local approximation of f(x)
based on random sample ξk and the current iterate xk. The
stochastic function, denoted by fxk(·, ξk) +ω(x), is called
a model function. Then we take parameter γk and mini-
mize this local approximation under quadratic regulariza-
tion γk

2 ∥x − xk∥2 to obtain the next iterate xk+1. Typical
models include

• (Sub)gradient. Given E[f ′(x, ξ)] = f ′(x) ∈ ∂f(x),

fx(y, ξ) = f(x, ξ) + ⟨f ′(x, ξ), y − x⟩.
• Prox-linear. Given f(x, ξ) = h(c(x, ξ)),

fx(y, ξ) = h(c(x, ξ) + ⟨∇c(x, ξ), y − x⟩).
• Truncated. Given a known lower-bound of model ℓ,

fx(y, ξ) = max{f(x, ξ) + ⟨∇f(x, ξ), y − x⟩, ℓ}.

Algorithm 1 summarizes model-based optimization.

Algorithm 1 Stochastic model-based optimization
Input x1
for k = 1, 2,... do

Sample data ξk and choose regularization γk > 0

xk+1 = argmin
x

{
fxk(x, ξk) + ω(x) + γk

2 ∥x− xk∥2
}
.

(4)

end

We see that 1) model function fx(·, ξ); 2) regularization
parameter γk are two core components for our algorithm

design. Throughout this paper, we show how properly cho-
sen γk improves convergence beyond Lipschitz continuity.
We start by making assumptions.

Envelope Smoothing Our analysis adopts the Moreau
envelope as the potential function for weakly convex op-
timization. Let f be a λ-weakly convex function. Given
ρ > λ, the Moreau envelope and the associated proximal
mapping of f are given by

f1/ρ(x) :=min
y

{
f(y) + ρ

2∥x− y∥2
}

proxf/ρ(x) := argmin
y

{
f(y) + ρ

2∥x− y∥2
}
.

Moreau envelope can be interpreted as a smooth approx-
imation of the original function. f1/ρ(x) is differentiable
with gradient

∇f1/ρ(x) = ρ(x− proxf/ρ(x))

If ∥∇f1/ρ(x)∥ ≤ ε, then x is in the proximity of a near sta-
tionary point proxf/ρ(x). An important observation is that
the existence of f1/ρ(x) relies on weak convexity instead
of Lipschitz continuity of f .

Assumptions. We make the following assumptions.

A1: It is possible to generate i.i.d. samples {ξk}.

A2: ω(x) is κ-weakly convex and Lω-Lipschitz continu-
ous for all x ∈ domω.

A3: Eξ[fx(x, ξ)] = f(x) for all x ∈ domω and

Eξ[fx(y, ξ)− f(y)] ≤ τ
2∥x− y∥2

for all x, y ∈ domω. Moreover, fx(y, ξ) is convex for
all x, y ∈ domω and ξ ∼ Ξ.

A4: ψ1/ρ(x) is lower bounded by −Λ ≤ 0.

A5: The v-level-set of ψ1/ρ(x):

Lv = {x : ψ1/ρ(x) ≤ v}

has a bounded diameter diam(Lv) ≤ Bv <∞.

Remark 1. Given A1 to A3, it follows that f(x) is τ -weakly
convex and ψ(x) is (τ + κ) weakly convex.
Remark 2. In A3, we adopt a convex model function since
all the models considered in this paper are convex. But the
result directly generalizes to weakly convex model func-
tions: for example, if fx(x, ξ) is λ-weakly convex, then

fx(x, ξ) + ω(x)

=
[
fx(x, ξ) +

λ
2 ∥x∥

2
]
+
[
ω(x)− λ

2 ∥x∥
2
]

and we can redefine ω and fx(x, ξ) to push weak convexity
to the proximal term.
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Remark 3. A5 is a key assumption in dealing with non-
Lipschitzness. It implies that by bounding the Moreau en-
velope as the potential function, we can control the Lip-
schitzness as a function of x. Typically, A5 is satisfied
when ψ is coercive (Li et al., 2023b), which is natural in
our non-Lipschitz (e.g., a high-order polynomial) context,
as the function growth is faster than linear. It’s important
to note that non-Lipschitzness can also arise in other cases,
such as in the interpolation setting, which may require dif-
ferent analyses (Li et al., 2023b).

Structure of the Paper The paper is organized as fol-
lows. Section 3 discusses the convergence of weakly con-
vex optimization with the standard Lipschitz condition,
which serves as a benchmark to provide sufficient intu-
ition for the algorithm design in more challenging scenar-
ios. Section 4 and 5 discuss two cases where the standard
Lipschitz condition fails to hold. Section 6 conducts nu-
merical experiments to verify our results.

3. Optimization of Standard Lipschitzness
The results in this section are already available in the lit-
erature (Davis and Drusvyatskiy, 2019), and the goal is to
provide a benchmark result and establish some basic intu-
itions. We assume that

B1: For any x, y and ξ ∼ Ξ,

fx(x, ξ)− fx(y, ξ) ≤ Lf (ξ)∥x− y∥

and E[Lf (ξ)2] ≤ L2
f .

B1 is common in nonsmooth optimization, and the follow-
ing descent property is available.

Lemma 3.1. Let x̂k = proxψ/ρ(x
k). Suppose that A1 to

A3 as well as B1 holds, then given ρ > κ+ τ, γk > ρ,

Ek[ψ1/ρ(x
k+1)] (5)

≤ ψ1/ρ(x
k)− ρ(ρ−τ−κ)

2(γk−κ) ∥x̂k − xk∥2 + 2ρL2
f

(γk−ρ)(γk−κ)

where Ek[·] := E[·|ξ1, . . . , ξk] denotes the conditional ex-
pectation taken over ξ1, . . . , ξk.

γk is generally much larger than the other constants in the
algorithm, and Lemma 3.1 reveals the following relation

Ek[ψ1/ρ(x
k+1)]

≤ ψ1/ρ(x
k)−O(γ−1

k )∥∇ψ1/ρ(x
k)∥2 +O(L2

fγ
−2
k ), (6)

where O(L2
fγ

−2
k ) characterizes the error from both

stochastic noise and nonsmoothness. Taking γk ≡ O(
√
K)

and telescoping Lemma 3.1, we get the convergence result.

Theorem 3.1. Under the same conditions as Lemma 3.1,
if we take γk ≡ ρ+ κ+ α

√
K, then we have

min
1≤k≤K

E[∥∇ψ1/ρ(x
k)∥2]

≤ 2ρ
ρ−τ−κ

[
ρD
K + 1√

K

(
αD + 2ρ

α L
2
f

)]
,

where D = ψ(x1)− infx ψ(x).

Theorem 3.1 is standard in the literature (Davis and
Drusvyatskiy, 2019). One important intuition we want to
establish is that the choice of γk ≡ O(

√
K) is a conse-

quence of the following trade-off: suppose we telescope
over (6) directly, then

1
K

∑K
k=1 O(γ−1

k )E[∥∇ψ1/ρ(x
k)∥2]

≤ O( 1
K ) + 1

K

∑K
k=1 O(L2

fγ
−2
k ).

First, we need large γk, in other words, a conservative
stepsize (large γ), such that the error of potential reduc-
tion O(

∑
k L

1
fγ

−2
k ) is properly bounded. Meanwhile,

large γ also leads to the amount of potential reduction
O(γ−1

k )∥∇ψ1/ρ(x
k)∥2 being small. Finally, the optimal

trade-off is γk ≡ O(
√
K) and an O(1/

√
K) rate of con-

vergence. As we will show in the following sections, with
non-Lipschitzness, the error O(L2

fγ
−2
k ) cannot be bounded

by choosing some constant γk. What we do is adaptively
find suitable and robust γk, to reduce the error. Using A5
and a probabilistic analysis, we achieve this goal without
compromising the convergence rate.

4. Optimization of Generalized Lipschitzness
Before achieving our goal of solving non-Lipschitz weakly
convex optimization problems, we start from a less chal-
lenging case characterized as follows.

C1: For all x, y, z and ξ ∼ Ξ,

fx(y, ξ)− fx(z, ξ) ≤ Lf (ξ)G(∥x∥)∥y − z∥

and E[Lf (ξ)2] ≤ L2
f ; Recall that growth function G is

monotonically increasing.

This assumption implies that our model function is glob-
ally Lipschitz, but the Lipschitz constant has some known
dependency on the norm of the model’s expansion point x.
Our analysis also applies if we can estimate a non-trivial
upper bound of G. But for the brevity of analysis, we take
this upper bound to be G itself. Many real-life applica-
tions have this structure, especially if the source of non-
Lipschitzness is a high-order polynomial.

Example 4.1 (Phase retrieval). Consider

f(x, ξ) = |⟨a, x⟩2 − b|, a ∈ Rn, b ∈ R+.
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The subgradient model

fx(y, ξ) = f(x, ξ) + ⟨f ′(x, ξ), y − x⟩
= f(x, ξ) + ⟨2 · sign(⟨a, x⟩ − b)⟨a, x⟩a, y − x⟩

satisfies fx(y, ξ)− fx(z, ξ) ≤ 2∥a∥2∥x∥ · ∥y − z∥.
Example 4.2 (Subgradient with known growth). SGD cor-
responds to the model function

fx(y, ξ) = f(x, ξ) + ⟨f ′(x, ξ), y − x⟩.

Then, C1 is satisfied if ∥f ′(x, ξ)∥ ≤ Lf (ξ)G(∥x∥). It fol-
lows that E[∥f ′(x, ξ)∥2] ≤ L2

fG2(∥x∥). Particularly, (3)
corresponds to the case of G2(·) being a linear function.

One direct consequence of C1 is that the Lipschitz con-
stant of fx(·, ξ) can go to ∞ when ∥x∥ → ∞. Moreover,
we cannot directly rely on Lipschitzness of f(x). Taking
subgradient update as an example, this implies f ′(x, ξ) can
have a large norm, leading to a higher chance of diver-
gence. From the perspective of convergence analysis, the
error term O(L2

fγ
−2
k ) in (6) becomes hard to bound, and

Lemma 4.1 quantifies this hardness.
Lemma 4.1. Suppose A1 to A3 as well as C1 holds, then
given ρ > κ+ τ, γk > ρ,

Ek[ψ1/ρ(x
k+1)] ≤ ψ1/ρ(x

k)− ρ(ρ−τ−κ)
2(γk−κ) ∥x̂k − xk∥2

+ ρ
2γk(γk−κ) (G(∥x

k∥)Lf + Lω)
2

where γk is independent of ξk.

According to Lemma 4.1, the error of potential reduction
involves the norm of xk. Since G(∥xk∥) is not necessarily
bounded above, the previous constant stepsize analysis is
not applicable. As a natural fix, we can take

γk = O
(
G(∥xk∥)

√
K
)

to reduce the error. However, according to the trade-off we
previously mentioned, unless G(∥xk∥) is bounded by some
constant independent of K, the reduction in the potential
function can be arbitrarily small, and we still cannot obtain
a convergence rate. To resolve this issue, we essentially
need to show the boundedness of {∥xk∥}, and our solu-
tion is to associate the boundedness of {∥xk∥} with another
bounded quantity during the algorithm: E[ψ1/ρ(x

k)]. Intu-
itively, since E[ψ1/ρ(x

k)] is reduced by the algorithm, it re-
mains bounded on expectation, and from A5 we know that
boundedness of ψ1/ρ(x

k) implies boundedness of ∥xk∥,
giving bounded G(∥xk∥) and the O(1/

√
K) rate we want.

The following asymptotic result confirms our intuition.
Theorem 4.1. Under the same conditions as Lemma 4.1
and A4, A5, if γk = ρ+ κ+ (G(∥xk∥) + 1)kζ , ζ ∈ ( 12 , 1),
then as k → ∞, {∥xk∥} is bounded with probability 1;
Moreover, the sequence {infj≤k ∥∇ψ1/ρ(x

j)∥} converges
to 0 almost surely.

While it is relatively easy to show asymptotic convergence,
we need a more careful analysis of the algorithm behav-
ior to obtain a finite-time convergence rate. One significant
difficulty is that the boundedness of E[ψ1/ρ(x

k)] is may
not directly provide information of ∥xk∥, since this rela-
tion holds only on expectation. To deal with this issue, we
resort to probabilistic tools and establish a new probabilis-
tic argument in the following subsection.

4.1. Stability of the Iterations

In this subsection, we aim to analyze the stability of the
iterates of a stochastic algorithm on a non-Lipschitz func-
tion. The intuition is straightforward: if a stochastic algo-
rithm reduces some potential function that has a bounded
level-set, then the iterates will stay in a bounded region
with high probability. We provide the basic proof sketch
and leave a more rigorous argument in the appendix.

Our analysis relies on two simple facts that we gain from
the robust stepsize.

Lemma 4.2 (Informal). Under the same conditions as
Lemma 4.3, if γk = O

(
(G(∥xk∥) + 1)

√
K
)
, then we have,

for all k = 2, . . . ,K, that

E[∥xk+1 − xk∥] ≤ O( 1√
K
), (7)

E[ψ1/ρ(x
k)] ≤ O(1). (8)

Relation (7) says that with our robust stepsize strategy, we
cautiously explore the feasible region, and at each iteration,
we only take a small step of O(1/

√
K). The second rela-

tion (8) comes directly from Lemma 4.1. Indeed, with

γk = O
(
(G(∥xk∥) + 1)

√
K
)

we have ρ(G(∥xk∥)Lf+Lω)2

2γk(γk−κ) = O(1/K). And if we tele-
scope Lemma 4.1 and take expectation over all the random-
ness for k = 2, . . .K, we have

E[ψ1/ρ(x
k)] ≤

∑k
j=1 O(1/K) = O(1), k = 2, . . . ,K.

Each of the two relations alone may not offer us helpful
information, as they both hold on expectation. However,
when they are combined, a more useful result is available.
Our argument is as follows:

Consider the event “∥xk∥ is large” and we wish to upper-
bound its probability. We have the following facts:

1. If ∥xk∥ is large, ∥xk+1∥ ≥ ∥xk∥ −O(1/
√
K) by trian-

gle inequality and ∥xk+1∥ is also large.

2. If ∥xk+1∥ is large, then ψ1/ρ(x
k+1) is large by A5.

3. E[ψ1/ρ(x
k+1)] is bounded by some constant.

In other words, conditioned on the event “∥xk∥ is large”,
to ensure that E[ψ1/ρ(x

k+1)] is still bounded, either Case
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1): the event happens with low probability, or Case 2):
xk+1 has to immediately jump back to a bounded region
of smaller radius. However, since our robust stepsize re-
stricts the “jump” between two consecutive iterations, Case
2) cannot happen. Therefore, it is unlikely “∥xk∥ is large”.

This argument brings us the following tail-bound which
characterizes the behavior of ∥xk∥ as a random variable.

Lemma 4.3. Under the same conditions as Lemma 4.1 as
well as A4, A5, if we take γk = ρ+ κ+ τ + α(G(∥xk∥) +
1)
√
K, then the tail bound

P
{
∥xk∥ ≥ Ba∆ +

4(Lf+Lω)

α
√
K

}
≤ 2∆

a∆+Λ ,

holds for all 2 ≤ k ≤ K, where

∆ = ψ1/ρ(x
1) + Λ +

ρ(Lf+Lω)2

α2 > 0

and recall that diam(La∆) ≤ Ba∆.

Lemma 4.3 provides a useful characterization of the tail
probability on the norm of the iterations. Now that the
bound holds for all xk, we can immediately condition on
the event that Θ(K) iterations lie in the bounded set to re-
trieve an O(1/

√
K) convergence rate.

Theorem 4.2. Under the same conditions as Lemma 4.3,
given δ ∈ (0, 1/4), at least with probability 1 − p, p ∈
(2δ, 1), (1− 2p−1δ)K iterations will be bounded by

R(δ) = Bδ−1∆ +
4(Lf+Lω)

α
√
K

,

and conditioned on these iterations,

min
1≤k≤K

E[∥∇ψ1/ρ(x
k)∥2] ≤ pM

p−2δ (
ρ+τ+κ
K + α(Gδ+1)√

K
),

where M = 2ρ
ρ−τ−κ

[
D + ρ

2α2 (Lf + Lω)
2
]

and Gδ :=

maxz≤R(δ) G(z).

Theorem 4.2 shows that, with constant probability, we re-
trieve O(1/

√
K) convergence rate after K iterations. This

probability argument can be further improved, for exam-
ple, by running the algorithm independently multiple times
(Davis and Grimmer, 2019). The analysis in this section
serves as a step-stone for the next section, where we deal
with non-Lipschitz optimization without knowing G(·).

5. Optimization of unknown Lipschitzness
While the analysis in Section 4 extends the solvability
of weakly convex optimization to non-Lipschitz functions,
it relies on the knowledge of an explicit growth function
G(∥x∥) to bound local Lipschitzness. However, it is possi-
ble that either access to G(∥x∥) is not viable, or the bound
lacks a predefined functional form. In these cases, we as-
sume that the growth function is unknown a priori.

D1: For all fixed x ∈ domω,

fx(z, ξ)− fx(y, ξ) ≤ Lip(x, ξ)∥z − y∥

for all y, z; ξ ∼ Ξ.

Although D1 and C1 look similar, they are fundamentally
different. The most direct consequence is that Lip(x, ξ)
is sample-dependent, which means any stepsize strategy
based on it will introduce bias in the stochastic algorithm.
To resolve this issue, our new stepsize policy relies on con-
structing an estimator of Lip(x, ξ). We introduce the prop-
erty of “admitting a reliable estimation of Lipschitz con-
stant”, which we call the reference Lipschitz continuity.

5.1. Reference Lipschitz Continuity

Definition 1 (Reference Lipschitz continuity). Stochastic
model fx(y, ξ) satisfies reference Lipschitz continuity if

• given an x, fx(·, ξ) is globally Lipschitz with a Lipschitz
constant Lip(x, ξ);

• given ξ, ξ′ ∼ Ξ,

Eξ,ξ′ [|Lip(x, ξ)− Lip(x, ξ′)|2] ≤ σ2 <∞.

The first property, entirely determined by the stochastic
model function, is typical, as most model functions are
compositions of Lipschitz functions and linear expansions.
The second property indicates that the expected difference
between models’ Lipschitzness is bounded by noise param-
eter σ. This property is also assumed in literature (Mai and
Johansson, 2021) when dealing with stochastic subgradient
of a function with arbitrary growth. As we will demonstrate
in the examples, for most functions it can be deduced from
bounded variance assumption.

One direct outcome of reference Lipschitz continuity is
that we can cheaply estimate Lip(x, ξ) based on Lip(x, ξ′),
where ξ and ξ′ are two independent samples drawn from Ξ.

Example 5.1 ((Sub)gradient).

fx(y, ξ) = f(x, ξ) + ⟨∇f(x, ξ), y − x⟩

The model is Lipschitz with Lip(x, ξ) = ∥∇f(x, ξ)∥. If
E[∥∇f(x)−∇f(x, ξ)∥2] ≤ σ2, then

E[|Lip(x, ξ)− Lip(x, ξ′)|]
≤ E[∥∇f(x, ξ)−∇f(x, ξ′)∥] ≤ 2σ

Even if f is nonsmooth, the property may still hold. One
example is the composition problem f(x, ξ) = h(c(x, ξ)),
where h is Lh-Lipschitz continuous and c is differen-
tiable. Then ∂f(x, ξ) = ∇c(x, ξ)∂h(c(x, ξ)). If we
estimate the Lipschitz constant with Lh∥∇c(x, ξ)∥, then
E[|Lip(fx(·, ξ))− Lip(x, ξ′)|] ≤ 2Lhσ.
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Example 5.2 (Proximal linear).

fx(y, ξ) = h(c(x, ξ) + ⟨∇c(x, ξ), y − x⟩)

When h is Lh Lipschitz continuous, the model is globally
Lipschitz with Lip(x, ξ) = Lh∥∇c(x, ξ)∥. If E[∥∇c(x) −
∇c(x, ξ)∥2] ≤ σ2, then

E[|Lip(x, ξ)− Lip(x, ξ′)|]
≤ LhE[∥∇c(x, ξ)−∇c(x, ξ′)∥] ≤ 2Lhσ

Example 5.3 (Truncated model).

fx(y, ξ) = max{f(x, ξ) + ⟨∇f(x, ξ), y − x⟩, ℓ}.

The model is ∥∇f(x, ξ)∥-Lipschitz and the reasoning of
reference Lipschitz continuity is the same as in Example
5.1. Note that the truncated model encompasses stochastic
Polyak stepsize as a special case (Schaipp et al., 2023).

In this section, we would assume that our model satisfies
the reference Lipschitz continuity.

D2: The stochastic model fx(·, ξ) satisfies the reference
Lipschitz continuity with noise parameter σ.

5.2. Algorithm Design and Analysis

As we did in Section 4, before getting down to the algo-
rithm design, we first need to see what happens to our po-
tential reduction in this new setting. Firstly, Lemma 5.1
characterizes the descent property of our potential function
under the assumption that γk is independent of ξk.

Lemma 5.1. Suppose A1 to A3 as well as D1, D2 hold,
then given ρ > κ+ τ ,

Ek[ψ1/ρ(x
k+1)] ≤ ψ1/ρ(x

k)− ρ(ρ−τ−κ)
2(γk−κ) ∥x̂k − xk∥2

+ Ek
[

ρ
2γk(γk−κ) (Lip(x

k, ξk) + Lω)
2
]

where γk is chosen to be independent of ξk and is consid-
ered deterministic here.

Compared to Lemma 4.1, bounding the error term
ρ(Lip(xk,ξk))+Lω)2

2γk(γk−κ) becomes more challenging due to the
lack of information about its growth. However, thanks to
the reference Lipschitz continuity, by sampling ξ′, an in-
dependent copy of ξk, we can utilize Lip(xk, ξ′) as a sur-
rogate for Lip(xk, ξk). The preference of Lip(xk, ξ′) over
Lip(xk, ξk) is driven by the fact that Lip(xk, ξk) is corre-
lated with xk+1, which significantly complicates the anal-
ysis (Andradöttir, 1996). To mitigate the impact of large
noise σ on the accuracy of our estimation, we clip the esti-
mator by a threshold α > 0: max{Lip(xk, ξ′), α}. Conse-
quently, we set

γk = O(max{Lip(xk, ξ′), α} ·
√
K).

Remark 4. Our stepsize policy can be seen as a generaliza-
tion of gradient clipping stepsize to the model-based opti-
mization setting. In particular, when fx(y, ξ) = f(x, ξ) +
⟨∇f(x, ξ), y− x⟩ and ξ = ξ′, we retrieve the clipping sub-
gradient method.

The following theorem establishes an asymptotic result and
confirms our intuition.

Theorem 5.1. Under the same conditions as Lemma 5.1,
A4, A5, if γk = ρ + κ + τ +max{Lip(xk, ξ′), α}kζ , ζ ∈
( 12 , 1), as k → ∞, {∥xk∥} is bounded with probability 1;
{infj≤k ∥∇ψ1/ρ(x

j)∥} converges to 0 almost surely.

To obtain a non-asymptotic result, we again apply the prob-
abilistic analysis to derive the tail bound.

Lemma 5.2. Under the same conditions of Lemma 5.1
as well as A4, A5, if we take γk = ρ + τ + κ +
max{Lip(xk, ξ′), α}

√
K, then the tail bound

P
{
∥xk∥ ≥ Ba∆ + 4(α+σ+Lω)

α
√
K

}
≤ 2∆

a∆+Λ ,

holds for all 2 ≤ k ≤ K, where

∆ = ψ1/ρ(x
1) + Λ + ρ

α2 (α+ σ + Lω)
2 > 0.

Theorem 5.2. Assuming the conditions of Lemma 5.2 hold,
then given δ ∈ (0, 1/4), with probability at least 1− p, p ∈
(2δ, 1), (1 − 2p−1δ)K iterations will lie in the ball with
radius

R(δ) = Bδ−1∆ + 4(α+σ+Lω)

α
√
K

,

and conditioned on these iterations,

min
1≤k≤K

E[∥∇ψ1/ρ(x
k)∥2] ≤ pM

p−2δ

(
ρ+τ+κ
K + α+Gδ√

K

)
,

where M = 2ρ
ρ−τ−κ

[
D + ρ

α2 (α+ σ + Lω)
2
]

and Gδ :=

max∥x∥≤R(δ) supξ∼Ξ Lip(x, ξ).

Remark 5. We need to assume Gδ < ∞ in the analysis,
which can be satisfied for finite sum optimization or when
the support of data distribution Ξ is bounded.

6. Experiments
In this section, we perform experiments to demonstrate the
effectiveness of our proposed methods. We consider the
following robust nonlinear regression problem:

min
x

1

m

m∑
i=1

|r(x, ai)− bi| =:
1

m

m∑
i=1

f(x, ξi), (9)

where, given observations {ai} from A ∈ Rm×n, regres-
sion model r(x, a) and target label bi, we aim to fit the
model coefficient x given problem data. Table 1 summa-
rizes the regression models and their Lipschitz properties.
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Table 1: Nonlinear regression models. r(a, x) = ⟨a, x⟩2 represents the standard robust phase retrieval problem; r(a, x) =
⟨a, x⟩5 + ⟨a, x⟩3 + 1 is a high-order polynomial of ⟨a, x⟩; while e⟨a,x⟩ + 10 exhibits exponential growth.

Loss r(x, a) ∂f(x, ξ) G(∥x∥) Lip(x, ξ)

r1 ⟨a, x⟩2 sign(⟨a, x⟩2 − b) · 2⟨a, x⟩a ∥x∥ 2|⟨a, x⟩| · ∥a∥
r2 ⟨a, x⟩5 + ⟨a, x⟩3 + 1 sign(r2 − b) · (5⟨a, x⟩4 + 3⟨a, x⟩2)a 5(∥x∥4 + ∥x∥2) 5(∥a∥4∥x∥4 + ∥a∥2∥x∥2)
r3 e⟨a,x⟩ + 10 sign(e⟨a,x⟩ − b) · e⟨a,x⟩ · a eA∥x∥ (A = 3) e⟨a,x⟩ · ∥a∥

6.1. Experiment Setup

Dataset. We let m = 300, n = 100. Data generation is
consistent with (Deng and Gao, 2021), where, given condi-
tion number parameter κ ≥ 1, we compute A = QD,Q ∈
Rm×n. Here each element of Q is drawn from N (0, 1);
D = diag(d), d ∈ Rn, di ∈ [1/κ, 1] for all i. Then a true
signal x̂ ∼ N (0, I) is generated, giving the measurements
b by formula bi = r(x, ai). We randomly perturb pfail-
fraction of the measurements with N (0, 25) noise added to
them to simulate data corruption.

1) Dataset. We follow (Deng and Gao, 2021) and set set
κ ∈ {1, 10} and pfail ∈ {0.2, 0.3}.

2) Initial point. We generate x′ ∼ N (0, In) and start
from x1 = 10x′

∥x′∥ for r1, x1 = x′

∥x′∥ for r2, r3.

3) Stopping criterion. We run algorithms for 400 epochs
(K = 400m). Algorithms stop if f ≤ 1.2f(x̂) .

4) Stepsize. We let γk = θ ·
√
K for vanilla algorithms;

γk = θ · G(∥xk∥)
√
K for robust stepsize with known

growth condition; γk = θ ·max{Lip(xk, ξ′), α}
√
K for

robust stepsize with unknown growth condition. θ ∈
[10−2, 101] serves as a hyper-parameter.

5) Clipping. Clipping parameter α is set to 1.0.

6) Mirror descent. For experiments on mirror descent,
we use kernels for r1, r2 from (Davis et al., 2018a). We
leave the detailed kernel choices to Appendix A.

6.2. Comparing Different Stepsizes

Figure 2, 3 and 4 investigate the number of iterations for
each stepsize to converge under different choices of θ. As
the experiments suggest, our robust choices tend to be
conservative when the function exhibits low-order growth.
However, when the function exhibits high-order growth,
our robust stepsize tends to converge within a reasonable
range of stepsizes. It is worth noticing that for problem r2,
SGD diverges for θ ∼ 108, while our proposed approaches
work robustly. Moreover, we notice that our robust step-
size based on reference Lipschitz property never diverges
in practice, although it is sometimes conservative on prob-
lems where function growth is mild (such as r1).

6.3. Comparison with Mirror Descent

Last, we compare our proposed method with the commonly
adopted mirror descent approach for non-Lipschitz prob-
lems. We test both mirror descent and our proposed SGD-
based approaches. As Figure 5 shows, mirror descent in-
deed often exhibits more stable performance compared to
vanilla SGD. However, we see that our approaches still ex-
hibit superior convergence performance. It is important to
note that the comparison in terms of iteration counts does
not fully capture the efficiency of our approach. Specif-
ically, our method tackles a much simpler proximal sub-
problem compared to the more complex root-finding sub-
problem in mirror descent, which further demonstrates the
advantage of our robust stepsize strategy.

7. Conclusions
We develop novel robust stepsize (regularization) strate-
gies and show that for weakly convex objectives without
Lipschitz continuity, stochastic model-based methods can
still converge at the desirable O(1/

√
K) rate with con-

stant failure probability. To our knowledge, this is achieved
under the least restrictive assumptions known to date. A
promising direction for future research is the adaptation
of our analyses to more sophisticated methods, such as
momentum-based or adaptive gradient methods.
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Figure 2: Problem r1. Left two: (κ, pfail) = (10, 0.2); Right two: (κ, pfail) = (10, 0.3). x-axis: parameter θ; y-axis:
number of iterations. SGD denotes vanilla SGD; SGD-G denotes SGD robust to known Lipschitzness; SGD-R denotes
SGD robust to unknown Lipschitzness. The same applies to SPL.
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Figure 3: Problem r2. Left two: (κ, pfail) = (1, 0.2); Right two: (κ, pfail) = (10, 0.3). x-axis: parameter θ; y-axis: number
of iterations.
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Figure 4: Problem r3. Left two: (κ, pfail) = (1, 0.2); Right two: (κ, pfail) = (1, 0.3). x-axis: parameter θ; y-axis: number
of iterations.
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Figure 5: Left two: Problem r1, (κ, pfail) = (1, 0.3); Right two: Problem r2, (κ, pfail) = (1, 0.3). x-axis: parameter θ;
y-axis: number of iterations.
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A. Choice of Mirror Descent Kernel
For r(x, a) = ⟨a, x⟩2, we have

∥f ′(x, a)∥ ≤ ∥2⟨a, x⟩a∥ ≤ 2∥a∥2∥x∥

and the Bregman divergence kernel is taken to be d(x) = 1
2∥x∥

2 + 1
4∥x∥

4.

For r(x, a) = ⟨a, x⟩5 + ⟨a, x⟩3 + 1, we have

|f ′(x, a)| ≤ ∥(5⟨a, x⟩4 + 3⟨a, x⟩2)a∥ ≤ 5(∥a∥5∥x∥4 + ∥a∥3∥x∥2)

and the divergence kernel is taken to be d(x) = 1
2∥x∥

2 + 1
6∥x∥

6 + 1
8∥x∥

8 + 1
10∥x∥

10. Note that to ensure strong convexity
we always keep 1

2∥x∥
2 in the kernel.

B. Proof of Results in Section 3
B.1. Proof of Lemma 3.1

By the optimality conditions of the proximal subproblems (4), we have, for any ξk ∼ Ξ, that

fxk(xk+1, ξk) + ω(xk+1) +
γk
2
∥xk+1 − xk∥2 ≤ fxk(x̂k, ξk) + ω(x̂k) +

γk
2
∥x̂k − xk∥2 − γk − κ

2
∥xk+1 − x̂k∥2

f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk∥2 ≤ f(xk+1) + ω(xk+1) +

ρ

2
∥xk+1 − xk∥2

Summing over the above two relations, we deduce that

γk − ρ

2
∥xk+1 − xk∥2 − γk − ρ

2
∥x̂k − xk∥2 + γk − κ

2
∥xk+1 − x̂k∥2

≤ f(xk+1)− fxk(xk+1, ξk) + fxk(x̂k, ξk)− f(x̂k)

Conditioned on ξ1, . . . , ξk−1 and taking expectation with respect to ξk, we have

γk − ρ

2
Ek[∥xk+1 − xk∥2]− γk − ρ

2
∥x̂k − xk∥2 + γk − κ

2
Ek[∥xk+1 − x̂k∥2]

≤ Ek[f(xk+1)− fxk(xk, ξk)] + Ek[L(ξk)∥xk+1 − xk∥] + τ

2
∥x̂k − xk∥2 (10)

= Ek[f(xk+1)]− f(xk) + Ek[L(ξk)∥xk+1 − xk∥] + τ

2
∥x̂k − xk∥2 (11)

≤ LfEk[∥xk+1 − xk∥] + Ek[L(ξk)∥xk+1 − xk∥] + τ

2
∥x̂k − xk∥2 (12)

where (10) uses Lf (ξ)-Lipschitzness of fxk(x, ξ); (11) uses quadratic bound from A3 and (12) applies Lf -Lipschitzness
of f(x) (Davis and Drusvyatskiy, 2019). Re-arranging the terms, we have

γk − κ

2
Ek[∥xk+1 − x̂k∥2]

≤ γk − ρ+ τ

2
∥x̂k − xk∥2 − γk − ρ

2
Ek[∥xk+1 − xk∥2] + Ek[(L(ξk) + Lf )∥xk+1 − xk∥]

≤ γk − ρ+ τ

2
∥x̂k − xk∥2 +

2L2
f

γk − ρ
(13)

=
γk − κ

2
∥x̂k − xk∥2 − ρ− τ − κ

2
∥x̂k − xk∥2 +

2L2
f

γk − ρ

where (13) uses the relation −a
2x

2 + bx ≤ b2

2a and Eξ[(L(ξ) + Lf )
2] ≤ 4L2

f . Dividing both sides by γk−κ
2 ,

Ek[∥xk+1 − x̂k∥2] ≤ ∥x̂k − xk∥2 − ρ− τ − κ

γk − κ
∥x̂k − xk∥2 +

4L2
f

(γk − ρ)(γk − κ)

13



Stochastic Weakly Convex Optimization beyond Lipschitz Continuity

and the potential function is reduced by

Ek[ψ1/ρ(x
k+1)] = min

x
{f(x) + ω(x) +

ρ

2
∥x− xk+1∥2}

≤ f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk+1∥2

≤ f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk∥2 − ρ(ρ− τ − κ)

2(γk − κ)
∥x̂k − xk∥2 +

2ρL2
f

(γk − ρ)(γk − κ)

= ψ1/ρ(x
k)− ρ(ρ− τ − κ)

2(γk − κ)
∥x̂k − xk∥2 +

2ρL2
f

(γk − ρ)(γk − κ)
,

which completes the proof.

B.2. Proof of Theorem 3.1

Given fixed stepsize γk ≡ γ = ρ+ κ+ α
√
K, where we have, after telescoping, that

ρ(ρ− τ − κ)

2(γ − κ)

K∑
k=1

E[∥x̂k − xk∥2] ≤ ψ1/ρ(x
1)− E[ψ1/ρ(x

K+1)] +
2ρL2

fK

(γ − ρ)(γ − κ)
.

Re-arranging the terms and summing over k = 1, . . . ,K, we have

min
1≤k≤K

E[∥∇ψ1/ρ(x
k)∥2] ≤ 2ρ

ρ− τ − κ

[
(γ − κ)D

K
+

2ρL2
f

γ − ρ

]
≤ 2ρ

ρ− τ − κ

[
ρD

K
+
αD√
K

+
2ρL2

f

α
√
K

]
,

where D = ψ1/ρ(x
1)− infx ψ(x) ≥ ψ1/ρ(x

1)− E[ψ1/ρ(x
K)] and this completes the proof.

C. Proof of Results in Section 4
For brevity of notation, in the proof we define

Gk := G(∥xk∥) (14)

and use them interchangeably in this section. We also note that Gk is a random variable whose randomness comes from
samples from previous iterations ξ1, . . . , ξk−1.

C.1. Proof of Lemma 4.1

Firstly, we still use optimality condition to get, for a given ξk, that

fxk(xk+1, ξk) + ω(xk+1) +
γk
2
∥xk+1 − xk∥2 ≤ fxk(x̂k, ξk) + ω(x̂k) +

γk
2
∥x̂k − xk∥2 − γk − κ

2
∥xk+1 − x̂k∥2

f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk∥2 ≤ f(xk) + ω(xk)

Summing over the above two relations, we deduce that
γk
2
∥xk+1 − xk∥2 − γk − ρ

2
∥x̂k − xk∥2 + γk − κ

2
∥xk+1 − x̂k∥2

≤ f(xk)− fxk(xk+1, ξk) + fxk(x̂k, ξk)− f(x̂k) + Lω∥xk+1 − xk∥ (15)

≤ f(xk)− f(xk, ξk) + fxk(x̂k, ξk)− f(x̂k) + (GkLf (ξ
k) + Lω)∥xk+1 − xk∥, (16)

where (15) applies Lω-Lipschitz continuity of ω(x); (16) applies C1. Dividing both sides by γk−κ
2 and re-arranging the

terms, we have

∥xk+1 − x̂k∥2 ≤ γk − ρ

γk − κ
∥x̂k − xk∥2 − γk

γk − κ
∥xk+1 − xk∥2

+
2

γk − κ
[f(xk)− f(xk, ξk) + fxk(x̂k, ξk)− f(x̂k) + (GkLf (ξ

k) + Lω)∥xk+1 − xk∥]

14
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Next conditioned on ξ1, . . . , ξk−1, taking expectation with respect to ξk, and recalling that G(∥xk∥), and therefore γk is
fixed given ξ1, . . . , ξk−1, we have

Ek[∥xk+1 − x̂k∥2]

≤ γk − ρ+ τ

γk − κ
∥x̂k − xk∥2 + 2

γk − κ
Ek[(GkLf (ξk) + Lω)∥xk+1 − xk∥ − γk

2
∥xk+1 − xk∥2] (17)

≤ γk − ρ+ τ

γk − κ
∥x̂k − xk∥2 + (GkLf + Lω)

2

γk(γk − κ)
(18)

= ∥x̂k − xk∥2 − ρ− τ − κ

γk − κ
∥x̂k − xk∥2 + (GkLf + Lω)

2

γk(γk − κ)
,

where (17) applies f(xk) − Ek[f(xk, ξk)] = 0,Ek[fxk(x̂k, ξk)] − f(x̂k) ≤ τ
2∥x

k − x̂k∥2; (18) applies the relation
−a

2x
2 + bx ≤ b2

2a and E[Lf (ξ)]2 ≤ E[Lf (ξ)2] ≤ L2
f . Now we can deduce reduction of the potential function by

Ek[ψ1/ρ(x
k+1)] = min

x
{f(x) + ω(x) +

ρ

2
∥x− xk+1∥2}

≤ f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk+1∥2

≤ f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk∥2 − ρ(ρ− τ − κ)

2(γk − κ)
∥x̂k − xk∥2 + ρ(GkLf + Lω)

2

2γk(γk − κ)

= ψ1/ρ(x
k)− ρ(ρ− τ − κ)

2(γk − κ)
∥x̂k − xk∥2 + ρ(GkLf + Lω)

2

2γk(γk − κ)

and this completes the proof.

C.2. Proof of Theorem 4.1

First we introduce the following lemma.

Lemma C.1 (Robbins-Siegmund (Robbins and Siegmund, 1971)). Let Ak, Bk, Ck and Vk be nonnegative random
variables adapted to the filtration Fk and satisfying E[Vk+1|Fk] ≤ (1 + Ak)Vk + Bk − Ck. Then on the event
{
∑∞
k=1Ak < ∞,

∑∞
k=1Bk < ∞}, there is a random variable V∞ such that Vk

a.s.−→ V∞ and
∑∞
k=0 Ck < ∞ almost

surely.

Now we get down to the proof. Recall that in Lemma 4.1 we have shown that

Ek[ψ1/ρ(x
k+1)] ≤ ψ1/ρ(x

k)− ρ(ρ− τ − κ)

2(γk − κ)
∥x̂k − xk∥2 + ρ(GkLf + Lω)

2

2γk(γk − κ)

and we can bound
GkLf + Lω
γk − κ

=
GkLf + Lω

ρ+ τ + kζ(Gk + 1)
≤ GkLf + Lω
kζ(Gk + 1)

≤ Lf + Lω
kζ

(19)

to get

Ek[ψ1/ρ(x
k+1) + Λ] ≤ [ψ1/ρ(x

k) + Λ]− ρ(ρ− κ− τ)

2(γk − κ)
∥x̂k − xk∥2 + ρ

2k2ζ
(Lf + Lω)

2

Then we invoke Lemma C.1, plugging in the relation

Ak = 0, Bk =
ρ(Lf + Lω)

2

2k2ζ
, Ck =

ρ(ρ− κ− τ)

2(γk − κ)
∥x̂k − xk∥2, Vk = ψ1/ρ(x

k) + Λ ≥ 0 (20)

Then with ζ ∈ ( 12 , 1)
∑∞
k=1Bk =

ρ(Lf+Lω)2

2k2ζ
< ∞ we know that {ψ1/ρ(x

k) + Λ} → ψ1/ρ(x
∞) + Λ < ∞ and

that
∑∞
k=1

ρ(ρ−κ−τ)
2(γk−κ) ∥x̂k − xk∥2 < ∞. By A5, ∥xk∥ is bounded with probability 1 and Gk is bounded almost surely.

Finally
∑∞
k=1

1
γk−κ = ∞ ⇒ infj≤k ∥x̂j − xj∥ → 0 almost surely and this completes the proof since ∥x̂k − xk∥ =

ρ−1∥∇ψ1/ρ(x
k)∥.

15
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C.3. Proof of Lemma 4.2 and 4.3

Following (19), we first we bound the error of potential reduction by ρ(GkLf+Lω)2

2γk(γk−κ) ≤ ρ(Lf+Lω)2

α2K .

Then a telescopic sum gives, for all 2 ≤ k ≤ K that

E[ψ1/ρ(x
k) + Λ] ≤ ψ1/ρ(x

1) + Λ +
ρ(Lf + Lω)

2

α2
=: ∆.

Here ∆ is a constant that only depends on the initialization of the algorithm. Next we consider one step of the algorithm

fxk(xk+1, ξk) + ω(xk+1) +
γk
2
∥xk+1 − xk∥2 ≤ fxk(xk, ξk) + ω(xk)

and a re-arrangement gives

γk
2
∥xk+1 − xk∥2 ≤ fxk(xk, ξk)− fxk(xk+1, ξk) + ω(xk)− ω(xk+1)

≤ (Lf (ξ
k)Gk + Lω)∥xk+1 − xk∥,

where we use C1 and Lipschitz continuity of ω(x). Dividing both sides by ∥xk+1 − xk∥, we have

∥xk+1 − xk∥ ≤ 2(Lf (ξ
k)Gk + Lω)

γk
≤ 2(Lf (ξ

k)Gk + Lω)

α(Gk + 1)
√
K

.

Conditioned on ξ1, . . . , ξk−1 and taking expectation with respect to ξk, we get

Ek[∥xk+1 − xk∥] ≤
2Eξk [Lf (ξk)]Gk + 2Lω

α(Gk + 1)
√
K

≤ 2LfGk + 2Lω

α(Gk + 1)
√
K

≤ 2(Lf + Lω)

α
√
K

.

This completes the proof of Lemma 4.2. By Markov’s inequality, we know that, for any 2 ≤ k ≤ K, the following bound
holds

Pξk∼Ξ

{
∥xk+1 − xk∥ ≤ 4(Lf + Lω)

α
√
K

∣∣ξ1, . . . , ξk−1
}
≥ 1

2

and without loss of generality we let Z =
4(Lf+Lω)

α
√
K

, and clearly Z = O(1/
√
K) = O(1).

This relation says “it’s likely that xk and xk+1 are close”, and we leverage this intuition to derive a tail-bound on ∥xk∥. So
far, we have the following properties in hand:

1. E[ψ1/ρ(x
k)] is bounded by a constant ∆− Λ for all k

2. If ∥xk∥ ≥ Bv , then ψ1/ρ(x
k) ≥ v

3. If ∥xk∥ ≥ Bv , it’s likely that ∥xk+1∥ ≥ Bv −O(1/
√
K).

Our reasoning is as follows: given large a > 1, conditioned on ∥xk∥ ≥ Ba∆, then it is likely that ∥xk+1∥ ≈ Ba∆ since
∥xk+1−xk∥ is likely to be small. And it implies E[ψ1/ρ(x

k+1)] ≥ a∆ > ∆. However, we know that E[ψ1/ρ(x
k+1)] ≤ ∆,

and this will therefore reversely bound the probability that ∥xk∥ ≥ Ba∆ +O(1/
√
K). We formalize the proof as follows.

First recall that by A5, ∥xk∥ ≥ Bv implies ψ1/ρ(x
k) ≥ v. Taking v = a∆, a > 1, we have ∥xk∥ ≥ Ba∆ ⇒ ψ1/ρ(x

k) ≥
av. Now we consider the event ∥xk∥ ≥ Ba∆ + Z and apply law of total expectation to get

∆ ≥ E[ψ1/ρ(x
k+1) + Λ]

= E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≥ Ba∆ + Z] · P{∥xk∥ ≥ Ba∆ + Z}

+ E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≤ Ba∆ + Z] · P{∥xk∥ ≤ Ba∆ + Z}

≥ E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≥ Ba∆ + Z] · P{∥xk∥ ≥ Ba∆ + Z}, (21)

16
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where (21) uses ψ1/ρ(x) + Λ ≥ 0 for all x. Next we consider the expectation

E
[
ψ1/ρ(x

k+1) + Λ|∥xk∥ ≥ Ba∆ + Z
]
, (22)

and successively deduce that

E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≥ Ba∆ + Z]

= E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≥ Ba∆ + Z, ∥xk+1 − xk∥ ≤ Z] · P{∥xk+1 − xk∥ ≤ Z}

+ E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≥ Ba∆ + Z, ∥xk+1 − xk∥ ≥ Z] · P{∥xk+1 − xk∥ ≥ Z}

≥ 1

2
E[ψ1/ρ(x

k+1) + Λ|∥xk∥ ≥ Ba∆ + Z, ∥xk+1 − xk∥ ≤ Z] (23)

≥ 1

2
(a∆+Λ), (24)

where (23) is by Markov’s inequality P{∥xk+1 − xk∥ ≤ Z} ≥ 0.5 and (24) uses the triangle inequality

∥xk+1∥ = ∥xk+1 − xk + xk∥ ≥ ∥xk∥ − ∥xk+1 − xk∥ ≥ ∥xk∥ − Z ≥ Ba∆

and we recall that ∥xk+1∥ ≥ Ba∆ implies ψ1/ρ(x
k+1) ≥ a∆. Chaining the above inequalities, we arrive at

∆ ≥
(
a∆+Λ

2

)
· P{∥xk∥ ≥ Ba∆ + Z}

Dividing both sides by a∆+Λ
2 gives the desired tail bound

P
{
∥xk∥ ≥ Ba∆ + Z

}
≤ 2∆

a∆+Λ
.

Since Λ ≥ 0, the bound is nontrivial when a > 2, and this completes the proof.

C.4. Proof of Theorem 4.2

Given δ ∈ (0, 1/4), we know, from Lemma 4.3 that for 2 ≤ k ≤ K,

P
{
∥xk∥ ≥ Bδ−1∆ + Z

}
≤ 2∆

δ−1∆+Λ
≤ 2δ.

Then denote Ik = I
{
∥xk∥ ≤ Bδ−1∆+Z

}
, and we have

∑K
k=1 E[1−Ik] ≤ 2δK. By Markov’s inequality, given p ∈ (2δ, 1),

P

{
K∑
k=1

(1− Ik) ≥
2δK

p

}
≤ 2δK

2p−1δK
= p

and a re-arrangement gives P
{∑K

k=1 Ik ≥ K(1− 2p−1δ)
}
≥ 1− p. Now we telescope Lemma 4.1 and get

K∑
k=1

E
[
ρ(ρ− κ− τ)

2γk
∥x̂k − xk∥2

]
≤ ψ1/ρ(x

1)− E[ψ1/ρ(x
K+1)] +

ρ

2α2
(Lf + Lω)

2 (25)

≤ ψ1/ρ(x
1)− inf

x
ψ(x) +

ρ

2α2
(Lf + Lω)

2, (26)

= D +
ρ

2α2
(Lf + Lω)

2

where (25) uses the previously established bound Ek
[
ρ(GkLf+Lω)2

2γk(γk−κ)

]
≤ ρ(Lf+Lω)2

α2K . (26) uses the fact that ψ1/ρ(x
K+1) ≥

infx ψ(x). Next we notice, conditioned on the event
∑K
k=1 Ik ≥ K(1− 2p−1δ) and these iterations (the set {j : Ij = 1}),

17
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defining Gδ := maxz G(z), z ≤ Bδ−1∆ + Z, that
K∑
k=1

E
[
ρ(ρ− κ− τ)

2γk
∥x̂k − xk∥2

]
=

∑
k∈{j:Ij=0}

E
[
ρ(ρ− κ− τ)

2γk
∥x̂k − xk∥2

]
+

∑
k∈{j:Ij=1}

E
[
ρ(ρ− κ− τ)

2γk
∥x̂k − xk∥2

]

≥
∑

k∈{j:Ij=1}

E
[
ρ(ρ− κ− τ)

2γk
∥x̂k − xk∥2

]

≥
∑

k∈{k:Ij=1}

ρ(ρ− κ− τ)

2(ρ+ κ+ τ + α(Gδ + 1)
√
K)

E[∥x̂k − xk∥2] (27)

≥ ρ(ρ− κ− τ)(1− 2p−1δ)K

2(ρ+ κ+ τ + α(Gδ + 1)
√
K)

min
k∈{j:Ij=1}

E[∥x̂k − xk∥2], (28)

where (27) applies the fact that if Ij = 1, ∥xj∥ ≤ Gδ; (28) utilizes the fact that |{k : Ij = 1}| ≥ K(1 − 2p−1δ). Putting
the inequalities together, we have

min
k∈{j:Ij=1}

E[∥x̂k − xk∥2] ≤ 2(ρ+ κ+ τ + α(Gδ + 1)
√
K)

ρ(ρ− κ− τ)(1− 2p−1δ)K

[
D +

ρ(Lf + Lω)
2

2α2

]

=
2(D +

ρ(Lf+Lω)2

2α2 )

ρ(ρ− κ− τ)(1− 2p−1δ)

[
ρ+ κ+ τ

K
+
α(Gδ + 1)√

K

]
,

Recalling that ∥x̂k − xk∥ = ρ−1∥∇ψ1/ρ(x
k)∥, at least with probability 1− p,

min
1≤k≤K

E[∥∇ψ1/ρ(x
k)∥2] ≤ min

k∈{k:Ik=1}
E[∥∇ψ1/ρ(x

k)∥2]

≤ p

p− 2δ
· 2ρ

ρ− τ − κ

[
D +

ρ(Lf + Lω)
2

2α2

](
ρ+ τ + κ

K
+
α(Gδ + 1)√

K

)
and this completes the proof.

D. Proof of Results in Section 5
For brevity of expression, we define Lkf := Lip(xk, ξk), L′

f := Lip(xk, ξ′) (k is hidden when clear from the context) and
use them interchangeably.

D.1. Auxiliary Lemmas

Lemma D.1. Given independent nonnegative random variables X and Y . If EX,Y [|X − Y |2] ≤ σ2, then

EX,Y
[

X2

max{Y 2,α2}

]
≤

(
σ+α
α

)2
, EX,Y

[
X

max{Y 2,α2}

]
≤ σ

α2 + 1
α , EX,Y

[
X

max{Y,α}

]
≤ σ

α + 1

where α > 0.

Proof. For the first relation, we successively deduce that

EX,Y
[

X2

max{Y 2,α2}

]
= EX,Y

[
(X−Y+Y )2

max{Y 2,α2}

]
= EX,Y

[
(X−Y )2+Y 2+2Y (X−Y )

max{Y 2,α2}

]
= EX,Y

[
(X−Y )2

max{Y 2,α2}

]
+ EY

[
Y 2

max{Y 2,α2}

]
+ EX,Y

[
2Y (X−Y )

max{Y 2,α2}

]
≤ σ2

α2 + 1 + EX,Y
[

2Y |X−Y |
max{Y,α}·max{Y,α}

]
(29)

≤ σ2

α2 + 2σ
α + 1 =

(
σ+α
α

)2
,
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where (29) uses a
max{b,c} ≤ a

c and the last inequality applies

2Y |X−Y |
max{Y,α}·max{Y,α} = 2Y

max{Y,α} · |X−Y |
max{Y,α} ≤ 2 · |X−Y |

α . (30)
Similarly we can deduce that

EX,Y
[

X
max{Y 2,α2}

]
≤ EX,Y

[
|X−Y |

max{Y 2,α2}

]
+ EY

[
Y

max{Y 2,α2}

]
≤ σ

α2 + 1
α ,

EX,Y
[

X
max{Y,α}

]
≤ EX,Y

[
|X−Y |

max{Y,α}

]
+ EX,Y

[
Y

max{Y,α}

]
≤ σ

α + 1,

which completes the proof.

D.2. Proof of Lemma 5.1

By the optimality condition, we have

fxk(xk+1, ξk) + ω(xk+1) +
γk
2
∥xk+1 − xk∥2 ≤ fxk(x̂k, ξk) + ω(x̂k) +

γk
2
∥x̂k − xk∥2 − γk − κ

2
∥xk+1 − x̂k∥2

f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk∥2 ≤ f(xk) + ω(xk)

and summation over the two relations gives
γk
2
∥xk+1 − xk∥2 − γk − ρ

2
∥x̂k − xk∥2 + γk − κ

2
∥xk+1 − x̂k∥2

≤ f(xk)− fxk(xk+1, ξk) + fxk(x̂k, ξk)− f(x̂k) + Lω∥xk+1 − xk∥
≤ f(xk)− f(xk, ξk) + fxk(x̂k, ξk)− f(x̂k) + (Lkf + Lω)∥xk+1 − xk∥, (31)

where (31) applies D1. Fixing ξ′, we divide both sides by γk−κ
2 and get

∥xk+1 − x̂k∥2 ≤ γk − ρ

γk − κ
∥x̂k − xk∥2 − γk

γk − κ
∥xk+1 − xk∥2

+
2

γk − κ
[f(xk)− f(xk, ξk) + fxk(x̂k, ξk)− f(x̂k) + (Lkf + Lω)∥xk+1 − xk∥]

Conditioned on ξ1, . . . , ξk−1 and taking expectation with respect to ξk, we have

Ek[∥xk+1 − x̂k∥2]

≤ γk − ρ+ τ

γk − κ
∥x̂k − xk∥2 + 2

γk − κ
Ek[(Lkf + Lω)∥xk+1 − xk∥ − γk

2
∥xk+1 − xk∥2] (32)

≤ γk − ρ+ τ

γk − κ
∥x̂k − xk∥2 + Ek

[ 1

γk(γk − κ)
(Lkf + Lω)

2
]

(33)

where (32) again uses f(xk) − Ek[f(xk, ξk)] = 0,Ek[fxk(x̂k, ξk)] − f(x̂k) ≤ τ
2∥x

k − x̂k∥2; (33) uses the relation
−a

2x
2 + bx ≤ b2

2a . Now we have

Ek[∥xk+1 − x̂k∥2] ≤ ∥x̂k − xk∥2 − ρ− τ − κ

γk − κ
∥x̂k − xk∥2 + Ek

[ 1

γk(γk − κ)
(Lkf + Lω)

2
]
.

In view of our potential function, we have

Ek[ψ1/ρ(x
k+1)] = min

x
{f(x) + ω(x) +

ρ

2
∥x− xk+1∥2}

≤ f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk+1∥2

≤ f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk∥2 − ρ(ρ− τ − κ)

2(γk − κ)
∥x̂k − xk∥2 + Ek

[ ρ

2γk(γk − κ)
(Lkf + Lω)

2
]

= ψ1/ρ(x
k)− ρ(ρ− τ − κ)

2(γk − κ)
∥x̂k − xk∥2 + Ek

[ ρ

2γk(γk − κ)
(Lkf + Lω)

2
]

and this completes the proof.
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D.3. Proof of Theorem 5.1

Our reasoning is the same as in Theorem 4.1, and we start by bounding Eξ′Ek
[
(Lk

f+Lω)2

γk(γk−κ)

]
.

For brevity we omit Ek[·] and notice that, for γk ≥ 2κ, that,

(Lkf + Lω)
2

γk(γk − κ)
≤

2(Lkf + Lω)
2

γ2k
=

(Lkf )
2

γ2k
+

2LkfLω

γ2k
+
L2
ω

γ2k

so that we can bound the three terms respectively using

Eξ′
[
(Lk

f )
2

γ2
k

]
≤ Eξ′

[
(Lk

f )
2

max{(L′
f )

2,α2}k2ζ

]
≤

(α+ σ

α

)2 1

k2ζ

where we invoked Lemma D.1 and take X = Lkf , Y = L′
f and we recall that by reference Lipschitz property D2:

E[|Lkf − L′
f |2] ≤ σ2. Similarly, we can deduce that

Eξ′
[
2Lk

fLω

γ2
k

]
≤ Eξ′

[
2Lk

fLω

max{αL′
f ,α

2}k2ζ

]
≤

(α+ σ

α2

)2Lω
k2ζ

and L2
ω

γ2
k
≤ L2

ω

α2k2ζ
since γk ≥ αkζ . Putting the things together, we have

Eξ′
[
(Lk

f+Lω)2

γ2
k

]
≤ (α+ σ)2 + 2Lω(α+ σ) + L2

ω

α2k2ζ
=

(α+ σ + Lω)
2

α2k2ζ
.

and

Ek[ψ1/ρ(x
k+1)] ≤ ψ1/ρ(x

k)− Eξ′
[
ρ(ρ− τ − κ)

2(γk − κ)

]
∥x̂k − xk∥2 + ρ(α+ σ + Lω)

2

α2k2ζ
,

or

Ek[ψ1/ρ(x
k+1) + Λ] ≤ [ψ1/ρ(x

k) + Λ]− Eξ′
[
ρ(ρ− τ − κ)

2(γk − κ)

]
∥x̂k − xk∥2 + ρ(α+ σ + Lω)

2

α2k2ζ
.

Invoking Lemma C.1, plugging in the relation Ak = 0, Vk = ψ1/ρ(x
k) + Λ ≥ 0, Bk = ρ(α+σ+Lω)2

α2k2ζ
and Ck =

Eξ′
[ρ(ρ−τ−κ)

γk−κ
]
∥x̂k − xk∥2. Note that since Eξ′

[ρ(ρ−τ−κ)
γk−κ

]
is determined by xk, we can view Ck = g(∥xk∥)∥x̂k − xk∥2

for some function g and the rest of reasoning is the same as in Lemma 4.1.

D.4. Proof of Lemma 5.2

Similar to Lemma 4.3 we first bound the error of potential reduction Ek
[
ρ(Lk

f+Lω)2

2γk(γk−κ)

]
, and according to the proof of Lemma

5.1,

Eξ′Ek

[
ρ(Lkf + Lω)

2

2γk(γk − κ)

]
≤ ρ(α+ σ + Lω)

2

α2K
.

Telescoping the relation E[ψ1/ρ(x
k+1)] ≤ ψ1/ρ(x

k) + ρ(α+σ+Lω)2

2α2K gives

E[ψ1/ρ(x
k) + Λ] ≤ ψ1/ρ(x

1) + Λ +
ρ(α+ σ + Lω)

2

α2
=: ∆.

Next we show that Ek[∥xk+1 − xk∥] is bounded. By the optimality condition we have

fxk(xk+1, ξk) + ω(xk+1) +
γk
2
∥xk+1 − xk∥2 ≤ fxk(xk, ξk) + ω(xk)− γk − κ

2
∥xk+1 − xk∥2

and
γk
2
∥xk+1 − xk∥2 ≤ fxk(xk, ξk)− fxk(xk+1, ξk) + ω(xk)− ω(xk+1)

≤ (Lkf + Lω)∥xk+1 − xk∥.
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Dividing both sides by ∥xk+1 − xk∥, we get ∥xk+1 − xk∥ ≤ 2(Lk
f+Lω)

γk
≤ 2Lk

f

γk
+ 2Lω

α
√
K
. Taking expectation on both sides,

we have Eξ′Ek[Lkf/γk] ≤ α+σ
α
√
K

, where we invoke Lemma D.1 with X = Lkf , Y = L′
f again. Now

Ek[∥xk+1 − xk∥] ≤ 2(α+ σ + Lω)

α
√
K

.

The rest of the reasoning is consistent with Lemma 4.3 up to difference in constants. And we still present them for
completeness. Applying Markov’s inequality, we know that

Pξk,ξ′∼Ξ{∥xk+1 − xk∥ ≤ 4(α+σ+Lω)

α
√
K

∣∣ξ1, . . . , ξk−1} ≥ 1

2
.

By A5, ∥xk∥ ≥ Bv implies ψ1/ρ(x
k) ≥ v. Taking v = a∆, we have ∥xk∥ ≥ Ba∆ ⇒ ψ1/ρ(x

k) ≥ av. Without loss of
generality, let Z = 4(α+σ+Lω)

α
√
K

> 0, and we condition on the event ∥xk∥ ≥ Ba∆ + Z to deduce that

∆ ≥ E[ψ1/ρ(x
k+1) + Λ]

= E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≥ Ba∆ + Z] · P{∥xk∥ ≥ Ba∆ + Z}

+ E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≤ Ba∆ + Z] · P{∥xk∥ ≤ Ba∆ + Z}

≥ E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≥ Ba∆ + Z] · P{∥xk∥ ≥ Ba∆ + Z}, (34)

where (34) uses ψ1/ρ(x) + Λ ≥ 0 for all x. Next we consider the expectation E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≥ Ba∆ + Z] and

we successively deduce that

E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≥ Ba∆ + Z]

= E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≥ Ba∆ + Z, ∥xk+1 − xk∥ ≤ Z] · P{∥xk+1 − xk∥ ≤ Z}

+ E[ψ1/ρ(x
k+1) + Λ|∥xk∥ ≥ Ba∆ + Z, ∥xk+1 − xk∥ ≥ Z] · P{∥xk+1 − xk∥ ≥ Z}

≥
(a∆+Λ

2

)
· P{∥xk+1 − xk∥ ≤ Z}, (35)

where (35) is by P{∥xk+1 − xk∥ ≤ Z} ≥ 0.5 and that, conditioned on ∥xk+1 − xk∥ ≤ Z,

∥xk+1∥ = ∥xk+1 − xk + xk∥ ≥ ∥xk∥ − ∥xk+1 − xk∥ ≥ ∥xk∥ − Z ≥ Ba∆.

Chaining the above inequalities, we arrive at

∆ ≥
(a∆+Λ

2

)
· P{∥xk∥ ≥ Ba∆ + Z}

Dividing both sides by a∆+Λ
2 gives the desired tail bound.

D.5. Proof of Theorem 5.2

The proof again follows the clue of Theorem 4.2. Recall that Z = 4(α+σ+Lω)

α
√
K

and given δ ∈ (0, 1/4),

P{∥xk∥ ≥ Bδ−1∆ + Z} ≤ 2∆

δ−1∆+Λ
≤ 2δ.

Denoting Ik = I{∥xk∥ ≤ Bδ−1∆ + Z}, we have
∑K
k=1 E[1 − Ik] ≤ 2δK and by Markov’s inequality, given p ∈ (2δ, 1),

we have

P
{ K∑
k=1

(1− Ik) ≥
2δK

p

}
≤ 2δK

2p−1δK
= p

and P{
∑K
k=1 Ik ≥ K(1− 2p−1δ)} ≥ 1− p. Now we telescope over Lemma 5.1 and get
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K∑
k=1

E
[
ρ(ρ− τ − κ)

2γk
∥x̂k − xk∥2

]
≤ ψ1/ρ(x

1)− E[ψ1/ρ(x
K+1)] +

ρ(α+ σ + Lω)
2

2α2

≤ ψ1/ρ(x
1)− inf

x
ψ(x) +

ρ

2α2
(α+ σ + Lω)

2

= D +
ρ

2α2
(α+ σ + Lω)

2.

Next define
Gδ := max

x
sup
ξ∼Ξ

Lip(x, ξ) subject to ∥x∥ ≤ Bδ−1∆ + Z,

and we have, conditioned on the event
∑K
k=1 Ik ≥ K(1− 2p−1δ),

K∑
k=1

E
[
ρ(ρ− τ − κ)

2γk
∥x̂k − xk∥2

]
=

∑
k∈{j:Ij=0}

E
[
ρ(ρ− τ − κ)

2γk
∥x̂k − xk∥2

]
+

∑
k∈{j:Ij=1}

E
[
ρ(ρ− τ − κ)

2γk
∥x̂k − xk∥2

]

≥
∑

k∈{j:Ij=1}

E
[
ρ(ρ− τ − κ)

2γk
∥x̂k − xk∥2

]

≥
∑

k∈{j:Ij=1}

E
[

ρ(ρ− τ − κ)

2(ρ+ κ+ τ + (α+ Gδ)
√
K)

∥x̂k − xk∥2
]

=
ρ(ρ− τ − κ)

2(ρ+ κ+ τ + (α+ Gδ)
√
K)

∑
k∈{j:Ij=1}

E[∥x̂k − xk∥2]

≥ ρ(ρ− τ − κ)(1− 2p−1δ)K

2(ρ+ κ+ τ + (α+ Gδ)
√
K)

min
k∈{j:Ij=1}

E[∥x̂k − xk∥2]

Re-arranging the terms, we have, at least with probability 1− p, that

min
1≤k≤K

E[∥∇ψ1/ρ(x
k)∥2] ≤ min

k∈{k:Ik=1}
E[∥∇ψ1/ρ(x

k)∥2]

≤ p

p− 2δ
· 2ρ

ρ− τ − κ

[
D +

ρ

α2
(α+ σ + Lω)

2
](ρ+ λ

K
+
α+ Gδ√

K

)
and this completes the proof after re-arrangement.

E. Stochastic Convex Optimization beyond Lipschitz Continuity
In this section, we consider applying the above mentioned ideas to convex optimization. When dealing with convex
optimization problems, instead of relying on Moreau envelope smoothing, we have a better potential function ∥x − x⋆∥
directly relevant to distance to optimal set X ⋆. This turns out greatly simplifies our assumptions.

E1: f(x, ξ) is convex for all ξ ∼ Ξ. λ = κ = 0 and τ = 0.

It is rather straight-forward to extend our results to convex optimization. And we remark that our analysis is different from
(Mai and Johansson, 2021), where the authors focus on subgradient method and assume quadratic growth condition.

E.1. Convex Optimization under Standard Lipschitzness

Lemma E.1. Suppose that A1 to A3, E1 as well as B1 holds, then given γk > 0

Ek[∥xk+1 − x⋆∥2] ≤ ∥xk − x⋆∥2 − 2

γk
[ψ(xk)− ψ(x⋆)] +

(Lf + Lω)
2

γ2k
, (36)
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where x⋆ ∈ X ⋆ is any optimal solution.

Theorem E.1. Under the same assumptions as Lemma E.1, if we take γk ≡ γ = α
√
K, then

min
1≤k≤K

E[ψ(xk)− ψ(x⋆)] ≤ 1

2
√
K

[
∥x1 − x⋆∥2α+

(Lf + Lω)
2

α

]
,

where x⋆ ∈ X ⋆ is an optimal solution.

Remark 6. We observe the same trade-off as in weakly convex optimization, where we have, given telescopic sum of (36),
that

1

K

K∑
k=1

O(γ−1
k )E[ψ(xk)− ψ(x⋆)] ≤ O

( 1

K

)
+

1

K

K∑
k=1

O(L2
fγ

−2
k ).

Compared with weakly convex case

1

K

K∑
k=1

O(γ−1
k )E[∥∇ψ1/ρ(x

k)∥2] ≤ O
( 1

K

)
+

1

K

K∑
k=1

O(L2
fγ

−2
k ),

this resemblance implies our previous analysis for weakly convex optimization is immediately applicable.

E.2. Convex Optimization under Generalized Lipschitzness

Lemma E.2. Suppose A1 to A3, E1 as well as C1 holds, then given γk > 0,

Ek[∥xk+1 − x⋆∥2] ≤ ∥xk − x⋆∥2 − 2

γk
[ψ(xk)− ψ(x⋆)] +

(G(∥xk∥)Lf + Lω)
2

γ2k
,

where x⋆ ∈ X ⋆ is an optimal solution.

Theorem E.2. With the same conditions as Lemma E.2, if γk = (G(∥xk∥) + 1)kζ , ζ ∈
(
1
2 , 1

)
, then as k → ∞, {∥xk∥} is

bounded with probability 1 and {infj≤k f(xj)− f(x⋆)} converges to 0 almost surely.

Lemma E.3. Under the same conditions as Lemma E.2, if we take γk = α(G(∥xk∥) + 1)
√
K, then the tail bound

P
{
∥xk − x⋆∥ ≥ 2(Lf + Lω)

α
√
K

+ a

}
≤ 2∆

a
,

holds for all 2 ≤ k ≤ K, where ∆ = ∥x1 − x⋆∥+ Lf+Lω

α .

Theorem E.3. Under the same conditions as Lemma E.2, given δ ∈ (0, 1/4), p ∈ (2δ, 1), (1 − 2p−1δ)K iterations will
lie in the ball centered around x⋆ with radius R(δ) = δ−1∆+

2(Lf+Lω)

α
√
K

and

min
1≤k≤K

E[ψ(xk)− ψ(x⋆)] ≤ p

p− 2δ
· Gδ + 1

2
√
K

[
∥x1 − x⋆∥2α+

(Lf + Lω)
2

α
,

]
(37)

where Gδ := maxz G(z), ∥z − x⋆∥ ≤ δ−1∆+
2(Lf+Lω)

α
√
K

.

Remark 7. We note that x⋆ is actually arbitrary. Therefore we can take it to be a minimum norm optimal solution to get a
tighter bound.

E.3. Convex Optimization under Unknown Lipschitzness

Lemma E.4. Suppose that A1 to A3, E1 as well as D1, D2 hold, then given γ > 0,

Ek[∥xk+1 − x⋆∥2] ≤ ∥xk − x⋆∥2 − 2

γk
[ψ(xk)− ψ(x⋆)] + Ek

[
(Lip(xk, ξk)) + Lω)

2

γ2k

]
, (38)

where γk is chosen to be independent of ξk and is considered deterministic here.
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Theorem E.4. With the same conditions as Lemma E.4, if γk = max{Lip(xk, ξk)), α}kζ , ζ ∈ ( 12 , 1), then as k → ∞,
{∥xk∥} is bounded with probability 1 and {infj≤k f(xj)− f(x⋆)} converges to 0 almost surely.

Lemma E.5. Under the same conditions as Lemma E.4, if we take γk = max{Lip(f(xk, ξk), α}
√
K, then the tail bound

P
{
∥xk − x⋆∥ ≥ 2(α+ σ + Lω)

α
√
K

+ a

}
≤ 2∆

a
,

holds for all 2 ≤ k ≤ K, where ∆ = ∥x1 − x⋆∥+ α+σ+Lω

α .

Remark 8. Now that in convex optimization our potential function ∥x − x⋆∥2 itself already defines a bounded set. The
proof of E.5 can also be done based on a conditional probability argument.

Theorem E.5. Under the same conditions as Lemma E.4, given δ ∈ (0, 1/4), p ∈ (2δ, 1), (1 − 2p−1δ)K iterations will
lie in the ball centered around x⋆ with radius R(δ) = δ−1∆+ 2(α+σ+Lω)

α
√
K

and

min
1≤k≤K

E[ψ(xk)− ψ(x⋆)] ≤ p

p− 2δ
· Gδ + α

2
√
K

[
∥x1 − x⋆∥2α+

(α+ σ + Lω)
2

α
,

]
(39)

where Gδ := maxx supξ∼Ξ Lip(x, ξ), ∥x− x⋆∥ ≤ δ−1∆+ 2(α+σ+Lω)

α
√
K

.

E.4. Proof of Results in Subsection E.1

E.4.1. PROOF OF LEMMA E.1

Let x⋆ ∈ X ⋆ be an optimal solution to the problem. Then by three-point lemma, we have

fxk(xk+1, ξk) + ω(xk+1) +
γk
2
∥xk+1 − xk∥2

≤ fxk(x⋆, ξk) + ω(x⋆) +
γk
2
∥xk − x⋆∥2 − γk

2
∥xk+1 − x⋆∥2.

Re-arranging the terms, we deduce that

γk
2
∥xk+1 − x⋆∥2

≤ γk
2
∥xk − x⋆∥2 − γk

2
∥xk+1 − xk∥2 + fxk(x⋆, ξk) + ω(x⋆)− fxk(xk+1, ξk)− ω(xk+1)

≤ γk
2
∥xk − x⋆∥2 − γk

2
∥xk+1 − xk∥2 + (Lf (ξ

k) + Lω)∥xk+1 − xk∥ (40)

+ fxk(x⋆, ξk) + ω(x⋆)− f(xk)− ω(xk),

where (40) applies B1 to get fxk(xk+1, ξk)− fxk(xk, ξk) ≤ Lf (ξ
k)∥xk+1 − xk∥. Dividing both sides by γk

2 ,

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − ∥xk+1 − xk∥2 + 2(Lf (ξ
k) + Lω)

γk
∥xk+1 − xk∥

+
2

γk
[f(x⋆, ξk) + ω(x⋆)− f(xk)− ω(xk)] +

2

γk
[fxk(x⋆, ξ)− f(x⋆, ξ)].

Conditioned on x1, . . . , xk and taking expectation with respect to ξk, we successively deduce that

Ek[∥xk+1 − x⋆∥2]
≤ ∥xk − x⋆∥2 − Ek[∥xk+1 − xk∥2] + Ek[2γ−1

k (Lf (ξ
k) + Lω)∥xk+1 − xk∥]

+
2

γk
[f(x⋆) + ω(x⋆)− f(xk)− ω(xk)] (41)

≤ ∥xk − x⋆∥2 + (Lf + Lω)
2

γ2k
+

2

γk
[f(x⋆) + ω(x⋆)− f(xk)− ω(xk)] (42)

= ∥xk − x⋆∥2 + (Lf + Lω)
2

γ2k
+

2

γk
[ψ(x⋆)− ψ(xk)],
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where (41) applies E1 to get Eξk [fxk(x⋆, ξ) − f(x⋆, ξ)] ≤ 0; (42) uses −a
2x

2 + bx ≤ b2

2a and that E[Lf (ξ)2] ≤ L2
f .

Re-arranging the terms, we arrive at

Ek[∥xk+1 − x⋆∥2] ≤ ∥xk − x⋆∥2 − 2

γk
[ψ(xk)− ψ(x⋆)] +

(Lf + Lω)
2

γ2k

and this completes the proof.

E.4.2. PROOF OF THEOREM E.1

Taking γk ≡ γ = α
√
K and telescoping from 1, . . . ,K, we have

min
1≤k≤K

E[ψ(xk)− ψ(x⋆)] ≤ 1

K

K∑
k=1

E[ψ(xk)− ψ(x⋆)]

≤ 1

2
√
K

[
∥x1 − x⋆∥2α+

(Lf + Lω)
2

α

]
and this completes the proof.

E.5. Proof of Results in Subsection E.2

E.5.1. PROOF OF LEMMA E.2

Define Gk := G(∥xk∥). Let x⋆ ∈ X ⋆ be an optimal solution to the problem. Similarly, we have

fxk(xk+1, ξk) + ω(xk+1) +
γk
2
∥xk+1 − xk∥2

≤ fxk(x⋆, ξk) + ω(x⋆) +
γk
2
∥xk − x⋆∥2 − γk

2
∥xk+1 − x⋆∥2.

Re-arranging the terms, for ξk ∼ Ξ, we deduce that

γk
2
∥xk+1 − x⋆∥2

≤ γk
2
∥xk − x⋆∥2 − γk

2
∥xk+1 − xk∥2 + fxk(x⋆, ξk) + ω(x⋆)− fxk(xk+1, ξk)− ω(xk+1)

≤ γk
2
∥xk − x⋆∥2 − γk

2
∥xk+1 − xk∥2 + (GkLf (ξ

k) + Lω)∥xk+1 − xk∥ (43)

+ f(x⋆, ξk) + ω(x⋆)− f(xk)− ω(xk),

where (43) applies convexity. Dividing both sides by γk
2 , we have

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − ∥xk+1 − xk∥2 + 2(GkLf (ξ
k) + Lω)

γk
∥xk+1 − xk∥

+
2

γk
[f(x⋆, ξk) + ω(x⋆)− f(xk)− ω(xk)]

Next, conditioned on x1, . . . , xk and taking expectation with respect to ξk, we successively deduce that

Ek[∥xk+1 − x⋆∥2]
≤ ∥xk − x⋆∥2 − Ek[∥xk+1 − xk∥2] + Ek[2γ−1

k (GkLf (ξ
k) + Lω)∥xk+1 − xk∥]

+
2

γk
[f(x⋆) + ω(x⋆)− f(xk)− ω(xk)]

≤ ∥xk − x⋆∥2 + (GkLf + Lω)
2

γ2k
+

2

γk
[f(x⋆) + ω(x⋆)− f(xk)− ω(xk)] (44)

= ∥xk − x⋆∥2 + (GkLf + Lω)
2

γ2k
+

2

γk
[ψ(x⋆)− ψ(xk)],
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where (44) again uses −a
2x

2 + bx ≤ b2

2a and the assumption Eξ[Lf (ξ)2] ≤ L2
f . Re-arranging the terms, we get

Ek[∥xk+1 − x⋆∥2] ≤ ∥xk − x⋆∥2 − 2

γk
[ψ(xk)− ψ(x⋆)] +

(GkLf + Lω)
2

γ2k
(45)

and this completes the proof.

E.5.2. PROOF OF THEOREM E.2

Now that our recursive potential reduction is changed into

Ek[∥xk+1 − x⋆∥2] ≤ ∥xk − x⋆∥2 − 2

γk
[ψ(xk)− ψ(x⋆)] +

(GkLf + Lω)
2

γ2k

and we bound
GkLf + Lω

γk
=

GkLf + Lω
(Gk + 1)kζ

≤ Lf + Lω
kζ

,

giving

Ek[∥xk+1 − x⋆∥2] ≤ ∥xk − x⋆∥2 − 2

γk
[ψ(xk)− ψ(x⋆)] +

(Lf + Lω)
2

k2ζ
.

Invoking Lemma C.1 with Ak = 0, Vk = ∥xk − x⋆∥2 ≥ 0, Bk =
(Lf+Lω)2

k2ζ
and Ck = 2

γk
[ψ(xk) − ψ(x⋆)], we complete

the proof with the same argument as in Theorem 4.1.

E.5.3. PROOF OF LEMMA E.3

Our proof is a duplicate of Lemma 4.3 using a different potential function. We start by bounding the error of potential
reduction by (GkLf+Lω)2

γ2
k

≤ (Lf+Lω)2

α2K . Then telescoping of (45) gives us, for all 2 ≤ k ≤ K, that

E[∥xk − x⋆∥]2 ≤ E[∥xk − x⋆∥2] ≤ ∥x1 − x⋆∥2 + (Lf + Lω)
2

α2
≤

(
∥x1 − x⋆∥+ Lf + Lω

α

)2

=: ∆2

and E[∥xk − x⋆∥] ≤ ∆. Next consider, by optimality condition, that

fxk(xk+1, ξk) + ω(xk+1) +
γk
2
∥xk+1 − xk∥2 ≤ fxk(xk, ξk) + ω(xk)− γk

2
∥xk+1 − xk∥2.

A re-arrangement gives
γk∥xk+1 − xk∥2 ≤ (Lf (ξ

k)Gk + Lω)∥xk+1 − xk∥.

Dividing both sides by ∥xk+1 − xk∥,

∥xk+1 − xk∥ ≤ Lf (ξ
k)Gk + Lω
γk

=
Lf (ξ

k)Gk + Lω

α(Gk + 1)
√
K

.

Taking expectation, we get Ek[∥xk+1 − xk∥] ≤ Lf+Lω

α
√
K
. Then by Markov’s inequality,

Pξk∼Ξ

{
∥xk+1 − xk∥ ≤ 2(Lf + Lω)

α
√
K

|ξ1, . . . , ξk−1

}
≥ 1

2

and without loss of generality, we let Z =
2(Lf+Lω)

α
√
K

> 0. Then we successively deduce that

∆ ≥ E[∥xk+1 − x⋆∥]
= E[∥xk+1 − x⋆∥|∥xk − x⋆∥ ≤ Z+ z] · P{∥xk − x⋆∥ ≤ Z+ z}

+ E[∥xk+1 − x⋆∥|∥xk − x⋆∥ ≥ Z+ z] · P{∥xk − x⋆∥ ≥ Z+ z}
≥ E[∥xk+1 − x⋆∥|∥xk − x⋆∥ ≥ Z+ z].
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Next, consider the expectation E[∥xk+1 − x⋆∥|∥xk − x⋆∥ ≥ Z+ z] and we successively deduce that

E[∥xk+1 − x⋆∥|∥xk − x⋆∥ ≥ Z+ z]

= E[∥xk+1 − x⋆∥|∥xk − x⋆∥ ≥ Z+ z, ∥xk+1 − xk∥ ≤ Z] · P{∥xk+1 − xk∥ ≤ Z}
+ E[∥xk+1 − x⋆∥|∥xk − x⋆∥ ≥ Z+ z, ∥xk+1 − xk∥ ≥ Z] · P{∥xk+1 − xk∥ ≥ Z}

≥ z

2
· P{∥xk+1 − xk∥ ≥ Z} (46)

where (46) is by P{∥xk+1 − xk∥ ≤ Z} ≥ 0.5 and that, conditioned on ∥xk+1 − xk∥ ≤ Z,

∥xk+1 − x⋆∥ = ∥xk+1 − xk + xk − x⋆∥ ≥ ∥xk − x⋆∥ − ∥xk+1 − xk∥ ≥ z.

Chaining the above inequalities, we arrive at

∆ ≥ z

2
· P{∥xk − x⋆∥ ≥ Z+ z}.

Dividing both sides by z
2 and taking z = a gives the desired tail bound.

E.5.4. PROOF OF THEOREM E.3

Given δ ∈ (0, 1/4), we have

P{∥xk − x⋆∥ ≥ Z+ δ−1∆} ≤ 2∆

δ−1∆
≤ 2δ.

Denote Ik = I{∥xk−x⋆∥ ≤ δ−1∆+Z}. We have
∑K
k=1 E[1− Ik] ≤ 2δK and by Markov’s inequality, given p ∈ (2δ, 1),

P

{
K∑
k=1

Ik ≥ K(1− 2p−1δ)

}
≥ 1− p.

Now we telescope over Lemma E.3 and deduce that

K∑
k=1

E
[
2

γk
(ψ(xk)− ψ(x⋆))

]
≤ ∥x1 − x⋆∥2 − E[∥xK+1 − x⋆∥2] + (Lf + Lω)

2

α2

≤ ∥x1 − x⋆∥2 + (Lf + Lω)
2

α2
.

Next we condition on the event
∑K
k=1 Ik ≥ K(1 − 2p−1δ), define Gδ := maxz G(z), ∥z − x⋆∥ ≤ δ−1∆ + Z, and

successively deduce that

K∑
k=1

E
[
2

γk
(ψ(xk)− ψ(x⋆))

]
=

∑
k∈{j:Ij=0}

E
[
2

γk
(ψ(xk)− ψ(x⋆))

]
+

∑
k∈{j:Ij=1}

E
[
2

γk
(ψ(xk)− ψ(x⋆))

]

≥
∑

k∈{j:Ij=1}

E
[
2

γk
(ψ(xk)− ψ(x⋆))

]

≥
∑

k∈{j:Ij=1}

E
[

2

α(Gδ + 1)
√
K

(ψ(xk)− ψ(x⋆))

]

≥ 2(1− 2p−1δ)
√
K

α(Gδ + 1)
min

k∈{j:Ij=1}
E[(ψ(xk)− ψ(x⋆))], (47)
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where (47) follows from the event
∑K
k=1 Ik ≥ K(1− 2p−1δ). Putting the results together, we have

min
1≤k≤K

E[ψ(xk)− ψ(x⋆)] ≤ min
k∈{j:Ij=0}

E[ψ(xk)− ψ(x⋆)] (48)

≤ p

p− 2δ
· Gδ + 1

2
√
K

[
∥x1 − x⋆∥2α+

(Lf + Lω)
2

α

]
(49)

and this completes the proof.

E.6. Proof of Results in Subsection E.3

In this section, we again define Lkf := Lip(xk, ξk), L′
f := Lip(xk, ξ′) to simplify notation.

E.6.1. PROOF OF LEMMA E.3

By the optimality condition we have

fxk(xk+1, ξk) + ω(xk+1) +
γk
2
∥xk+1 − xk∥2 ≤ fxk(x⋆, ξk) + ω(x⋆) +

γk
2
∥xk − x⋆∥2 − γk

2
∥xk+1 − x⋆∥2.

Re-arranging the terms, we get

γk
2
∥xk+1 − x⋆∥2

≤ γk
2
∥xk − x⋆∥2 − γk

2
∥xk+1 − xk∥2 + fxk(x⋆, ξk) + ω(x⋆)− fxk(xk+1, ξk)− ω(xk+1)

≤ γk
2
∥xk − x⋆∥2 − γk

2
∥xk+1 − xk∥2 + (Lkf + Lω)∥xk+1 − xk∥

+ f(x⋆, ξk) + ω(x⋆)− f(xk)− ω(xk).

Dividing both sides by γk
2 ,

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − ∥xk+1 − xk∥2 +
2(Lkf + Lω)

γk
∥xk+1 − xk∥

+
2

γk
[f(x⋆, ξk) + ω(x⋆)− f(xk)− ω(xk)]

Conditioned on x1, . . . , xk, taking expectation with respect to ξk, we have

Ek[∥xk+1 − x⋆∥2]
≤ ∥xk − x⋆∥2 − Ek[∥xk+1 − xk∥2] + Ek[2γ−1

k (Lkf + Lω)∥xk+1 − xk∥]

+
2

γk
[f(x⋆) + ω(x⋆)− f(xk)− ω(xk)] (50)

≤ ∥xk − x⋆∥2 +
(Lkf + Lω)

2

γ2k
+

2

γk
[f(x⋆) + ω(x⋆)− f(xk)− ω(xk)]

= ∥xk − x⋆∥2 +
(Lkf + Lω)

2

γ2k
+

2

γk
[ψ(x⋆)− ψ(xk)],

where (50) use the fact that γk does not inherit randomness from ξk. Re-arranging the terms, we get

Ek[∥xk+1 − x⋆∥2] ≤ ∥xk − x⋆∥2 − 2

γk
[ψ(xk)− ψ(x⋆)] + Ek

[
(Lk

f+Lω)2

γ2
k

]
and this completes the proof.
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E.6.2. PROOF OF THEOREM E.4

We start by bounding Ek
[
(Lk

f+Lω)2

γ2
k

]
and notice that

(Lkf + Lω)
2

γ2k
=
Lkf
γ2k

+
2LkfLω

γ2k
+
L2
ω

γ2k

so that we can bound
Eξ′

[
Lk

f

γ2
k

]
= Eξ′

[
(Lk

f )
2

max{(L′
f )

2,α}k2ζ

]
≤

(α+ σ

α

)2 1

k2ζ
,

where we invoked Lemma D.1 and take X = Lkf , Y = L′
f , and we recall that by D2, E[|Lkf − L′

f |2] ≤ σ2. Similarly, we
can deduce that

Eξ′
[
2Lk

fLω

γ2
k

]
≤ Eξ′

[
2Lk

fLω

max{L′
f ,α}2

]
≤ Eξ′

[
2Lk

f

αL′
f

]
≤

(α+ σ

α2

)2Lω
k2ζ

Eξ′
[
L2

ω

γ2
k

]
≤ L2

ω

α2k2ζ
.

Putting the bounds together,

Eξ′
[
(Lk

f+Lω)2

γ2
k

]
≤ (α+σ+Lω)2

α2k2ζ
.

Then we have

Ek[∥xk+1 − x⋆∥2] ≤ ∥xk − x⋆∥2 − 2

γk
[ψ(xk)− ψ(x⋆)] +

(α+ σ + Lω)
2

α2k2ζ

and we complete the proof by invoking Lemma C.1.

E.6.3. PROOF OF LEMMA E.5

We start by bounding Ek
[
(Lk

f+Lω)2

γ2
k

]
≤ (α+σ+Lω)2

α2K . Telescoping the relation

Ek[∥xk+1 − x⋆∥2] ≤ ∥xk − x⋆∥2 − 2

γk
[ψ(xk)− ψ(x⋆)] +

(α+ σ + Lω)
2

α2K

gives, for all 2 ≤ k ≤ K, that

E[∥xk − x⋆∥2] ≤ ∥x1 − x⋆∥2 + (α+ σ + Lω)
2

α2
≤

(
∥x1 − x⋆∥+ α+ σ + Lω

α

)2

=: ∆2.

and E[∥xk − x⋆∥] ≤ ∆. Next consider

fxk(xk+1, ξk) + ω(xk+1) +
γk
2
∥xk+1 − xk∥2 ≤ fxk(xk, ξk) + ω(xk)− γk

2
∥xk+1 − xk∥2

and re-arrangement gives γk∥xk+1 − xk∥2 ≤ (Lkf + Lω)∥xk+1 − xk∥. Dividing both sides by ∥xk+1 − xk∥, we

get ∥xk+1 − xk∥ ≤ Lk
f+Lω

γk
. Taking expectation, Ek[∥xk+1 − xk∥] ≤ α+σ+Lω

α
√
K

. Then by Markov’s inequality,

Pξk,ξ′∼Ξ

{
∥xk+1 − xk∥ ≤ 2(α+σ+Lω)

α
√
K

|ξ1, . . . , ξk−1
}

≥ 1
2 . and without loss of generality, let Z = 2(α+σ+Lω)

α
√
K

> 0.

By the same reasoning, we arrive at ∆ ≥ z
2 · P{∥xk − x⋆∥ ≥ Z + z} and dividing both sides by z

2 gives the desired tail
bound.

E.6.4. PROOF OF THEOREM E.5

Following the same argument as Theorem E.4, we have, for δ ∈ (0, 1/4), that P{∥xk − x⋆∥ ≥ Z + δ−1∆} ≤ 2δ. Define
Ik = I{∥xk − x⋆∥ ≤ δ−1∆+ Z}. We have, by Markov’s inequality, that P{

∑K
k=1 Ik ≥ K(1 − 2p−1δ)} ≥ 1 − p. Then

telescoping over Lemma E.5 gives
K∑
k=1

E
[
2

γk
(ψ(xk)− ψ(x⋆))

]
≤ ∥x1 − x⋆∥2 − E[∥xK+1 − x⋆∥2] + (α+ σ + Lω)

2

α2

≤ ∥x1 − x⋆∥2 +
(α+ σ + Lω

α

)2

.
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Conditioned on
∑K
k=1 Ik ≥ K(1− 2p−1δ), we get

K∑
k=1

E
[
2

γk
(ψ(xk)− ψ(x⋆))

]
≥ 2(1− 2p−1δ)

√
K

α+ Gδ
min

k∈{j:Ij=1}
E[ψ(xk)− ψ(x⋆)]

where Gδ := maxx supξ∼Ξ Lip(x, ξ), ∥x− x⋆∥ ≤ δ−1∆+ Z. Combining two inequalities completes the proof.
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