
Under review as a conference paper at ICLR 2021

DYNAMIC GRAPH REPRESENTATION LEARNING WITH
FOURIER TEMPORAL STATE EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Static graph representation learning has been applied in many tasks over the years
thanks to the invention of unsupervised graph embedding methods and more re-
cently, graph neural networks (GNNs). However, in many cases, we are to handle
dynamic graphs where the structures of graphs and labels of the nodes are evolving
steadily with time. This has posed a great challenge to existing methods in time
and memory efficiency. In this work, we present a new method named Fourier
Temporal State Embedding (FTSE) to address the temporal information in dy-
namic graph representation learning. FTSE offered time and memory-efficient
solution through applying signal processing techniques to the temporal graph sig-
nals. We paired the Fourier Transform with an efficient edge network and pro-
vided a new prototype of modeling dynamic graph evolution with high precision.
FTSE can also prevent the ’history explosion’ that exists in sequential models.
The empirical study shows that our proposed approach achieves significantly bet-
ter performance than previous approaches on public datasets across multiple tasks.

1 INTRODUCTION

Graph Representation Learning learns the graphs with low-dimensional vectors at nodes and graphs
level. (Perozzi et al., 2014; Tang et al., 2015; Wang et al., 2016; Cao et al., 2015; Ou et al., 2016)
In recent years, deep neural networks (DNNs) are extended to process graphical data and have been
utilized in a plethora of real-time cases. (Estrach et al., 2014; Duvenaud et al., 2015; Defferrard et al.,
2016; Li et al., 2015; Gilmer et al., 2017; Kipf & Welling, 2016; Hamilton et al., 2017; Jin et al.,
2017; Chen et al., 2018; Veličković et al., 2018; Gao & Ji, 2019). One of the most popular networks
is Graph Convolution Neural Networks (GCNs) which originated from Spectral Graph Theory but
developed into spatial-based varieties. GCNs are natural extensions of Convolution Neural Networks
(CNNs) which has been widely studied and used in many applications in different fields of research.

Traditional GCNs have achieved commendable performance on static graphs. However, many appli-
cations involved dynamic graphs where nodes and edges evolved steadily over time. For example,
a social network is updated on a day-to-day basis as people developed new friends. The dynamic
graph represented users’ evolving social relationships. In financial networks, transactions between
nodes naturally adopt time-stamps as temporal features. Transactions of different nature may per-
form differently in a financial network where our main focus is to find malicious parties. Learning
the evolving nature of graphs is an important task where we predict future graphical features and
classify nodes based on their past behaviors.

Learning evolving graphs poses great challenges on traditional GCN as temporal features can not be
easily incorporated into learning algorithms. The simple way of concatenating GCNs with RNNs
is straight forward in handling dynamic graphs, but it suffered from many drawbacks. We can
summarize them as three folds: Firstly, the embedding vector of each node is not static and will
be evolving with time. Models need to be capable of capturing the evolving nature. Secondly,
the memory and computation cost for batch training is huge to keep multiple graphs from different
timesteps in the memory at the same time. Finally, the large number of timesteps within a single
batch brings difficulties to high precision modeling.

There is also a focus on using Deep Neural Networks to generate the graph embedding re-
cently (Trivedi et al., 2018; Pareja et al., 2020; Xu et al., 2020) as another direction compared with
traditional unsupervised dynamic graph embedding approaches (Nguyen et al., 2018; Li et al., 2018;

1

Under review as a conference paper at ICLR 2021

Goyal et al., 2018; 2020). Existing methods normally utilize Sequential Models (e.g.Recurrent
Neural Networks(RNNs)) to learn temporal features. However, as the graph is a non-linear data
structure, sequential model-based approaches are memory-costly to train and evaluate with the infor-
mation from the whole graph as input. Meanwhile, pure GCN approaches built for static graphs are
inefficient in capturing evolving features. Some approaches combining GCNs with RNNs (Trivedi
et al., 2018; Pareja et al., 2020) are costly to evaluate due to the high time complexity induced by
repeated Graph Convolutions as well as high space complexity caused by a large number of network
parameters. Meanwhile, the RNN-based method could only see through a fixed amount of history
timesteps in training, which makes the prediction imprecise.

We introduced Fourier temporal state embedding (FTSE) to address the above problem. Instead of
using sequential models to model the evolving nature of edges, we formalize the existence of edges
as a signal, transforming the original embedding problem into signal processing. We also designed a
simple and efficient Edge-Convolution Network structure for FTSE and compared the complexity of
it with RNN based approaches. Our main technique is Discrete-Time Fourier Transform (DTFT for
short), which transforms the discrete temporal signal into its continuous frequency domain. There-
fore, we can embed history timesteps into a fixed-length vector, enlarging the receptive field in a
single batch. Our empirical study shows that FTSE is an efficient method in modeling temporal
graphs and a good approach to model the signal with high precision.

We summarize the contribution of this work as follows:

1. We proposed Fourier Temporal State Embedding (FTSE) to learn dynamic graph repre-
sentation via transforming time-series signal into the frequency domain. FTSE directly
modeled the harmonic component rather than timesteps. We also designed a simple but po-
tent edge convolution network to model continuous-time dynamic graphs. FTSE is also the
first GCN based approach capable of modeling continuous time dynamic graphs (CTDGs).

2. We studied the drawbacks of sequential-based methods in time and space complexity and
justified that FTSE has much lower complexity and smaller parameter scale, making it a
more efficient alternative to sequential-based approaches. This has also been proven with
experiments.

3. Extensive empirical study showed that FTSE significantly outperforms previous methods
in convergence speed as well as model performance in Link Prediction, Node/Edge Classi-
fication, achieving more than 10% improvement on some datasets.

2 RELATED WORK

Many static network embedding methods are proposed to map the nodes to low-dimensional vector
representations while preserving network structure as well as node information. Both supervised
and unsupervised techniques have been designed. Dynamic graph embedding methods are often ex-
tensions of their static counterparts. DANE (Roweis & Saul, 2000; Belkin & Niyogi, 2002) used a
matrix factorization-based approach to generate static node embeddings from eigenvectors of graph
Laplacian matrix. This work was extended by (Li et al., 2017) by updating eigenvectors from pre-
vious ones to generate dynamic node embeddings. Random-walk based approaches (Perozzi et al.,
2014; Grover & Leskovec, 2016) used normalized inner products of node embedding to model the
transition probabilities in random-walk. These two approaches are extended by CTDANE (Nguyen
et al., 2018), which proposes to walk on the temporal order.

Deep learning approaches are also popular in this area thanks to the flourishing new models. Dyn-
GEM (Kamra et al., 2017) used an autoencoding approach which minimizes the reconstruction loss
as well as the distance of connected nodes in the embedding space. The point process-based ap-
proach is also popular in dynamic knowledge graph modeling. KnowEvolve (Trivedi et al., 2018)
and DyRep (Trivedi et al., 2018) model the occurrence of edges as a point-process and model the
intensity function with neural networks. DynamicTriad (Zhou et al., 2018) focuses on the basic
’triad closure process’ where a group of three vertices is developed from unconnected vertices.
They proved that this process is fundamental in graph evolving thereby making their model able to
predict network dynamics. HTNE (Zhou et al., 2018) used the Hawkes process with the attention
mechanism to determine the influence of historical neighbors. Point process based approaches are
especially good at event time prediction.

2

Under review as a conference paper at ICLR 2021

Another set of approaches comes from the combination of Graph Neural Networks (GNNs) with
Sequential Networks (e.g. RNNs). GNNs are used to digest topological information and RNNs
are used to handle dynamism. Graph Convolution Neural Networks (GCNs) is one of the most
explored GNNs in this setting. GCRN (Seo et al., 2018) proposed two methods. The first one is
doing GCN first and feed its output to an LSTM to capture dynamism. The second one put LSTM
as an alternative for Fully Connected Layer in GCN and feed it with node features. STGCN (Yu
et al., 2018) proposed ST-Conv block which was composed of a 1D convolution on the temporal
dimension of node features followed by a Graph Convolution layer and another 1D convolution.
STGCN is designed for spatio-temporal traffic data, which had a fixed graph structure but dynamic
node embeddings. EvolveGCN (Pareja et al., 2020) combines the two models together to form
EvolveGCN-Unit. They propose two versions of it. In the first one, the GCN parameters are hidden
state of a recurrent architecture that takes node embeddings as input. In the second one, the GCN
parameters are the input of recurrent architecture.

3 PROBLEM FORMULATION

The dynamic graph has two notable varieties as has been formally defined in (Kazemi & Goel,
2020). Continuous-time dynamic graph (CTDG) can be represented as a pair (G,O) where G is a
static graph representing the initial state of a dynamic graph at time t0 and O is a set of observations
where each observation is a tuple of the form (event type, event, timestep) where an event can be a
1-step modification on the graph structure.(e.g. edge addition, edge deletion, node addition) At any
point t ≤ t0, we can obtain the snapshot Gt by updating G sequentially according to the observations
O occured before time t.

The discrete time dynamic graph (DTDG) is the sequence of snapshots coming from the dynamic
graph sampled at fixed space. DTDG is defined as the set{G1,G2, ...GT } where Gt = (Vt,Et) is
the snapshot at time t. Vt is the set of nodes in Gt, and Et is the set of edges in Gt.

DTDG may lose information compared to their CTDG counterparts since it only includes snapshots
at constant intervals. Models designed for CTDG are generally applicable to DTDG but the inverse
is not necessarily true. CTDG problem can be approximated by DTDGs by aggregating G within a
constant time period to form the snapshot. This time period is called granularity, denoting the length
of time within a single timestep. The smaller the granularity, the better the approximation to the
CTDG. Existing methods predominately focus on the DTDG problem and make approximations to
the respective CTDG problem. FTSE, based on Fourier Transform, is capable of modeling CTDGs
which we detailed in section 4. For a more detailed discussion on the implementation of them,
please refer to appendix B.

The prediction problem could also be categorized into interpolation and extrapolation. Suppose
we have information of G in time period [t0, tT]. In interpolation problem, we make predictions
on some time t such that t ∈ [t0, tT]. It is also known as the completion problem as has been
studied in (Li et al., 2017; Leblay & Chekol, 2018; Dasgupta et al., 2018; Goel et al., 2019). In
extrapolation problem, our goal is to make predictions at time t such that t ≥ tT . Extrapolation is
a more challenging problem as it is trying to predict the future based on the past. In this work we
focus on extrapolation problem.

In some cases, the new observation is streamed to the model at a fast rate that we cannot update the
model in an on-line fashion. This is also called streaming scenario in (Kazemi & Goel, 2020). This
concept is similar to that of inductive/transductive learning, where the difference lied in whether
or not using the training set to do inference on the testing set. Compared with the non-streaming
scenario where we are able to retrain the model once new data comes, this scenario poses greater
challenges on the model’s capacity to generalize.

4 METHOD

In this section we introduce the proposed FTSE. Existing approaches see the DTDG as graphs set
with timestep and tried to sequentially learn the evolving pattern of graphs, which incurred great
computation overhead. Besides, not much progress has been made in modeling CTDG as modeling a
continuous function on temporal axis is not easy for neural architecture. In section 4.1, we introduce

3

Under review as a conference paper at ICLR 2021

the definition of DTFT and DFT. In section 4.2 and section 4.3, we formally define FTSE and the
memory efficient neural network EGC, later in section 4.4 we discuss the time complexity of FTSE
and compared it with sequential based approaches.

4.1 PRELIMINARIES

Fourier Temporal State Embedding is based on Fourier Transform on Discrete-Time Signals. We
firstly review discrete-time Fourier transform (DTFT): (Oppenheim, 1999)

Definition 4.1 (Discrete-time Fourier transform) The discrete-time Fourier transform of a dis-
crete set of real or complex numbers xn, for all integers n, is a Fourier series, which produces a
periodic function of a frequency variable. When the frequency variable, ω, has normalized units of
sample, the period is 2π, and the Fourier series is :

X2π(ω) =

∞∑
n=−∞

xne
−iωn (1)

Since the result of DTFT is a continuous function with periodicity, we can compute an arbitary num-
ber of samples N in one cycle of the periodic function, which creates Discrete Fourier Transform
(DFT). (Weinstein & Ebert, 1971; Briggs & Henson, 1995) Fast Fourier transform algorithm(FFT)
is designed to speedily calculate DFT by factorizing the DFT matrix into a product of sparse fac-
tors. (Van Loan, 1992; Nussbaumer, 1981). Fast Fourier transform reduce the complexity of calcu-
lating DFT from O(N2) to O(NlogN) where N is the data size.

4.2 FOURIER TEMPORAL STATE EMBEDDING

In Fourier Temporal State Embedding (FTSE) we propose to formluate the existence of edges within
a certain period of time (i.e. look back) as an aperiodic signal f where

f(i, j, t) = Pr(node i, j is connected at time t) (2)

Suppose we use information from T historical timesteps t0, t1, ...tT−1 we are able to use DTFT get
the frequency response F as

F (i, j, ω) =

T−1∑
n=0

f(i, j, tn)e
−iωtn (3)

which is a wπ period function of ω. Then we can compute N samples at interval 2π
N within a single

period. This creates a N -length Fourier series X where

Xi,j,k = F (i, j,
2πk

N
) =

T−1∑
n=0

f(i, j, tn)e
−2πi ktn

N (4)

This corresponds to DFT on the original temporal sequence when we have N = T . We thus embed
the original temporal signal into its frequency representation at length N . This transformed the
original temporal relation to the amplitudes and phases of its harmonic components.

Since we cannot take all history steps into one batch in training the model, the look back parameter l
is delimited by the maximum history timesteps the memory can hold. Our modeled function became

ftarget(i, j) = Pr(i, j is connected at time tT |f(:, :, ti), where i ∈ {tT−l, ..., tT−1}) (5)

Where f(:, :, ti) denotes the all structural information in previous l timesteps. However, as FTSE
had a much larger receptive field, we can transform any number of timestamps into a l-dimensional
vector by sampling l values within a period in the frequency domain, achieving the goal of embed-
ding a high volume of data into low dimensional representation. On the other hand, we remove
the inner dependency between different timesteps and transform the time series learning into a new
frequency learning problem. This makes the use of RNNs unnecessary. We did an empirical study
in section 5.6.

4

Under review as a conference paper at ICLR 2021

Figure 1: Work Flow of FTSE

4.3 NETWORK STRUCTURE

We designed a time-efficient, parallelizable Edge Convolution Neural Network called EGC suitable
for FTSE to perform edge convolution on embedding vectors. EGC can handle edge-feature. There
have been many approaches (Kim et al., 2019; Gong & Cheng, 2019) trying to incorporate Edge
features into GCNs. EGNNs introduced the convolution on edges and update edge features in each
layer together with the node feature. Attention-based approaches incorporate edge feature in atten-
tion score, which is determined by the significance of correlation between nodes (Xu et al., 2020).
However, in our problem setting, multiple timesteps of an evolving graph are fed into the model in
one pass. This poses great challenge to the memory if the model is overly complicated. Hence, we
simplify the edge convolution with Vanilla GCN (Kipf & Welling, 2016) and incorporate the edge
embedding naturally into the network structure. We did running-time comparison in the appendix 5,
which justified the rationale of our design.

As has been discussed in 4.2, the N -dimensional FTSE is independent of each other, we perform
N independent graph convolutions based on the normalized adjacency matrix Âm (i.e. Âm =

D−
1
2AmD−

1
2) where Am is the adjacency matrix replacing its entries with corresponding edge

feature at entry m (i.e.Am
ij = Xijm) and D = diag(d) for d(i) the degree of node i. Layer-wise

forward propagation can be formulated as:

Ht+1 = σ(ÂmHtWt) where i ∈ {0, 1, ..., N − 1} (6)

In the above expression,Ht is the hidden state of layer t,Wt is the weight and t is the index of current
layer.We concatenate the embedding of graphs on different dimensions to form the final embedding.
Finally, the edge embedding is calculated by concatenating the node embedding connected to it.

4.4 COMPLEXITY ANALYSIS

We compare the classic RNN+GCN approach with our proposed approach in time complexity. More
complicated RNN structure (e.g. GRU , LSTM) and GCN structure (e.g. GAT, GraphSage) has
even higher time complexity in training. We assume that GCNs are calculated with dense vector
multiplication. For detailed analysis, please refer to the AppendixC.1.

Time Complexity In our proposed method, the time complexity is O(|E|T logT (FTSE) +
|V|4 (GCN)) for forward propogation, assuming that we do graph convolution only once and
no optimization on the matrix multiplication. The time complexity of RNN + GCN sturcture is
O(T · (|V|2 (RNN) + |V|4 (GCN))). The analysis shows that our algorithm compares favorably to
RNN+GCN strcture in time complexity.

Space Complexity Assuming the GCN only had a single layer. For FTSE, the parameters take up
O(|V|2 (GCN’s) +N (MLP’s)) parameters. On the other hand, sequential-model based approaches

5

Under review as a conference paper at ICLR 2021

(the simplest RNN version) can take up O(|V|2 (GCN’s) +N (MLP’s) + T |V|2 (RNN’s)) param-
eters, which has significantly more parameters than FTSE.

5 EXPERIMENTS

In the experiments section, we aim to answer the following questions: (1) How does FTSE perform
on modeling dynamic graphs as compared to previous GCN+RNN based approaches? (2) What is
the strength and weakness of FTSE? (3) How does each part of FTSE work? (4) How does FTSE
handle the CTDG problem?

We evaluated and compared FTSE with state-of-the-art approaches on link prediction, node clas-
sification, and edge classification tasks on a variety of datasets with ablation study and running
time experiments. Due to space limitations, we put some figures and extensive discussions in the
appendix.

5.1 TASKS

We perform link prediction, edge classification, and node classification in the experiments: Link
Prediction is a binary classification predicting the structure of an evolving graph at a certain time
step t based on existing information from time {0, 1, ..., t−1}. The classification is imbalanced with
existing edges greatly outnumbered by non-exist edges, we apply 1000 times negative sampling and
used weighted binary cross entropy as its loss function during training. In the validation and test
phase, we used the whole graph. Edge Classification is the generalized link prediction task, where
the edge has labels. We applied similar settings as link prediction class.Node Classification is to
classify future node categorization. In three tasks, we used Average Precision (AP) as well as ROC-
AUC score (AUC) as metrics to evaluate the final performance of the model.

In streaming scenario we perform inductive learning where the training set was not used as history
timesteps in inference whereas transductive learning was carried out in non-streaming 3

5.2 DATASETS

We used public datasets from SNAP (Leskovec & Krevl, 2014) and previous work for evaluation.

Autonomous System1(AS for short) Autonomous System (AS) is coming from (Leskovec et al.,
2005) which is a communication network of routers. The edge represented the message exchange
between routers and we used it to forecast the message exchange in the future.Reddit Hyperlink
Network2(Reddit for short) Reddit is a subreddit-to-subreddit hyperlink network where the hyper-
link is coming from a post in the source community and links to another post in the target commu-
nity. The hyperlink is annotated with timestep as well as sentiment, which makes it suitable for the
classification of future edges.UC Irvine messages3(UCI for short) UCI is a social network dataset
creating out of students’ message from the University of California, Irvine. The links within the
dataset indicate the sent message between users. Stochastic Block Model (SBM for short) SBM
is a random graph model for simulating graph structure and evolutions. The dataset comes from
(Goyal et al., 2018). We did link prediction on this dataset. Elliptic Elliptic is a network of bitcoin
transactions coming from (Weber et al., 2019). Each node in the graph represents one transaction
and the edges indicate payment flows. Edges are labeled with the illicit and licit category. The goal
is the categorization of unlabeled transactions.

The statistics of datasets are summarized in Table 2. The ratio is the negative vs the positive.
Timesteps are divided with granularity following (Pareja et al., 2020; Goyal et al., 2018).

1http://snap.stanford.edu/data/as-733.html
2http://snap.stanford.edu/data/soc-RedditHyperlinks.html
3http://konect.uni-koblenz.de/networks/opsahl-ucsocial

6

http://snap.stanford.edu/data/as-733.html
http://snap.stanford.edu/data/soc-RedditHyperlinks.html
http://konect.uni-koblenz.de/networks/opsahl-ucsocial

Under review as a conference paper at ICLR 2021

5.3 BASELINES

We compared our proposed method with the following baselines based on deep learning approaches.
GCN4 is vanilla GCN without temporal modeling. The training loss is accumulated along timesteps.
GCN+GRU/LSTM is a GCN model co-trained with GRU/LSTM model. The GRU/LSTM is fed
with GCN’s output in each timestep. This method is similar to the one in (Goyal et al., 2020).
EvolveGCN5 is proposed in (Pareja et al., 2020) This method is concatenating GCN with RNN
to perform a new temporal graph convolution. GAT6 is the graph attention networks proposed by
(Veličković et al., 2018) . We also combine it with sequential models. TGAT is proposed in (Xu
et al., 2020) using the temporal kernel to define the inner product in temporal attention and perform
spatial-temporal convolution similar to the structure in (Hamilton et al., 2017). Another comparison
was between the EGNN7 (Kim et al., 2019) and our proposed edge convolution networks (EGC for
short) at appendix D. We also implemented an easy version TSE where we didn’t apply Fourier
transform and use the direct temporal signal as embedding vector. The code is posted online.8 All
baselines are implemented in Pytorch.

5.4 EXPERIMENTAL SETTINGS

All experiments are performed on a Ubuntu 18.04 server with Nvidia Tesla V100 GPU (16GB
memory) and Intel(R) Xeon(R) E5-2690 CPU. We did experiments 20 times for each model. Mean
and standard deviation of AUC scores as well as mean score of AP are reported. The test result is
based on the best performance epoch on validation set. Running time for every epoch as well as the
best valid epoch number is also reported in the appendix. The experimental settings are identical for
different model except the model-specific parameters.

Datasets UCI AS SBM
AUC AP Epochs AUC AP Epochs AUC AP Epochs

GCN 0.476(0.045) 61 32 0.673(0.032) 323 96 0.715(0.007) 16587 7
GCN+GRU 0.509(0.027) 260 64 0.825(0.013) 935 9 0.718(0.004) 17061 50

GCN+LSTM 0.512(0.023) 383 56 0.801(0.017) 1749 10 0.714(0.003) 17954 57
GAT 0.592(0.023) 284 423 0.876(0.023) 1166 67 0.719(0.015) 15843 10

GAT+GRU 0.508(0.007) 227 14 0.658(0.030) 313.2 24 0.719(0.008) 16084 15
GAT+LSTM 0.511(0.004) 316 17 0.728(0.029) 424 18 0.718(0.009) 15845 16

EvolveGCN-O 0.580(0.019) 676 483 0.907(0.007) 4636 82 0.717(0.005) 16239 24
EvolveGCN-H 0.583(0.018) 702 372 0.904(0.012) 4906 106 0.715(0.003) 16948 34

TGAT - - - - - - - - -

TSE 0.718(0.011) 761 108 0.989(0.002) 2983 26 0.721(0.008) 17739 13
Fourier TSE 0.714(0.018) 728 115 0.986(0.003) 3012 24 0.723(0.006) 17817 12

Table 1: The ROC-AUC score (AUC) and Average Precison(AP at 1e− 6 scale) on non-streaming
link prediction task, the mean and standard deviation of AUC score and the mean values of AP (due
to space limitation) are reported according to 20 runs of each algorithm

5.5 RESULT AND DISCUSSION

Link Prediction In link prediction task, we experimented with 9 different baselines, the results
are in 1 and 4. In the three datasets we benchmarked, the experimental settings are identical for
all the baselines except the GNN parts. TGAT was not able to run normally on our devices and
overflows the memory because it has the ”neighbor explosion” problem. EvolveGCN-O/H’s model
was computed in CPU due to the memory limit of GPU while others are fully computed with GPUs.
Our proposed methods TSE and FTSE achieve the best result in AUC score on all 3 datasets. In

4https://github.com/tkipf/gcn
5https://github.com/IBM/EvolveGCN
6https://github.com/PetarV-/GAT
7https://github.com/khy0809/fewshot-egnn
8https://github.com/anonym-code/ICLR2021

7

https://github.com/tkipf/gcn
https://github.com/IBM/EvolveGCN
https://github.com/PetarV-/GAT
https://github.com/khy0809/fewshot-egnn
https://github.com/anonym-code/ICLR2021

Under review as a conference paper at ICLR 2021

(a) (b) (c) (d)

Figure 2: (a) ROC-AUC score on Node Classification task of Elliptic dataset (b) Average Preci-
sion on Node Classification task of Elliptic dataset (c) ROC-AUC score on Edge Classification task
of Reddit dataset (d) Average Precision on Edge Classification task of Reddit dataset. Mean and
standard deviation is reported based on 20 runs of algorithms

the average precision benchmark(AP), many previous approaches are still achieving commendable
results. We also achieve moderate convergence speed compared with previous work.

Edge Classification In edge classification task, we compared FTSE with 5 baselines. The results
are shown in Figure 2 The GAT based varieties are causing memory overflow and was not included.
The result shows that FTSE outperformed the state-of-the-art by 12% in the AUC score and 3% in
average precision.

Node Classification In the node classification task, we compared FTSE with vanilla GCN and two
EvolveGCN varieties. The result shows that we outperformed state-of-the-art in the AUC score and
AP. However, the performance on the validation set is more significant. We believe it is due to the
fact that the validation set is predicted in a transduction setting where some of its previous timesteps
have already been seen in the training set.

The result of those tasks justifies that FTSE/TSE is the new state-of-the-art method in modeling
Dynamic Graph. It is especially capable of capturing edge link evolving. The result shows that we
can achieve very well performance even without Fourier Transform. In our ablation study, we justify
the rationale of the Fourier Transform.

5.6 ABLATION STUDY

In the ablation study, we simulate the effect of CTDG via granularizing the timesteps into smaller
intervals. We detailed its reasoning in Appendix B. We take on different values of look back pa-
rameters and embed the temporal state into a k dimensional vector with FTSE. In TSE, we remove
the compression process and use the last k timesteps of the original temporal signal as edge embed-
ding. We compared the streaming as well as non-streaming scenarios. The result in E shows that
with increased compression ratio (i.e. increasing the look back) the performance of FTSE compares
favorably to original TSE. This justifies that FTSE could handle cases where the granularity is small
and performs a more accurate inference with the same computation and memory budget. Extensive
discussion and empirical study of FTSE vs TSE is presented the Appendix.E

6 CONCLUSION

Graph Neural Networks have already been developed into many popular branches and justified its
effectiveness in modeling graphical data. However, dynamic graph modeling is still an useful but
difficult task awaiting future study. The straightforward GNN + RNN model is a bringing high
computation overhead and memory cost, attention-based approach can induce high computation
cost since the neighbors are spatial-temporal. Instead, we explored another branch where we see
the state of edges existence as a signal in the temporal domain. This facilitates the use of signal
processing techniques like DTFT to provide better quality frequency-domain embeddings with high
precision. Our approaches achieved impressive performance over dynamic graph modeling in differ-
ent scenarios confirmed by empirical study. Future direction of this work included merging GCNs
with Temporal Signals and extensive study on the harmonic properties of graph signals.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Advances in neural information processing systems, pp. 585–591, 2002.

William L Briggs and Van Emden Henson. The DFT: an owner’s manual for the discrete Fourier
transform. SIAM, 1995.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM international on conference on informa-
tion and knowledge management, pp. 891–900, 2015.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations, 2018.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. Hyte: Hyperplane-based tem-
porally aware knowledge graph embedding. In Proceedings of the 2018 conference on empirical
methods in natural language processing, pp. 2001–2011, 2018.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Joan Bruna Estrach, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
deep locally connected networks on graphs. In 2nd International Conference on Learning Repre-
sentations, ICLR 2014, 2014.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In International Conference on Machine Learning,
pp. 2083–2092, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. Diachronic embedding
for temporal knowledge graph completion. arXiv preprint arXiv:1907.03143, 2019.

Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9211–9219, 2019.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for dy-
namic graphs. arXiv preprint arXiv:1805.11273, 2018.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowledge-Based Systems, 187:104816,
2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Wengong Jin, Connor Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic reaction out-
comes with weisfeiler-lehman network. In Advances in Neural Information Processing Systems,
pp. 2607–2616, 2017.

Nitin Kamra, Palash Goyal, Xinran He, and Yan Liu. Dyngem: deep embedding method for dynamic
graphs. In IJCAI International Workshop on Representation Learning for Graphs (ReLiG), 2017.

9

Under review as a conference paper at ICLR 2021

Seyed Mehran Kazemi and Rishab Goel. Representation learning for dynamic graphs: A survey.
Journal of Machine Learning Research, 21(70):1–73, 2020.

Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. Edge-labeling graph neural net-
work for few-shot learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 11–20, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in knowledge graph. In
Companion Proceedings of the The Web Conference 2018, pp. 1771–1776, 2018.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrink-
ing diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery in data mining, pp. 177–187, 2005.

Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. Attributed network em-
bedding for learning in a dynamic environment. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, pp. 387–396, 2017.

Taisong Li, Jiawei Zhang, S Yu Philip, Yan Zhang, and Yonghong Yan. Deep dynamic network
embedding for link prediction. IEEE Access, 6:29219–29230, 2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network embeddings. In Companion Proceedings
of the The Web Conference 2018, pp. 969–976, 2018.

Henri J Nussbaumer. The fast fourier transform. In Fast Fourier Transform and Convolution Algo-
rithms, pp. 80–111. Springer, 1981.

Alan V Oppenheim. Discrete-time signal processing. Pearson Education India, 1999.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserv-
ing graph embedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1105–1114, 2016.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao B Schardl, and Charles E Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In AAAI, pp. 5363–5370, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In International Conference on Neural
Information Processing, pp. 362–373. Springer, 2018.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Representation learn-
ing over dynamic graphs. arXiv preprint arXiv:1803.04051, 2018.

10

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Under review as a conference paper at ICLR 2021

Charles Van Loan. Computational frameworks for the fast Fourier transform. SIAM, 1992.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
1225–1234, 2016.

Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom Robin-
son, and Charles E Leiserson. Anti-money laundering in bitcoin: Experimenting with graph
convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591, 2019.

S Weinstein and Paul Ebert. Data transmission by frequency-division multiplexing using the discrete
fourier transform. IEEE transactions on Communication Technology, 19(5):628–634, 1971.

Da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan achan. Inductive representation
learning on temporal graphs. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=rJeW1yHYwH.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. In Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence, pp. 3634–3640, 2018.

Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding
by modeling triadic closure process. In AAAI, pp. 571–578, 2018.

A DATASET STATISTICS

Datasets Nodes Edges Class Ratio Timesteps (Train/Val/Test)

SBM 1,000 4,870,863 2 513: 1 35 / 5 / 10
UCI 1,899 59,835 2 5,216: 1 62 / 9 / 17
AS 6,474 13,785 2 30,390: 1 70 / 10 / 20

Reddit 55,863 858,490 2 1,489: 1 122 / 18 / 34
Elliptic 203,769 1,352,694 2 9,245: 1 31 / 5 / 13

Table 2: Dataset Statistics

B DISCUSSION ON CTDG VS DTDG

In this section, we discuss the actual implementation of the CTDG problem. Although CTDG is
defined in the continuous temporal domain, it can always be approximated at any precision with a
DTDG since we can granularize the time period into discrete timesteps of any length. The granu-
larity g depends on the number of timesteps we expected. For example, if we have a 1-year record
of an evolving social network, we can split it into 365 days. We can aggregate all the connection
information for each day and form 365 timesteps. This formulates the original CTDG into DTDG
via taking snapshots over a small period (i.e. 1 day). Smaller granularity increased the prediction
precision on the time axis (i.e. from the probability of having a connection in 1 day to 1 hour) but
incurred more memory overhead when we are trying to take in the same historical period of data.
Fourier TSE is better than TSE in that it transforms the original temporal signal into its frequency
domain and generates a fixed-length embedding vector completely made of the harmonic compo-
nent of the signal. We justify through ablation study that this is a rational approach to deal with
low-granularity DTDG, yielding convincing performance.

11

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJeW1yHYwH

Under review as a conference paper at ICLR 2021

C DETAILED COMPLEXITY ANALYSIS

First, we formalize the notation in this section. A graph G(V,E) consists of |V| nodes and |E| edges,
the batch sizes (number of timesteps) is T and the dimension of embedded vector is N . Other
parameters (i.e. hyperparameters like hidden state dimension) are treated as constant.

C.1 TIME COMPLEXITY

GCN 1 layer Vanilla GCN with dense matrix multiplication is calculated as:

H = σ(ÂWX)

where Â is the normalized adjacency matrix (i.e., Â = D−
1
2AD−

1
2 , where D is the diagonal

degree matrix) W is the weight and X0 is the original node feature. Since the matrix multipli-
cation can be calculated in O(N3)(although the upper bound can be reduced to O(N2.3737) via
Coppersmith-Winograd algorithm, we use the dumb version of it for simplicity) Then the complex-
ity of performing a 1-layer graph convolution is O(N4) on the assumption that the hidden state
dimension does not have the same scale as N . Hence the complexity in Graph Convolution is
O(N4|T |) in total following that it perform convolution in every timestep.

RNN The simplest structure of sequential model is Simple Recurrent Neural Network (SRN), which
is formulated as:

ht = σh(Whxt +Uhyt−1 + bh)

yt = σy(Wyht + by)

(There is also Elman network but they are similar in analysis.) The forward propogation has com-
plexity of O(|V|2) since xt is the adjacency matrix of Graph and has space complexity of O(|V|2).
Therefore, the RNN has computation complexity of O(|V|2|T |) as a whole.

Thus, we conclude that the sequential-based model has forward complexity of O(|V|4T). Our
algorithm, on the other hand, is parallelisable since it has no dependency between time steps.
The FFT algorithm can be calculated in O(|E|T logT) presented This makes the total complexity
O(|V|4 + |E|T logT).

C.2 SPACE COMPLEXITY

The space complexity of neural networks is estimated from two parts: (1) model parameters (2) data
volume.

1. In sequential-based models, the GCN part takes up O(|V|) parameters and RNN takes up
O(|V|2T) since xt and ht are both O(|V|2) length and there are T units. This makes the
total parameter complexity amount to O(|V|2T) in total. In our proposed approach, the
edge-convolution model takes up O(|V|N) parameters.

2. sequential-based models take up (O|V|2T) active memory to store its data while FTSE
takes up (O|V|2N).

To summarize, sequential-based models had O(|V|2T) in space complexity whereas our proposed
approach takes up O(|V|2N) memory in total. In both parts, the sequential-model was out-
performed by ours.

D RUNNING TIME EXPERIMENTS

We did 2 experiments about time complexity analysis.

Edge Convolution Network The first one compares EGNN(C) (Gong & Cheng, 2019) with our
proposed EGC network on FTSE, result shows that EGC could significantly improve the training
speed of networks with the same hardware platform. The result for training is more impressive than
validation and test phase, which can be explained by the difference of their settings. In training
phase we sampled a certain amount of ’non-exist’ edges whereas in validation and test set the whole
graph is evaluated.

12

Under review as a conference paper at ICLR 2021

Datasets UCI AS
Train Valid Test Train Valid Test

FTSE+EGNN 35.12(2.13) 21.31(0.42) 37.40(0.82) 102.35(12.66) 356.24(8.48) 691.93(16.40)
FTSE+EGC 26.68(1.43) 19.27(0.40) 33.95(0.67) 80.16(6.28) 345.18(8.00) 646.24(12.78)

Table 3: Training time of different GCN structures on link prediction task in seconds

Time Complexity We did an experiment justifying the time complexity of our proposed network.
We used the exact same experimental setting for the two baselines and did experiment with the
identical hardware platform. We test the performance on three link-prediction datasets. Results
show that our method could shorten the computation time of RNN+GCN based approach by 50%
on average, which corresponds to the previous complexity analysis.

(a)AS (b)SBM (c)UCI

Figure 3: Running Time Result on FTSE and EGCN on three different datasets, the scale is on the
running time of EGCN. FTSE’s time and the standard deviation is adjusted correspondingly, the
result is based on 20 runs of the algorithm under identical setting

E FTSE VS TSE

We did experiments comparing FTSE and TSE. The goal is to learn the dynamic graph with high
precision, where we need to use a huge amount of history timesteps (i.e. look back is very high)
but could only use fixed-dimension embedding. Both FTSE and TSE are using the same number
of embedding dimensions for the time series and the network is EGCN. The result showed that
FTSE outperforms TSE when the compression ratio is high, justifying its capability of modeling a
dynamic graph with high precision. On the other hand, we also found that when the compression
ratio is lower, TSE performed more favorably. We believe the reasoning behind this symptom is
caused by the information loss in DTFT.

F STREAMING VS NON-STREAMING

We did our experiments on link prediction in streaming and non-streaming scenarios. In streaming
case, we perform inductive learning where the inference is absolutely agnostic of any historical
timesteps whereas in streaming case, the historical timesteps is used during training. The result
confirmed that the performance of non-streaming cases are generally better than the streaming cases.
In both cases, our test performance outperform previous methods.

13

Under review as a conference paper at ICLR 2021

(a) Compress to 3 timesteps

(b) Compress to 5 timesteps

(c) Compress to 10 timesteps

Figure 4: ROC-AUC score on multiple compression ratios where TSE is running with uncompressed
data, the result is based on 20 runs and the dataset is UCI, the granularity was also halved compared
to the regular settings

14

Under review as a conference paper at ICLR 2021

Datasets UCI AS SBM
AUC AP AUC AP AUC AP

GCN 0.464(0.042) 48(22) 0.664(0.030) 314(18) 0.701(0.004) 15949(302)
GCN+GRU 0.504(0.022) 146(13) 0.802(0.012) 783(10) 0.700(0.002) 16527(284)

GCN+LSTM 0.508(0.021) 145(13) 0.778(0.009) 1454(12) 0.697(0.002) 16549(278)
GAT 0.579(0.009) 549(32) 0.838(0.016) 679(30) 0.650(0.012) 13398(280)

GAT+GRU 0.506(0.008) 84(16) 0.586(0.013) 223(28) 0.659(0.007) 13695(204)
GAT+LSTM 0.504(0.007) 63(14) 0.625(0.014) 303(20) 0.643(0.008) 13284(226)

EvolveGCN-O 0.547(0.007) 447(8) 0.895(0.006) 4364(32) 0.697(0.005) 16211(290)
EvolveGCN-H 0.552(0.006) 532(9) 0.893(0.008) 4572(28) 0.699(0.004) 16489(227)

TGAT - - - - - -

TSE 0.706(0.008) 542(11) 0.978(0.003) 2894(49) 0.710(0.008) 16202(140)
Fourier TSE 0.704(0.007) 528(12) 0.983(0.007) 2987 (66) 0.708(0.007) 16377(167)

Table 4: The ROC-AUC score (AUC) and Average Precision(AP at 1e− 6 scale) on streaming link
prediction task, mean and standard deviation are reported according to 20 runs of each algorithm

15

	Introduction
	Related Work
	Problem Formulation
	Method
	Preliminaries
	Fourier Temporal State Embedding
	Network Structure
	Complexity Analysis

	Experiments
	Tasks
	Datasets
	Baselines
	Experimental Settings
	Result and Discussion
	Ablation Study

	Conclusion
	Dataset Statistics
	Discussion on CTDG vs DTDG
	Detailed Complexity Analysis
	Time Complexity
	Space Complexity

	Running Time Experiments
	FTSE vs TSE
	Streaming vs Non-streaming

