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ABSTRACT

Pretrained unimodal encoders incorporate rich semantic information into embed-1

ding space structures. To be similarly informative, multi-modal encoders typically2

require massive amounts of paired data for alignment and training. We introduce a3

semi-supervised Geometrically Regularized Alignment (GeRA) method to align4

the embedding spaces of pretrained unimodal encoders in a label-efficient way.5

Our method leverages the manifold geometry of unpaired (unlabeled) data to im-6

prove alignment performance. To prevent distortions to local geometry during the7

alignment process —potentially disrupting semantic neighborhood structures and8

causing misalignment of unobserved pairs — we introduce a geometric loss term.9

This term is built upon a diffusion operator that captures the local manifold geom-10

etry of the unimodal pretrained encoders. GeRA is modality-agnostic and thus can11

be used to align pretrained encoders from any data modalities. We provide em-12

pirical evidence to the effectiveness of our method in the domains of speech-text13

and image-text alignment. Our experiments demonstrate significant improvement14

in alignment quality compared to a variaty of leading baselines, especially with a15

small amount of paired data, using our proposed geometric regularization.16

1 INTRODUCTION17

Data comes in many modalities, including text, speech, images, and video. Unimodal encoders aim18

to extract the intrinsic features of data drawn from a single modality, representing it in an embedding19

space. The goal of multi-modal learning is to learn a shared representation space for encoders of20

different modalities. In this setting, objects captured in different modalities have common represen-21

tations in this shared space. This task is commonly referred to as multi-modal alignment (Baltrušaitis22

et al., 2018). Finding unified representations unlocks applications that require multiple modalities,23

like retrieving and generating descriptions of visual content.24

In this paper, we consider multi-modal alignment using pretrained unimodal encoders. We are given25

paired and unpaired multi-modal data of potentially different dimensionalities and aim to learn an26

alignment transformation into a common embedding space. Although the domain of image and27

text alignment has been extensively explored thanks to large, publicly available image-text datasets28

(Schuhmann et al., 2021), one quickly runs into data availability problems when looking at new29

modalities. Indeed, for most modality pairs, such as speech and text or protein sequences and30

biomedical texts (Xu et al., 2023), there are far fewer paired data points than for images and text.31

With the scenario above in mind, we present a robust and data-efficient alignment method that32

generalizes to new modalities, even under limited paired data availability. Our key idea is to preserve33

the local geometric structure learned by the pretrained encoders (Moschella et al., 2023; Antonello34

et al., 2021). These geometric structures, however, are not explicitly leveraged by existing alignment35

methods. Specifically, learning an alignment using only a contrastive objective, as explored by36

Radford et al. (2021) and others, seemingly does not maintain the manifold geometry (see Figure37

1) and requires substantial paired data for alignment. Conversely, the Procrustes method (Gower,38

1975) aligns the datasets through an isometric rotation transformation and hence fully preserves the39

geometric structure. However, Procrustes has low plasticity.40

Our proposed Geometrically Regularized Alignment (GeRA) method leverages semantically rich41

manifold structures and preserves local geometry, while allowing enough flexibility to learn a mean-42

ingful alignment. We use a regularization loss which optimizes for local geometry preservation,43
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Figure 1: (a) Illustration of the effect of
GeRA on alignment quality; GeRA preserves
local neighborhoods, whereas non-regularized
methods might distort them. Inter-modality
black lines denote known pairs and gray lines
denote neighbors. (b) Average ranking of the
five nearest neighbors (before alignment) in the
learned aligned spaces, using contrastive loss
with and without our geometric regularization.

built on a diffusion operator to capture the lo-44

cal geometry. We freeze the unimodal encoders45

during the alignment process, reducing computa-46

tional costs. Our approach falls into the regime of47

semi-supervised learning, as we can leverage the48

vast amount of unpaired (unlabeled) data with rel-49

atively few pairs to establish alignment. See Fig-50

ure 2 for an overview of our method.51

Contributions. Our work advances the field of52

data-efficient multi-modal alignment by address-53

ing several limitations of existing methods. Our54

main contributions are three-fold:55

• Geometry-Preserving Alignment: We intro-56

duce a semi-supervised alignment method that57

aligns multi-modal data distributions while pre-58

serving local geometry. It exhibits both global59

flexibility to align the paired points and local ge-60

ometric preservation to incorporate the rich se-61

mantic information of the manifold structure.62

• Efficiency: A key advantage of the proposed63

method is its label efficiency, as it employs a64

semi-supervised approach to use unlabeled data.65

This enables the alignment to capture additional66

information from the pretrained unimodal en-67

coders in regions where there are no labeled68

pairs.69

• Modality-Agnostic Formulation: GeRA is ag-70

nostic to the choice of encoders and modalities;71

it does not rely on domain-specific knowledge72

like augmentation. We experiment across mul-73

tiple encoders and data modalities to show that74

our method is effective across configurations. It75

can be efficiently applied whenever pretrained76

models are available.77

Figure 2: GeRA Training Approach: We optimize image and text alignment functions, focusing on
achieving both global alignment of paired points and the preservation of local geometric structures.
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2 RELATED WORK78

Various multi-modal alignment methods have been introduced, each based on different assumptions79

on data availability and computational needs; most have been applied to text and image modalities.80

Training Multi-Modal Encoders: Radford et al. (2021); Chen et al. (2022); Jia et al. (2021) jointly81

train image and text encoders from scratch, learning a shared representation for both modalities using82

a contrastive objective (Wang & Isola, 2020). This approach outperforms many existing models83

(Kolesnikov et al., 2020; Chen et al., 2020; He et al., 2016) in zero-shot classification on ImageNet84

(Deng et al., 2009). These methods, however, demand large training datasets (Gadre et al., 2023;85

Thomee et al., 2016; Sun et al., 2017) and consume significant computational resources. Zhai et al.86

(2021) reduce computational costs by freezing the image encoder. Due to the large training datasets87

(Sun et al., 2017; Thomee et al., 2016) this method remains computationally intensive.88

Relative and Anchor-based Encodings: Moschella et al. (2023); Antonello et al. (2021) demon-89

strate that high-quality encoders produce semantically rich and consistent manifold structures. This90

observation suggests the concept of relative encodings, where a sample is encoded based on its91

neighborhood. Such relative encodings have been shown to remain consistent across various en-92

coders and modalities (Moschella et al., 2023). Building on this idea, Norelli et al. (2022) ensures93

consistent encodings across different modalities using frozen pretrained encoders (Song et al., 2020;94

Dosovitskiy et al., 2020), eliminating the need for a training phase. Their method achieves high95

performance, coming close to models trained with substantially more data. However, a trade-off96

arises: inference time increases with the number of anchor points (labeled data) used.97

Unsupervised Alignment Techniques: There has been also research efforts towards unsupervised98

alignment of embedding spaces without relying on paired modality data. The study Alvarez-Melis99

& Jaakkola (2018) uses the Gromov-Wasserstein optimal transport objective (Nekrashevich et al.,100

2023) to align word embeddings from various languages. Despite its advantage of not requiring101

labeled data, the method poorly scales to the 4th power in terms of the number of embedding points.102

Manifold Geometry: Early works in manifold learning, such as Locally Linear Embedding (LLE)103

(Roweis & Saul, 2000), Isomap (Tenenbaum et al., 2000), and multi-dimensional scaling (Saeed104

et al., 2018), capture geometric properties of data manifolds while mapping them into simpler105

spaces. These methods leverage the rich local structure of datasets, constructing a lower-dimensional106

embedding that retains the topological and geometric characteristics of local neighborhoods in high-107

dimensional data space. In the context of semi-supervised learning, Sindhwani et al. (2005); Zhu108

et al. (2003) propose frameworks for integrating geometry learned from both labeled and unlabeled109

data into classification algorithms based on the graph Laplacian (Sindhwani et al., 2005), and based110

on a Gaussian random field model (Zhu et al., 2003). These works, however, focus on a unimodal111

setting and do not address semi-supervised alignment of data from multiple modalities.112

3 PROBLEM FORMULATION113

3.1 MULTI-MODAL ALIGNMENT114

Consider two datasets X ∈ RNX×dX and Y ∈ RNY ×dY , originating from two distinct modalities.115

Here, NX and NY denote the number of samples in each dataset, and dX and dY represent the116

dimensions of X and Y , respectively, which may differ. These datasets denote points embedded117

by pretrained unimodal encoders. We assume pairwise correspondence for only a small subset of118

these points, denoted by {(xpi
, yqi)}Mi=1, where xpi

∈ X , yqi ∈ Y , pi ∈ [1, NX ] and qi ∈ [1, NY ]119

are some index permutations, and M ≪ NX , NY . Those pairings correspond to the same objects120

captured by different modalities. All other points in X and Y are unpaired (unlabeled).121

The task at hand is to align the data distributions into a common embedding space. While most meth-122

ods focus only on aligning the paired data points, we propose to leverage unlabeled (unpaired) points123

from each modality to preserve the rich geometric structure of their original embedding spaces.124

To approach this problem, we define two trainable alignment functions, namely ϕθX : RdX → Rd125

and ϕθY : RdY → Rd, where d is the dimension of the joint embedding space. These alignment126

transformations are modeled as neural networks. This approach is encoder and modality agnostic,127

requiring some pretrained unimodal encoder for each modality and a small paird dataset.128
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3.2 PRESERVING MANIFOLD GEOMETRY129

Unimodal encoders, trained on large and often self-supervised datasets, learn to encode the data into130

a rich representation that accurately reflects the intrinsic structure of the data. When training the131

alignment using a smaller paired dataset, this manifold structure might be distorted, degrading the132

quality of the alignment. Existing methods are not required to preserve these structures, leaving a133

potential source of information unused. Specifically, learning an alignment using only a contrastive134

objective, as explored by (Radford et al., 2021), distorts the neighborhood geometry (see Figure 1b)135

and requires substantial paired data to learn an effective alignment.136

We propose a geometrically regularized alignment that aligns the paired points while preserving137

local neighborhood structures, which is motivated by the relation between local neighborhoods and138

the (Riemannian) manifold geometry (e.g. in approximating geodesic distances) (Coifman & La-139

fon, 2006; Li & Dunson, 2019). This approach offers global flexibility for obtaining a meaningful140

alignment and local regularization to maintain the neighborhood structure. The geometry regulariza-141

tion pursues an intuitive goal of keeping similar objects close in the aligned space. This allows for142

more effective generalization of the learned alignment to nearby (unpaired) points, as evident from143

the improved performance by our approach (see Section 5.3.) For preserving local neighborhoods,144

unlabeled data can be leveraged, thus allowing a semi-supervised approach.145

4 GEOMETRICALLY REGULARIZED ALIGNMENT METHOD146

4.1 GERA LOSS FUNCTION147

We introduce the GeRA loss, which optimizes for both aligning paired points and preserving the148

neighborhood structure of nearby unpaired points. This loss is semi-supervised, as it uses paired149

data for the alignment and captures the local geometry using both paired and unpaired data. The150

loss is defined as follows:151

LGeRA(θX , θY ) = E(XB ,YB)∼PPos

[
LCon(XB , YB ; θX , θY ) + LCon(YB , XB ; θY , θX)︸ ︷︷ ︸

Alignment

+ α ·
(
LGeo(XB ; θX) + LGeo(YB ; θY )

)︸ ︷︷ ︸
Geometric Regularization

] (1)

where θX and θY parameterize the alignment transformations, ϕθX and ϕθY , respectively, PPos152

represents the uniform distribution over all paired points from both modalities, and B represents the153

number of paired data points in a batch.154

Alignment: We align the labeled points via a contrastive loss, denoted by LCon(XB , YB ; θX , θY )155

as proposed by Radford et al. (2021). It minimizes the distance between positive pairs (paired156

points) while maximizing the distance of negative samples. We apply this loss to the alignment157

transformation outputs:158

LCon(XB , YB ; θX , θY ) = −1

2

∑
x∈XB

log
exp

(
cossim(ϕθX (x), ϕθY (y))/t

)∑
y∈YB

exp
(
cossim(ϕθX (x), ϕθY (y))/t

) (2)

where t is a temperature hyperparameter.159

Geometric Regularization: Our geometric loss term aims to preserve the local geometric structure:160

LGeo (XB ; θX) =
1

B

∑
x∈XB

ENK(x)∼S(x)

[ ∥∥∥WNK(x) −WϕθX
(NK(x))

∥∥∥2
F

]
. (3)

where WNK(x) and WϕθX
(NK(x)) are some matrices encoding the neighborhood structure of sam-161

ple x, and NK(x) denotes a sampled set of K neighbors of x (according to the original embedded162

space). This loss operates only within a single modality and is independent of the other modality.163

For a given batch of unimodal samples XB , we sample a set of K neighbors NK(x) (defined based164

on proximity in the original space) for each sample in the batch, drawn from a precomputed larger165

neighborhood distribution S(x). We investigate various sampling methods:166
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• The “closest” method deterministically takes the K nearest neighbors.167

• The “uniform” method samples K neighbors uniformly from the larger neighborhood.168

• The “biased” method samples proximate neighbors with higher probability than distant neighbors.169

The loss in equation 3, penalizes local distortion during the alignment, thus preserving the geometry.170

The choice of a suitable neighborhood encoding to capture local structure is a crucial consideration.171

We propose to use an approximation of the heat kernel, discussed in Section 4.2.1. Additionally, we172

report alternative choices and evaluate the differences in performance in Section 5.5.173

4.2 KERNEL ENCODINGS174

4.2.1 THE HEAT KERNEL175

We next present the different choices of kernels to encode the neighborhood structure. Given a set176

of points, {xi}Ni=1, assumed to lie on some low dimensional manifold, X , the diffusion operator177

(Coifman & Lafon, 2006), denoted by WHeat, is defined by:178

KHeat(xi, xj) = e−∥xi−xj∥2
2/4ϵ

WHeat(xi, xj) =
KHeat(xi, xj)∑
l K

Heat(xi, xl)
(4)

This operator was shown to converge pointwise to the Neumann heat kernel of the underlying data179

manifold as ϵ approaches zero and the number of points tends to infinity. Below, we articulate some180

advantages of using WHeat in our formalism:181

Intrinsic. The heat kernel and its approximation are intrinsic, meaning that they are independent of182

the choice of coordinates. As a result, they are invariant to isometric transformations.183

Informative. The heat kernel captures essential intrinsic geometric information. For example, the
geodesic distance g between two points x, y on a manifold can be recovered from the heat kernel via
the limit (Varadhan, 1967):

g(x, y) = lim
t−→0

√
−4t log ht(x, y),

where ht(x, y) denotes the continuous heat kernel, which relates to WHeat by ht =184

limϵ→0,N→∞(WHeat)t/ϵ (under slightly different normalization) (Coifman & Lafon, 2006).185

Multi-Scale. The locality of the heat kernel is sensitive to the time variable, t. In its discrete186

approximation, WHeat, the locality is governed by the kernel scale, ϵ, and the sample density of187

the point cloud. Through these parameters, the heat kernel and its approximation are capable of188

capturing multi-scale features. Specifically, a smaller ϵ in equation 4 results in a more local kernel.189

4.2.2 ALTERNATIVE KERNEL ENCODINGS190

The majority of our experiments use the diffusion operator to capture local neighborhood geometry,191

but other choices are possible. For example, the following kernels capture the pairwise L2 distance192

and related values:193

KLinear(xi, xj) = ∥xi − xj∥2 ∀xi, xj ∈ X (5)

KSquared(xi, xj) = ∥xi − xj∥22 ∀xi, xj ∈ X (6)

KInverse(xi, xj) =
1

1 + ∥xi − xj∥22
∀xi, xj ∈ X (7)

We normalize each kernel by the average column values, similarly to the diffusion operator, resulting194

in the neighborhood encoding WZ
X , where Z stands for “Linear”, “Squared” or “Inverse”:195

WZ(xi, xj) =
KZ(xi, xj)∑
l K

Z(xi, xl)
(8)

In Section 5.5, we empirically demonstrate that the heat kernel yields the best performance, indicat-196

ing better preservation of local neighborhood information.197
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5 EXPERIMENTS198

5.1 EXPERIMENTAL DETAILS199

We conduct extensive experiments to show the performance of GeRA under limited paired data200

availability with images and text. In addition, in Section 5.4 we present results with speech and text.201

Our default experimental setup is adapted from the setup used in ASIF (Norelli et al., 2022), which202

serves as a baseline.203

Dataset: Our training dataset for the image and text experiments is the Conceptual 12M (CC12M)204

dataset (Changpinyo et al., 2021). This dataset consists of 12 million paired entries of images and205

their corresponding textual descriptions, spanning a broad spectrum of visual concepts.206

Unpaired points: To preserve the local geometry of the pretrained unimodal models, we use un-207

paired points from each modality to compute the geometric regularization in equation 1. For the208

image and text experiments, we discard the pairing information of 6×106 data points from CC12M209

and treat them as unpaired points used in the geometric regularization.210

Encoders: For our first experiments we used the Vision Transformer (ViT) (Dosovitskiy et al.,211

2020) and the Masked and Permuted Network (MPNet) (Song et al., 2020). The base model of212

the ViT has 86 million parameters and the base model of MPNet has 109 million parameters.213

Zero-Shot Accuracy Metric: We use zero-shot accuracy (Xia et al., 2023) as the metric to assess214

the quality of our alignment method, measured on ImageNet (Deng et al., 2009). The ImageNet215

dataset has 1,000 classes, each class is represented by 50 images in the evaluation split. As in216

Radford et al. (2021), we encode the class names using various prompt templates and average them217

in the shared embedding space. The images are directly mapped into the common embedding. We218

calculate the proximity between the image embeddings and the class embedding vectors using cosine219

similarity. Image classification is determined by computing the nearest class within the embedding220

space. Clearly, as the alignment method improves, the zero-shot accuracy increases.221

Precision@k Metric: For evaluation beyond image-text alignment we use the Precision@k metric,222

applied to the test split of the same dataset used for training. We select 10,000 test pairs resulting in223

10,000 classes, such that the samples from one modality form classes, and we attempt their retrieval224

based on corresponding samples of the other modality, and vice versa. Our findings are reported in225

terms of precision@1 and precision@5. The test samples remain consistent across all experiments.226

5.2 BASELINES227

We verify the effectiveness of our proposed method by comparing it to established baseline models.228

First, we examine the Procrustes alignment method, which is designed to learn a rotation matrix229

that aligns one embedding with another. Then, we assess the performance of our alignment trans-230

formation functions when trained solely with the contrastive loss, without including our geometry-231

preserving regularization method. Lastly, we provide a comparison with the ASIF method, as de-232

tailed in the related work section.233

5.3 IMAGE AND TEXT ALIGNMENT THROUGH GERA234

5.3.1 BENCHMARKING ON IMAGENET AND CC12M235

We test GeRA with a neighborhood size of K = 150, using the heat kernel approximation as the236

neighborhood encoding scheme, and with the “biased” sampling method. We evaluate our perfor-237

mance compared to the baseline methods on the default configuration as described in section 5.1.238

Results: Figure 3 shows that GeRA consistently outperforms both Procrustes Alignment and the239

unregularized alignment based on the contrastive loss. This validates GeRA’s design choice of240

balancing local preservation of geometric structures with global flexibility in the alignment process.241

GeRA demonstrates a significant improvement of almost 9% over the unregularized alignment. The242

increase in performance is particularly notable in situations where data availability is highly limited,243

where accuracy improves from 3% for the contrastive loss trained with 1000 samples to almost 9%.244
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Figure 3 depicts that GeRA is the best-performing model in the low-data regimes. As the volume245

of data increases, ASIF slightly outperforms GeRA. However, in Figure 4, GeRA exhibits better246

results when evaluated on precision@5. In Section 5.7, we further demonstrate the advantage of247

GeRA over ASIF, in terms of inference time.248

Figure 3: GeRA performance
evaluated at zero-shot accruacy
on ImageNet against the base-
lines.

Figure 4: GeRA performance
evaluated at precision@5 on
in-distribution CC12M data
against the baselines.

Figure 5: Comparison using
mean scores of GeRA, non-
regularized method, and ASIF
across 20 ELEVATER datasets.

5.3.2 BENCHMARKING ON ELEVATER249

To further validate the generality of our method, we expand our experiments beyond ImageNet and250

CC12M, incorporating multiple vision-language datasets into our evaluation pipeline. We employed251

the ELEVATER (Li et al., 2022) benchmark, which contains 20 image classification datasets. These252

datasets cover a broad spectrum of visual concepts, each presenting varying levels of difficulty.253

Results: Figure 5 demonstrates that GeRA consistently outperforms the non-regularized method on254

the ELEVATER benchmark. In low-data regimes, the benefits of geometric regularization become255

especially clear. With 1,000 training pairs, the performance gain exceeds 5%. Even with 1 mil-256

lion training pairs, GeRA delivers an average performance improvement of 2.7%. Considering the257

diverse visual concepts, it becomes clear that GeRA has superior generalization capabilities.258

Compared to ASIF, GeRA demonstrates superior performance in low-data regimes. When trained259

with 2,500 paired points, GeRA yields a mean score that is almost 3% higher. The advantage260

of GeRA diminishes as the number of paired points increases; ASIF surpasses GeRA when more261

paired points are available in training. Specifically, when trained with 1,000,000 paired points, ASIF262

achieves a mean score 3% higher than GeRA’s. However, in this regime, ASIF is more than 100×263

slower at inference time, as demonstrated in Figure 8.264

5.4 SPEECH AND TEXT ALIGNMENT THROUGH GERA265

Figure 6: Performance of GeRA com-
pared to ASIF and the pure contrastive
learning evaluated at precision@5 for
the speech and text alignment, using in-
distribution LibriTTS data.

To further validate adaptability and performance across266

diverse modalities, we consider the domain of speech-267

text alignment. We show that our method’s efficacy is not268

confined to a specific modality and that our hyperparame-269

ter choices, optimized for the image-text scenario, are not270

overfit to that context.271

Encoder: We use Whisper (Radford et al., 2023) as the272

speech encoder consisting of 74 million parameters. For273

text, we again use MPNet (see Section 5.1).274

Dataset: Our training uses the LibriTTS dataset (Zen275

et al., 2019). This dataset is an assembly of text-speech276

pairs, aggregating to 585 hours of read English speech.277

Each entry corresponds to distinct sentences of speech278

and their textual counterparts. Entries with significant279

background noise are filtered out. The dataset includes280

205,044 pairs in totals, which is considerably smaller than281

the text-image alignment dataset of 12 million pairs. In282
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this experiment, we used up to 105 paired points in the contrastive loss, and additional 105 unpaired283

points in the geometric regularization.284

Results: Figure 6 shows that GeRA significantly outperforms ASIF on speech–text alignment. The285

discrepency increases as the number of paired training points increases With 100,000 training pairs,286

GeRA achieves a precision@5 score for speech retrieval (SR) of over 51% while ASIF’s score is287

below 5%. These results show the generalizing capabilities of GeRA to the speech-text domain,288

while ASIF struggles with this modality. In addition, GeRA surpasses the model trained solely289

with the contrastive loss, which attains a precision@5 score of 48% for speech retrieval for 100,000290

paired training points.291

5.5 INFLUENCE OF GEOMETRY PRESERVATION292

We analyze the influence of geometric regularization on GeRA via ablation studies measuring the293

impact of various design choices. These choices include the size of the neighborhood kernel (number294

of neighbors), the kernel encodings, and the neighborhood sampling method.295

Number of Neighbors Neighborhood Sampling Neighborhood Encodings

Figure 7: The impact of various design choices in GeRA, including neighborhood kernel size, ge-
ometry encoding scheme, and neighborhood sampling method.

5.5.1 RESULTS296

Number of Neighbors: As the kernel matrix size increases, performance improves, but with di-297

minishing returns. Initial increases in neighborhood size yield substantial gains, but this increase298

plateaus, yielding a trade-off between accuracy and computational cost. We achieve a zero-shot299

accuracy of over 49% when trained on 1,000,000 paired points using a neighborhood size of 150.300

Comparing unregularized baseline model to GeRA yields a 9% increase in top-1 accuracy.301

Neighborhood Sampling: Our experiments show that the sampling method affects accuracy. Bi-302

ased sampling, using primarily close but also including distant neighbors, proves most effective.303

The uniform distribution ranks second, including equally close and distant neighbors, whereas the304

least effective sampling method is the “closest” method, which only includes the nearest neighbors305

All methods surpass the neighborhood-free baseline.306

Neighborhood Encoding: Regularization with any of our neighborhood encodings performs better307

than the contrastive loss alone. Among all, the heat kernel encoding consistently outperforms the308

other encodings by 2% on average over all training sizes, echoing the theoretical properties inspiring309

its choice. Overall, our choice of the heat kernel is confirmed to capture geometric information and310

demonstrates the benefit of geometric regularization in alignment tasks with limited paired data.311

5.6 INFLUENCE OF PRETRAINED ENCODERS312

GeRA is encoder-agnostic and hence not tied to a specific choice of encoders. We initially adopted313

the configurations that were previously tested with ASIF. Next, we discuss the generality of GeRA314

across different encoders, demonstrated empirically. See results in Figure 10 in the Appendix.315

Results: Our method frequently surpasses ASIF by a significant margin with different encoders.316

This includes CLIP Encoders, the combinations of ViT-RoBERTa, ViT-BERT, and MAE-MPNet. In317

the setting recommended by ASIF, namely ViT-MPNet or using ViT-SentenceTransformer BERT,318
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our performance is either on par with or slightly below that of ASIF. Overall, our method offers319

more consistent and stable results compared to ASIF.320

5.7 TRAINING AND INFERENCE TIME321

In Figure 9, GeRA’s training time increases with the neighborhood size used for geometric regu-322

larization. Even with the highest number of paired training points (1 million pairs) and the largest323

kernel size (K = 150), however, training GeRA on an NVIDIA GeForce RTX 3090 only takes 20324

hours. Figure 8 shows that GeRA has consistent inference times, as the alignment transformation325

during inference is not affected by neighborhood size or number of training pairs. Conversely, ASIF326

has significant overhead, with inference times increasing linearly in the number of anchor points.327

For example, with 1 million training pairs, one ASIF inference takes over 2 hours for the retrieval328

task, while GeRA completes in under 16 seconds.329

Figure 8: Comparison of inference times
between GeRA and ASIF for the Zero-
Shot and the Retrieval Evaluation.

Figure 9: Time for training GeRA with
different neighborhood sizes using an
NVIDIA GeForce RTX 3090.

6 DISCUSSION330

Limitations: Preserving local geometry requires taking neighborhood information into account,331

which leads to quickly increasing batch sizes, i.e., for batch size B and geometric regularization332

with K neighbors, the effective batch size becomes B ·K. This limits the ability to use larger batch333

sizes, which may slow down the convergence.334

Moreover, GeRA depends on powerful pretrained models that define the geometry. In the absence335

of powerful pretrained models, the regularization’s effectiveness diminishes. Our experiments in336

section 5.6 show that selecting powerful encoders are necessary for both GeRA and ASIF. One po-337

tential solution in the absence of powerful pretrained encoders is to collect corrected neighborhood338

information for our loss term using human annotations or rules defined by a domain expert.339

Future Work: Our work opens several interesting future work directions. In terms of the attrac-340

tive capability of GeRA to align domains with limited paired data supervision, there are several341

other modalities and downstream tasks that could be explored. Examples include aligning protein342

sequences and biomedical texts, which is needed for protein representation learning. Traditional343

unimodal approaches, which only focus on protein sequences, often miss functional aspects of pro-344

teins. Recent efforts incorporate text data on protein functions as an additional modality, enriching345

representations (Xu et al., 2023). However, the available datasets are relatively small, featuring346

only half a million paired data points. As a result, this domain is a key target for future work on347

GeRA. Additional future work directions for GeRA include exploring learnable parametric geomet-348

ric kernels (e.g. realized as self-attention blocks or small transformers), simultaneous co-training349

and multi-task training of both the encoders (on the unimodal data components) and the GeRA350

alignment module leading to dynamically changing manifolds landscape and potentially requiring351

exploring into momentum models for increased training stability, exploring multi-scale (coarsen-352

ing, multi-grid) manifold mapping methods to further enhance the preservation of the more global353

manifold structure after alignment, and many more.354
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A APPENDIX465

A.1 ADDITIONAL DETAILS ON FIGURE 1(B)466

The metrics reported in Figure 1(b) are computed based on the models trained in Section 5.3.1467

on the CC12M dataset (see results in Figure 3). The model labeled in Figure 1(b) as “No Geom.468

Regularization” is an alignment model trained with the contrastive loss only, and the modeled labeled469

as “Geom. Regularization” is an alignment model trained with the GeRA model using K = 150470

neighbors. Both models were trained using 106 paired points for the contrastive loss, and 6 × 106471

points for the geometric regularization.472

In order to further demonstrate the neighborhood distortion effect, we evaluate the image-to-image473

kNN classification accuracy of ImageNet data using the pretrained image encoder, with and with-474

out the alignment layers, trained with the contrastive loss or with GeRA loss as described above.475

More concretely, we use the validation set of ImageNet, which consists of 50 samples per class. We476

randomly select 10 samples from each class as labeled training data. We embed this training data477

and the remaining images using the models. Each image was then assigned to a class based on the478

majority vote among its k = 5 nearest neighbors. We note that different values of k led to similar479

results. We then compare the performance of GeRA against the unregularized contrastive learning480

model and the original embedding space generated by ViT before applying our transformation, re-481

ported in Table 1. This experiment demonstrates that GeRA preserves the geometry of the image482

space obtained by the ViT model pre-trained on the image domain, while alignment with vanilla483

contrastive loss disturbs it.484

Table 1: ImageNet kNN accuracy computed in the embedding spaces of ViT, ViT+alignment layers
trained with contrastive loss only, and ViT+alignment layers trained with GeRA.

Method kNN Classifier Accuracy (k = 5)

ViT only 0.76
No Geom. Regularization 0.67
Geom. Regularization 0.75

A.2 ADDITIONAL EXPERIMENTAL DETAILS AND HYPERPARAMETERS485

A.2.1 ADDITIONAL EXPERIMENTAL DETAILS486

Use of Unpaired Points: To give a bit more detail on the use of unpaired data in our experiments,487

in the image-text experiments, the dataset we used for training is CC12M which is a paired dataset.488

However, during training we only consider the pairings for a small number of samples and use489

the (fraction of) remaining samples as unpaired data to simulate a scenario where there are limited490

amounts of paired data and many unpaired data points. More concretely, we take M paired samples491

(used for contrastive loss) and include N ≫ M unpaired samples (distinct from the paired points492

used in the contrastive loss), where the unpaired points for each modality are chosen randomly and493

independently of the other modality. We leverage the unpaired data in the neighborhoods of each494

paired datapoint, and construct the kernels in the geometric regularization based on these neighbor-495

ing unpaired points. Note that for a pair (x, y), the neighborhood for x is in general not the same as496

the neighborhood for y, i.e., the neighbors do not have to be pairs themselves.497

Pre-computing Nearest Neighbors for the Geometric Regularization: To speed up training time,498

we pre-compute the neighborhood distributions, S(x), from which Nk(x) is sampled for the geo-499

metric regularization in equation 3. For each paired point in each modality, we collect 800 nearest500

neighbors for constructing S(x). We perform this nearest neighbor search using Faiss (Johnson501

et al., 2019), which takes approximately 45− 55 minutes to compute on an NVIDIA GeForce RTX502

3090, for 800 nearest neighbors of 6× 106 samples in a 768 dimensional space, takes .503

A.2.2 HYPERPARAMETERS504

Alpha (α): This parameter balances the geometric regularization term with the contrastive objective,505

determining the relative importance of each in the loss function (See Equation 1).506
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Table 2: Summary of the explored hyperparameter spaces and the optimal values discovered for each
method. The table outlines the range of values over which each hyperparameter was tuned, denoted
in the ‘Range’ column. Subsequent columns present the hyperparameter values that yielded the best
performance for each respective method, GeRA, Contrastive Loss, and ASIF (hyperparameters as
stated in the paper (Norelli et al., 2022)), during experimentation. In instances where a hyperparam-
eter is not applicable to a method, the cell is left blank.

Hyperparameter Range GeRA Contrastive Loss ASIF

Batch Size 500-4,000 2000 2000 –
Learning Rate 1e-5 – 5e-4 2e-4 2e-4 –
Dropout 0.0 – 0.5 0.3 0.3 –
Number of Hidden Layers 1 – 3 1 1 –
Hidden Dimension 768 – 16,000 8000 8000 –
Output Dimension 512 – 768 768 768 –
Number of Neighbors 5 – 150 150 – –
Alpha 0.1 – 2.0 0.5 – –
Epsilon (σ value) 0.1 – 3.0 0.8 – –
Temperature 0.01 – 0.4 0.04 0.04 –
p (Exponentiation) 1 – 8 – – 8
k (Sparsification) 50 – 1600 – – 800

Epsilon (ϵ): This represents the kernel size, influencing the locality of the kernel matrix. A smaller507

epsilon value implies that the heat kernel captures more localized features, thereby considering508

neighbors in closer proximity (See Equation 4). In our experiments with the heat kernel we compute509

ϵ by: ϵ = σ ×mean
(
{∥xi − xj∥22}i,j

)
, i.e., a constant, σ, multiplied by the mean of the pairwise510

euclidean distances in the neighborhood. We found that σ = 0.8 performs best. This kernel normal-511

ization adapts to the scale and characteristics of each local neighborhood, and facilitates handling512

neighborhoods of different sizes and densities.513

Temperature (t): Applied in the output layer, the temperature parameter modulates the sharpness514

of the distribution. A higher temperature results in a softer probability distribution over classes,515

whereas a lower temperature makes the distribution more concentrated (See Equation 2).516

Number of Neighbors (K): This parameter specifies the number of neighbors included into the517

geometric regularization loss (see Equation 3). The larger the amount of neighbors, i.e., the larger518

the kernel matrix W , the better we can capture the local geometry and hence preserve it. Our519

ablation study in Figure 7 (left) demonstrates that the number of neighbors strongly correlates with520

the downstream alignment performance. However, the marginal increase in performance seems to521

diminish with larger neighborhoods, indicating already good performance using relatively small522

numbers of neighbors.523

Sampling Technique: We aim to select samples that best represent the local geometry. Hence,524

selecting only the closest neighbors preserves locality best. However, to obtain better continuity525

of the embedding space, and increase the amount of information gathered from the neighbors in526

different epochs, we subsample the neighbors from a larger neighborhood distribution S(x). We527

examined different ways of sampling the neighbors, including:528

• ‘Uniform’ sampling, where K neighbors are uniformly sampled from the pre-computed neighbor-529

hood distribution S(x) (including 800 points in our experiments). This approach includes closer530

and farther points with equal probabilities.531

• ‘Closest’ sampling, where only the closest K neighbors are chosen from S(x) for each paired532

point.533

• ‘Biased’ sampling, where K neighbors are sampled from S(x) with higher probabilities given to534

closer points.535

Figure 7 (middle) demonstrates that sampling neighborhood points with a bias towards closest neigh-536

bors, i.e., higher probability of sampling closer neighbors while still including some information537

about further points, performs best overall.538
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A.2.3 PERFORMANCE DIFFERENCES OF GERA AND ASIF IN SPEECH-TEXT ALIGNMENT539

Figure 6 shows a significant performance gap between GeRA and ASIF in speech-text alignment,540

in contrary to results for the image-text modality presented in Figure 3, for example. The study by541

Wang et al. (2023) found that training shared encoders for speech-text data produce more compact542

and overlapping representations, whereas the embedding spaces of uni-modal encoders yield distinct543

representations for speech and text.544

Taking this observation into account, our results in Section 5.4 highlight the main advantage of our545

approach over ASIF. When the uni-modal embedding spaces are different, as suggested by Wang546

et al. (2023) for the speech and text modalities, we hypothesize that ASIF needs a lot more paired547

samples to properly align the spaces, since extrapolation from a limited number of pairs is likely to548

be inaccurate. Specifically, the performance obtained by ASIF in Wang et al. (2023), which is better549

than our reported ASIF performance in this setting, is using encoders that were trained on data that550

included paired points from the two modalities. In contrast, in our experiments, we use encoders551

that were trained on purely uni-modal data, and that may be the source of the performance gap.552

Unlike ASIF, our method for alignment of the uni-modal models combines the strengths of con-553

trastive alignment with paired data, to match the uni-modal embedding spaces, and preserving the554

geometry of the respective spaces, thus it is more robust to the differences in uni-modal embedding555

spaces. For instance, in Figure 6, we see that vanilla contrastive loss performs quite well in aligning556

(purely) uni-modal models, significantly outperforming ASIF, while our method further improves557

the performance of the contrastive loss.558

A.3 EVALUATING GERA ON DIFFERENT PRETRAINED ENCODERS559

ViT and RoBERTa ViT and BERT ViT and SentenceTransformer Bert

MAE and MPNet ViT and MPNet CLIP Encoders

Figure 10: Performance comparison of GeRA and ASIF using various vision and language encoders.
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