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Abstract

Although neural networks have demonstrated sig-
nificant success in various reinforcement-learning
tasks, even the highest-performing deep mod-
els often fail to generalize. As an alternative,
object-oriented approaches offer a promising
path towards better efficiency and generaliza-
tion; however, they typically address narrow prob-
lem classes and require extensive domain knowl-
edge. To overcome these limitations, we intro-
duce QORA, an algorithm that constructs mod-
els expressive enough to solve a variety of do-
mains, including those with stochastic transition
functions, directly from a domain-agnostic object-
based state representation. We also provide a
novel benchmark suite to evaluate learners’ gener-
alization capabilities. In our test domains, QORA
achieves 100% predictive accuracy using almost
four orders of magnitude fewer observations than
a neural-network baseline, demonstrates zero-shot
transfer to modified environments, and adapts
rapidly when applied to tasks involving previously
unseen object interactions. Finally, we give exam-
ples of QORA’s learned rules, showing them to
be easily interpretable.

1. Introduction
Reinforcement learning, one of the primary branches of
machine learning, encompasses problems where an agent,
situated in some environment, makes decisions to maximize
a reward signal (Kaelbling et al., 1996; Glanois et al., 2021).
This makes the field uniquely applicable to real-world tasks
such as robotic manipulation (Nagabandi et al., 2020), au-
tonomous driving (Kiran et al., 2022), and plasma confine-
ment for nuclear fusion (Degrave et al., 2022). There is
hope that the study of reinforcement learning may even lead
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to human-level general intelligence, but current methods are
far from achieving this goal in at least three aspects.

First, humans generalize well, transferring knowledge
quickly to new settings, which allows learning to compound
over time. Machine-learning methods, on the other hand,
often fail when tested in scenarios that differ only slightly
from how they were trained (Kansky et al., 2017). Second,
current algorithms do not produce models that are inter-
pretable to humans (Ghorbani et al., 2019; Glanois et al.,
2021). Exchanging information is one of the most important
features of social interaction, increasing trust and making
knowledge acquisition more efficient; models that are dif-
ficult to understand cannot help with either of these goals.
Third, humans learn efficiently, with many being able to
confidently accomplish new tasks within hours or even min-
utes, while state-of-the-art reinforcement-learning agents
can require decades worth of training experience (Badia
et al., 2020). We refer to the set of these three properties as
GIE (generalization, interpretability, efficiency) and propose
the pursuit of all three as a path towards developing human-
level intelligent systems. As a first step in this direction, we
study algorithms that learn to understand their environments
through interaction and observation.

More formally, the task we are interested in is object-
oriented transition modeling without domain knowledge,
which we describe here. Object-oriented representations
work with entities and their attributes (e.g., position, color)
rather than the tensors commonly used in deep learning
(Diuk et al., 2008). Investigations in both machine learning
(Chang et al., 2016) and human psychology (Spelke, 1990)
have shown that understanding the world through objects
and their relationships is an essential part of intelligence.
Transition modeling is the process of learning predictive
models of an environment’s behavior; studies have shown
that this is one of the primary features that enables humans
to generalize (Hamrick et al., 2011) and that it can improve
knowledge transfer in reinforcement learning as well (Young
et al., 2022). Domain knowledge is additional information
given to the agent beyond what it observes through its inter-
actions, e.g., a list of domain-specific preconditions (Diuk
et al., 2008; Marom & Rosman, 2018). While it is useful
in certain applications, this information can be difficult or
impossible to acquire; therefore, algorithms that operate
without requiring such information are much more widely
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applicable. Although the combination of these constraints
yields a challenging problem, investigating the topic is a
principled path towards better techniques that possess GIE.

Unfortunately, domain-agnostic learning of object-oriented
causal models is not well-studied; prior developments in
reinforcement learning typically lack one or more of the
three requirements stated in the preceding paragraph. Pop-
ular deep-learning approaches such as DQN (Mnih et al.,
2015), Relational A2C (Zambaldi et al., 2019), Agent57
(Badia et al., 2020), and MuZero (Schrittwieser et al., 2020)
do not explicitly interact with objects. The GNN architec-
ture introduced in (Sancaktar et al., 2022) is object-oriented,
but requires domain knowledge. Another line of research
has studied non-deep-learning approaches to reinforcement
learning, though these methods have their own limitations.
Džeroski et al. (2001) introduced relational reinforcement
learning, which uses first-order logical decision trees (Bloc-
keel & De Raedt, 1998; Driessens et al., 2001) to represent
policy and value functions, meaning that it does not model
transitions. DOORMAX (Diuk et al., 2008) and its exten-
sions (Hershkowitz et al., 2015; Marom & Rosman, 2018)
tackle object-oriented transition modeling, but they require
extensive domain knowledge to function. Schema networks
(Kansky et al., 2017) use a domain-specific object represen-
tation. To our knowledge, the only notable existing tech-
niques that satisfy all of the requirements of our problem
are Multi-Head Dot Product Attention (MHDPA) modules
(Vaswani et al., 2017) and the Neural Physics Engine (NPE)
(Chang et al., 2016). These methods work with objects, can
be used for transition modeling, and do not require domain
knowledge; however, as we show later in this paper, they
do not possess GIE, which calls for the investigation of
alternative methods.

Towards this end, we introduce QORA (Quantified Object
Relation Aggregator), a novel algorithm for learning object-
oriented transition models without domain-specific knowl-
edge. Unlike deep-learning approaches such as MHDPA
and NPE, QORA extracts relational predicates from its ob-
servations and uses statistical methods to assemble these
predicates into informative hypotheses. In order to deter-
mine how well QORA meets the goal of GIE, we evaluate
it in several new object-oriented benchmark environments.
Through these experiments, we show that QORA improves
upon prior work in all three aspects. In particular, we demon-
strate: a reduction in sample complexity of almost 10,000×
relative to neural-network methods; zero-shot transfer to
more complex scenarios; continual learning of new interac-
tions; and easily-interpretable rules based on elegant first-
order logic formulas. Thus, QORA lays a promising path
towards progress on the challenging problem of achieving
GIE, opening the door for future work to tackle tasks such
as learning more-complex environments, playing difficult
games, and controlling physical robots. The source code of

both QORA’s reference implementation and our benchmark
suite are available online (Stella, 2024).

2. Object-Oriented Reinforcement Learning
Reinforcement learning involes an agent (e.g., a machine-
learning algorithm) interacting with an environment (e.g.,
a game). In each step, a snapshot of the environment’s
state s is passed to the agent. The agent then chooses an
action a, which is sent to the environment. The environment
then transitions to a new state s′. This transition may also
involve a scalar reward signal r. The agent is able to observe
the results of its actions in the form of tuples (s, a, s′, r).
Typically, the agent’s goal is to choose actions that maximize
the accumulated reward signal (i.e., score) over time.

As part of the learning process, it is often helpful for the
agent to utilize a model of the environment’s transition
dynamics. This model is trained to predict the future state
that will result from the agent’s action; in other words, the
inputs to the model are (s, a) pairs and the outputs are s′

states. This transition modeling is the problem we study
in this paper. As such, we forgo the environment’s reward
signal, instead employing the random agent that chooses
actions uniformly at random. The resulting observations are
fed directly to the model learner.

Unlike many prior works, we operate in an explicitly object-
oriented framework. Here, environments consist of a tuple
(M,C, S,B,A, T ). M is the set of member attribute types,
each of which has a name (e.g., “position”) and a size (the
dimensionality of its values, e.g., two for (x, y) coordinates,
three for RGB color). C is the set of class types, with each
class c ∈ C consisting of a name (e.g., “player”) and a set of
attribute types c.attributes ⊆ M . Every object o belongs
to a class and contains attribute values corresponding to
the attribute types of its class. Each attribute value is a d-
element integer vector where d is the size of the attribute’s
type. S is the set of all valid states, where each state s is
represented as a set of objects {oi}. B is the distribution of
initial states, which may be parameterized (by, e.g., width,
height, number of objects, etc) to produce specific types of
levels for testing. A is the finite set of actions available to the
agent. T (s′|s, a) is the environment’s transition probability
distribution, which gives the probability of moving to state
s′ after taking action a in state s. Each object is given
a unique integer id, arbitrarily assigned for starting states
and not modified by T , so that the learner can detect what
changes have occurred during a transition. Environments
must satisfy the Markov property (Sutton & Barto, 2018),
i.e., T (s′|s, a) does not depend on any past transitions or
other hidden information.

To make this formalism concrete, we describe one of our
benchmark environments, the doors domain (see Ap-
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pendix B for other environments). In this domain, there
are two attribute types: two-dimensional position (or
pos for short), taking values in Z2, and a one-dimensional
attribute we call color, taking values in {0, 1}. There are
three classes: player, wall, and door. We use s.c to
refer to the set of all objects in state s belonging to class c,
i.e., {oi ∈ s | oi.class = c}. For example, s.walls is the
set of all wall objects in state s. Objects of the player
and door classes have position and color attributes;
walls have position, but no color. For an object o1
of type o1.class = c, we use the notation o1[m] to refer to
the value of the object’s attribute m, e.g.: o1[color] = 0,
o1[pos] = (3,−2).

The initial state distribution B in the doors domain has
three parameters: the width and height of the generated
levels and the number of doors. An 8 × 8 example state
with four doors is shown in Fig. 8c in the Appendix. There
are six actions: movement in each direction (left, right,
up, down), stay, and change-color. Walls and doors
are not affected by any action, meaning that none of their
attributes’ values ever change. The stay action does not
affect the player. Each movement action attempts to shift the
player’s position by one unit in the noted direction; however,
if the destination position is blocked by a wall or door, the
player will not move. Note that doors only block movement
if they are not the same color as the player. In order to
move through a door, the player’s color can be toggled with
the change-color action (so long as it is not currently
occupying the same space as a door).

The dynamics of the doors domain can be expressed using
a set of functions that independently predict future values
of a particular attribute type. To make the functions more
concise, it is also helpful to separate them based on the
action and class they apply to. We call these functions rules.
For example, when the right action is taken in state s, the
following function gives the new position of a player o1
in the resulting state s′:

f1(o1, s) =

{
o1[pos] P1(o1) ∨ P2(o1)

o1[pos] + (1, 0) otherwise,
(1)

where

P1(o1) ≡ ∃o2 ∈ s.walls : o2[pos]− o1[pos] = (1, 0) (2)

P2(o1) ≡ ∃o2 ∈ s.doors : o2[pos]− o1[pos] = (1, 0)

∧ ¬(o2[color]− o1[color] = 0),
(3)

which means that the player moves if not blocked by a wall
or a door of a different color.

For another example, the following gives the new color
of a player o1 when the change-color action is taken:

f2(o1, s) =

{
o1[color] P3(o1)

1− o1[color] otherwise,
(4)

where

P3(o1) ≡ ∃o2 ∈ s.doors : o2[pos]−o1[pos] = (0, 0). (5)

Many of the other rules of this domain, e.g., the effect of
the left action on the color attribute, as well as any that
determine attributes of wall or door objects, are identity.

When testing in a domain such as doors, we measure the
accuracy of an algorithm’s model T̂ by calculating the Earth
Mover’s Distance (Werman et al., 1985; Rubner et al., 1998)
(EMD) between the estimated and true distributions over
future states. This allows us to consider the actual devia-
tion between predicted states, rather than just the difference
between the probability values as with other statistical dis-
tance metrics. EMD does so by incorporating a ground
distance metric that gives the distance between states. For
this, we use d(s1, s2) = |s2−s1|1, where s2−s1 computes
the difference in each object’s attribute value from s1 to s2
(i.e., diff) and | · |1 is the sum of the absolute value of each
attribute value difference (i.e., summed L1 norm over all
object attribute values). Our goal is to model T as closely
as possible, i.e., minimize the EMD on arbitrary transitions.

Learning an environment’s transition dynamics given only
(s, a, s′) observations, with no additional domain-specific
knowledge or assumptions, is a significant challenge. Since
object sets have no fixed order or size, states in this formu-
lation are not always representable as scalars or vectors as
typically assumed in prior work (Strehl et al., 2007). This
precludes the use of any methods that require fixed-sized
inputs. Additionally, unlike in previous work (Diuk et al.,
2008; Marom & Rosman, 2018), the learner here is not
given direct access to the most important information; in-
stead, anything it needs (e.g., relational predicates) must be
generated from s. The goal is therefore not just to learn the
behavior of the environment, but also to discern what infor-
mation must be extracted in order to compute this behavior.

While it would be possible to memorize every seen obser-
vation and compute predictions on (s, a) without using the
actual content of s, this would be problematic for several
reasons. The space S and therefore also S×A are extremely
large: even if limiting to small (8×8) levels in our doors do-
main, |S×A| is in the trillions. More importantly, this is not
an efficient way of learning. An ideal algorithm would pro-
duce a model of T that generalizes, i.e., after being trained
on only a small fraction of possible transitions, it generates
accurate predictions even on unseen inputs.

3. QORA
We now describe QORA, a novel object-oriented model-
learning algorithm that generates probability distributions
over predicted states s′ given the current state s and action
a. QORA is not based upon popular deep-learning methods,
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instead incorporating a series of novel techniques to produce
a distinct algorithm. Because of the resulting complexity, an
in-depth description cannot be presented in the limited space
of this paper. Thus, throughout this section, we maintain
a high-level discussion; where relevant, we refer to pseu-
docode listings in Appendix A, which also contains more
detailed information about the algorithm.

QORA learns rules with a structure similar to that shown in
Eqs. (1) and (4). We call the output values of these piece-
wise functions outcomes or effects and the information that
determines which case will be selected conditions. Rules
as learned by QORA follow a specific structure. First, the
outcomes are always of the form o1[m] += ci for some
case-specific constant vector ci. Since this ci is the only
varying quantity between different cases’ outcomes, rules
can be modeled by simply keeping track of these deltas.
When learning, deltas can be calculated by subtraction: for
an object o1 in s and its corresponding o′1 in s′, the observed
effect is o′1[m] − o1[m]. Second, conditions are based on
first-order logic formulas composing “primitive” predicates
of two forms:

Pm,v(o1) : o1[m] = v, (6)

which checks whether the value of attribute m in object o1
is equal to v, and

Pm,v(o1, o2) : o2[m]− o1[m] = v, (7)

which checks whether the difference in values of attribute
m between objects o1 and o2 is equal to some value v.
These predicates are extracted from state observations (and
quantified appropriately) to produce conditions as shown in
Alg. 3. To make the algorithm more general, other types of
predicates could be added, but even these two alone allow
QORA to learn many useful transition functions.

With the above in mind, a rule as learned by QORA is a
function rc,m,a(o1, s) that predicts the change in attribute
m of objects of type c when action a is taken. To make
a prediction, QORA iterates through all objects’ attributes
and applies the relevant rule, as shown in Alg. 5. A rule
could be something like

rplayer,pos,right(o1, s) =

{
(0, 0) P1(o1) ∨ P2(o1)

(1, 0) otherwise,
(8)

where P1 and P2 are the same as in Eqs. (2) and (3).
These rules can also express behaviors like the effect of
the change-color action, shown in Eq. (4), by incorpo-
rating the current value of attribute m:

rplayer,color,change−color(o1, s) = (9)
0 P3(o1)

1 o1[color] = 0

−1 o1[color] = 1

where P3 is the same as in Eq. (5).

Learning these rules from scratch is challenging. Notably,
the most difficult part of this task is determining what in-
formation must be incorporated into the conditions. For
example, in Eq. (8), the conditions make use of P1 (check-
ing for an adjacent wall) and P2 (checking for an adjacent
different-colored door). How can a learner determine that
these pieces of information are important, and moreover,
that they are all that is important? Even in a small game
world, there is a great deal of information (e.g., several hun-
dred unique predicates of the types in Eqs. (6) and (7) in an
8× 8 world of the doors domain), and the set of formulas
that can be constructed using these predicates is massive.

QORA must somehow determine which of these formulas
is correct, but without domain-specific assumptions, we can-
not a priori rule out any possibilities: all valid formulas,
up to arbitrary size, must be considered. Fortunately, as a
general principle, we know that in many environments, the
“correct” rules depend on only a small amount of informa-
tion. Thus, to make the search tractable, we apply Occam’s
Razor: we begin with simple conditions, measure their pre-
dictive power over a series of observations, and combine
those that perform well to produce better conditions for an-
other iteration of this process (Alg. 2). This allows us to
generate formulas as large as a given environment requires
while still tending to keep them as small as possible. In
addition, we use a novel representation of first-order logic
formulas that allows us to reduce the size of the search space
by exploring multiple formulas simultaneously.

Combining predicates would typically lead to a massive in-
crease in the size of the search space due to the existence of
different types of quantifiers and connectives. With multiple
quantified expressions containing several inner conditions
combined with an arbitrary sequence of conjunctions, dis-
junctions, and negations, it becomes infeasible to enumerate
even just the formulas generated by combining existing con-
ditions. Rather than enumerating each of these formulas
explicitly, we encode conditions using a novel representa-
tion that implicitly considers all possible connectives and
quantifiers in a formula. Thus, for example, the formulas
(o1[color] = 1) and (Qo2 ∈ C1 : o2[color] = 0), where Q
represents any possibly quantifier, combine to produce

(o1[color] = 1)⊙ (Qo2 ∈ C1 : o2[color] = 0) , (10)

where ⊙ represents any possible connective. Rather than
evaluating to true or false, these conditions produce a bit
string using the process shown in Alg. 4. This value en-
codes a large amount of information in a single evaluation;
essentially, it is equivalent to evaluating every possible in-
stantiation of the equation all at once and checking which
possibilities were satisfied in the current state. This can be

4



QORA: Zero-Shot Transfer via Interpretable Object-Relational Model Learning

used to check for the truth value of simple formulas, such as

(o1[color] = 1) ∧ (∀o2 ∈ C1 : o2[color] = 0) (11)

based on the above condition, as well as more complex
formulas; for example, a single evaluation of the condition

Qo1 : P (o1)⊙Q(o1) (12)

can determine the truth value of the statement

(∀o1 : P (o1)) ∧ (∃o1 : Q(o1)). (13)

In addition to reducing the size of QORA’s search space
exponentially, this representation enables extremely simple
translation to formulas of the form shown in the previous
rule listings (Eqs. (8) and (9)). Furthermore, the produced
bit strings can be used as indices into a table, allowing
QORA to directly model function outputs by counting ob-
servations.

To model a rule’s output distribution, QORA records ob-
servations in a table of counters indexed by (condition bit
string, outcome) pairs. This table allows QORA to calculate
joint and conditional probability estimates for each outcome.
Treating all rules as probabilistic in this way allows QORA
to construct and evaluate partially-informed rules, essen-
tially treating all observed randomness as being due to a
lack of information. Then, when conditions are combined to
produce a better-informed rule, observed outcomes will be
less random. The construction process naturally terminates
when no additional information improves the best-known
hypothesis, i.e., all necessary information has been consid-
ered. In a deterministic environment, this corresponds to
perfect predictive accuracy with no random outcomes.

In the doors domain, there are three important pieces
of information to consider when predicting the player’s
movement: (1) is there a wall next to the player, (2) is there
a door next to the player, and (3) is that door the same
color as the player. It is possible to make predictions
without using any information at all, but this will yield a very
poor model. Considering just some of the information, e.g.,
solely the presence of an adjacent wall, makes the model
much more powerful, but it will still fail in some scenarios
(i.e., when there is a door next to the player). Checking for
a door next to the player further improves the model, since
it allows the model to be 100% certain that the player can
move when there is not a wall or door, but if there is a door,
the model can’t know whether the player will be able to
move without looking at the door’s color. Thus, only the
final model – which looks at all three pieces of information
– will be perfectly accurate. Until this full condition is found
by the algorithm, the environment appears to be stochastic.

For our iterative condition-combining process to work, we
need a way to evaluate and rank candidate rules by their pre-
dictive power. To this end, we define the score of a rule to be

its average confidence in observations’ true outcomes, i.e.,
for a rule r with probability estimates P̂ , the rule’s expected
estimated probability P̂ (y|x) for a randomly-sampled (con-
dition bit string, outcome) pair (x, y). This is given by

S(r) =
∑
(x,y)

P̂ (y|x)P̂ (x, y). (14)

This metric takes values in [0, 1], with one meaning that the
rule has perfect predictive accuracy. Incomplete rules will
have scores less than one, with better-informed rules (i.e.,
incorporating more of the necessary information, thus en-
abling better prediction) getting higher scores. This allows
us to rank candidate rules using their scores, helping QORA
determine which conditions to combine as shown in Alg. 2.

One final piece that makes QORA more robust is the use
of confidence levels based on a hyperparameter α ∈ (0, 1).
Rather than accepting conditions as soon as their S score
exceeds the uninformed baseline, we estimate a confidence
interval for each rule’s S value and only accept once the
lower bound of this interval exceeds the baseline. The confi-
dence level is 1−α, so that as α is lowered towards zero, the
confidence intervals become wider and QORA accepts can-
didates more conservatively. This significantly reduces the
effect of spurious correlations, making QORA increasingly
likely to incorporate only the most useful pieces of informa-
tion into its rules. The choice of α is also somewhat domain-
agnostic, as we show in Section 4.3; in more-challenging
domains, the differences in S scores between candidates
are smaller, so QORA automatically gathers more evidence
before accepting hypotheses.

4. Experiments
To evaluate QORA and compare it to previous work, we
set up tests that focus solely on each method’s ability to
learn from data. Each algorithm is run off-policy, with
actions being chosen by a random agent and observations
fed sequentially (i.e., online) without any sort of replay
mechanism (Mnih et al., 2015). When running an experi-
ment, we generate some number of initial states and step
through n random actions in each to yield the total number
of observations. The error metric we use is Earth Mover’s
Distance (EMD) as mentioned in Section 2. Our benchmark
environments are described in Appendix B.

4.1. Comparison to Baselines

We begin by evaluating two neural-network architectures
and QORA on the walls domain. Results are shown in
Figure 1. QORA is run 100-1000 times per experiment
to generate average results, but due to the computational
cost, this could not be done for the neural networks; instead,
after tuning hyperparameters and architectures, we report a
single run with the best settings for each variant. The neural
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Figure 1: Tests results from the walls domain.

networks tested are two object-based architectures, which
receive a list of objects similar to the representation QORA
uses. NPE is an implementation of the Neural Physics En-
gine (Chang et al., 2016) without neighborhood masking to
ensure it has no domain-specific information. MHDPA is an
architecture using multi-head dot-product attention modules
(Vaswani et al., 2017) to capture relations. Details on the
architecture hyperparameters can be found in Appendix C.

Although both architectures are highly complex relative to
the domain they are tested on, neither is able to achieve
perfect accuracy even after two million observations, as
shown in Figure 1a, where we train them in 8× 8 worlds;
they both saturate at around 0.5 error, which implies that
they may have learned how walls work (i.e., that they do not
move) but not how the player works (i.e., that it interacts
with walls). Also note the effect of increasing n, the number
of steps taken per level: the networks learn much slower,
and in particular, the MHDPA with n = 100 never drops to
0.5 error. This is due to the reduced variety in the training
data that comes with increasing n. In Figure 1b, we train
the networks for two million observations in 8× 8 worlds
before transferring them without further training to 16× 16
worlds. The substantial increase in error immediately after
transfer indicates that the networks were relying on some
extraneous details specific to the 8× 8 levels.

In Figure 1c, we test QORA with varying values of n, show-
ing again that lower n results in faster learning. Even in the
worst case, though, QORA is still 3−4 orders of magnitude
more efficient than the deep-learning baselines. In Figure 1d,
we see QORA demonstrate zero-shot transfer to a new type
of level layout: after being trained for 1,000 observations on
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Figure 2: QORA on advanced domains. (a) Testing contin-
ual learning with (TL) and without (N) additional training
after transfer. (b) Transfer tests to larger worlds with more
fish, showing that QORA scales optimally with the number
of objects. (c) Pre-training in simpler scenarios to accelerate
learning. (d) Tackling the challenging complex(4) domain.

8×8 levels, the learned model is transferred without further
updates to 64×64 and 128×128 environments, the latter of
which contain almost five thousand objects. The transferred
models never make any errors; this shows that in all runs of
the experiment, QORA deduced the correct relational rules
(i.e., checking for adjacent walls) rather than using rules
specific to the levels it was trained in. Specifically, QORA
learns rules including the following:

rplayer,pos,right(o1, s) =

{
(0, 0) P (o1)

(0, 1) otherwise,
(15)

where

P (o1): ∃o2 ∈ walls : o2[pos]− o1[pos] = (0, 1). (16)

4.2. Tackling Challenging Domains

We now move to the more complex domains. Because the
neural methods failed on the simpler walls domain, we
only test QORA here. Beginning with doors, in Figure
2a we demonstrate several variations of 8× 8 → 16× 16
transfer after 30,000 observations: two tests beginning in
a simpler variant of the domain (with only a single door
color), with and without post-transfer model updates, and
one test that trained in full-color worlds. Similarly to what
we demonstrated in Figure 1d, when trained in 2-color
worlds, QORA immediately transfers to larger levels with
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no additional error. In the runs where QORA trains in
levels with only a single door color, QORA does not im-
mediately achieve zero error post-transfer, but this is to be
expected since it is impossible to distinguish between the
“correct” hypothesis (i.e., comparing player color to door
color) and other “incorrect” hypotheses (e.g., simply check-
ing the player’s current color). Still, QORA maintains its
knowledge of walls, thereby achieving lower error post-
transfer than an untrained model would. When post-transfer
learning is enabled, QORA is able to quickly choose be-
tween the previously-equivalent hypotheses, re-converging
to zero error within 5,000 additional observations.

We next evaluate QORA on the stochastic fish domain.
Though the rules seem simple, this domain is extremely
difficult to learn due to its random nature. The S score
of the best candidate (i.e., the one that checks for walls
around the fish) is only slightly higher than completely
random guessing (≈ 0.3 vs. ≈ 0.2), making it difficult to
determine which predicates are actually useful. Nonetheless,
as shown in Figure 2b, QORA achieves low error within
100K observations, meaning that it is accurately predicting
the entire distribution over possible future states.

In the shown tests, after training for 150K observations in
8×8 worlds with a single fish, we transfer with no additional
learning to larger levels with varying numbers of fish. When
applied to levels with multiple fish, QORA is predicting the
entire distribution of every possible future position of all of
the fish. Because our error metric is cumulative, the error of
a model that correctly handles each fish (independently from
other fish, only looking at adjacent walls) will scale linearly
with the number of fish, which is exactly what we see with
QORA. The increased size of the levels post-transfer has
no noticeable effect and the small amount of error that is
present is simply due to the fact that QORA’s probability
estimates are based on observed frequencies.

We now move on to the lights domain. In Figure 2c, we
compare two learning modes: “simple” (initial training for
1,000 observations in levels with 2-10 lights, then training
on levels with 2-100 lights after transfer) and “complex”
(training from scratch for 2,000 iterations on levels with
2-100 lights). The results demonstrate a major benefit of
QORA’s generalization capabilities: QORA can be trained
rapidly in smaller, simpler scenarios and immediately trans-
ferred to more difficult settings. When compared to training
QORA from scratch in more complex instances of the do-
main, we see that the pre-training allows QORA to converge
to perfect accuracy almost 3× faster.

Finally, we apply QORA to the complex(4) domain. This
domain instance has five classes, two attributes, and twelve
actions, in addition to the most elaborate rules (e.g., the
behavior of the jump actions) among any of our domains.
Still, QORA is able to reliably learn the domain perfectly.

100 200 300 400
observations

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r (
EM

D)

=0.5
=0.1
=0.05
=0.01

(a) walls error over time

0.00 0.02 0.04 0.06 0.08 0.100.0

0.5

1.0

1.5

2.0

ca
nd

id
at

es
 e

xp
lo

re
d

1e3

(b) memory usage on walls

50 100 150
observations 1e3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

er
ro

r (
EM

D)

=0.05
=0.01

(c) fish error over time

100 102 104

observations

102

103

ca
nd

id
at

es
 e

xp
lo

re
d =0.05

=0.01

(d) memory usage on fish

Figure 3: QORA performance varying α in 8× 8 worlds.

In fact, as shown in Fig. 2d, QORA achieves zero error
within 500K steps, which is less than the time it took the
neural-network baselines to reach 0.5 error on the walls
domain. Overall, the results in these challenging domains
show that QORA possesses great efficiency and powerful
knowledge-transfer capabilities.

4.3. Varying α

In Figure 3, we test QORA with different values of its α
hyperparameter in the walls and fish domains. This
parameter controls QORA’s willingness to accept uncertain
hypotheses as “useful”, leading to changes in its learning
rate and memory useage. As seen in Figs. 3a and 3c, de-
creasing α (which corresponds to a higher confidence level
and therefore larger intervals) leads to slower learning. Note,
though, that QORA is quite robust to changes in this pa-
rameter; in the walls domain, nearly the entire range of
possible α values is feasible to use. Additionally, simply
choosing a value such as α = 0.01 typically works and
yields good performance across a wide variety of domains,
from walls to fish as shown in Fig. 3c. In fact, we used
α = 0.01 in nearly all of the experiments in this paper.

Although lowering α can lead to slightly slower learning,
it also makes the learning process more stable by reducing
the chance that QORA accepts somewhat-useful hypotheses
due to spurious correlations. In Figure 3b, we plot the to-
tal number of candidates explored after 1,000 observations
for many different runs with randomly-chosen α values
in [0, 0.1]. Notice that lower α values lead to much more
consistent memory usage. Conversely, using a higher α
value increases the upper-bound on memory usage, leading
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Figure 4: The effect of environmental complexity on
QORA’s sample complexity. In (c), we vary the number of
path objects b in relation to the dimensionality n.

QORA to occasionally generate a larger number of predi-
cates than necessary. This occurs more often in challenging
environments, especially stochastic ones, leading to the be-
havior shown in Fig. 3d where the use of a relatively high
α value sometimes led QORA to incorporate unnecessary
information into its conditions. It is important to note that
the number of candidates shown in these figures is the sum
total generated throughout training, not the number of can-
didates used for prediction: learned rules consist of only a
single candidate per (c,m, a) triplet.

4.4. Scaling Environmental Complexity

To more thoroughly study the relationship between envi-
ronmental complexity and QORA’s sample complexity, we
measured the number of observations taken by QORA to
achieve 100% accuracy (i.e., the number of observations
prior to its last error) in our four domain sets. In Figs. 4a
and 4b, QORA’s sample complexity appears to be approx-
imately linear in the number of actions. This is due to the
fact that the domains change in a uniform way as the domain
parameter (i.e., number of players or actions) varies. Each
additional stage simply adds new actions with rules similar
to the prior ones. Because QORA learns rules independently
for each (c,m, a) triplet, this just adds on some constant
factor to the sample complexity.

However, this is not always the case. Fig. 4c shows similar
experiments in the paths domains, but varying the way
that the number of path objects b scales with the dimension-
ality of the environment n. In most cases, such as when the

number of paths is constant or linear in n, this qualitatively
changes the behavior of the environment from QORA’s per-
spective. A notable exception is when the number of paths
is exponential in the dimensionality. This choice ensures
that the random walk process is essentially similar across
values of n, thus leading to QORA’s sample complexity
being roughly linear in n.

Finally, to show how QORA performs in extremely diffi-
cult environments, we evaluate its time to zero error in the
complex domains. As shown in Fig. 4d, QORA is able to
learn all of the environments perfectly. Notably, QORA’s
sample complexity increases nonlinearly with each addi-
tional step. Because each domain mode makes different
types of changes to the transition function, the effective
difficulty does not vary uniformly. The fact that QORA
matches this trend is evidence that its performance is related
in a meaningful way to the “true” complexity of the domain.

4.5. Runtime Complexity

The time taken to compute QORA’s prediction function is
fairly low – about a tenth of a millisecond even in a large
domain (paths with n = 10 and 200 path objects) and
essentially constant over time. The observation function is
more expensive, so that is what we will focus on here. Figs.
5a, 5c, and 5e show QORA’s average per-step runtime vs.
the number of actions in several of our domain sets. One can
see that in some cases, there is a correlation between runtime
and the number of actions, but this does not always happen.
The apparent relationship in Figs. 5c and 5e is indirect, not
causal. The runtime is actually based on the complexity of
the environment, which happens to often relate in some way
to the number of actions. Thus, in the moves domain (Fig.
5a), where each new copy of the movement actions has the
same effect on environmental complexity, we see that the
number of actions has no bearing on QORA’s runtime.

As shown in Figs. 5b and 5d, QORA’s runtime is determined
mostly by the candidates it generates. By measuring the
number of candidates that QORA has created at each step,
we find a clear trend: more candidates leads to longer run-
times, until learning converges. This also causes QORA’s
observation runtime to increase as it learns, up until the
point that it has converged, as shown in Fig. 5f. The in-
crease in speed after convergence is due to QORA’s boosting
step, which skips most of the computation once the correct
rules have been found. Hence, to produce a single estimate
of QORA’s runtime per run in Figs. 5a, 5c, and 5e, we
averaged its per-step runtime prior to convergence.

Predicting QORA’s runtime in general is a significant chal-
lenge. It depends on the number of candidates QORA has
generated, but this is again a difficult quantity to predict;
it in turn depends on details of the environment such as
the number of objects, the variety of observed states, the
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Figure 5: QORA runtime results in various domain sets.

complexity of the environment’s rules, and the frequencies
of observed events. In more challenging domains where
QORA must combine many predicates together to form ef-
fective hypotheses, the candidates themselves become larger
and more expensive to compute. Thus, although some trends
are known, developing a full theoretical model of QORA’s
complexity (both sample and runtime) is an open problem.

Finally, we compare QORA’s runtime to that of a standard
neural-network implementation, PyTorch, on the same ma-
chine. Note that for fairness, PyTorch is run on the CPU. In
Fig. 6a, we run both QORA and NPE in 8× 8 levels from
the walls domain. Here, NPE is using batching, so rates
are averaged over each batch. Note that although QORA’s
runtime briefly increases, it is still several times faster than
NPE. After convergence, QORA is approx. 50× faster than
NPE. In Fig. 6b, we disable batching on NPE (since QORA
receives only a single sample at a time) and increase the
size of the worlds to 10× 10. Both QORA and NPE slow
down compared to the first case, but NPE slows down so
significantly that QORA’s slowest step is still approx. 20×
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Figure 6: QORA and NPE runtime comparison in the
walls domain.

faster than any NPE step. After convergence, QORA is
approx. 600× faster than NPE. Recall from Section 4.1 that
QORA’s sample complexity is also approx. 10, 000× lower
than NPE’s; combining these two factors yields a potential
learning speedup of six million times over NPE.

4.6. Model-Based Planning

To assess QORA’s applicability to solving tasks, we ran
planning experiments in both the walls and doors domains.
In each experiment, a random starting state was created and
a goal state was generated by applying a random sequence of
actions to the start state. We then used both QORA models
and an “oracle” model (which uses the environment’s true
transition function T to make predictions) to create plans
for the agent to move from the start state to the goal state.
To produce plans using the models, we used Breadth First
Search with the models’ predictions serving as the transition
function for the search. As expected, fully-trained QORA
models perform identically to the oracle planner, finding
optimal paths. Interestingly, incomplete QORA models
(i.e., that did not perfectly model T ) were often still able
to produce successful plans, and because QORA learns so
efficiently, even completely untrained models were able
to quickly generate plans in the walls domain by taking
observations while attempting to reach the goal state.

5. Conclusion
We introduced QORA, an algorithm capable of learning
predictive models for a large class of domains by directly
extracting information from object-oriented state observa-
tions. We demonstrated that QORA achieves zero-shot
transfer using interpretable relational rules and is capable of
rapid continual learning while simultaneously having orders-
of-magnitude better sample efficiency than deep-learning
approaches. This contribution opens a new path for future
developments in transition modeling and the wider field of
reinforcement learning.
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Impact Statement
This paper explores a novel path towards addressing three
notable limitations of popular deep-learning approaches: in-
effective generalization, lack of interpretability, and poor
data efficiency. Improving upon these qualities, which we re-
fer to as GIE, will help future machine-learning algorithms
have a more positive impact on the world. In particular:
better generalization enables more powerful learning and
problem-solving capabilities, allowing us to use machine
learning to tackle more complex tasks; better interpretabil-
ity leads to predictability, safety, and robustness, making
maching-learning systems more trustworthy; and better ef-
ficiency helps reduce energy use, save time, and make ma-
chine learning more accessible to all. It is our hope that by
focusing on these aspects “from the ground up”, this work
will set a new path for the development of technologies that
can be safely applied to difficult problems.
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A. QORA Pseudocode
QORA provides two high-level functions: observe(s, a, s’), which updates the model with a single training
observation, and predict(s, a), which applies the model. Here, s is the current state, a is the agent’s chosen action,
and s′ is the resulting next state. As mentioned in Section 3.3 of the paper, QORA makes predictions independently for each
(class, member attribute type, action) triplet; thus, it keeps a separate instance of the Predictor class for each such triplet.
In the main QORA class’ observe function, shown in Alg. 1, we loop through every member of every object, calculate
the effect for that member (i.e., the change from s to s′), and use that information to update the corresponding Predictor.
Predictor objects are stored in a map (i.e., dictionary) called predictors indexed by the (Class, Member, Action) triplet
they correspond to.

Algorithm 1: QORA Observation Function

1 Func Qora.observe(State s, Action a, State s′) → void
2 for (Object obj in s) do
3 Object obj’ = s′.find(obj.id) // find corresponding object data in next state
4 for (Member m in obj.attributes) do
5 Value delta = obj’[m] - obj[m] // calculate the change in attribute m’s value, e.g., +(1, 0)
6 Predictor p = predictors[obj.class, m, a]
7 p.observe(s, obj, delta)

To implement the Predictor class’ observe function, shown in Alg. 2, we use three helper classes:

• Condition, which represents information that a potential rule may check to determine its output, e.g.,

f(o1, s) : Qo2 ∈ s.walls : o2[pos]− o1[pos] = (−1, 0), (17)

where Q represents any possible quantifier;

• FrequencyTable, which implements the approximator table discussed in Section 3.1 of the paper and calculates the
approximator’s S score (Eq. 1 from the paper, stored as the success member);

• Candidate, which represents an entire rule, e.g.,

r(o1, s) =

{
(0, 0) ∃o2 ∈ s.walls : o2[pos]− o1[pos] = (−1, 0)

(−1, 0) otherwise.
(18)

and stores a Condition (as its condition member) and a FrequencyTable (as its table member) to both learn the
rule’s outputs and estimate its predictive power. The S score of a Candidate’s table corresponds to the utility of its
condition: a useful Condition will give information that allows the table to maintain a high score.

The Predictor maintains several containers and a baseline estimator. The observed set records all previously-used
Condition objects to ensure that no rule is added twice to the working list. The baseline learns the unconditional
distribution of outputs that the Predictor has seen, i.e., it tracks how well the Predictor’s observed data can be modeled
using no information about the current state s. The working list contains all Candidate rules whose S scores are not
higher than the baseline’s score. These S scores are compared using confidence levels (QORA’s α parameter), so as more
data is collected, some Candidates’ scores may exceed the baseline. When this occurs, the Candidate is moved to the
hypotheses list.

The first step in Predictor.observe is to update the baseline guess and all Candidates in the hypotheses list,
shown in Alg. 2 lines 10 – 13. This refines all of the corresponding distributions and S scores. After doing so, we check
if there is a new best hypothesis. This is done in step two, shown in Alg. 2 lines 14 – 18. If the top hypothesis (i.e., with
the highest S score) has changed, we construct new Candidates by combining the new top hypothesis with every other
hypothesis. Specifically, we combine their Conditions, yielding Candidates that are more informed. This step demonstrates
one of QORA’s core concepts: if two well-performing Candidates use different information, a Candidate that looks at
all of that information at once may be able to make better predictions than both. Since better predictions yield a higher
S score, this more powerful Candidate will eventually be moved to the top, where it will be combined to again generate
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Algorithm 2: Predictor Observation Function

// Predictor class members:

1 set<Condition> observed
2 list<Candidate> working

3 FrequencyTable baseline
4 list<Candidate> hypotheses // candidates that are better than the baseline

5 Func Predictor.checkAdd(Condition c) → void
6 if not (observed.contains(c)) then
7 observed.add(c)
8 working.add(Candidate(c, FrequencyTable())) // add Candidate initialized with blank table

9 Func Predictor.observe(State s, Object target, Value effect) → void

// 1. update the baseline and the current hypotheses
10 baseline.observe(0, effect) // the baseline gets no information, so it always receives input 0
11 for (Candidate h in hypotheses) do
12 BitString c = h.condition.evaluate(s, target)
13 h.table.observe(c, effect)

// 2. check if there is a new best hypothesis
14 bubble up(hypotheses) // move the hypothesis with the highest S score (Eq. 1) to the front
15 if (best hypothesis has changed) then
16 Condition c1 = hypotheses[0].condition // new best hypothesis’ formula
17 for (Candidate h2 in hypotheses) do
18 checkAdd(c1 + h2.condition) // combine formulas to produce new candidates

// 3. boosting: ignore observations that we can already predict
19 if (current observation is expected by current best hypothesis) then
20 return

// 4. extract all basic predicates from the observed state
// e.g. ”x[color] = (1)” or ”y[position] - x[position] = (1, 0)”

21 for (Condition c in ExtractPredicates(s, target)) do
22 checkAdd(c)

// 5. update candidates in the working set and check if any should be upgraded
23 for (Candidate w in working) do
24 BitString c = w.condition.evaluate(s, target)
25 w.table.observe(c, effect)

// compare S scores (Eq. 1) using alpha confidence level
26 if (w.table.success > baseline.success) then
27 move w to hypotheses
28 checkAdd(w.condition + hypotheses[0].condition)

more-informed Candidates. This process continues until the best possible Candidate is found; for deterministic environments,
this corresponds to a Candidate with S = 1 (perfect predictive power). For example, in the doors domain, at least three
Conditions need to be combined: (1) checking for an adjacent wall, (2) checking for an adjacent door, and (3) checking
that the adjacent door has the same color as the player. Each intermediate step (e.g., checking for an adjacent wall and an
adjacent door, but ignoring the door’s color) will have an S score higher than the baseline’s but less than 1.

In step 3, lines 19 – 20 of Alg. 2, we perform boosting (Schapire, 1990) by discarding observations that are predicted by the
current best hypothesis. This step provides two benefits: first, it skips the rest of the function, massively decreasing the
amount of computation to be performed; second, it implicitly makes all Candidates in the working list conditional on the
current best hypothesis, increasing the power of the information they receive and making them better suited to correct errors
in that best hypothesis.

In step 4, lines 21 – 22 of Alg. 2, we add Candidates based on any newly-seen primivite predicates to the working list.
These primitives form the building blocks of the powerful rules that QORA constructs. Alg. 3 shows our ExtractPredicates
function. Note that in future work, this could easily be extended with additional predicate types.

The basic Candidates, as well as any more-complex rules still in the working list, are updated in step 5, lines 23 – 28 of
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Algorithm 3: Predicate extraction function

1 Func ExtractPredicates(State s, Object target) → set<Condition>
2 set<Condition> conditions

// Non-quantified (target-only) predicates
// For example, ”P(x): x[color] = (1)”

3 for (Member m in target.attributes) do

// create a predicate of the form P (x) : x[m] = v
4 Predicate p = CreateValuePredicate(m, target[m])

// create a condition of the form f(x) = P (x)
5 Condition c = CreateCondition(p)

6 conditions.add(c)

// Predicates involving objects other than the target
// For example, ”P(x, y): y[position] - x[position] = (1, 0)”

7 for (Object other in s) do
// Add pairwise predicates

8 for (Member m in target.attributes) do
// Verify that both objects possess this attribute

9 if (other.attributes.contains(m)) then

// create a predicate of the form P (x, y) : y[m]− x[m] = v
10 Predicate p = CreateRelativePredicate(m, other[m] - target[m])

// create a condition of the form f(x) = Qy ∈ C : P (x, y),
// where Q is any quantifier and C is other.class

11 Condition c = CreateQuantifiedCondition(p, other.class)

12 conditions.add(c)
// Add other-only predicates

13 for (Member m in other.attributes) do

// create a predicate of the form P (y) : y[m] = v
14 Predicate p = CreateValuePredicate(m, other[m])

// create a condition of the form f(x) = Qy ∈ C : P (y),
// where Q is any quantifier and C is other.class

15 Condition c = CreateQuantifiedCondition(p, other.class)

16 conditions.add(c)
17 return conditions

Alg. 2. If any of the Candidates’ scores becomes higher than the baseline (again, comparing using α confidence levels),
those Candidates are moved to the hypotheses list and for each, a new Candidate is constructed by combining it with
the current best hypothesis. This ensures that well-informed Candidates will be created regardless of the order that each
Candidate is promoted to the hypotheses list.

We now provide more details on the helper classes. The FrequencyTable class supports two operations, observe(x, y)
and predict(x), with function signatures

• observe(BitString x, Value y) and

• predict(BitString x) → ProbabilityDistribution<Value>.

The FrequencyTable’s observe function simply increments a counter in its (sparse) internal table corresponding to the
given (x, y) position. To convert BitStrings and Values to table indices, BitStrings are interpreted as integers and every
newly-seen output Value is assigned a unique integer id (e.g., by counting up from 0). As new pairs are observed, the table
is dynamically resized when necessary. Given the table’s counts, relative frequencies can be calculated and used to estimate
probabilities (and the approximator’s S score). The predict function calculates the conditional probability distribution
P̂ (y|x) of every output y for a given input value x based on this information.

The Condition class represents a function f(o1) constructed using quantified inner predicates (e.g., f(o1) =
(Qo2 ∈ C1 : o2[pos]− o1[pos] = (1, 0)), where Q is a placeholder for any quantifier). It supports evaluation (which
yields a bit string, as described in Section 3.2 of the paper) and addition (i.e., combining two formulas to produce a larger,
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Algorithm 4: Evaluating Conditions

1 Func Condition.evaluate(State s, Object target) → BitString
2 BitString result = ”” // initialize empty string

// Construct a bit string containing the value of each relation group in the list;
// this allows us to represent all logical connectives (between groups) at once

3 for (RelationGroup g in my relation groups) do
4 list<Predicate> predicates = g.predicates
5 set<Object> objects = s.findObjectsOfClass(g.class)

6 BitString value = EvaluateRelationGroup(predicates, target, objects)
7 result.append(value)
8 return result

9 Func EvaluateRelationGroup(list<Predicate> predicates, Object x, set<Object> others)
10 n = predicates.size()
11 BitString result = BitString(2n) // initialize string with 2n zeros

// Enable bits in result corresponding to every observed value of the predicates;
// this allows us to represent all quantifiers at once

12 for (Object y in others) do
13 BitString value = EvaluatePredicateList(predicates, x, y)
14 result[value] = 1 // reinterpret value as an integer and use it to index into the result
15 return result

16 Func EvaluatePredicateList(list<Predicate> predicates, Object x, Object y) → BitString
17 BitString result = ”” // initialize empty string

// Construct a bit string containing the value of each predicate in the list;
// this allows us to represent all logical connectives (within a group) at once

18 for (Predicate p in predicates do
19 boolean value = p.evaluate(x, y) // predicates may ignore the second argument
20 result.append(value) // append a 0 or 1 to the bit string
21 return result

more complex function). At a high level, evaluation operates as follows. First, assume that we have a Condition of the
form f(x) = (P1(x)⊙P2(x)⊙ ...)⊙ (Qy ∈ C1 : P3(x, y)⊙P4(x, y)⊙ ...)⊙ ... (where ⊙ represents any possible logical
connective). We will call each parenthesized group a relation group, which consists of a class (to bind variables from,
possibly null, as with the first group in the example) and a list of predicates. To evaluate a relation group for some chosen
y, we evaluate each inner predicate and create a binary string by concatenation. We then track which such strings (out of
the 2n possible) have been observed for all possible y in the group’s class, again constructing a bit string that stores this
information. Finally, the Condition’s value is the concatenation of the bit string from each of its relation groups. Pseudocode
for this process is in Alg. 4.

Addition of Condition objects is a more straightforward operation. Matching relation groups (i.e., referring to the same class
type) in each are identified and their predicate lists are unioned to yield a larger list. For example,

(x[color] = (1))⊙ (Qy ∈ C1 : y[color] = (0)) (19)

combined with
Qy ∈ C1 : y[position]− x[position] = (1, 0) (20)

would yield the Condition

(x[color] = (1))⊙ (Qy ∈ C1 : (y[color] = (0))⊙ (y[position]− x[position] = (1, 0))) . (21)

Prediction using QORA, shown in Alg. 5, is much simpler than learning. The Predictor simply uses its best hypothesis
(which may be the baseline, if there is nothing better), as shown in Alg. 6.

A.1. Relation Group Visualization

In Figure 7, we show a visualization of the process of encoding a state observation into a relation group.
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Algorithm 5: QORA Prediction Function

1 Func Qora.predict(State s, Action a) → State
2 State s′ = State() // initialize empty state
3 for (Object obj in s) do
4 Object obj’ = Object(obj.class, obj.id) // initialize empty object of same type with same id
5 for (Member m in obj.attributes) do
6 Predictor p = predictors[obj.class, m, a]
7 obj’[m] = obj[m] + p.predict(s, obj) // predict a distribution over this attribute’s values
8 s′.add(obj’)
9 return s′

Algorithm 6: Predictor Prediction Function

1 Func Predictor.predict(State s, Object target) → ProbabilityDistribution<Value>
2 if (hypotheses is empty) then
3 return baseline.predict(0)
4 else
5 Candidate h = hypotheses[0] // best hypothesis
6 BitString c = h.condition.evaluate(s, target)
7 return h.table.predict(c)

B. Benchmark Environments
We describe four testing domains, ranging from simple to complex. Although QORA could be applied to more-complex
environments, these were designed to focus on particular aspects of an algorithm’s learning and demonstrate problems with
prior work while being easy for humans to understand. Each domain has several parameters (e.g., width, height) that control
the initial states it will generate. Note that these settings have no effect on the behavior of the environment, i.e., T ; therefore,
by changing the parameters from training to test time, we can evaluate a learner’s knowledge transfer capabilities. Effective
generalization is facilitated by learning rules, which are distinct components of the model that typically require a relatively
small amount of information to make predictions (e.g., “when the move-right action is taken, the player moves to the right
unless blocked by a wall”).

Walls Our first domain, walls, is a baseline for the ability to learn relational rules. The two classes of object, player
and wall, both only have position attributes. There are five actions: movement in each direction (left, right, up,
down) and stay. If a movement action is chosen, the player will move one unit in the intended direction unless there is a
wall blocking the position it would move to; if the stay action is taken, nothing happens. Walls are never modified by any
action. Example states are shown in Figs. 8a and 8b.

Though this domain sounds simple from a human perspective, it is important to highlight the difficulty that arises when a
learner has no prior knowledge of the world. If we must learn T from scratch, making only weak assumptions about its form,
the sheer amount of information contained in even an 8× 8 world of the walls environment is immense. It is possible, for
example, that the player’s movement is determined not by the presence of adjacent walls but by some convoluted function
based on its position and the presence of some arbitrary set of walls scattered throughout the world. Though it may seem
obvious to a human, the learner has no way to rule this out a priori. Thus, as there are almost 300 basic facts (e.g., “the
player is at position (x, y)”) that can be observed in an 8× 8 level (36 player positions within the world’s border, 64 wall
positions, and 132 possible player-wall relative positions), and the number of possible formulas is super-exponential in
this number, searching through the entire space of conditions is intractable. Previous works have made strong assumptions
Hershkowitz et al. (2015) or required the correct formulas to be given for each domain (Diuk et al., 2008; Marom & Rosman,
2018), significantly reducing the difficulty of their problems while also reducing the generality of their solutions.

Lights The lights domain is a relational test not involving a grid-structured world. Instead, there is a single switch
object and several lights. All objects have an id and each light is either on or off. The switch’s id can be changed using
the new increment and decrement actions. When the new toggle action is taken, any light with the same id as the
switch will toggle its state.
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Figure 7: Illustration of a relation group containing predicate P being evaluated with respect to some object oi. The value of
P is computed for each pair (oi, oj) and the values (T, F) that appeared are tracked. In this case, both values (T and F) are
present, so we increment the table under the corresponding output for this observation. In this example, the output is b; this
is determined by a separate process.

(a) an 8×8 level from the walls
domain; the player character is
denoted by the red icon

(b) a 16× 16 level in the walls
domain

(c) a level from the doors do-
main; doors are denoted by the
red and blue squares

(d) a level from the fish domain

Figure 8: Example levels from three domains: (a-b) walls, (c) doors, and (d) fish. In (c), the player is currently able to pass
through red doors; blue doors will block their movement until they change color.

Doors This domain adds significant complexity to the types of rules that the agent must learn. In this environment, an
extension of the walls domain, there is an additional object class called door and an additional member attribute called
color that takes values in {0, 1}. The player and doors each have a color. Doors act like walls, except that the player
can step onto doors that share its color. There is also a new action called change-color that allows the player to swap
its color when not standing on a door. As an example of the formalism described in Section 2, the types in the doors
environment can be expressed as:

M = {(position, 2), (color, 1)}
C = {(player, {position, color}), (wall, {position}),

(door, {position, color})}
A = {STAY, MOVE LEFT, MOVE RIGHT, MOVE UP,

MOVE DOWN, CHANGE COLOR}

Fish The fish domain is designed to test an agent’s ability to learn stochastic transitions. In this environment, there are
walls and some number of “fish”. The agent can take two actions: stay, which does nothing, and move, which causes
each fish to move around randomly. Specifically, each fish will choose a direction uniformly at random from {left, right,
up, down} and move one unit in that direction unless blocked by a wall. To fully solve this domain, an agent must learn
the conditional probability of each movement direction based on the existence of surrounding walls; i.e., it must be able to
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generate a distribution over future states.

B.1. Domain Sets

To test QORA’s ability to tackle more-complex tasks, we use parameterized sets of domains. We consider these to be
sets of domains, rather than just single domains, due to the parameterization affecting the transition function T . Each set
generalizes the walls domain in some way.

Moves The moves domains add an arbitrary number of copies of each movement action, each applying to the singular
player object. Thus, although the number of actions varies, the complexity of the environments does not change in a
significant way.

Players The players domains add an arbitrary number of players. Each player is controlled by its own set of four
independent actions, meaning that the number of actions is four times the number of players.

Paths The paths domains generalize the walls domain to an arbitrary number of dimensions n. To save computational
resources, instead of being blocked by walls, the player in these domains can only move onto grid spaces occupied by path
objects. Thus, interesting levels can be generated without requiring a number of objects ∝ 10n.

Complex The complex domains are five domains that incrementally add novel, challenging interactions for the learner
to model. complex(0) is the walls domain. complex(1) adds gate objects that block the player’s movement, similarly
to walls. complex(2) adds a guard, along with four new move actions to control it, that can move through gates but not
through walls. complex(3) adds switch objects that toggle their state when the player moves over them. complex(4)
adds directional jump actions that allow the player to vault over gate objects (but only if the other side of the gate is not
blocked). To help the random-policy agent gather data more efficiently, the domain is configured to typically start the player
near a gate; if not for this fact, the frequency with which the agent experiences “interesting” jumps (i.e., not just trying to
jump into a wall or empty space, both of which are no-ops) would be vanishingly small, therefore not allowing the learner’s
data-efficiency to be demonstrated.

C. Neural Network Baseline Architectures
Our implementation of the NPE is shown in Figure 9. It is based on the description in (Chang et al., 2016) with the addition
of the pre-encoding network f. The particular architectures of f, g, and h are our own, based on several iterations of network
design improvement. The total number of parameters is in this structure is 6,944. We tried more complex architectures,
including other ways of encoding output (e.g., using attribute deltas like QORA), without noticeable improvement.

The MHDPA baseline consisted of a single 5-head dot-product attention layer (as implemented by PyTorch) followed by a
per-object encoder similar to the h module in the NPE that appends the action to each object. The total number of parameters
in this structure is 2,784. We tested more complex architectures (e.g., a pre-encoder), but they only led to slower learning
without improving accuracy.

For both NPE and MHDPA, we used 10 batches of 100 observations per epoch. The learning rate was 0.01 for NPE and
0.005 for MHDPA. We used stochastic gradient descent with momentum of 0.9 and L1 loss (since outputs were linear).
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Figure 9: Architecture of our NPE baseline. Let oi be an object, which is encoded with four attributes: its one-hot class
(wall or player, cw or cp respectively) and its position (x and y coordinates). Let a be the current action, which is one-hot
encoded. Objects go through a pre-encoding stage where features can be extracted (f ) followed by a pairwise computation
(g) and a final output calculation stage (h). More details can be found in Chang et al. (2016).
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