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ABSTRACT

Recent advances in parameter-efficient fine-tuning methods, such as Low Rank
Adaptation (LoRA), have gained significant attention for their ability to effi-
ciently adapt large foundational models to various downstream tasks. These meth-
ods are appreciated for achieving performance comparable to full fine-tuning on
aggregate-level metrics, while significantly reducing computational costs. To sys-
tematically address fairness in LLMs previous studies fine-tune on fairness spe-
cific data using a larger LoRA rank than typically used. In this paper, we introduce
FairLoRA, a novel fairness-specific regularizer for LoRA aimed at reducing per-
formance disparities across data subgroups by minimizing per-class variance in
loss. To the best of our knowledge, we are the first to introduce a fairness based
finetuning through LoRA. Our results demonstrate that the need for higher ranks to
mitigate bias is not universal; it depends on factors such as the pre-trained model,
dataset, and task. More importantly, we systematically evaluate FairLoRA across
various vision models, including ViT, DiNO, and CLIP, in scenarios involving
distribution shifts. We further emphasize the necessity of using multiple fairness
metrics to obtain a holistic assessment of fairness, rather than relying solely on the
metric optimized during training.

1 INTRODUCTION

The advent of foundational models Bommasani et al. (2021) has led to the widespread adoption
of parameter-efficient fine-tuning (PEFT) methods such as Low-Rank Adaptation (LoRA) Hu et al.
(2021), enabling efficient adaptation to various downstream tasks. These methods offer significant
computational advantages and often achieve performance comparable to full fine-tuning (FFT) of
the entire model on aggregate metrics Hu et al. (2021); Zhao et al. (2024); Dettmers et al. (2024).
However, their impact on fairness remains under-explored. More importantly, given the widespread
use of LoRA for fine-tuning foundational models, the uncertainty regarding the impacts on fairness
as well as bias mitigation, complicates deployment and raises ethical concerns, emphasizing the
need to measure and mitigate disparate impacts.

Recent works on Fairness with PEFT has focused on either (i) finding the right parameters to tune
through heuristic search algorithms Dutt et al. (2023) or (ii) fine-tuning on specific datasets curated
for fairness Das et al. (2024). As noted in the papers, finding the right set of parameters is a challeng-
ing and often a computationally expensive problem, thereby contradicting the major advantage of
using PEFT. Although effective, fine-tuning with fairness specific datasets can also be challenging
given the complexities involved in data collection, curating, and labelling. Furthermore, it is also
important to note that in order to mitigate bias based on different notions, we might need completely
different datasets– thereby making it hard to scale.

The fairness community in ML has often argued the importance of the ‘right metric’ to measure un-
fairness and how that changes the answer to the question “Does X have disparate impact” Hashem-
izadeh et al. (2023); Simson et al. (2024). Our work emphasizes the importance of evaluating mul-
tiple fairness metrics rather than relying on a single measure. By considering metrics such as aggre-
gate accuracy, minimum and median F1 scores across groups, and performance disparities between
groups, we aim to capture a holistic view of both performance and fairness. This comprehensive
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evaluation allows us to assess whether PEFT methods like LoRA consistently meet fairness stan-
dards or may lead to adverse outcomes in certain configurations.

We introduce FairLoRA, a novel fairness based LoRA that scales across models and datasets. Our
findings indicate that FairLoRA performs comparable to or better than using fairness specific regu-
larization with FFT, across most metrics. Our method is an in-processing bias mitigation method that
aims at altering the learning objective with almost zero addition in computational cost, as opposed
to heuristic search based fair finetuning.

Figure 1: We compare the CLIP models with and without fairness regularizers for both full fine-
tuning (FFT) as well as LoRA. Dataset: GeoDE. On the left. we notice that FairLoRA has better
overall performance compared to LoRA. On the right, we visualize the effect on the variance of
loss across classes and FairLoRA has a lower variance compared to all other methods. More de-
tailed results and comparisons can be found in section 6.2.

Additionally, we explore the hypothesis that distribution shifts between pre-training and fine-tuning
datasets contribute to fairness disparities. By analyzing models such as CLIP Radford et al. (2021),
DINO Caron et al. (2021), and ViT Dosovitskiy (2020), we assess how pre-training strategies and
data distributions affect fairness during fine-tuning. To investigate this, we conduct experiments
on diverse datasets—Aircrafts Maji et al. (2013), GeoDE Ramaswamy et al. (2024), and Water-
birds Sagawa et al. (2019)—which differ significantly from popular pre-training datasets. Our
experiments show that distribution shifts can exacerbate fairness issues, but FairLoRA is able to
successfully mitigate them.

Through this work, we aim to determine which approach—LoRA or Full Finetuning (FFT) —is
fairer under different conditions and how fairness regularization affects performance. Our findings
suggest that FairLoRA is superior to LoRA, especially when considering across metrics. It is also
important to note that FairLoRA is also comparable to Fair FFT.

Our main contributions are as follows:

• We highlight the importance of comprehensive evaluation across multiple metrics when
assessing fairness.

• We are the first to formulate - FairLoRA - a fairness regularizer based on reducing the
variance among intra-class losses to improve the fairness of models fine-tuned with LoRA.

• We demonstrate that higher ranks are not necessarily required to improve fairness through
learning with FairLoRA.

• Our experiments show that FairLoRA can reliably improve fairness with across multiple
architectures, with datasets that have distribution shift, and across LoRA ranks.

2 RELATED WORKS

PEFT: LoRA stands out among PEFT methods due to its efficiency and simplicity in fine-tuning
large models. Unlike adapters that add new layers, LoRA injects low-rank matrices directly into the
weight updates of pre-trained models, keeping the number of parameters the same as the original
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model (for inference). This makes LoRA easy to implement with significantly lower memory and
computational costs while training, and constant deployment cost compared to the original model,
all while maintaining performance comparable to full fine-tuning (FFT). Our work measures the
disparate impact of PEFT in vision models and proposes a novel way to mitigate bias.

LoRA and Fairness: Recent studies on Low-Rank Adaptation (LoRA) highlight key trade-offs
between fairness, safety and performance Das et al. (2024); Ding et al. (2024). Although the fairness
impact of LoRA depends heavily on the base model and rank (Ding et al., 2024) did not notice any
systemic disparate impact. In terms of bias mitigation, as the rank increases, LoRA’s performance
and fairness become comparable to full fine-tuning (FFT) Das et al. (2024). Similarly, (Dutt et al.,
2023) proposed a fairness aware PEFT by heuristically searching for the right set of parameters to
update. Our work is different from the above mentioned because (i) we analyze the disparate impact
across datasets with distribution shifts, a challenging problem for LoRA Lermen et al. (2023), (ii)
we focus the bias mitigation on vision and Vision language models while the previous work Das
et al. (2024) focuses on LLMs and finally, (iii) our work focuses on changing the LoRA objective
function make it more generic compared to fine-tuning with a fairness specific dataset or performing
heuristic search to find the ‘correct’ tunable parameters.

Fairness in vision models: Independent of PEFT, fairness in machine learning models is a well
studied problem (Dwork et al., 2012; Dieterich et al., 2016; Verma & Rubin, 2018; Mehrabi et al.,
2021; Zemel et al., 2013; Zhao & Gordon, 2022). Enforcing fairness has mainly focused on impos-
ing requirements such as demographic parity, equalized odds, equal opportunity (Hardt et al., 2016),
accuracy parity (Agarwal et al., 2018; Berk et al., 2021), or combinations of these properties (Zafar
et al., 2017; Lowy et al., 2021; Bakker et al., 2020; Shui et al., 2022) through ine-tuning, penalized
objective or constrains. Our fairness regularizer is inspired from the formulations used by Tran et al.
(2022); Hashemizadeh et al. (2023) and aim to reduce the per-class variance in the loss.

Model Flexibility and Generalization: Recent work (Shwartz-Ziv et al., 2024) shows that neural
network architectures vary in how they fit data, potentially impacting fairness across demographic
groups. Architectures like CNNs and ViTs exhibit different efficiencies when adapting to new tasks,
indicating that architecture plays a crucial role in a models (fairness) outcomes. Our analysis focuses
on understanding similar trends with respect to fairness for LoRA based fine-tuning.

3 PRELIMINARIES: LORA

Low-Rank Adaptation (LoRA) Hu et al. (2021) is a parameter-efficient fine-tuning (PEFT) method
that injects trainable low-rank matrices into the weight updates of a pre-trained model, significantly
reducing the number of trainable parameters without compromising performance. The core idea of
LoRA is to decompose the weight updates into two low-rank matrices, which are then trained to
capture task-specific knowledge.

Consider a pre-trained subset of parameters ✓0 2 ⇥, where ⇥ represents the full parameter space
of the model. In LoRA, instead of updating ✓0 directly, the weight update �✓ is parameterized as
a product of two low-rank matrices A 2 Rd⇥r and B 2 Rr⇥k, where r ⌧ min(d, k). Thus, the
updated parameter matrix becomes:

✓ = ✓0 +�✓ = ✓0 +AB

Here, A and B are the trainable matrices, and r is the rank, controlling the parameter reduction. By
making r much smaller than d and k, the total number of trainable parameters is reduced from d⇥k

to r ⇥ (d+ k), leading to substantial memory savings.

4 FAIRLORA: FAIRNESS AWARE LORA

Does LoRA have a systemic disparate impact? Our experiments, similar to the work from Ding
et al. (2024), notes that there is no systemic disparate impact when doing LoRA compared to full
finetuning. That is even if LoRA tends to under-perform for a certain set of datasets, model, and
metric combination, there is no specific pattern of disparate impact. These trends also hold for the
lowest rank that is experimented on. As seen from fig. 2a we do however notice that CLIP is better
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than the other, and can have significant improvements both in terms of accuracy as well as fairness
metrics with LoRA. At the same time, it is also worth noting that in fig. 2b, we can see that LoRA
models may or may not have comparable performance when it comes to fairness metrics such as
variance of per class loss. Following on this direction, we aim to improve the fairness of a model on
downstream task, akin to Das et al. (2024). One of the key distinction from (Das et al., 2024) is that
we aim to improve fairness by introducing a fairness constraint that aims to improve the performance
of all classes in a dataset as opposed to relying on a fairness specific dataset that can only be used
for a small set of bias mitigation usecases.

(a) The overall accuracy is (higher) better across
models and ranks with LoRA.

(b) The variance of per group loss, varies across mod-
els and ranks. Lower value is better.

Figure 2: Comparison of model performance and fairness on the GeoDE across different LoRA
ranks as well as FFT. Please note that this doesn’t include any specific fairness related intervention.
Rank = -1 implies Full-Finetuning.

4.1 IMPROVING PER CLASS PERFORMANCE

In this work we focus on accuracy parity as a notion of fairness. In order to achieve accuracy parity,
the aim is to have equal accuracy across all groups. This is challenging and often times impossible to
achieve given the quantized nature of accuracy, number of samples in a group, and difficulty of the
samples in each class. Considering the impracticality of directly enforcing accuracy parity, we aim
to use a method that still helps to improve the per group accuracy. We introduce a fairness regularizer
aimed to reduce the variance of per group loss at a mini-batch level, thereby implicitly improving
the performance of under performing group. It is important to note that a degenerate solution to this
problem could be by making the performance per class equal, but extremely low–this does not occur
here as we still have the original objective that pushes to improve the overall performance of the
model and we do not observe this degenerate solution in any of our experimental settings.

In this problem, we aim to minimize the empirical risk over data points x, labels y, and model pa-
rameters ✓. Specifically, let the model parameters be ✓, which can represent either the entire set
of model parameters or the Low-Rank Adaptation (LoRA) parameters, denoted as ✓LoRA, depend-
ing on the adaptation approach used in the model. We aim to minimize the total loss function by
searching over the parameter space ⇥, which includes both the full model parameters and the LoRA
parameters:

min
✓2⇥

J (✓) = min
✓2⇥

0

B@L(✓) + �

X

g2G

0

@Lg(✓)�
1

|G|
X

g02G
Lg0(✓)

1

A
2
1

CA (1)

We consider a set of groups G, with each group denoted by g 2 G. Here, the groups can either
be the respective classes present in the classification dataset or they can be the sensitive labels
associated with each of the sample. The empirical risk over all data points is represented by
L(✓), which is typically defined as the average loss over the entire dataset. The second term is a
regularization component that penalizes the variance of the average loss across different groups. For
each group g, the average loss is denoted by Lg(✓). Additionally, � is a hyperparameter that controls
the strength of the regularization term.
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This formulation aims to not only minimize the overall loss but also promote fairness by reduc-
ing disparities in performance across different groups. It is important to note that we chose this
formulation as a matter of scope, there are other ways of ensuring similar outcomes.

5 MEASURING FAIRNESS

We focus on five key metrics to provide a comprehensive assessment of both the model’s perfor-
mance and its fairness. Here, groups refer to the classes in the dataset and sensitive groups
refer to the sensitive labels associated with the classes These metrics are:

1. Aggregate Evaluation Accuracy (Acc): The overall accuracy of the model across the
entire dataset.

2. Minimum F1 Score Across Groups (ming2G F1g): The lowest F1 score among all groups
G, highlighting the worst-performing group and helping to identify significant disparities.

3. Minimum Recall Across Groups (ming2G Recallg): The lowest Recall score among all
groups G, highlighting the worst-performing group and helping to identify significant dis-
parities in terms of misclassifications.

4. Sensitive Image Accuracy (if applicable, AccSensitive): The accuracy specifically on sen-
sitive groups, applicable when the dataset contains sensitive labels. This metric measures
any spurious correlations or privacy violation with respect to the model.

5. Difference of F1 Scores Between Worst and Best Groups (�F1 = maxg2G F1g �
ming2G F1g): The gap between the highest and lowest F1 scores across groups, serving
as an indicator of fairness by measuring performance disparity.

Additionally, we present results for conventional fairness metrics such as the Equalized Opportu-
nity Difference Hardt et al. (2016); Verma & Rubin (2018); Mehrabi et al. (2021), which measures
the difference in true positive rates between groups:

Equalized Opportunity Difference =
���P(Ŷ = 1 | Y = 1, S = s1)� P(Ŷ = 1 | Y = 1, S = s2)

���

where Y is the true label, Ŷ is the predicted label, and S is the sensitive attribute, with s1 and s2

being different groups within S.

Equalized Opportunity Difference for Multiple Sensitive Groups. For multiple sensitive
groups, we generalize the Equalized Opportunity Difference (EOD) using a one-vs-all approach.
Let S 2 {s1, s2, . . . , sk} be the sensitive attribute, and Ŷ the predicted outcome. The EOD between
group S = si and others S 6= si is defined as:

EODsi =
���P(Ŷ = 1 | Y = 1, S = si)� P(Ŷ = 1 | Y = 1, S 6= si)

���

Maximal Equalized Opportunity Difference. We define the maximal EOD, EODmax, as the max-
imum disparity across all sensitive groups:

EODmax = max
i2{1,2,...,k}

(EODsi) (2)

This captures the worst-case violation of equalized opportunity across groups and is a key metric for
measuring fairness with multiple sensitive attributes.

These metrics collectively provide a well-rounded evaluation of both model performance and fair-
ness across diverse groups.
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6 EXPERIMENTS

In this section, we present an empirical comparison addressing the various research questions high-
lighted earlier. The primary goal of our experiments is to fine-tune models using LoRA with minimal
disparity. Although reducing disparity may introduce a trade-off with aggregate performance, our
aim is to achieve overall accuracy comparable to mitigation-agnostic methods, both with and without
LoRA. All models, unless mentioned otherwise are chosen based on the best evaluation accuracy.

(a) Model: Clip. All metrics are normalized to the
same scale and adjusted such that higher is better.
In this model, dataset combination, we can notice a
dominant behavior with respect to FairLoRA.

(b) Model: Clip. All metrics are normalized to the
same scale and adjusted such that higher is better. We
notice a dominant pattern for FairLoRA across met-
rics.

Figure 3: Comparison of FairLoRA performance in Clip model across Aircrafts and Waterbirds
datasets.

6.1 EXPERIMENTAL SETUP

Tasks and architectures. We conduct image classification experiments on the Aircrafts Maji et al.
(2013), GeoDE Ramaswamy et al. (2024), and Waterbirds Sagawa et al. (2019) datasets. These
datasets were chosen because they differ significantly from popular pre-training datasets, as noted
in previous works. To provide sufficient variation in architecture, pre-training data, and strategy,
we use CLIP Radford et al. (2021), DiNO Caron et al. (2021), and ViT Dosovitskiy (2020) models
in our experiments. All tables, figures unless mentioned otherwise is reported across 3 seeds. For
LoRA as well as FairLoRA only the low rank parameters are updated.

Vision Models: CLIP-b32, DINO-b16, and ViT-b16 are key models in computer vision with distinct
advantages. CLIP (Contrastive Language-Image Pretraining) excels in cross-modal tasks by learning
from large scaled paired image-text data and DINO (Self-Distillation with No Labels) uses self-
supervised learning, ideal for tasks without labeled data. Additionally, the commonly available
versions also have different pre-training data - both DiNO and ViT are pre-trained on ImageNet Deng
et al. (2009), while CLIP is pre-trained on LAION-5B Schuhmann et al. (2022).

Datasets. Consistent with prior studies, we use 6,667 training samples and 3,333 test samples from
the Aircrafts dataset to perform image classification across 100 classes, noting the high intra-class
similarity present in this dataset. For Waterbirds, we perform image classification over 2(‘landbird’
and ‘waterbird’) classes using 4,795 training samples, 2,400 validation samples, and 2,800 test sam-
ples. The per-class distribution of Waterbirds varies across these splits; more details can be found
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(a) Model: DiNO. We notice a dominant pattern for
FairLoRA across metrics apart from EOD, where it is
comparable to LoRA

(b) Model: Clip. We notice a dominant pattern for
FairLoRA across metrics.

Figure 4: All metrics are normalized to the same scale and adjusted such that higher is better.
Comparison of FairLoRA performance on GeoDE across metrics on CLIP and DiNO.

in Sagawa et al. (2019); Pezeshki et al. (2023). Additionally, we utilize the ‘land’ and ‘water’ labels
as sensitive attributes. These are the classification targets for sensitive image classification. For
GeoDE, unlike previous work that uses it solely as an evaluation dataset, we employ it for both
fine-tuning and evaluation by performing an 80:20 split on the data. The classification task spans 40
classes, with the 6 geo-location labels used as sensitive attributes.

Baseline methods. Our baselines vary depending on the specific research question. Generally, the
baselines include LoRA fine-tuning without a fairness regularizer, and full fine-tuning both with and
without a fairness regularizer. All models undergo independent pre-training with a comprehensive
hyperparameter search.

Choice of LoRA rank. For extremely low ranks (less than 4), we observed a significant drop in
performance across many experiments. In contrast, performance remained robust across models
when using ranks of 8 and above. Consequently, most of our experiments focus on the rank range
[8, 128]. We also explore some experiments with extremely low ranks; further details can be found
in the appendix.

Choice of �. We carry out thorough search over potential � values in the range of [0.01, 100], in
multiples of 10 independently on all model, dataset, method combinations.

6.2 EMPIRICAL EVALUATIONS

How does FairLoRA improve the fairness? We see that for most of the experiments, FairLoRA
is comparable or better than doing fair full fine-tuning. In particular, in fig. 8a, we can see that Fair-
LoRA performs better on multiple metrics. It is important to note that sometimes this improvement
in fairness comes at a small cost of aggregate accuracy, but as seen in table 1 and table 2, this is
dependent on the underlying base model. Furthermore, we also note that in most of our experiments,
FairLoRA performs better across metrics (both in terms of fairness and performance) than LoRA.

Does the rank have a universal impact in FairLoRA? In our experiments we notice that, there
is no strict trend as to when a higher rank would be required. We see that based on the model,
pre-training data and pre-training strategy, the rank required to get a fair model with good overall
performance would vary. This can be seen in fig. 5, where the CLIP models get a fair and well
performing model for much lower ranks in FairLoRA. It is also important to note that there is no
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Model Method Accuracy (↑) F1 Min (↑) Recall Min (↑) � F1 (↓)

CLiP

LoRA 97.35 ± 0.17 87.24 ± 0.25 83.74 ± 2.15 12.29 ± 0.16
FairLoRA 97.58 ± 0.06 88.93 ± 0.48 86.51 ± 0.17 10.71 ± 0.48

FFT 97.49 ± 0.19 88.26 ± 1.12 85.91 ± 0.47 11.24 ± 0.92
FairFFT 97.57 ± 0.03 88.12 ± 0.42 85.64 ± 0.47 11.52 ± 0.42

DiNO

LoRA 94.38 ± 0.23 86.96 ± 0.91 82.54 ± 2.61 12.93 ± 0.73
FairLoRA 94.53 ± 0.07 87.65 ± 0.83 83.88 ± 0.83 11.99 ± 0.83

FFT 91.05 ± 0.84 83.08 ± 0.48 77.65 ± 2.00 14.77 ± 0.10
FairFFT 91.63 ± 0.98 83.96 ± 1.00 78.39 ± 4.36 15.20 ± 0.59

ViT

LoRA 94.29 ± 0.07 86.76 ± 0.77 83.46 ± 1.67 12.84 ± 0.32
FairLoRA 94.71 ± 0.08 87.09 ± 1.45 83.71 ± 2.14 12.81 ± 1.26

FFT 94.39 ± 0.33 87.03 ± 0.32 83.45 ± 0.46 12.61 ± 0.04
FairFFT 94.89 ± 0.27 87.44 ± 0.73 85.64 ± 0.94 12.05 ± 0.40

Table 1: The table compares FFT vs LoRA and FairFFT vs FairLoRA for GeoDe. Metrics include:
Accuracy, the mean classification accuracy; F1 Min, the minimum F1 score across classes; Recall
Min, the minimum Recall across classes; � F1, the difference between the maximum and minimum
F1 score across classes.

Model Method Accuracy (↑) F1 Min (↑) Recall Min (↑) � F1 (↓)

CLiP

LoRA 93.83 ± 0.81 72.74 ± 2.94 74.06 ± 1.36 19.28 ± 1.84
FairLoRA 93.87 ± 0.58 73.45 ± 1.96 76.32 ± 0.38 18.58 ± 1.15

FFT 92.27 ± 1.50 67.37 ± 5.80 71.68 ± 4.76 22.50 ± 3.78
FairFFT 92.24 ± 1.38 67.23 ± 5.36 71.55 ± 4.55 22.60 ± 3.52

DiNO

LoRA 89.27 ± 1.12 77.13 ± 2.00 81.45 ± 0.95 15.86 ± 1.24
FairLoRA 89.21 ± 1.09 77.01 ± 1.93 81.33 ± 0.78 15.94 ± 1.18

FFT 83.07 ± 1.86 64.94 ± 2.91 70.55 ± 3.02 23.90 ± 1.56
FairFFT 82.90 ± 1.04 64.36 ± 1.85 69.55 ± 1.36 24.39 ± 1.14

ViT

LoRA 91.83 ± 0.08 82.05 ± 0.21 84.21 ± 0.99 12.66 ± 0.15
FairLoRA 90.91 ± 1.08 80.50 ± 2.23 84.59 ± 2.71 13.57 ± 1.51

FFT 90.02 ± 0.67 77.93 ± 1.48 79.45 ± 1.70 15.62 ± 1.04
FairFFT 88.96 ± 0.63 76.05 ± 0.87 78.95 ± 0.99 16.78 ± 0.42

Table 2: The table compares FFT vs LoRA and FairFFT vs FairLoRA for Waterbirds. Metrics
include: Accuracy, the mean classification accuracy; F1 Min, the minimum F1 score across classes;
Recall Min, the minimum Recall across classes; � F1, the difference between the maximum and
minimum F1 score across classes.

monotonic pattern associated with LoRA ranks when . For most of the experiments even low ranks
were comparable both in terms of fairness and performance, and this is something not observed in
the previous work on LLMs Das et al. (2024).

How does FairLoRA handle distribution shifts from the pre-training data? Based on FID
scores Parmar et al. (2022), GeoDE and Waterbirds are farther from both the pre-training distri-
butions(ref table 4 for FID). From table 1, it is clear that FairLoRA is best across methods and with
ViTs, it is second only to Fair FFT despite having less than 1% of trainable parameters in compari-
son. It is also important to note that in table 2, FairLoRA is better than FairFFT and FFT across all
metrics and gets comparable performance to LoRA.

Does FairLoRA perform the same across architectures Although FairLoRA improves fairness
across metrics on most tasks, it is important to note the variance across architectures. In general, we
notice that the CLIP models are more adaptable to the FairLoRA and exhibit improvements across
all metrics. It is also important to note that CLIP models are almost twice as large as the other
models. Furthermore, it is important to note that DiNO models seem to adapt worse to the LoRA
based fairness regularization, especially with distribution shift(table 1. ViTs seem to adapt least
when the task involves groups with high intra-class similarities and require higher model capacity
to improve on both performance and fairness.( table 6)
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Figure 5: Comparison on the impact of rank on performance as well as fairness across models for
GeoDe. Higher value is better in both the graphs. There is no monotonic behaviour on fairness or
performance when changing the ranks. FairLoRA versions are more stable to changes in ranks.

How does FairLoRA affect privacy The sensitive image accuracy aims to determine how much
spurious information is leaked, when we are fine-tuning the model on downstream datasets. Usually,
we see that despite not being part of the learning objective models tend to pick up these sensitive
information from the data and is often exacerbated when optimized for fairness Fioretto et al. (2022).
We can see that in table 3, LoRA models have a lower (better) sensitive image accuracy compared to
full finetuning. We also see the similar trend reflected in FairLoRA vs FairFFT, thereby highlighting
that forcing fairness doesn’t come at the cost of a privacy violation in this setup. Furthermore, we can
hypothesise that the low rank matrices work in ways similar to sparse gradients and therefore provide
some implicit differential privacy benefits Ghazi et al. (2024); Yang et al. (2023); Malekmohammadi
& Farnadi (2024).

How does FairLoRA perform across the metrics From fig. 3 it is clear that FairLoRA has a
dominant performance across metrics. It is also worth noting that, despite not directly optimizing
for it, the regularizer also helps to improve on fairness aspects such as EOD and F1. It is also worth
highlighting that in fig. 4, although better in most metrics, FairLoRA tends to be slightly worse on
EOD compared to other methods, thereby highlighting the importance of our proposed multi faceted
evaluations.

Model Method EOD max (↓) Sensitive Acc (↓)

CLiP

LoRA 43.86 ± 1.89 61.27 ± 1.54
FairLoRA 37.84 ± 0.43 61.02 ± 1.11
FFT 46.62 ± 9.83 64.16 ± 3.14
FairFFT 47.87 ± 7.68 64.39 ± 2.61

DiNO

LoRA 31.58 ± 0.75 60.11 ± 0.97
FairLoRA 31.83 ± 0.43 60.16 ± 0.93
FFT 52.88 ± 5.33 66.19 ± 1.77
FairFFT 52.38 ± 4.41 66.03 ± 1.36

ViT

LoRA 28.07 ± 1.57 57.71 ± 0.25
FairLoRA 26.82 ± 5.69 58.63 ± 1.18
FFT 37.59 ± 2.71 59.58 ± 0.63
FairFFT 39.10 ± 1.99 60.58 ± 0.77

Table 3: The table compares sensitive accuracy and the EODmax across models and methods. We
can see that FairLoRA is better or comparable to other metrics when we measure on these metrics.
Aggregated results for waterbirds. Each metric is aggregated across 3 seeds.
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7 DISCUSSION

Given the ubiquitous use, it is important to develop parameter-efficient techniques that reliably mit-
igate fairness issues. While developing such solutions it is important to focus on (i) trade offs in
terms of different metrics, and compute and (ii) if the method truly generalizes

7.1 TRADE-OFFS

In our experiments, we observed trade-offs between overall performance and fairness metrics when
applying FairLoRA. Incorporating the fairness regularizer often led to improved performance on
underrepresented groups at the expense of slight reductions in aggregate accuracy. This trade-off
is expected, as the regularizer aims to reduce the variance in loss across groups, thereby focusing
the model’s learning capacity on groups that are harder to predict accurately. But it is important
to note that under most settings, the aggregate accuracy improved or was comparable to that of
full-finetuning.

The choice of the LoRA rank also plays a pivotal role in balancing the trade off between various
metrics and computational cost. However, the observations we have show that the effect of rank is
not universal and would vary across models, datasets and even metrics - this is contrary to what
was observed by Das et al. (2024).

7.2 GENERALIZATION

The generalization of fairness improvements across different models and datasets is a critical con-
sideration. Our results indicate that although useful, the effectiveness of FairLoRA in mitigating
fairness issues is not universal but depends on factors such as the pre-trained model architecture,
the nature of the pre-training data, and the specific downstream task. For instance, models such as
CLIP, which are pre-trained on diverse multi-modal data, may require lower LoRA ranks to achieve
fairness compared to models pre-trained on more homogeneous datasets.

Moreover, the distribution shift between pre-training and fine-tuning datasets as well as the intra-
class similarities within the fine-tuning dataset can influence the model’s ability to generalize fair-
ness improvements. Although this was hypothesized in Ding et al. (2024); Das et al. (2024), we
offer a more comprehensive empirical evaluation in this regard

8 CONCLUSION

In this work, we introduced FairLoRA, a fairness-aware LoRA approach by incorporating a fairness
regularizer aimed at reducing the variance of per-group loss, thereby improving performance on
underrepresented groups. Through comprehensive experiments across various models (CLIP, DINO,
ViT), datasets (Aircrafts, GeoDE, Waterbirds), and fairness metrics, we found that LoRA does not
introduce systemic disparate impact and FairLoRA can achieve fairness outcomes comparable to or
better than Fair full fine-tuning (FFT).

Our findings highlight the importance of evaluating multiple fairness metrics to capture a holistic
view of a model’s performance and fairness implications. We observed that there is no universal
trend with respect to LoRA ranks; the optimal rank depends on the specific model, pre-training
data, and task. Additionally, we examined the effects of distribution shifts between pre-training and
fine-tuning datasets, and notice how efficiently FairLoRA can adapt.

Overall, our study demonstrates that FairLoRA is a viable and efficient alternative to FFT for miti-
gating fairness issues in machine learning models. Future work could extend this analysis to other
architectures, datasets, and definitions of fairness, as well as explore intersectional fairness. More
importantly, it would be interesting to study the impact of FairLoRA on image segmentation
tasks, where we see long-tailed distributions.
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