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ABSTRACT

The problem of minimizing the maximum of N convex, Lipschitz functions plays
significant roles in optimization and machine learning. It has a series of results,
with the most recent one requiring O(Nϵ−2/3 + ϵ−8/3) queries to a first-order
oracle to compute an ϵ-suboptimal point. On the other hand, quantum algorithms
for optimization are rapidly advancing with speedups shown on many important
optimization problems. In this paper, we conduct a systematic study for quantum
algorithms and lower bounds for minimizing the maximum of N convex, Lips-
chitz functions. On one hand, we develop quantum algorithms with an improved
complexity bound of Õ(

√
Nϵ−5/3 + ϵ−8/3).1 On the other hand, we prove that

quantum algorithms must take Ω̃(
√
Nϵ−2/3) queries to a first order quantum oracle,

showing that our dependence on N is optimal up to poly-logarithmic factors.

1 INTRODUCTION

Consider the problem of minimizing the maximum of N convex functions f1, . . . , fN where each
fi : Rd → R is convex and L-Lipschitz. Our goal is to find a point x⋆ satisfying

Fmax(x⋆)− inf
x∈Rd

Fmax(x) ≤ ϵ (1)

for some target accuracy ϵ, where

Fmax(x) := max
i∈[N ]

fi(x). (2)

This problem has wide applications in machine learning and optimization. Specifically, it characterizes
the problem of minimizing the maximum of loss functions in supervised learning. For instance, in
support vector machines (SVMs), fi’s are loss functions representing the negative margin of the ith
data point (Vapnik, 1999; Clarkson et al., 2012; Hazan et al., 2011; Li et al., 2019). Furthermore,
minimizing the maximum loss in classification provides advantageous effects on training speed
and generalization (Shalev-Shwartz & Wexler, 2016). In optimization, it falls into the category of
robust optimization (Beyer & Sendhoff, 2007; Ben-Tal et al., 2009) that studies optimization of the
worst-case objective. As a concrete example, Fmax(x) = maxp∈∆N

∑
i∈[N ] pifi(x) is an instance

∗Equal contribution.
1Throughout this paper, Õ omits poly-logarithmic factors, i.e., Õ(f) = O(f poly(log f)).
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of distributionally robust optimization (Delage & Ye, 2010; Ben-Tal et al., 2013) with the uncertain
set being the whole set ∆N of probability distributions with cardinality N .

Given these motivations, Problem (1) has been extensively studied in previous literature. In particular,
it is known that it can be solved by subgradient method using O(ϵ−2) iterations, e.g., see Nesterov
(2018). In each iteration, however, N queries are needed to compute the exact subgradient, which
leads to an overall query complexity of order O(Nϵ−2). Furthermore, Carmon et al. (2021) proposed
an algorithm based on the ball optimization acceleration scheme (Carmon et al., 2020b) that uses
Õ(Nϵ−2/3 + ϵ−8/3) subgradient queries. Carmon et al. (2021) also proved an Ω(Nϵ−2/3) lower
bound on the number of subgradient queries via the “chain construction” technique in optimization
lower bounds (Carmon et al., 2020a; Diakonikolas & Guzmán, 2019; Guzmán & Nemirovski, 2015;
Nemirovski & Yudin, 1983; Woodworth & Srebro, 2016), indicating that their algorithm is optimal to
a poly-logarithmic factor in the parameter regime where N ≥ ϵ−2.

On the other hand, quantum computing has been a rapidly advancing technology in recent years. The
main motivation of studying quantum computing is its potential of solving problems significantly
faster than the classical counterparts. The most famous example is Shor’s algorithm Shor (1999)
for factoring integers in polynomial time with high success probability on quantum computers. In
optimization theory, various quantum algorithms for optimization problems have been developed,
providing quantum speedups for semidefinite programs (Brandão & Svore, 2017; Brandão et al.,
2019; van Apeldoorn & Gilyén, 2019; van Apeldoorn et al., 2020; Kerenidis & Prakash, 2020;
Augustino et al., 2021), convex optimization (Chakrabarti et al., 2020; van Apeldoorn et al., 2020),
nonconvex optimization (Liu et al., 2022; Gong et al., 2022; Childs et al., 2022; Zhang et al., 2021),
etc. Conversely, quantum lower bounds on convex optimization (Garg et al., 2021; Garg et al., 2021)
and nonconvex optimization (Zhang & Li, 2023) are also established. However, the problem of
minimizing the maximum of functions is widely open in quantum computing at the moment.

Contributions. In this paper, we conduct a systematic study of quantum algorithms and lower
bounds for minimizing the maximum of N convex and Lipschitz functions f1, . . . , fN . In particular,
we assume the access to the following quantum zeroth-order oracle:

Of |i⟩ |x⟩ |y⟩ → |i⟩ |x⟩ |y + fi(x)⟩ , (3)
where |·⟩ denotes input or output register that allow queries in quantum superpositions, the essence of
speedups from quantum algorithms. Specifically, a quantum algorithm can choose x1, . . . , xN ∈ Rd,
y1, . . . , yN ∈ R, and c ∈ CN such that

∑N
i=1 |ci|2 = 1, and applies the quantum oracle as follows:

Of

(
N∑
i=1

ci |i⟩ |xi⟩ |yi⟩

)
=

N∑
i=1

ci |i⟩ |xi⟩ |yi + fi(x)⟩ . (4)

If we measure this quantum state, with probability |ci|2 the third register gives yi + fi(x). This
oracle is a standard assumption by quantum algorithms for optimization, see e.g. Chakrabarti et al.
(2020); van Apeldoorn et al. (2020); Liu et al. (2022); Gong et al. (2022); Zhang et al. (2021). More
introductions to notations and definitions of quantum computing are given in Section 2.
Theorem 1 (Main theorem). There is a quantum algorithm (Algorithm 1) that outputs an x⋆ satisfying
Eq. (1) with probability at least 2/3 using Õ(

√
Nϵ−5/3 + ϵ−8/3) queries to the Of in Eq. (3). On

the other hand, such quantum algorithms must take Ω̃(
√
Nϵ−2/3) queries to Of (Theorem 4).

Compared to the state-of-the-art classical algorithm for minimizing the maximum of N convex and
Lipschitz functions, we achieve quadratic quantum speedup in the number of functions N . On the
other hand, our quantum lower bound Ω(

√
Nϵ−2/3) establishes the near-optimality of our quantum

algorithm in N . See Table 1 for more detailed comparisons.

Techniques. Our quantum algorithm follows the scheme of Carmon et al. (2021), while we achieve
quantum speedup by leveraging quantum samples. As a starting point, classical algorithms (Carmon
et al., 2021; Nesterov, 2005) proceed by considering the so-called “softmax” approximation of the
maximum, defined as

Fsmax,ϵ(x) := ϵ′ log

∑
i∈[N ]

exp

(
fi(x)

ϵ′

) , ϵ′ =
ϵ

2 logN
. (5)
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Table 1: Summary of results on minimizing the maximum of N convex, Lipschitz functions to accuracy ϵ.

Reference Method Oracle Upper bound Lower bound
Nesterov (2018) Subgradient method Classical First-Order O(Nϵ−2) —

Carmon et al. (2021) Ball optimization acceleration Classical First-Order O(Nϵ−2/3 + ϵ−8/3) Ω(Nϵ−2/3 + ϵ−2)

this work Ball optimization acceleration
with quantum sampling Quantum Zeroth-Order Õ(

√
Nϵ−5/3 + ϵ−8/3) Ω(

√
Nϵ−2/3)

Note that the choice of ϵ′ here promises that a solution x⋆ of

Fsmax,ϵ(x⋆)− inf
x∈Rd

Fsmax,ϵ(x) ≤
ϵ

2
(6)

will automatically satisfy (1) (see Lemma 4). Our algorithm has two stages:

• Implement a regularized ball optimization oracle (BROO) of Fsmax,ϵ that when query at x
returns an (approximate) minimizer of Fsmax,ϵ in a ball of radius r around x; and then

• Find an approximate minimum of Fsmax,ϵ using ball optimization oracle via a ball optimiza-
tion algorithm (Carmon et al., 2020b).

Here, the ball optimization algorithm in Carmon et al. (2020b) is a variant of the Monteiro-Svaiter
acceleration (Bubeck et al., 2019; Bullins, 2020; Gasnikov et al., 2019; Monteiro & Svaiter, 2013) and
can minimize f to accuracy ϵ using Õ

(
r−2/3

)
queries to the BROO. Carmon et al. (2021) showed

that BROO for Fsmax,ϵ can be implemented by considering instead a “softened” function

Γϵ(x) =
∑
i∈[N ]

piϵ
′ · e

fi(x)−fi(x̄)

ϵ′ , pi =
efi(x̄)/ϵ

′∑
j∈[N ] e

fi(x̄)/ϵ′
, (7)

where ϵ′ = ϵ/(2 logN), which shares the same minimizer as Fsmax,ϵ and has a finite sum structure
enables stochastic gradient methods. In their implementation, the main bottleneck for N arises from
the sampling step of the distribution pi. To obtain T samples, the algorithm requires precomputing
all p1, . . . , pN , which takes Ω(N) classical queries and cannot be further accelerated in the classical
setting. However, this task shares a similar formula with the Gibbs sampling problem, which exhibits
quantum speedups (Bouland et al., 2023; Gao et al., 2023). Building on this intuition, we demonstrate
that BROO can be executed using just Õ(

√
N) queries to the quantum oracle Of defined in (3). Our

quantum algorithm begins by preparing T copies of the quantum state
∑

i

√
pi |i⟩. The first step

involves identifying the K largest pi values and corresponding indices, which can be accomplished
with only

√
NT queries to the quantum oracle Of , in contrast to the classical case’s query complexity

of Ω(N). This quadratic speedup in N contributes to our overall quantum speedup.

From a high-level perspective, quantum speedups in optimization algorithms have been mainly
investigated in gradient descent methods (Liu et al., 2022; Gong et al., 2022; Zhang et al., 2021),
cutting plane methods (Chakrabarti et al., 2020; van Apeldoorn et al., 2020), interior point meth-
ods (Kerenidis & Prakash, 2020; Augustino et al., 2021), etc., but quantum algorithms based on trust
region methods are widely open. Our result can be seen as a first attempt for quantum algorithms
using trust region methods with speedup.

We establish our quantum lower bound for minimizing the maximal loss by applying a quantum
progress control method to the classical hard instance described in Carmon et al. (2021). The
quantum progress control method, initially introduced in Garg et al. (2021), has been widely used
in proving quantum lower bounds for optimization problems, including non-smooth convex op-
timization (Garg et al., 2021), smooth convex optimization (Garg et al., 2021), and (stochastic)
non-convex optimization (Zhang & Li, 2023). This method is analogous to the classical progress
control technique employed in proving classical lower bounds for optimization problems (Carmon
et al., 2020a; Arjevani et al., 2020; 2022; Bubeck et al., 2019), and is based on demonstrating that
any algorithm attempting to solve the optimization problem must acquire a sufficient amount of
information through an adaptive "chain structure". This chain structure is a well-established concept
in classical optimization lower bound proofs, as seen in prior works such as (Carmon et al., 2020a;
Nemirovski & Yudin, 1983; Woodworth & Srebro, 2016; Guzmán & Nemirovski, 2015; Diakonikolas
& Guzmán, 2019).
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The quantum progress control method proceeds by modeling any quantum algorithm as a sequence
of unitaries represented as

· · ·V3OfV2OfV1OfV0

applied to the initial state |0⟩, where Of is the oracle encoding the information of f and Vi’s are
unitaries that are independent from f . Then, one can show that those queries can only learn the
information and make progress along the chain structure in an adaptive manner. This ultimately leads
to a lower bound that scales in proportion to the length of the chain multiplied by the cost to make a
unit progress along the chain.

In the majority of cases, the query cost of making a unit progress along the chain is just 1, see
e.g., Garg et al. (2021); Garg et al. (2021). Nevertheless, there exists methods to incorporate more
“hardness” into the chain by constructing hard instances where making progress along the chain
requires solving a subproblem. For example, the quantum stochastic lower bound for nonconvex
optimization algorithm (Zhang & Li, 2023) proceeds by applying a hard instance with a “chain
structure” such that, at each point where any algorithm attempts to progress by one step of unit length
along the chain, it is required to solve a multivariate mean estimation problem, whose quantum lower
bound is given in Cornelissen et al. (2022).

Our lower bound builds upon the same framework. In particular, we demonstrate that, at each point
where a quantum algorithm attempts to progress by one step along the chain of the hard instance
defined in described in Carmon et al. (2021), it has to solve an unstructured search problem. This
intuition, however, cannot work straightforwardly. This arises from the fact that even in the case of a
completely random guess, any algorithm possesses a success probability that is at least polynomially
small for solving the unstructured search problem and progress by multiple steps along the chain.
This success probability, although small, poses a challenge to the progress control argument where
the probability of making progress by multiple steps at once should be super-polynomially small.

We address this issue by introducing a multi-round version of unstructured search problem. In this
modified problem, each round’s solution acts as a “key” that unlocks the next round, forcing it to
solve these unstructured search problems adaptively. We demonstrate that for any quantum algorithm
making a maximum of O(N) queries to this multi-round unstructured search problem, its overall
success probability in solving the entire multi-round problem, i.e., solve the unstructured search
problem of each round, is only super-polynomially small. After establishing the lower bound for
the multi-round unstructured search problem, we show that making progress along the chain for a
given length is as hard as solving the multi-round unstructured search problem of the same number
of rounds. Formally, we show that any quantum algorithm has to use Ω̃(

√
N) queries to make

O(poly log(1/ϵ)) progress along chain of length Ω
(
ϵ−2/3

)
, giving our Ω̃

(√
Nϵ−2/3

)
lower bound.

Open questions. Our paper leaves several natural open questions for future investigation:

• Can we narrow or even close the gap of order ϵ between the leading complexity term in
our quantum algorithm and our quantum lower bound? Useful techniques might be found
in quantum algorithms for Gibbs sampling (Bouland et al., 2023; Gao et al., 2023), but it
remains uncertain if we can reconcile the differences in the two settings.

• It is shown in Carmon et al. (2021) that the smoothness of fi can enable faster classical
algorithms for minimizing the maximum loss, even in the case where the smoothness
parameter is of order 1/ϵ and all the fi are almost non-smooth. The intuition is that we can
apply the accelerated variance reduction method (Allen-Zhu, 2017) to implement the ball
optimization oracle of Fsmax,ϵ if it is smooth, which contains a mean estimation subroutine
that cannot be directly improved by quantum algorithms (Cornelissen et al., 2022; Zhang
& Li, 2023). Hence, a natural question to ask is if there exist quantum algorithms that can
utilize the smoothness structure and provide better convergence rates.

2 PRELIMINARIES

Basic notations in quantum computing. Quantum mechanics can be formulated in the language
of linear algebra. Specifically, we define the computational basis of the space Cd by {e⃗1, . . . , e⃗d},
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where e⃗i = (0, . . . , 1, . . . , 0)⊤ with the ith coordinate being 1 and other coordinates being 0. These
basis vectors can be written by the Dirac notation, where we write e⃗i as |i⟩, and write e⃗⊤i as ⟨i|.

A d-dimensional quantum state |v⟩ = (v1, . . . , vd)
⊤ is a unit vector in Cd, i.e.,

∑d−1
i=0 |vi|2 = 1. For

each i, vi is named the amplitude in |i⟩. If at least two amplitudes are nonzero, we say |v⟩ is in
superposition of the computational basis.

Tensor product of quantum states is their Kronecker product: if |u⟩ ∈ Cd1 and |v⟩ ∈ Cd2 , then
|u⟩ ⊗ |v⟩ = (u1v1, u1v2, . . . , ud1vd2)

⊤ ∈ Cd1 ⊗ Cd2 . |u⟩ ⊗ |v⟩ can be abbreviated as |u⟩|v⟩.
The basic element in classical computing is one bit. Following this pattern, the basic element in
quantum computing is one qubit, which is a quantum state in C2. Formally, a qubit state has the
form a|0⟩ + b|1⟩ where a, b ∈ C, |a|2 + |b|2 = 1. Furthermore, an n-qubit state has the form
|v1⟩ ⊗ · · · ⊗ |vn⟩, where each |vi⟩ is a qubit state for all i ∈ [n]. As a result, n-qubit states form a
Hilbert space of dimension 2n.

Calculations in quantum computing are unitary transformations and can be stated in the circuit
model where a k-qubit gate is a unitary matrix in C2k . Two-qubit quantum gates are universal, i.e.,
every n-qubit gate can be written as the product of a series of two-qubit gates. Therefore, the gate
complexity of a quantum algorithm can be regarded as its number of two-qubit gates.

Basic quantum algorithms. In our paper, we use the following quantum algorithms in previous
works as basic building blocks of our quantum algorithm.
Proposition 1 (Top-K Maximum Finding - Dürr et al. 2006, Theorem 4.2). Let K,N ∈
N, 1 ≤ K ≤ N , δ ∈ (0, 1) and w ∈ RN

≥0. There exists a quantum algorithm
QuantumMaximumFinding(K,N,w, δ) that outputs the positions of K largest entries in w with
success probability at least 1− δ. The algorithm performs O(

√
KN log(1/δ)) queries the following

quantum oracle Ow that encodes w:

Ow |i⟩ |y⟩ → |i⟩ |y + wi⟩ . (8)

Proposition 2 (State Preparation - Zalka 1998; Grover & Rudolph 2002; Kaye & Mosca 2001). Given
integers N,T , a non-zero vector w ∈ RN

≥0 with ∥w∥1 = 1 and a classical procedure that computes∑j
l=i wj ,∀i ≤ j, there exists a quantum procedure QuantumStatePreparation(N,T,w) that

outputs the classical description of a quantum circuit D that satisfies D |0⟩ → |w⟩ =
∑

i

√
wi |i⟩.

Proposition 3 (Amplitude Amplification - Brassard et al. 2002, Theorem 3). Let C be a quantum
circuit that prepares the state C |0⟩ = √p |ϕ⟩ |0⟩+

√
1− p |ϕ⊥⟩ |1⟩ for some p ∈ [0, 1] and two unit

states |ϕ⟩ , |ϕ⊥⟩. There exists a quantum algorithm AmplitudeAmplification(C) that outputs the
state |ϕ⟩ by using O(1/

√
p) calls of C and C† in expectation.

Proposition 4 (Quantum Gradient Estimation - Jordan 2005, Lemma 2.2). Given access
to the quantum zeroth-order oracle Of defined in (3), there exists a quantum algorithm
QuantumGradientEstimation(i, x) that outputs the gradient ∇fi(x) using only one query to
Of .

3 QUANTUM ALGORITHM FOR MINIMIZING THE MAXIMAL LOSS

In this section, we present our quantum algorithm for minimizing the maximal loss. Our approach
builds upon the framework of (Carmon et al., 2021, Algorithm 1), which proceeds by preparing a ball
optimization oracle that can minimize the objective function in a very small region, and then optimize
the objective function by using this oracle recursively. In particular, (Carmon et al., 2021, Algorithm
1) is a variant of Carmon et al. (2020b) and utilizes the Monteiro-Svaiter acceleration (Monteiro &
Svaiter, 2013). Notably, there has been a series of work (Carmon et al., 2020b; 2021) on designing
optimization algorithms following this framework, given that it is natural in some problems where
we can access the ball optimization oracle efficiently. Compared to (Carmon et al., 2021, Algorithm
1), our algorithm differs by a critical observation that the bottleneck in the classic algorithm, mainly
the sampling, can be sped up using a quantum subroutine based on Gibbs sampling.

As in Carmon et al. (2021), we consider the ball regularized optimization oracle (BROO), which is a
generalization from the stricter ball optimization oracle Carmon et al. (2020b). Formally, a BROO is
defined as follows.
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Definition 1 (Carmon et al. 2021, Definition 1). We say that a mapping Oλ,δ is a Ball Regularized
Optimization Oracle of radius r (r-BROO) for f , if for every query point x̄, regularization parameter
λ and desired accuracy δ, it returns x̃ = Oλ,δ(x̄) satisfying

f(x̃) +
λ

2
∥x̃− x̄∥2 ≤ min

x∈Br(x̄)

{
f(x) +

λ

2
∥x− x̄∥2

}
+
λ

2
δ2. (9)

The following result illustrates the convergence rate achieved by the classical ball optimization
algorithm (Carmon et al., 2021, Algorithm 1) using BROO queries.
Proposition 5 (BROO Acceleration - Rephrased from Carmon et al. 2021, Theorem 1). Let f :
Rd → R be convex and Lf -Lipschitz, and let z ∈ Rd. For any domain bound R > 0 accuracy level
ϵ > 0, and initial point x0 ∈ Rd, there exists a (classical) algorithm that returns a point x ∈ Rd

satisfying f(x)−minz∈BR(x0) f(z) ≤ ϵ/2 using at most

O

((
R

rϵ

)2/3

log2
(
R

rϵ

))
(10)

queries to an rϵ-BROO, in which rϵ = ϵ/2Lf logN . The algorithm also guarantees that the BROO

query parameters (λ, δ) satisfy Ω
(

ϵ
rϵR

)
≤ λ ≤ O

(
Lf

rϵ

)
and δ = Ω

(
ϵ

λR

)
.

3.1 QUANTUM BROO IMPLEMENTATION OF Fsmax,ϵ

In this subsection, we present a quantum algorithm (Algorithm 1) that implements a BROO given
access to the oracle Of defined in (3). The query complexity of Algorithm 1 is given in Theorem 2.

Algorithm 1: Quantum-Epoch-SGD-Proj on the exponentiated softmax
Input: Functions f1, . . . , fN , ball center x̄, ball radius rϵ, regularization strength λ, smoothing

parameter ϵ′, failure probability σ
Parameters: Step size η1 = 1/(3λ), domain size D1 = Θ(G

√
log(log(T )/σ)/λ), T1 = 450

and total iteration budget T
Output: Approximate minimizer of Γϵ,λ (and hence Fλ

smax,ϵ) in Brϵ(x̄))

1 Prepare T identical states |ψ⟩ =
∑

i e
fi(x̄)/2ϵ

′
/
√∑

i∈[N ] e
fi(x̄)/ϵ′ |i⟩ using Algorithm 2

2 Initialize x11 ∈ Brϵ(x̄) arbitrarily, set k = 1
3 while

∑
i∈[k] Ti ≤ T do

4 for t = 1, . . . , Tk do
5 Sample i ∈ [N ] by measuring the next unmeasured |ψ⟩
6 Call QuantumGradientEstimation(i, x) to compute

∇fλi (x) = ∇fi(x) + λ(x− x̄)
7 ĝt = e(f

λ
i (x)−fλ

i (x̄))/ϵ′∇fλi (x)

8 Update xkt+1 ← ΠBr(x̄)∩BDk
(xk

1 )
(xkt − ηkĝt)

9 Let xk+1
1 ← 1

Tk

∑
t∈[Tk]

xkt
10 Update parameters Tk+1 ← 2Tk, ηk+1 ← ηk/2, Dk+1 ← Dk/

√
2, k ← k + 1

11 return xk1

Theorem 2. Let f1, f2, . . . , fN be Lf -Lipschitz functions. Let σ ∈ (0, 1), ϵ, δ > 0 and rϵ =
ϵ/2Lf logN . For any x̄ ∈ Rd and λ ≤ O(Lf/rϵ), with probability at least 1 − 2σ, Algorithm 1
outputs a valid rϵ-BROO response for Fsmax,ϵ to query x̄ with regularization λ and accuracy δ, and
has cost

O(
√
NT log(1/σ) + T ) (11)

in which T = L2
fλ

−2δ−2 log(log(Lf/λδ)/σ).

Note that when implementing BROO we are not essentially minimizing Fsmax,ϵ(x) but instead

Fλ
smax,ϵ(x) := Fsmax,ϵ(x) + λ/2 · ∥x− x̄∥2 = ϵ′ log

∑
i∈[N ]

exp
(
fλi (x)/ϵ

′), (12)
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in which fλi (x) := fi(x) + λ/2 · ∥x− x̄∥2 is a regularized version of fi(x). We define its “softened”
function Γϵ,λ (Eq. (7)) accordingly.

Classically, a BROO of Fsmax,ϵ can be implemented by (Carmon et al., 2021, Algorithm 2) using
Epoch-SGD-Proj proposed in Hazan & Kale (2014) with the stochastic gradient oracle implemented
by sampling an i first and evaluate the gradient of one of the γi’s. This process is similar to stochastic
gradient descent but introduces epochs, where a intra-epoch mirror descent takes place. Additionally,
a projection is placed at the end of each iteration such that the variance of the stochastic gradient can
be limited and probability bounds can be obtained rather than expectation bounds.

In comparison, our quantum algorithm (Algorithm 1) is based on the same framework, with a critical
change. Rather than sampling classically from the same distribution many times within each epoch, we
derive a quantum subroutine (Algorithm 2) that sped up this bottleneck exploiting quantum advantage
on Gibbs sampling. Additionally, comparing to the classic algorithm, which requires first-order
oracle to acquire gradient information, the proposed algorithm uses QuantumGradientEstimation
(Proposition 4) to efficiently estimate the gradient through quantum zeroth-order oracle.

Algorithm 2: Quantum sampling of the softmax distribution.
Input: Number of copies K, failure probability δ

1 Denote w = (f1(x̄), . . . , fN (x̄))⊤. Call QuantumMaximumFinding(K,N,w, δ) to
compute the set H ⊆ [N ] of the positions of K largest entries in fi(x̄) with failure probability
δ.

2 Compute h = mini∈H fi(x̄) and

Z = (N −K) exp(h/ϵ′) +
∑
i∈H

exp(fi(x̄)/ϵ
′)

3 Denote w′ = (w′
1, . . . , w

′
N ) where

w′
i =


exp(fi(x̄)/ϵ′)

Z , i ∈ H
exp(h/ϵ′)

Z , i /∈ H,
∀i ∈ [N ],

call QuantumStatePreparation(N,T,w′) to build a unitary D such that

|0⟩ D−→
∑
i∈H

√
exp(fi(x̄)/ϵ′)

Z
|i⟩+

∑
i/∈H

√
exp(h/ϵ′)

Z
|i⟩

4 Construct the circuit C, which first applies D to the output register, as represented in Figure 1.
5 Call AmplitudeAmplification(C)K times and return the K output states.

In Line 4, the circuit C is constructed from the unitary D in Line 3. Amplitude amplification is then
applied to prepare the state we need by C. More explanation of Algorithm 2 is given in Appendix A.
The lemma below shows quantum speedup for producing multiple samples from the same distribution.
Lemma 1. With probability at least 1− δ, Algorithm 2 on input K, δ produces K samples from the
probability distribution

pi =
exp(fi(x̄)/ϵ

′)∑
j∈[N ] exp(fj(x̄)/ϵ

′)
, i = 1, 2, . . . , N, (13)

using O(
√
NK log(1/δ)) queries to the quantum evaluation oracle Uf defined in (3).

We present the proof of this lemma in Appendix A. Next, we cite the result regarding the convergence
rate of stochastic gradient method with projection for µ-strongly convex functions.
Lemma 2 (Hazan & Kale 2014, Theorem 11). Let f : X → R be a µ-strongly-convex objective
function on a convex compact set X with minimizer x⋆. With an unbiased stochastic estimator with
norm bounded by G, Epoch-SGD-Proj algorithm uses T stochastic gradient queries and finds an
approximate minimizer x̃ satisfying with probability 1− σ

f(x̃)− f(x⋆) ≤ O
(
G2 log(log(T )/σ)

µT

)
. (14)
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Proof of Theorem 2. According to (7), the gradient of Γϵ,λ(x) can be expressed as follows:

∇Γϵ,λ(x) =
∑
i

pie
(fλ

i (x)−fλ
i (x̄))/ϵ′∇fi(x). (15)

Thus, we have E[ĝt] = ∇Γϵ,λ(xt). Moreover, by Lemma 5, the quantity e(f
λ
i (x)−fλ

i (x̄))/ϵ′∇fi(x) is
bounded by a constant G = O(Lf ). Thus, ĝt is a valid stochastic gradient.

Next, by applying Lemma 2 with T = Θ(L2
fλ

−2δ−2 log(log(Lf/λδ)/σ)), Algorithm 1 outputs a
minimizing point x⋆ of Γϵ,λ with suboptimality

Γϵ,λ(x⋆)− min
x∈Rd

Γϵ,λ(x) ≤ O

(
L2
f

λT
log(log T/σ)

)
≤ λδ

6e2
. (16)

With Lemma 5, we can bound the suboptimality of x⋆ on Fλ
smax,ϵ by 3e2λδ/6e2 ≤ λδ/2, indicating

that Algorithm 1 is a valid BROO. The probability of Algorithm 1 failing is at most 2σ considering
either the Epoch-SGD-Proj fails (Lemma 2) or the quantum sampling fails (Lemma 1).

3.2 QUANTUM QUERY COMPLEXITY OF MINIMIZING THE MAXIMAL LOSS

With our BROO oracle implementation at hand, we present our main result in this section, which
describes the quantum query complexity of minimizing the maximum loss.
Theorem 3. Let f1, f2, . . . , fN be Lf -Lipschitz, let x⋆ be a minimizer of Fmax(x) = maxi∈[N ] fi(x)
and assume ∥x0 − x⋆∥ ≤ R for a given initial point x0 and some R > 0. For any ϵ > 0, using the
algorithm in Proposition 5 the BROO implementation for Fsmax,ϵ in Algorithm 1 finds a point with
suboptimality ϵ with probability at least 2

3 and has computational cost

O(K5/3 log3K(
√
N logK + LfR/ϵ)/ logN) (17)

in which K = LfR log(N)/ϵ.

Proof. We use Proposition 5 along with Theorem 2 on the minimization problem to prove both the
correctness and the overall query complexity of the algorithm. In particular, using the guarantees
in Proposition 5, we can see that the results of Theorem 2 applies directly since λ ≤ O(Lf/rϵ).
Letting T be the bound of the total number of oracle queries in Proposition 5. We could have
σ = 1/6T such that the probability of Algorithm 1 not failing throughout all the queries is at least
2/3. Thus, according to Proposition 5 the algorithm can output a minimizing point x⋆ for Fsmax,ϵ

with suboptimality at most ϵ/2. Thus, using Lemma 4, we conclude that x⋆ is a solution to (1),
proving the correctness of the algorithm.

As for the query complexity, notice that from Proposition 5 the total number of calls to the BROO is

T = O

((
LfR logN

ϵ

)2/3

log2
(
LfR logN

ϵ

))
. (18)

Using our implementation of the BROO (Algorithm 1), the total number of calls to the quantum
oracle Uf per BROO call is

O

(√
N log

(
LfR logN

ϵ

)(
LfR

ϵ

)
log

(
LfR logN

ϵ

)
+

(
LfR

ϵ

)2

log

(
LfR logN

ϵ

))
(19)

in which we substitute δ = Ω(ϵ/λR) and σ = 1/6T .

4 QUANTUM LOWER BOUND FOR MINIMIZING THE MAXIMUM LOSS

In this section, we establish a quantum query lower bound to demonstrate the optimality of our
algorithm in Section 3 with respect to N . Classically, the query lower bound for minimizing maximal
loss is established by a progress control argument given in Carmon et al. (2021). For any x ∈ Rd,
they define a quantity progress as

progα(x) := max
{
i ≥ 1

∣∣ |xi| ≥ α} . (20)

8
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Intuitively, the progress is the highest coordinate index that an algorithm discovers when it reaches x.
Following that, Carmon et al. (2021) extended the concept of robust zero chain introduced in Carmon
et al. (2020a) to the setting of minimization of maximum loss.
Definition 2 (Carmon et al. 2021, Definition 2). A sequence f1, . . . , fN of functions fi : BR(0)→ R
is called an α-robust N -element zero-chain if for all x ∈ BR(0), all y in a neighborhood of x, and
all i ∈ [N ], we have

progα(x) ≤ p =⇒ fi(y) =


fi(y[≤p]) i < p+ 1

fi(y[≤p+1]) i = p+ 1

fN (y[≤p]) i > p+ 1,

(21)

where for any y ∈ Rd, y[≤l] denotes the vector whose first l coordinates are identical to those of y
and the remained coordinates are zero.

Carmon et al. (2021) demonstrates that, for a sequence of functions f1, . . . , fN forming an α-robust
N -element zero-chain with randomly permuted indices, a classical algorithm requires a lower bound
of Ω(N) queries to increase the progress by 1 in expectation. Similarly, we show that it takes Ω

(√
N
)

queries for a quantum algorithm to make progress on an α-robust N -element zero-chain. Notably, the
progress achieved after Ω

(√
N
)

quantum queries exhibits a sub-exponential tail, and the probability
of achieving super-logarithmic progress is super-polynomially small.

In this section, we first present in Section 4.1 a quantum analog of the progress control argument
in Carmon et al. (2021). Finally, we introduce the main lower bound statement in Section 4.2.

4.1 PROGRESS CONTROL ARGUMENT FOR QUANTUM ALGORITHMS

We establish a quantum analog of the progress control argument given in Carmon et al. (2021).
Following the notion of Garg et al. (2021); Garg et al. (2021); Zhang & Li (2023), we represent any
quantum algorithm making k queries to the oracle Of in the form of sequences of unitaries

Aquan[k] = VkOfVk−1Of · · ·OfV1OfV0 (22)
applied to the initial state |0⟩, followed by a measurement. Similar to Carmon et al. (2021, Proposition
1), we prove the following result that no quantum algorithm can guess the final column of U or make
progress efficiently (proof deferred to Appendix B.2).
Proposition 6. Let δ, α ∈ (0, 1) and let N,T ∈ N with T ≤ N/2. Let {fi}i∈[N ] be an α-robust N -
element zero-chain with domain BR(0). For d ≥ T +max(32T 3 log(32

√
NT 5), 32T 3 log (4T/δ)),

draw U uniformly from the set of d × T orthogonal matrices, and draw Π uniformly from the set
of permutations of [N ]. Let f̃i(x) := fΠ(i)(U

⊤x). For any t-query quantum algorithm Aquan[t]

equipped with an oracle on f̃1(x), . . . , f̃N (x), denote xt as its output. Then with probability at least
1− δ we have

progα(U
⊤xt) < T, ∀t ≤ T

√
N

CK2

in which C is a constant and K = 4 log T + 1
2 logN + 4.

4.2 THE LOWER BOUND STATEMENT

Finally, we present the main theorem of the lower bound argument.
Theorem 4. For any Lf , Lg, R > 0, ϵ < min(LfR,LgR

2), N ∈ N and δ ∈ (0, 1), there exists a
constant C such that, for any quantum algorithm A making less than C ·

√
Nϵ−2/3 logN/ϵ queries

to the oracle Of defined in (3) and outputs a point xout, there exists Lf -Lipschitz and Lg-smooth
functions (fi)i∈[N ] with domain Bd

R(0) for d ≥ T + max(32T 3 log(32
√
NT 5), 32T 3 log (4T/δ))

such that

Pr

[
Fmax(xout)− min

x∈Bd
R(0)

Fmax(x) ≥ ϵ

]
≤ 1

3
. (23)

Theorem 4 implies that the problem can only be solved by any quantum algorithm using Ω(
√
Nϵ−2/3)

queries. The proof is deferred to Appendix B.3, but the idea of the proof is straightforward by
combining Proposition 6 and the hard instance defined in (92) in Appendix B.3.
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Arkadi Semenovič Nemirovski and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. Wiley-Interscience, 1983.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103:
127–152, 2005.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Shai Shalev-Shwartz and Yonatan Wexler. Minimizing the maximal loss: How and why. In
International Conference on Machine Learning, pp. 793–801. PMLR, 2016.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Review, 41(2):303–332, 1999.

Joran van Apeldoorn and András Gilyén. Improvements in quantum sdp-solving with applications.
In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Convex optimization
using quantum oracles. Quantum, 4:220, 2020.

Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Quantum SDP-solvers:
Better upper and lower bounds. Quantum, 4:230, 2020.

Vladimir N. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural
Networks, 10(5):988–999, 1999.

Blake E. Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives.
In Advances in Neural Information Processing Systems, volume 29, 2016.

Christof Zalka. Simulating quantum systems on a quantum computer. Proceedings of the Royal
Society of London Series A: Mathematical, Physical and Engineering Sciences, 454(1969):313–
322, 1998.

Chenyi Zhang and Tongyang Li. Quantum lower bounds for finding stationary points of nonconvex
functions. In International Conference on Machine Learning. PMLR, 2023.

Chenyi Zhang, Jiaqi Leng, and Tongyang Li. Quantum algorithms for escaping from saddle points.
Quantum, 5:529, 2021.

12

https://opg.optica.org/abstract.cfm?URI=ICQI-2001-PB28
https://opg.optica.org/abstract.cfm?URI=ICQI-2001-PB28


Published as a conference paper at ICLR 2024

A PROOF DETAILS OF OUR QUANTUM UPPER BOUND

First, we present the proof of Lemma 1. To prove this lemma, we would need a modified version
of (Hamoudi, 2022, Theorem 3) given in Lemma 3. This circuit C uses the unitary D we prepare in

|0⟩rot
Roth

|0⟩qry
Ox̄ Ox̄

|0⟩out D
1H 1H

|0⟩ind

Figure 1: Circuit C built from D, in which Ox̄ is a quantum oracle built from Of such that Ox̄ |i⟩ |0⟩ =

|i⟩
∣∣∣efi(x̄)/ϵ′〉.

Algorithm 2 as a subroutine.
Lemma 3. Consider two integers 1 ≤ K ≤ N , a real number δ ∈ (0, 1) and a quantum oracle Of

as defined in (3). Let C denote a quantum circuit obtained with Algorithm 2 on input K, δ,Of that
correctly prepares the state

|ϕ⟩ = √p |ψ⟩ |0⟩+
√

1− p |ψ⊥⟩ |1⟩ , (24)

where |ψ⟩ =
∑

i e
fi(x̄)/2ϵ

′
/
√∑

j∈[N ] e
fj(x̄)/ϵ′ |i⟩, p ≥ K/N , and |ψ⊥⟩ is some unit state. The

algorithm performs O(
√
KN log(1/δ)) queries to Of . The circuit C performs two queries to Of .

Proof. Suppose that QuantumMaximumFinding returns a correct set H , which occurs with proba-
bility at least 1− δ. The circuit C as depicted in Figure 1 operates on four registers: rot and ind
that contains a Boolean value, qry that contains a real number, and out that contains an integer
i ∈ [N ]. The indicator gate 1H flips ind when out contains i /∈ H . Observe that the final state is
C |0⟩ = |0⟩qry |0⟩ind |ϕ⟩out,rot where

|ϕ⟩out,rot =
√
W/Z |ψ⟩out |0⟩rot +

√
1−W/Z |ψ⊥⟩out |0⟩rot (25)

in whichW =
∑

i exp(fi(x̄)/ϵ
′) and |ψ⊥⟩ is some state whose value is irrelevant. To bound the

coefficient p =
√
W/Z , notice that by the definition of h, we must have exp(h/ϵ′) ≤ W/K, or else∑

i exp(fi(x̄)/ϵ
′) >W , which is a contradiction. Consequently, we obtain

p−1 =
Z
W

=
(N −K) exp(h/ϵ′) +

∑
i∈H exp(fi(x̄)/ϵ

′)∑
i exp(fi(x̄)/ϵ

′)
≤ N −K

K
+ 1 =

N

K
(26)

indicating that p ≥ K
N .

Next, we bound the query complexity of the preparing of C. Notice that for
QuantumMaximumFinding to succeed with probability at least 1 − δ, it needs to make
O(
√
KN log(1/δ)) queries to the oracle Of defined in (3), according to Proposition 1. Since all the

remaining steps (Line 2-Line 4 in Algorithm 2) involve only classical computation, no additional
quantum queries are required, the total number of quantum queries needed isO(

√
KN log(1/δ)).

Next, we present the proof of Lemma 1.

Proof of Lemma 1. The result follows directly from Lemma 3 and Proposition 3. Given that p ≥√
K/N , AmplitudeAmplification requires only O(

√
N/K) calls to C. Notice that each call

to C only costs two quantum calls, the cost for preparing K copied states is O(
√
NK). Combining

these costs with the cost for preparing C gives the result of Lemma 1.
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Note that preparing D, we keep only the first K largest elements in the distribution to make sure that
the coefficient

√
p before |ψ⟩ can be lower bounded. This ensures that the amplitude amplification

algorithm can prepare K identical target states with the lowest total cost.

Next, we provide some classic results regarding Fmax and Fsmax,ϵ.
Lemma 4. Given Fmax and Fsmax,ϵ as defined in (12). If x⋆ is an approximate minimizing point
of Fsmax,ϵ with suboptimality ϵ/2, then x⋆ is also an approximate minimizing point of Fmax with
suboptimality ϵ.

Proof. The proof is straightforward given the fact that 0 ≤ Fsmax,ϵ(x)−Fmax(x) ≤ ϵ/2 (see Carmon
et al. 2020b, Lemma 45). Thus, we have

Fmax(x⋆)− min
x∈Rd

Fmax(x⋆) = Fmax(x⋆)− min
x∈BR(x0)

Fmax(x⋆) (27)

≤ Fsmax,ϵ(x⋆)− min
x∈BR(x0)

Fsmax,ϵ(x) +
ϵ

2
≤ ϵ. (28)

Lemma 5 (Rephrased from Carmon et al. 2021, Lemma 1). Let f1, . . . , fN each be Lf -Lipschitz
and Lg-smooth gradients. For any c > 0, r ≤ cϵ′/Lf , and λ ≤ cLf/r let C = (1+ c+ c2)ec+c2/2.
The exponentiated softmax Γϵ,λ satisfies the following properties for any x̄ ∈ Rd.

• Fλ
smax,ϵ and Γϵ,λ have the same minimizer x in Br(x̄). Moreover, for every x ∈ Br(x̄),

Fλ
smax,ϵ(x)− Fλ

smax,ϵ(x⋆) ≤ C(Γϵ,λ(x)− Γϵ,λ(x⋆)). (29)

• Restricted to Br(x̄), γi(x) = ϵ′ef
λ
i (x)−fλ

i (x̄) is CLf -Lipshitz, λ/C strongly convex, and
C(Lg + λ+ L2

f ϵ
′)-smooth.

B PROOF DETAILS OF OUR QUANTUM LOWER BOUND

B.1 WARMUP: QUANTUM LOWER BOUND FOR MULTI-ROUNDS UNSTRUCTURED SEARCH
PROBLEM

First, we consider where the difficulty lies in minimizing the hard instance. Consider an algorithm that
tries to achieve progα(U

⊤x) = T on the “shuffled” version of f : ∀x, f̃(x) = max f̃i(U
⊤x), f̃i =

fΠ−1(i) in which U is a random rotation and Π is a random permutation.

Definition 3. Based on an α-robust N -element zero-chain, we define its shuffled version f̃(x) =
max f̃i(x) such that for all x ∈ BR(0), all y in a neighborhood of x, and all i ∈ [N ], we have

progα(U
⊤x) ≤ p =⇒ f̃i(y) =


fΠ−1(i)(U

⊤y[≤p]) Π−1(i) < p+ 1

fΠ−1(i)(U
⊤y[≤p+1]) Π−1(i) = p+ 1

fN (U⊤y[≤p]) Π−1(i) > p+ 1,

(30)

in which U is an arbitrary rotation and Π is a permutation over [N ].

In order to make progress, the algorithm can either guess randomly (succeeds with minor probability)
or use the oracle information. However, at first all of the gradients are 0 unless the algorithm queries
fΠ(1). Then, Π(2) needs to be discovered to uncover a new gradient direction. Thus, the algorithm
needs to sequentially discover Π(2), . . .Π(T ) in order to find the x with progress T , each of which is
approximately an unstructured search problem requiring a certain number of oracle queries.

From the structure of the hard instance, we see that the key of finding the minimum of an N -element
zero chain is to find an x that has a large progα and an i that is in the right direction (since on any
other direction the oracle would only reveal information regarding the “shallower” fi’s). Notice
that this is essentially a multi-round version of the unstructured search problem where one need to
sequentially search the xp, ip’s such that progα(xp) = p and ip = Π(p + 1). Thus, to establish a
quantum query lower bound for our problem, we begin by introducing the following variant of an
unstructured search problem that has the same underlying structure as the Definition 3.
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Problem 1 (Multi-rounds unstructured search problem). For some N,K ≥ 0 and d ≥ 10K lnN ,
suppose there is a sequence of K numbers a1, . . . , aK ∈ [N ] and each number ai is associated
with a different “key” si which is a d-bit string. Suppose s1 = 0d. Define the search function
Fsearch : [N ]× {0, 1}d → {0, 1}d to be

Fsearch(a, s) =

{
si+1, if ∃i ∈ [K] such that a = ai and s = si,

0d, otherwise.
(31)

Intuitively, we can discover the i + 1th key if and only if we know the ith number ai and its
corresponding key si. Suppose we have access to the following quantum oracle Osearch encoding the
value of Fsearch:

Osearch |s⟩ |a⟩ |0⟩ → |s⟩ |a⟩ |Fsearch(a, s)⟩ , (32)

the goal is to output sK .

We prove a quantum query lower bound for Problem 1 by first dividing the oracle Osearch into a
series of oracles. In particular, we define a set of functions F (1)

search, . . . , F
(K)
search where each F (i)

search is
defined as

F
(i)
search(a, s) =

{
si+1, if a = ai and s = si,

0d, otherwise.
(33)

As we can see, each F (i)
search represents Fsearch in certain input domain. Moreover, we define a series

of quantum oracles O(1)
search, . . . , O

(K)
search encoding the values of F (1)

search, . . . , F
(K)
search,

O
(i)
search |s⟩ |a⟩ |0⟩ → |s⟩ |a⟩

∣∣∣F (i)
search(a, s)

〉
. (34)

Then, one query to the oracle Osearch can be implemented using at most K queries to the oracles
O

(1)
search, . . . , O

(K)
search. The following lemma shows that, if the ith key si is not fully discovered, it

would be hard to further discover the next key si+1 even given access to the oracle O(i)
search.

Lemma 6. For any quantum algorithm A making at most T =
√
N/6 queries to the oracles

{O(i)
search}

A = O
(iT −1)
search VT −1O

(iT −2)
search · · ·O

(i0)
searchV0, (35)

for any 0 ≤ k < K, if at any step t of the algorithm the intermediate quantum state |Ψt⟩ has in
expectation at most δ overlap with |sk⟩, i.e., E

sk
|⟨sk|Ψt⟩| ≤ δ, we have

E
ak,sk,sk+1

|⟨sk+1|Ψt⟩| ≤
δ

3
+

1

2d/2
. (36)

Proof. For any fixed value of ak and sk+1, we use
∣∣Ψk

t

〉
to denote the quantum state at stage t.

Similarly, we use |Ψ′
t⟩ to denote the quantum state at stage t if any query to O(k)

search is replaced by an
identity operation, which can be expressed as

|Ψ′
t⟩ = |⟨sk|Ψ′

t⟩| |sk⟩ |ϕ′t⟩+
√
1− |⟨sk|Ψ′

t⟩|2
∣∣ϕ′⊥t 〉 , (37)

where |ϕ′t⟩ represents the quantum state in the second and the third register that can be written as

|ϕ′t⟩ =
∑
i∈[N ]

βt,i |i⟩ |ri,t⟩ , (38)

where we reorganize the state with respect to the second register, whose computational basis corre-
sponds to all possible values of the N items.

Then for any value of ak, we have

∥∥∣∣Ψk
t

〉
− |Ψ′

t⟩
∥∥ ≤ 2|⟨sk|Ψt⟩|

t−1∑
τ=0

|βt,ak
|. (39)
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Consider taking expectation over sk and ak, based on our assumption that E
sk
|⟨sk|Ψt⟩| ≤ δ, we have

E
sk

∥∥∣∣Ψk
t

〉
− |Ψ′

t⟩
∥∥ ≤ 2δ

t−1∑
τ=0

|βt,ak
|, (40)

and

E
sk,ak

∥∥∣∣Ψk
t

〉
− |Ψ′

t⟩
∥∥ ≤ 2δ

t−1∑
τ=0

E
ak

|βt,ak
| ≤ 2δt√

N
≤ δ

3
. (41)

Since |Ψ′
t⟩ is irrelavant from sk+1, we can derive that

E
sk+1

|⟨sk+1|Ψ′
t⟩| ≤ 2−d/2, (42)

which leads to

E
ak,sk,sk+1

|⟨sk+1|Ψt⟩| ≤ E
sk,ak

∥∥∣∣Ψk
t

〉
− |Ψ′

t⟩
∥∥+ E

sk+1

|⟨sk+1|Ψ′
t⟩| ≤

δ

3
+

1

2d/2
. (43)

Lemma 7. For any K ≤ 2d, any quantum algorithm making less than
√
N

6K queries to the oracle
Osearch defined in (32), there exists an instance of Problem 1 such that the algorithm fails to solve
Problem 1 with expected probability 1 − 2−K among all possible sK , or equivalently, for any
intermediate state |Ψ⟩ of the algorithm, we have

E
sK
|⟨Ψ|sK⟩| ≤ 2−K . (44)

Proof. We first prove a quantum query lower bound for Problem 1 with access to the oracles
O

(1)
search, . . . , O

(K)
search. In particular, we consider any quantum algorithm A for Problem 1 using

T =
√
N/6 queries to O

(1)
search, . . . , O

(K)
search for some large enough constant C ≥ 1, it can be

expressed as

O
(iT −1)
search VT −1O

(iT −2)
search · · ·O

(i0)
searchV0 |0⟩ . (45)

Denote |ψout⟩ to be its output quantum state. We use δi to denote the expected overlap with |si⟩
among any intermediate stage of the algorithm. Then by Lemma 6, we have

δi+1 ≤
δi
3
+

1

2d/2
, (46)

which leads to

E
sK
|⟨Ψ|sK⟩| ≤

1

3K
+

1

2d/2−1
≤ 1

2K
. (47)

That is to say, any quantum algorithm making at most
√
N/6 queries to the oracles

O
(1)
search, . . . , O

(K)
search will fail to find sK with probability at least 1− 2−K . Since the oracle Osearch

can be implemented using K queries to O(1)
search, . . . , O

(K)
search, we can conclude that for any quantum

algorithm making at most
√
N/(6K) queries to Osearch, it fails to solve Problem 1 with expected

probability 1− 2−K among all possible sK .

This result shows that quantum algorithms cannot do much better than classic algorithm when tackling
a sequential structure where each step requires finding a new secret for the next direction. The only
speedup in this case is the quadratic speedup brought by Grover’s algorithm on the unstructured
search problem. Moreover, the error of any quantum algorithm is exponential with the depth of the
problem.
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B.2 PROOF OF PROPOSITION 6

From an oracle Of , we defined its “shuffled” version Of̃ for f̃ (Definition 3) where

Of̃ |i⟩ |x⟩ = Of

∣∣Π−1(i)
〉 ∣∣U⊤x

〉
(48)

in which Π is a randomly sampled permutation over [N ] and U is a randomly sampled rotation.
According to the property of the zero chain, the subspace that we are interested in is the one in which
the progress is greater than expected. Formally speaking, we define

P⊥
t = {x ∈ BR(0)|∃i > t.⟨x,ui⟩ > α, i ∈ [T ]} P

∥
t = BR(0)− P⊥

t (49)

To prove Proposition 6, we begin by observing that making progress on an N -element zero-chain is
essentially solving the multi-round unstructured search problem (Problem 1). In particular, Of̃ is the
analog of Osearch defined in (32), the p-th function after pi is the analog of the solution of the p-th
round of the unstructured search problem, and the informative region of this function is the analog of
the “key” in this round. Moreover, we define the following “truncated” oracle O(i)

f̃
of Of̃ , to be the

analog of the oracle O(i)
search in Section B.1.

O
(i)

f̃
|j⟩ |x⟩ = Ofi

∣∣Π−1(j)
〉 ∣∣U⊤x

〉
, (50)

where Ofi is the evaluation oracle for the i-th function fi. Based on this oracle, we prove the
following result that is an analog of Lemma 6.

Lemma 8. For any quantum algorithm A making at most T =
√
N/6 queries to the oracles {O(i)

f̃
}

A = O
(iT −1)

f̃
VT −1O

(iT −2)

f̃
· · ·O(i0)

f̃
V0, (51)

for any 0 ≤ k < K, if at any step t of the algorithm the intermediate quantum state |Ψt⟩ satisfies

E
Π,U
∥P(Π−1(k)) |Ψt⟩ ∥ ≤ δ, (52)

where P(j) denotes the projector onto the informative region of the j-th function fj , we have

E
Π,U
∥P(Π−1(k + 1)) |Ψt⟩ ∥ ≤

δ

3
+ 2e−dα2/2. (53)

Proof. We use
∣∣Ψk

t

〉
to denote the quantum state at stage t. Similarly, we use |Ψ′

t⟩ to denote the
quantum state at stage t if any query to O(k)

f̃
is replaced by an identity operation, which can be

expressed as

|Ψ′
t⟩ = ∥P(Π−1(k)) |Ψ′

t⟩ ∥P(Π−1(k)) |Ψ′
t⟩+

√
1− ∥P(Π−1(k)) |Ψ′

t⟩ ∥2 |⊥⟩ , (54)

where P(Π−1(k)) |Ψ′
t⟩ represents the quantum state in the second and the third register that can be

written as

P(Π−1(k)) |Ψ′
t⟩ =

∑
i∈[N ]

βt,i |i⟩ |xi,t⟩ , (55)

where we reorganize the state with respect to the second register, whose computational basis corre-
sponds to all possible values in [N ]. Then we can derive that

∥∥∣∣Ψk
t

〉
− |Ψ′

t⟩
∥∥ ≤ 2∥P(Π−1(k)) |Ψ′

t⟩ ∥
t−1∑
τ=0

|βτ,x|. (56)

Consider taking expectation over Π and U , based on our assumption that E
Π,U
∥P(Π−1(k)) |Ψt⟩ ∥ ≤ δ,

we have

E
sk

∥∥∣∣Ψk
t

〉
− |Ψ′

t⟩
∥∥ ≤ 2δ

t−1∑
τ=0

|βτ,Π−1(k)|, (57)
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and

E
Π,U

∥∥∣∣Ψk
t

〉
− |Ψ′

t⟩
∥∥ ≤ 2δ

t−1∑
τ=0

E|βτ,Π−1(k)| ≤
2δt√
N
≤ δ

3
. (58)

Since |Ψ′
t⟩ is irrelavant from U and Π, using a known fact in the probability theory (see e.g., Zhang

& Li 2023, Lemma 17)
Pr
u
(⟨x,u⟩ ≥ α) ≤ 2e−dα2/2, (59)

we have

E
Π,U
|∥P(Π−1(k)) |Ψ′

t⟩ ∥ ≤ 2e−dα2/2, (60)

by which we can conclude that

E∥P(Π−1(k + 1)) |Ψt⟩ ∥ ≤ E
Π,U

∥∥∣∣Ψk
t

〉
− |Ψ′

t⟩
∥∥+ E

Π,U
|∥P(Π−1(k)) |Ψ′

t⟩ ∥ (61)

≤ δ

3
+ 2e−dα2/2. (62)

The next lemma is an analog of Lemma 7.

Lemma 9. For any K ≤ dα2/4, any quantum algorithm making less than
√
N

6K queries to the oracle
Of̃ defined in (32), for any intermediate state |Ψ⟩ of the algorithm, we have

E
Π,U
∥P(Π−1(K)) |Ψ⟩ ∥ ≤ 2−K . (63)

Proof. We first consider the case with access to the oraclesO(1)

f̃
, . . . , O

(K)

f̃
. In particular, we consider

any quantum algorithmA for Problem 1 using T =
√
N/6 queries to O(1)

f̃
, . . . , O

(K)

f̃
for some large

enough constant C ≥ 1, it can be expressed as

O
(iT −1)

f̃
VT −1O

(iT −2)

f̃
· · ·O(i0)

f̃
V0 |0⟩ . (64)

Denote |ψout⟩ to be its output quantum state. We use δi to denote the expected value of
∥P(Π−1(i)) |Ψ⟩ ∥ among any intermediate stage of the algorithm. Then by Lemma 6, we have

δi+1 ≤
δi
3
+ 2e−dα2/2, (65)

which leads to

δK ≤
1

3K
+ 4e−dα2/2 ≤ 1

2K
. (66)

That is to say, any quantum algorithm making at most
√
N/6 queries to the oracles O(1)

f̃
, . . . , O

(K)

f̃

will fail to find sK with probability at least 1 − 2−K . Since the oracle Of̃ can be implemented

using K queries to O(1)

f̃
, . . . , O

(K)

f̃
, we can conclude that for any quantum algorithm making at most

√
N/(6K) queries to Of̃ , any intermediate state |Ψ⟩ of the algorithm satisfies (63).

Lemma 10. Consider the unitary An with n queries to Of̃ of the form

An = Of̃Vn−1Of̃ · · ·Of̃V0 (67)

in which n =
√
N/(6K) and K = 4 log T + 1

2 logN + 5. Then for any input state |ψ⟩, we have

γ(n) = E
[∥∥P⊥

KAn |ψ⟩
∥∥2] ≤ 1

16
√
NT 4

, (68)

as long as the dimension d ≥ 4K/α2.
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Proof. Observe that we can achieve γ(n) by the summation of overlap given in Lemma 9 and an
upper bound of the success probability of random guesses. The first term is at most

2−K =
1

32
√
NT 4

, (69)

by Lemma 9. Meanwhile, the second term is at most

T · 2e−dα2/2 ≤ 1

32
√
NT 4

, (70)

by which we can conclude that

γ(n) ≤ 1

16
√
NT 4

. (71)

Next, we state the fact that it is fundamentally hard to make progress by random guessing.
Lemma 11 (Cannot make progress through guessing). Let {ui}ti=1 be a set of fixed orthonormal
vectors. Choose {ui}Ti=t+1 uniformly randomly such that {ui}Ti=1 is orthonormal. Then

∀x ∈ BR(0), Pr
ut+1,...uT

(progαT
x ≥ t) ≤ 2Te−(d−T )/32T 3

(72)

in which αT = 1/(4T 3/2).

Proof. We use a standard union bound with some common facts to prove this lemma. First, using a
union bound we have

Pr
ut+1,...uT

(progα(x) ≥ t) ≤
T∑

i=t+1

Pr(⟨x,ui⟩ ≥ α) (73)

= (T − t) Pr(⟨x,ui⟩ ≥ α) (74)

where the final equality is due to the symmetry among ui’s. Next, using a known fact in the probability
theory (see e.g., Zhang & Li 2023, Lemma 17) we have

Pr
u
(⟨x,u⟩ ≥ c) ≤ 2e−dc2/2. (75)

Considering that ut+1, . . .uT are sampled from a d − T dimention space orthogonal to the fixed
vectors, we have

Pr
ut+1,...uT

(progα(x) ≥ t) ≤ 2Te−(d−T )/32T 3

. (76)

With these results at hand, we now articulate the proof technique for Proposition 6. The proof
technique involves using a quantum hybrid such that it is almost impossible for the last hybrid to find
the minimizing point. First, we introduce a truncated oracle

Õt |i⟩ |x⟩ |y⟩ → |i⟩ |x⟩
∣∣y ⊕ fΠ−1(i)

(
u⊤1 x, u

⊤
2 x . . . u

⊤
t x, 0, . . . , 0

)〉
. (77)

Note that Õt does not reveal any information about U>t. Given a quantum algorithm A making
n ≤ T

√
N/CK queries, the algorithm can be represented in the form

A = VnOf̃Vn−1 · · ·Of̃V0. (78)

From this algorithm we could build k hybrids:

A0 = A = Vk
√
N/CKOf̃ · · · Õ10 log TV√N/CK−1 · · ·Of̃V1Of̃V0,

A1 = Vk
√
N/CKOf̃ · · · Õ10 log TV√N/CK−1 · · · Õ10 log TV1Õ10 log TV0,

· · ·
Ak = Vk

√
N/CKÕ10k log T · · · Õ10 log TV√N/CK−1 · · · Õ10 log TV1Õ10 log TV0.

(79)

19



Published as a conference paper at ICLR 2024

Note that the difference between two consecutive hybridsAi−1 andAi is that
√
N/CK of the oracles

Of̃ are changed to Õt log T . Following the standard hybrid argument, in the subsequent lemmas we
demonstrate that the output of the sequence of unitaries (the difference between At and At−1) on
random input is similar.

Lemma 12. For any t ∈ [T − 1] and any n ≤
√
N/CK for K = 4 log T + 1

2 logN + 4, consider
the following two sequences of unitaries,

A(n) = Of̃VnOf̃Vn−1 · · ·Of̃V0 (80)

and
Ât(n) = ÕtVnÕtVn−1 · · · ÕtV0. (81)

Given that d ≥ T +max(32T 3 log(32
√
NT 5), 32T 3 log (12T )), we have

δ(n) := E
[∥∥∥(Ât −A) |ψ⟩

∥∥∥2] ≤ n

16
√
NT 4

(82)

Proof. We use induction to prove this lemma. For n = 1, we have

δ(1) = E
[∥∥∥(Of̃ − Õt) |ψ⟩

∥∥∥2] ≤ 1

16
√
NT 4

(83)

where the inequality follows from Lemma 11. Suppose the inequality (82) holds for ∀n ≤ ñ for some
ñ <
√
n. For n = ñ+ 1, by Lemma 10, we first have that

E
[∥∥P⊥

t |ψñ⟩
∥∥2] ≤ 1

16
√
NT 4

(84)

Next, we have

δ(n) = δ(1) = E
[∥∥∥(Of̃ − Õt) |ψñ⟩

∥∥∥2]+ δ(ñ) (85)

≤ E
[∥∥P⊥

t |ψñ⟩
∥∥2]+ δ(ñ) ≤ n

16
√
NT 4

, (86)

in which inequality (86) is due to the fact that only ui with i > t can contribute to the expectation.

Lemma 13. If d ≥ T + 32T 3 log
(
32
√
NT 5

)
, for an N -element zero chain f we have

E[∥(At −At−1) |0⟩∥2] ≤
1

16T 4
. (87)

Proof. From the definition of the hybrid unitaries Ai in Eq. (79), we have

E[∥(Ai −Ai−1) |0⟩∥2] = E
[∥∥∥(A(√N/CK)− Â(

√
N/CK)) |ψ⟩

∥∥∥2] . (88)

Thus, according to Lemma 12 the expectation is bounded by

E[∥(Ai −Ai−1) |0⟩∥2] ≤
1

16T 4
. (89)

Equipped with Lemma 13, we are now ready to prove Proposition 6.

Proof of Proposition 6. First, suppose that the quantum algorithmA only makes at most T
√
N/CK2

queries, in which K = 4 log T + 1
2 logN + 4. According to the construction of the hy-

brid (79), the last vector uT is never revealed. Thus, by Lemma 11, letting d ≥ T +
max(32T 3 log(32

√
NT 5), 32T 3 log (4T/δ)), the last unitary in the hybrid can find an x with suffi-

cient progress with probability at most δ/2.
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Next, we can bound the total variance distance between the distributions obtained by sampling A0 |0⟩
and AK |0⟩. By Lemma 13 and the Cauchy-Schwarz inequality, we have

E[∥(AK −A0) |0⟩∥2] ≤ K
K−1∑
i=0

E[∥(Ai −Ai−1) |0⟩∥2] ≤
1

16T 2
. (90)

Now, applying Markov’s inequality, we can establish that

Pr

[
∥(AK −A0) |0⟩∥2 >

1

4T

]
≤ 1

4T
, (91)

which indicates that the total variance distance can be bounded by summing up 1/(4T ) + 1/(4T ) =
1/(2T ) ≤ δ/2, provided that T ≥ δ−1. Combining these two parts allows us to upper bound the
success probability by δ.

B.3 PROOF OF THEOREM 4

First of all, we provide the hard instance we use in the proof of the main theorem:

f̂
{T,N,ℓ}
i (x) :=

{
ψα,ℓ

(
x[i]−x[i−1]

2

)
i ≤ T,

0 otherwise,
(92)

where we denote αT = 1
4T 3/2 , x[0] := 1√

T
, and ψα,ℓ : R→ R is defined as

ψα,ℓ(t) :=


0 |t| ≤ α
ℓ
2 (t− α)

2 α ≤ |t| ≤ ℓ−1 + α

|t| − α− 1
2ℓ otherwise.

The properties of this hard instance f̂{T,N,ℓ} is given in the following lemma.
Lemma 14 (Carmon et al. 2021, Lemma 2). For every T,N ∈ N and ℓ ≥ 0, such that T ≤ N , we
have that

1. The hard instance (f̂
{T,N,ℓ}
i )i∈N is an αT -robust N -element zero-chain.

2. The function f̂{T,N,ℓ}
i is 1-Lipschitz and ℓ-smooth for every i ∈ [N ].

3. For any x ∈ Rd with prog[αT ](x) < T , the objective F̂ {T,N,ℓ}(x) = maxi∈[N ] f̂
{T,N,ℓ}
i (x)

satisfies

F̂ {T,N,ℓ}(x)− min
x⋆∈B1(0)

F̂ {T,N,ℓ}(x⋆) ≥ ψαT ,ℓ

(
3

8T 3/2

)
≥ min

(
1

8T 3/2
,

ℓ

32T 3

)
.

Next, we present the detailed proof of Theorem 4 using Proposition 6 and the hard instance defined
in (92).

Proof of Theorem 4. Theorem 4 is a direct result of Proposition 6 and the property of (92). Notice
that from Proposition 6, when d ≥ T +max(32T 3 log(32

√
NT 5), 32T 3 log (4T/δ)) and T ≥ 3, the

success probability of the quantum algorithm A making at most T
√
N/C · (4 log T + 1

2 logN + 4)2

queries discovering uT is at most 1/3. Set

T =
1

5
max

((
LfR

ϵ

)2/3

,

(
LgR

2

ϵ

)1/3
)

and L = LgR/Lf . (93)

Note that under this setting we have that the lower bound number of queries is T
√
N/C(4 log T +

1
2 logN + 4)2 = Ω̃(

√
Nϵ−2/3). According to the part 3 of Lemma 14, if the algorithm failed in

discovering the T th direction uT (i.e., progαT
(x) < T ), the suboptimality of the output minimizing

point is at least min{ 1
8T 3/2 ,

L
32T 3 } ≤ ϵ. Thus, we have

Pr

[
Fmax(xout)− min

x∈Bd
R(0)

Fmax(x) ≥ ϵ

]
≤ 1

3
. (94)
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