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Abstract

Reinforcement learning (RL) has recently demonstrated strong potential in enhanc-
ing the reasoning capabilities of large language models (LLMs). Particularly, the
“Zero” reinforcement learning introduced by Deepseek-R1-Zero, enables direct RL
training of base LLMs without relying on an intermediate supervised fine-tuning
stage. Despite these advancements, current works for LLM reasoning mainly focus
on mathematical and coding domains, largely due to data abundance and the ease of
answer verification. This limits the applicability and generalization of such models
to broader domains, where questions often have diverse answer representations,
and data is more scarce. In this paper, we propose GENERAL-REASONER, a novel
training framework designed to enhance LLM reasoning capabilities across diverse
domains. Our key contributions include: (1) constructing a large-scale, high-quality
dataset of questions with verifiable answers curated by web crawling, covering a
wide range of disciplines; and (2) developing a generative model-based answer
verifier, which replaces traditional rule-based verification with the capability of
chain-of-thought and context-awareness. We train a series of models and evaluate
them on a wide range of datasets covering wide domains like physics, chemistry,
finance, electronics etc. Our comprehensive evaluation across these 12 bench-
marks (e.g. MMLU-Pro, GPQA, SuperGPQA, TheoremQA, BBEH and MATH
AMC) demonstrates that GENERAL-REASONER outperforms existing baseline meth-
ods, achieving robust and generalizable reasoning performance while maintaining
superior effectiveness in mathematical reasoning tasks.
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Figure 1: Effectiveness of our GENERAL-REASONER trained with diverse verifiable reasoning questions
using model-based verifier compared to baseline methods on various reasoning tasks.
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1 Introduction

Recent advancements in large language models (LLMs) have demonstrated strong potential in many
expert-level tasks by following user instructions. One of the most significant breakthroughs in recent
work is the use of reinforcement learning (RL), such as PPO and GRPO, to improve the reasoning
capabilities of LLMs. A particularly noteworthy development is the “Zero” reinforcement learning
setting proposed by DeepSeek-R1-Zero [1], which shows that training a base LLM directly via RL
can unlock powerful reasoning capabilities without relying on a supervised fine-tuning step. RL for
LLM reasoning has inspired multiple open-source efforts, such as SimpleRL [2], DAPO [3]], and
DeepScaleR [4, 5], which leverage variants of GRPO [6] to further enhance reasoning performance,
either in the zero RL setting or via continuous reinforcement learning on models with supervised
fine-tuning or distillation.

However, existing methods primarily focus on training and evaluation in mathematical reasoning or
coding tasks. This narrow focus can be attributed to two main reasons: (1) DATA ABUNDANCE: it is
easier to harvest large-scale mathematical data from the Internet due to the abundance of international
math and coding competitions and exams; (2) ANSWER VERIFICATION: mathematical domains
allow for easy and reliable answer verification using straightforward rule-based methods (e.g., exact
numeric matching, symbolic equation comparison), which provide accurate reward signals. However,
this reliance on rule-based verifiers restricts the generalizability of the resulting models. Real-world
reasoning often spans multiple disciplines, such as science, finance, and the humanities, and involves
complex, long-tailed answer representations that cannot be reliably verified through heuristic rules.
In fact, training solely on mathematical or coding data does not guarantee generalization to other
reasoning domains. For example, although S1/S1.1 [[7] significantly improves mathematical scores, it
degrades performance on MMLU-Pro [8] by 4—-6%.

To address these challenges and broaden the applicability and robustness of RL-based reasoning
models, we propose training framework designed to enhance the reasoning capabilities of LLMs
across diverse, non-mathematical domains, while preserving their strengths in mathematics. Our
approach tackles the two aforementioned problems:

¢ All-Domain Reasoning Dataset (WebInstruct-verified): A major bottleneck for scaling rea-
soning beyond mathematics is the lack of publicly available, high-quality reasoning datasets
that span multiple domains and offer reliably verifiable answers. To address this, we construct
a large-scale, diverse-domain dataset by carefully crawling and filtering high-quality reasoning
questions from web resources, based on Weblnstruct [9]. We then employ state-of-the-art LLMs to
automatically select questions whose answers can be reliably verified, significantly expanding the
training scope to disciplines such as physics, chemistry, social sciences, and finance. Our carefully
curated dataset contains approximately 230K high-quality reasoning questions, providing a robust
foundation for general reasoning training across multiple complex domains.

¢ All-Domain Answer Verifier (General-Verifier): In addition to scaling data, existing rule-based
verifiers struggle with the diverse answer types commonly found in broader domains, including
short string answers, LaTeX expressions, and other structured forms, limiting the effectiveness of
reasoning training beyond mathematics. We introduce a compact generative verifier model (1.5B
parameters) explicitly trained to verify short answers in a context-aware, chain-of-thought manner,
thereby providing robust and reliable reward signals for RL training. This approach improves the
flexibility and scalability of RL training across diverse reasoning tasks.

Using this diverse, verifiable reasoning data along with the generative model-based verifier, we
are able to train a series of GENERAL-REASONER models in the Zero-RL setting from various base
models. To validate the effectiveness of our approach, we conduct comprehensive evaluations across
12 challenging reasoning benchmarks beyond mathematics, including MMLU-Pro [8]], GPQA [10],
SuperGPQA [[L1], TheoremQA [12]], and BBEH [[13]], as well as standard mathematical reasoning
benchmarks such as MATH-500 [[14]], GSM8K [15], and Olympiad [16]. GENERAL-REASONER typi-
cally boosts performance on general benchmarks like MMLU-Pro and SuperGPQA by approximately
10%. On math benchmarks, GENERAL-REASONER can even slightly outperform math-focused RL
frameworks such as SimpleRL [2], benefiting from cross-domain generalization. Our best model
GENERAL-REASONER-Qw3-14B is able to match or beat GPT-40 in various benchmarks.

In summary, our work makes the following key contributions:



1. We construct and release a large-scale, high-quality dataset (Weblnstruct-verified) of verifiable
reasoning questions with short-form answers spanning diverse domains, significantly broadening
the training resources available for general reasoning.

2. We introduce a compact, generative model-based verifier (General-Verifier) specifically trained
for chain-of-thought answer verification, effectively replacing rule-based methods and enabling
robust and scalable RL training across multiple complex reasoning domains.

3. Through extensive evaluations, we empirically demonstrate the superior performance and general-
ization capabilities of GENERAL-REASONER in the Zero-RL setting, providing a strong baseline
and valuable insights for future advancements in RL-driven general reasoning.

2 Related Works

2.1 Large Language Models for Reasoning

Advancements in large language models (LLMs) have demonstrated substantial potential in effectively
performing diverse tasks by following user instructions. However, expert-level tasks, such as
solving complex mathematical problems [12] or addressing practical STEM challenges [8]], require
robust reasoning capabilities. Recent work on chain-of-thought reasoning has shown that LLMs
can significantly enhance their performance by explicitly decoding their thought processes during
inference [17]. Subsequent studies further investigate the scaling of reasoning process, termed
“test-time scaling,” to better enhance the reasoning capability of LLMs [[18H20].

Following this direction, commercial models such as OpenAI’s O1 series have exhibited impressive
performance on reasoning-intensive evaluations [21]], including mathematical Olympiad problems.
Meanwhile, recent open-source models, such as Qwen [22], QWQ [23]], and Deepseek R1 [1]], have
also achieved competitive results, narrowing the performance gap with state-of-the-art commercial
counterparts. This progress opens new avenues for academia to explore advanced optimization
strategies aimed at further improving the reasoning capabilities of LLMs [7, 3} [24]].

2.2 Zero Reinforcement Learning for LLMs

Typical methods for enhancing the reasoning capabilities of LLMs usually involve first performing
supervised fine-tuning with chain-of-thought (CoT) data on a base model [25]], followed by reinforce-
ment learning (RL) to further improve reasoning and generalization performance. However, recent
studies exemplified by Deepseek-R1-Zero [4] have demonstrated that directly applying reinforcement
learning to a strong base model can effectively uncover significant reasoning capabilities without ini-
tial supervised fine-tuning. This “Zero Reinforcement Learning” approach has attracted considerable
attention within the research community, inspiring efforts to replicate and enhance the method on
other powerful base models such as Qwen [26].

A key advantage of zero RL is its efficiency in collecting verifiable question—answer pairs, which
eliminates the need for complete reasoning chains as training targets. This efficiency provides greater
flexibility in enhancing reasoning performance without complex data collection efforts, enabling
models to self-improve more effectively. However, existing works on zero RL have mostly focused
on mathematical reasoning [2]]. While there are concurrent works [27} 28] aim to expand reasoning
capabilities to broader domains, our work seeks to do so by leveraging a model-based verifier to
scale diverse reasoning data across domains and provide comprehensive evaluations to demonstrate
effectiveness.

3 General Reasoner

3.1 Diverse Verifiable Reasoning Tasks

To facilitate robust reasoning capabilities across a wide range of domains beyond mathematical
problems, we construct a large-scale, diverse, and high-quality dataset composed of verifiable
reasoning tasks. Our dataset-building pipeline is illustrated in Figure 2}

The initial data source is from Weblnstruct dataset [9], which consists of around 5 million naturally
occurring, web-crawled instructions from high-quality resource websites, including platforms like
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Figure 2: Data creation pipeline: It consists of QA mining, Extraction and Verification.

StackExchange and various educational portals. Despite Weblnstruct’s suitability for general instruc-
tion tuning, the majority of documents are not directly usable as reasoning tasks due to the lack of
explicit verifiable answers or require a reasoning process.

To address this, we first trace the entries in Weblnstruct back to its original web page to re-crawl
precise question-answer pairs. During this process, we remove the questions lacking clearly identifi-
able human-written answers on the original source websites. Many websites require membership or
complex interaction to show the answers, which will be filtered out. This careful selection aims to
ensure retained entries are verified by humans, enhancing the dataset’s reliability and correctness.

Next, we further leverage Gemini-1.5-Pro [29], a state-of-the-art LLM, to extract questions explicitly
identified as having clearly verifiable short answers for single-turn questions. This step yields
an intermediate dataset of approximately 1 million verifiable reasoning questions across various
disciplines. Subsequently, we apply Gemini-2.0-Flash to annotate each question with metadata,
including the answer type, subject category, and difficulty level. Recognizing the skewed ratio of
mathematical tasks, we specifically filter out mathematics problems that are labeled as easier than
university-level to ensure a more balanced and challenging dataset distribution.

= Float = Mathematics
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= Multiple Choice = Chemistry

= Integer ® Business
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(a) Answer Type Distribution (b) Domain Distribution

Additionally, recognizing that web-crawled data inherently contains noise, such as questions that are
either unsolvable or trivially easy, we implement further rigorous filtering to refine the dataset quality.
Specifically, Gemini-2.0-Flash generates eight candidate solutions for each question, allowing us to
apply the following quality control criteria:

* We exclude questions for which all eight candidate solutions fail, effectively removing ambiguous
or noisy questions that likely arise from crawling errors or incomplete source content.

* We also exclude overly simplistic questions for which all eight candidate solutions are correct,
ensuring the dataset maintains sufficient complexity and presents meaningful challenges for robust
reasoning and generalization during RL training.

The Gemini-2.0-flash generated solutions are also later utilized to train our proposed model-based
verifier, which will be discussed in detail in the next section.

Eventually, the processed dataset contains approximately 230k reasoning questions spanning di-
verse answer formats, including multiple-choice, numerical expressions, matrices as highlighted
in Figure[3a] Figure 3b] further illustrates the balanced domain distribution of our curated dataset,
encompassing disciplines such as mathematics, physics, chemistry, finance, and various other hu-
manities and social sciences fields. This rigorous data curation process produces a challenging but
reliable dataset for training generalizable reasoning capabilities in large language models.



Table 1: Examples of reasoning questions where the model provides correct answers, but the rule-
based verifier fails to recognize their correctness, while the model-based verifier succeeds.

Example 1

Example 2

| Example 3

Question

Consider the line perpendicular
to the surface z = z° + y2 at the
point where x = 4 and y = 1.
Find a vector parametric equa-
tion for this line in terms of the
parameter ¢.

Find the partial pressure in a so-
lution containing ethanol and 1-
propanol with a total vapor pres-
sure of 56.3 torr. The pure vapor
pressures are 100.0 torr and 37.6
torr, respectively, and the solu-
tion has a mole fraction of 0.300
of ethanol.

What is the work done to push a
1 kg box horizontally for 1 meter
on a surface with a coefficient of
friction of 0.5?

Ground Truth Answer | x=4+8t, y=1+2t, z=17-t | 30.0 torr, 26.3 torr | 497
Student Answer 448t 1+2t,17-t The partial pressure of ethanol is | 4.9 N-m
30.0 torr and the partial pressure
of 1-propanol is 26.32 torr.
Rule Based Verifier | False | False | False
Model Based Verifier | True | True | True

3.2 Model-Based Verifier for GRPO

Preliminary. We adopt Group Relative Policy Optimization (GRPO) [6] following the recent
advancements such as DeepSeek-R1 [1]]. Given a question-answer pair (¢, a), a behavior policy 7y,

samples a group of G individual responses {oi}icil. The GRPO objective updates model parameters
0 as follows [3]]:

Tereo(0) = E(g,a)-D, {0,)%, ~0,, (1) )
1 G 1 [o4] . R
a = |Oi| ; ( min (riyf(e)Ai,ta Clip(ri,t(9)7 1- €, 1+ E)A@',t) - BDKL(TFOHTFref)) R
where
G
g (0; ,0; . L RS
ris(0) = 0(0i1 | 4,0 <) = r; —mean({R;};Z1) @

std({R;}4)

T 044 (Oi,t | q, 0i,<t) 7
In this work, our design on the model-based verifier specifically affects how the reward R is computed.

Limitations of Existing Reward Model. Traditional reward models are trained through human
feedback or preference assessment, returning scalar values based on the entire output to indicate
overall quality. Although intuitive, these models are suffering from being hacked by the policy model,
and usually require the reward model to have a large parameter size to be effective and robust.

In contrast, rule-based verifiers, widely used in mathematical reasoning due to simplicity, evaluate only
the final answer, allowing models greater freedom to explore diverse reasoning paths. However, these
rule-based approaches encounter several critical limitations when extending beyond mathematics:

» Rigid Matching Criteria: Rule-based methods typically require exact matches or adherence to
rigid structures, failing to recognize semantically equivalent answers that differ in representation.

* Semantic Insensitivity: They are ineffective at interpreting answers that vary semantically, such
as equivalent expressions or answers expressed in different units or formats.

* Lack of Generality: Adapting rule-based verification to a wide range of disciplines and diverse
answer formats can be difficult, limiting their applicability and scalability.

Generative Model-Based Verifier. We introduce a compact generative model-based verifier specif-
ically trained to robustly assess answer equivalence across diverse domains. Ideally, a state-of-the-art
large language model (LLM) like Gemini-2.0 could verify answer equivalence; however, such
solutions are computationally expensive and impractical for large-scale RL training.

Instead, we leverage our dataset creation pipeline, specifically Gemini-2.0-generated candidate
answers and verification annotations, to train a compact 1.5B-parameter generative verifier model.



This verifier, initialized from Qwen2.5-Math-1.5B [26]], is fine-tuned to assess student-generated short
answers (extracted from the response) s against ground-truth references g in a generative manner,
whose inference process is formulated as:

Z:/ ~ P(y I qvgvs)v :l) = Yeots [sep]aylabel 3)

where ¢ is a chain-of-thought reasoning process y,.,; with a final binary prediction ¢ ,;e; (true/false)
on whether the student answer is equivalent to the ground-truth in the question context.

This verifier integrates seamlessly into our reinforcement learning pipeline, providing robust, accurate
reward signals. Empirical analysis confirms that our model-based verifier achieves high agreement
with Gemini-2.0-Flash, substantially outperforming traditional rule-based approaches.

4 Experiments

4.1 Training

We follow the Zero RL setting, directly conducting reinforcement learning (RL) from base large
language models without an intermediate supervised fine-tuning stage. Specifically, we initialize
our models using the base model from Qwen2.5 family (7B and 14B) and the newer Qwen3 family
(4B and 14B) [22]], and apply the GRPO algorithm. Please note that we pick the general Qwen
model instead of the Qwen-math model to maximize the general performance, which could lead
to seemingly lower performance on mathematical benchmarks. Reward scores during training are
calculated as follows:

* If the solution extraction fails (e.g., no boxed answer or summarization such as “the solution is:”),
the reward is -0.5.

« If the solution passes verification, the base reward is 1, with a length-based penalty applied to
discourage excessively long generations. In our early experiments, we notice the model can hack
the model-based verifier by putting long content in answer box if there is no length penalty.

penalty = -0.05 x min(10, abs(len_of_ground_truth - len_of_answer))

Training is conducted on 4 nodes with §XH100 GPUs per node for up to 700 steps for Qwen2.5 series
models. For model initialzied with Qwen3-Base, we train up to 400 steps. Please see Appendix [A.3]
for detailed hyperparameters of each model checkpoint. During training, the average model response
length increases from approximately 700 tokens to around 1000 tokens. The total training time is
around 2 days for the 4B/7B model and around 4 days for the 14B model. Our implementation is

based on the verl repository

4.2 Evaluation

To evaluate the models’ general reasoning capabilities, we conduct a comprehensive assessment
across several challenging benchmarks:

MMLU-Pro [8]: A robust and challenging massive multi-task understanding dataset tailored to
more rigorously benchmark large language models’ capabilities.

SuperGPQA [11]: A large-scale benchmark targeting graduate-level reasoning across 285 diverse
disciplines. All the questions are verified to be not found on Google Search.

BBEH [13]: A new benchmark that extends BIG-Bench Hard [30] by introducing more challeng-
ing tasks for better evaluation of complex reasoning.

GPQA [10]]: Graduate-level question answering designed to be resistant to shallow pattern-
matching or memorization. We use the diamond split in GPQA.

TheoremQA [12]: Graduate-level question answering designed to require knowing corresponding
theorems. It covers math, physics, EE&CS, and Finance. It’s a general reasoning benchmark.

e Math-Related Tasks: A suite of standard math reasoning benchmarks, including MATH-
500 [14]], Olympiad [16], Minerva [31], GSMS8K [15], AMC, AIME24, and AIME25. We use the

simple-evalg |evaluation framework, and use GPT4o [32]] to check the answer equivalence.

2https://github.com/volcengine/verl
3https://github.com/openai/simple—evals
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Table 2: Accuracy comparison of our GENERAL-REASONER with baseline methods on general reason-
ing benchmarks. MMLU-Pro, SuperGPQA, TheoremQA and BBEH contain multiple subfields.

Model Name Backbone MMLU-Pro GPQA-D SuperGPQA TheoremQA BBEH
Metric Micro Acc Macro (discipline) Acc Micro
MiMo-RL MiMo-Base 58.6 544 40.5 38.8 114
QwQ-32B Qwen2.5-32B-Inst 52.0 54.5 43.6 48.4 22.6
GPT-40 - 74.6 50.0 46.3 43.6 223
ol-mini - 80.3 60.0 45.2 53.1 -
DeepSeek-R1 DeepSeek-V3 84.0 71.5 59.9 59.1 349
4B Models
Qwen3-4B-Base - 51.6 26.3 25.4 34.8 8.1
Qwen3-4B-Instruct (non-think) Qwen3-4B-Base 61.8 41.7 32.1 42.0 14.9
GENERAL-REASONER-4B Qwen3-4B-Base 62.8 42,9 32,5 48.3 12.2
7B Models
Qwen2.5-7B-Base - 47.7 29.3 26.7 29.1 8.0
Qwen2.5-7B-Instruct Qwen?2.5-7B-Base 57.0 33.8 30.7 36.6 12.2
Open-Reasoner-Zero Qwen2.5-7B-Base 594 36.6 32.8 374 12.2
Nemotron-CrossThink Qwen2.5-7B-Base 57.8 38.5 29.1 - -
SimpleRL-Qwen2.5-7B-Zoo Qwen?2.5-7B-Base 51.5 24.2 299 38.0 11.9
GENERAL-REASONER-7B Qwen2.5-7B-Base 58.9 38.8 34.2 45.3 12.5
14B Models
Qwen2.5-14B-Base - 53.3 32.8 30.7 33.0 10.8
Qwen?2.5-14B-Instruct Qwen2.5-14B-Base 62.7 414 35.8 41.9 15.2
SimpleRL-Qwen2.5-14B-Zoo Qwen2.5-14B-Base 64.0 39.4 35.7 40.8 13.6
GENERAL-REASONER-QW2.5-14B | Qwen2.5-14B-Base 66.6 43.4 39.5 44.3 15.2
Qwen3-14B-Base - 64.2 459 36.5 44.0 13.0
Qwen3-14B-Instruct (non-think) Qwen3-14B-Base 70.9 54.8 39.8 42.4 19.2
GENERAL-REASONER-Qw3-14B Qwen3-14B-Base 70.3 56.1 39.9 54.4 17.3

Table 3: Math task accuracy across datasets. Most evaluations are based on greedy decoding except
for AIME24 and AIME25 (averaged over 32 sampling runs following SimpleRL [2]).

Model Name | AVG | MATH-500 Olympiad Minerva GSM8K AMC AIME24 AIME25
4B Models
Qwen3-4B-Base 40.3 68.2 34.8 423 72.6 47.5 10.3 6.7
Qwen3-4B-Instruct (non-think) 54.2 80.4 49.0 57.0 92.0 62.5 22.5 16.1
GENERAL-REASONER-4B 534 80.6 47.7 577 92.2 60.0 20.0 15.4
7B Models
Qwen2.5-7B-Base 34.7 60.2 28.6 36.0 83.1 30.0 3.8 14
Qwen?2.5-7B-Instruct 46.3 75.0 39.4 452 90.9 52.5 12.5 8.5
SimpleRL-Qwen2.5-7B-Zoo 484 74.0 41.9 49.6 90.7 60.0 15.2 7.5
GENERAL-REASONER-7B 48.5 76.0 37.9 54.0 92.7 55.0 13.8 10.4
14B Models
Qwen2.5-14B-Base 37.0 65.4 335 243 91.6 37.5 3.6 2.9
Qwen2.5-14B-Instruct 49.9 774 44.7 522 94.5 57.5 12.2 11.0
SimpleRL-Qwen2.5-14B-Zoo 50.7 77.2 44.6 54.0 94.2 60.0 12.9 11.8
GENERAL-REASONER-QwW2.5-14B | 53.9 78.6 42.1 58.1 94.2 70.0 17.5 16.9
Qwen3-14B-Base 49.9 74.6 44.3 55.9 93.2 55.0 14.7 114
Qwen3-14B-Instruct (non-think) 57.0 82.0 524 59.9 93.9 57.5 28.5 25.1
GENERAL-REASONER-Qw3-14B 58.8 83.8 51.9 68.0 94.4 70.0 24.4 19.2

4.3 Baselines

Our main baselines are listed as follows: 1) Qwen2.5 and Qwen3 family [22]: We include these model
results to understand the gains of our RL training. 2) SimpleRL [2]: a comprehensive collection
of math-based RL models, 3) Open-Reasoner-Zero [33]]: a strong RL reasoning model to replicate
DeepSeek-R1, which also focused on math training, 4) Nemotron-CrossThink [27]: an all-domain
reasoning model. This model is the closet to our general-purpose reasoning model.



4.4 Main Results

Table [2] summarizes the performance of our GENERAL-REASONER across general reasoning bench-
marks. Overall, GENERAL-REASONER with Zero RL consistently outperforms both base and super-
vised fine-tuned models across the Qwen2.5 and Qwen3 backbones.

For models initialized with Qwen2.5-7B-Base, GENERAL-REASONER achieves 58.9% on MMLU-Pro,
surpassing both the base model at 47.7% and the instructed model at 57.0%. These gains also extend to
GPQA and SuperGPQA. Similar improvements appear with the 14B backbone: GENERAL-REASONER-
Qw2.5-14B reaches 66.6% on MMLU-Pro, outperforming Qwen2.5-14B-Base at 53.3% and Qwen2.5-
14B-Instruct at 62.7%. It also shows strong results on math-related benchmarks, achieving high
average scores for both 7B and 14B variants, as shown in TableE} Compared to other reinforcement
learning methods, GENERAL-REASONER consistently outperforms both SimpleRL and Nemotraon-
CrossThink across MMLU-Pro, GPQA, SuperGPQA, and BBEH. The trend holds with 14B models,
where GENERAL-REASONER achieves the best overall results.

Stronger results are observed when initializing GENERAL-REASONER with Qwen3 backbones. For
example, GENERAL-REASONER-4B surpasses Qwen2.5-7B after Zero RL, reaching 62.8% on MMLU-
Pro versus 58.9%. This demonstrates the efficiency and transferability of our training method across
model scales. The best performing version is GENERAL-REASONER-Qw3-14B, which achieves 56.1%
on GPQA and 54.4% on TheoremQA, matching the performance of commercial models like GPT-
40, which scores 50.0% and 43.6% respectively, despite relying solely on Zero RL. Compared to
Qwen3-14B-Instruct (non-think), which undergoes post-training via distillation from a much bigger
teacher model, our model maintains an advantage on many benchmarks. Notably, even in non-think
mode, the Qwen3-Instruct model continues to generate CoT outputs. While some performance gaps
remain relative to closed-source or closed-data systems, our results underscore the promise of Zero
reinforcement learning when combined with domain-diverse reasoning data and a compact, model-
based verifier. Although a performance gap remains on some benchmarks compared to closed-source
or closed-data models, our results underscore the promise of Zero reinforcement learning when
combined with domain-diverse reasoning data and a compact generative verifier.

Notably, our model does not exhibit overthinking. During training, the average response length grows
to around 1,000 tokens, which is significantly shorter than methods like DeepScaleR [4], where
outputs can be around 32k tokens. As an example, on the Computer Science split of MMLU-Pro,
DeepScaleR-1.5B-Preview requires 18 minutes on 4xH100 GPUs to achieve 35% accuracy. In
contrast, our GENERAL-REASONER-4B finishes in just 1.5 minutes with a higher accuracy of 61%.

S Analysis and Ablation Study

5.1 Impact of Data Abundance

Table 4: Model performance trained with the diverse domain reasoning data vs. math-only data.

Backbone Data \ MMLU-Pro GPQA SuperGPQA Math-Related
Qwen2.5-7B-Base Full 58.9 343 342 48.5
Qwen2.5-7B-Base Math Only 56.9 32.8 29.8 49.1
Qwen2.5-14B-Base  Full 66.6 43.4 39.5 53.9
Qwen2.5-14B-Base  Math Only 64.8 38.9 35.6 48.6

To quantify how domain diversity in the training data affects reasoning performance, we compare
two variants of our Zero RL setup: one trained on the full, diverse-domain dataset and one trained
exclusively on math-related questions. Table [] reports results for both Qwen2.5-7B-Base and
Qwen2.5-14B-Base backbones under these two conditions.

For the 7B backbone, restricting training to math tasks yields a one point gain on the Math-Related
benchmark (49.1% vs. 48.5%), but comes at the expense of general reasoning: MMLU-Pro, GPQA
and SuperGPQA each drop by roughly 2 percentage points when compared to the full-data model. In
contrast, the model trained on the full dataset achieves stronger performance across all benchmarks,
demonstrating more general reasoning capabilities. The 14B backbone exhibits an even clearer
benefit from data diversity. With full data, GENERAL-REASONER-Qw?2.5-14B outperforms its math-
only counterpart on every metric, improving both general benchmarks. These results confirm that
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Figure 5: Agreement comparison between rule-based and model-based verifiers against Gemini-2.0-
Flash, conditioned on Gemini verifying an answer as correct. Left: Agreement by answer type. Right:
Agreement by task subject.

training on diverse reasoning domains enhances general reasoning while maintaining or improving
mathematical reasoning.

5.2 Impact of General-Verifier on Model Training

We conduct an ablation study to verify the effectiveness of our model-based verifier by comparing

models trained using either our model-based verifier or a traditional rule-based veriﬁeﬂ Both setups
train the Qwen3-4B-Base model for 120 steps under identical conditions. As shown in Table [5]
training with the model-based verifier achieves higher accuracy across all evaluated benchmarks
compared to the rule-based verifier.

Figure [4| provides a detailed comparison of performance progression on the MMLU-Pro dataset
throughout training. We observe that the rule-based verifier reaches an early plateau at around
step 60 (approximately 58%), while the model-based verifier continues improving, achieving about
60% accuracy by step 120. This demonstrates that the model-based verifier effectively guides
reinforcement learning, enabling the model to leverage diverse training data better and ultimately
achieve stronger overall reasoning performance.

5.3 Verifier Agreement with Gemini-2.0-Flash and Human Judgment

To further assess the advantage of the our model-based verifier over the rule-based verifier, we study
their agreement with Gemini-2.0-Flash. As discussed earlier, a critical limitation of the rule-based
verifier is its high false-negative rate. In a sample of 50k answer-verification pairs that Gemini
deemed correct, the rule-based verifier achieved only 22.2% agreement on average, whereas our
model-based verifier achieved 78.7%.

We further analyze agreement across different answer types as shown in Figure [5}left. False negatives
are most prevalent in unstructured answer types such as Lists or Strings. Even in structured formats
like multiple choice, variations like answers being expressed as textual descriptions rather than option
letters can cause discrepancies. In Figure[5}right, a domain-level analysis shows that the model-based
verifier is particularly beneficial for non-math STEM fields like Physics and Engineering, where

*The rule-based verifier is implemented based on https://github.com/huggingface/Math-Verify


https://github.com/huggingface/Math-Verify

answer formats are diverse. In contrast, fields such as Economics tend to use more structured answers
like multiple choices, which narrows the performance gap between the two verifiers.

Table 6: Agreement rates between human judgment and different verifiers over 200 samples, grouped
by answer type. Scalar Verifier use the same training data as General-Verifier but predict probability
of True/False as scalar value without any chain-of-thought.

Answer Type Rule-Based  Gemini-Based Scalar Verifier =~ General-Verifier (Ours)

Boolean 0.750 1.000 1.000 1.000
Expression 0.516 0.935 0.806 0.806
Float 0.585 0.892 0.754 0.877
Fraction 0.750 1.000 1.000 1.000
Integer 0.852 0.963 0.926 0.963
List 0.556 0.778 0.778 0.889
Matrix 0.667 1.000 0.833 0.833
Multiple Choice 0.773 0.864 0.864 0.909
Other 0.000 1.000 0.500 1.000
Percentage 0.600 1.000 0.600 0.700
String 0.312 0.938 0.812 0.812

To further substantiate the reliability of our verifiers, we performed a human evaluation of 200
randomly sampled question-answer pairs, comparing the agreement rates of the rule-based, Gemini-
based, scalar-based and our General-Verifier against human judgment. As shown in Table[6] our
general verifier achieves higher agreement with human annotators than the rule-based and scalar
approaches, and is competitive with the Gemini-based verifier across diverse answer types.

5.4 Comparison with Supervised Fine-Tuning

Table 7: Comparison between Zero RL training and supervised fine-tuning (SFT) on WeblInstruct-
Verified.

Method MMLU-Pro SuperGPQA
initialize with Qwen3-4B-Base

Base 0.516 0.254
w/ Weblnstruct SFT 0.439 0.227
w/ Weblnstruct-Verified SFT 0.440 0.281
GENERAL-REASONER-Qw3-4B 0.628 0.325
initialize Qwen3-14B-Base

Base 0.642 0.365
w/ Weblnstruct SFT 0.447 0.254
w/ Weblnstruct-Verified SFT 0.533 0.323
GENERAL-REASONER-Qw3-14B 0.703 0.399

We conducted ablation experiments to directly comparing GENERAL-REASONER against models
trained via supervised fine-tuning (SFT) on both Weblnstruct-Verified and the original WeblInstruct
datasets. Table[7]reports accuracy on MMLU-PRO and SuperGPQA of the variants, showing that
SFT on either Weblnstruct-Verified or the original Weblnstruct dataset does not reliably improve
performance over the base model and may even cause degradation. In contrast, RL-based training
yields significant gain, highlighting the effectiveness of our proposed framework.

6 Conclusion

In this work, we introduce a training framework for enhancing the general reasoning capabilities
of large language models by leveraging a model-based verifier to scale verifiable training data
across diverse domains. By applying GRPO training directly to base LLMs using our curated,
high-quality, verifiable dataset and a generative model-based verifier, we demonstrate competitive
reasoning performance against models that require an additional supervised fine-tuning stage. Our
approach achieves strong generalization across various challenging domains while preserving superior
effectiveness in mathematical reasoning tasks.
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A Appendix

A.1 Limitation

This work focuses on the Zero RL setting, where models are trained directly from base language
models without intermediate supervised fine-tuning. However, the proposed integration of model-
based answer verification and diverse-domain reasoning data is not tied to Zero RL. Exploring its
impact when combined with intermediate stages, such as supervised fine-tuning or distillation is
promising to have further performance gain.

Additionally, our study targets general language reasoning tasks across diverse domains. We do
not specifically focus on code reasoning or olympiad-level math competitions. Integrating these
specialized reasoning domains into our framework is a valuable avenue for future extension.

In this work, the General-Verifier focuses on verifying short answers. Future work could explore
extending it to long-form answers and further investigate the risks associated with reward hacking.

A.2 Broader Impact

This work improves the general reasoning capabilities of large language models, making them more
applicable to real-world scenarios where complex, multi-domain reasoning is essential. By enabling
LLMs to go beyond math and code, our approach allows Al systems to better support humans in tasks
such as decision-making, analysis, and problem-solving across diverse fields, ultimately increasing
their utility in production settings and high-impact applications.

A.3 Detailed Results
We provide detailed evaluation results on MMLU-pro, SuperGPQA and BBEH are listed in below.

Following previous work, the average reported in MMLU-Pro is micro-average, and for SuperGPQA
and BBEH, we report macro-average across subtask/domain.

Table 8: Per-domain accuracy comparison of different models on MMLU-Pro.

Model Name | Avg | CS Math Chem Eng Law Bio Health Phys Bus Phil Econ Other Psy Hist

Qwen3-4B-Base 516 | 493 67.8 596 448 260 672 49.1 58.1 592 331 585 403 538 344
GENERAL-REASONER-4B 628 | 61.7 81.6 699 509 292 798 61.0 700 714 489 71.1 543 663 478

Qwen2.5-7B-Base 477 | 517 589 45.1 345 255 646  46.6 50.0 554 349 571 47.6 548 39.1
Qwen2.5-7B-Instruct 57.0 | 57.1 714 573 431 313 714 554 60.7 648 449 67.1 548 630 483
SimpleRL-Qwen2.5-7B-Zoo 515|549 554 48.7 409 308 683 53.1 534 580 413 626 522 60.7 425
GENERAL-REASONER-7B 589 | 61.5 755 62.1 48.1 321 717 578 624 662 443 672 543 635 470
Qwen2.5-14B-Base 533|546 630 528  36.0 319 713 56.5 529 61.1 46.1 6438 50.1 610 444
Qwen3-14B-Base 642|702 774 67.3 487 332 80.8 655 68.7 707 535 744 60.7 69.7 54.6
Qwen2.5-14B-Instruct 62.7 | 66.6 753 63.0 397 374 796 652 639 693 535 720 634 721 59.1
SimpleRL-Qwen2.5-14B-Zoo 64.0 | 66.1 75.8 66.9 498 372 795 64.1 67.7 695 555 738 614 709 538
GENERAL-REASONER-QW2.5-14B | 66.6 | 69.8  78.8 675 548 397 817 653 714 719 567 744 640 732 59.1
GENERAL-REASONER-Qw3-14B 703 | 739 865 764 555 399 833 70.5 76.1 766 583 787 66.2 733 58.0

Table 9: Per-domain accuracy comparison of different models on SuperGPQA.

Model Name | Avg. | Eng. Med. Sci. Phil. Mil Sci. Econ. Mgmt. Socio. Lit/Arts Hist. Agron. Law Edu.
Qwen3-4B-Base 254 | 273 261 267 265 239 30.7 29.3 23.1 19.9 153 231 293 287
GENERAL-REASONER-4B 325|346 329 345 380 35.1 37.8 339 36.4 24.4 199 311 294 349
Qwen2.5-7B-Base 267 | 25.1 267 238 297 28.8 29.2 31.7 28.0 21.5 182 256 277 316
Qwen2.5-7B-Instruct 30.7 | 292 312 279 323 36.1 329 337 36.4 24.8 205 274 313 351
SimpleRL-Qwen2.5-7B-Zoo 299 | 280 313 260 349 322 327 315 343 25.0 231 272 294 335
GENERAL-REASONER-7B 342|323 345 311 363 424 383 36.5 413 25.1 233 295 342 399
Qwen2.5-14B-Base 30.7 | 292 312 279 323 36.1 329 337 36.4 24.8 205 274 313 351
Qwen3-14B-Base 36.5 | 36.1 38.8 344 378 44.4 41.8 40.3 385 28.8 267 336 364 372
Qwen2.5-14B-Instruct 358 | 356 37.1 341 386 36.1 41.8 39.5 39.2 30.7 266 322 361 374
SimpleRL-Qwen2.5-14B-Zoo 357 | 342 367 330 360 40.0 39.9 413 385 30.8 267 311 381 382
GENERAL-REASONER-QW2.5-14B | 39.5 | 36.5 416 356 418 419 44.7 429 427 32.8 29.7 37.9 39.6 453
GENERAL-REASONER-Qw3-14B 399 | 426 449 423 415 459 47.0 42.7 41.9 29.2 28.2 345 345 43.0
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Table 10: Per sub-task accuracy comparison of different models on BBEH.

Model | Avg | BGQ Bool Bug Caus Disam Dyck Geom Hyp Ling Movie MultiA NYCC ObjC ObjP Sarc Shuf Spat Sport Temp TimeA Web Sort Zebra
Qwen3-4B-Base 8.1 36.0 125 1.5 415 18.3 0.0 35 0.5 15 28.5 0.0 10.0 0.5 15 6.0 3.0 0.5 10.5 25 110 8.0 0.5 9.5
GENERAL-REASONER-4B 122 | 335 14.0 1.0 470 408 45 235 0.5 4.0 39.0 5.0 12.5 0.0 0.0 16.0 1.5 70 16.5 3.0 19.0 120 65 0.5
Qwen2.5-7B-Base 80 | 265 100 0.0 390 18.3 3.0 9.5 1.0 1.5 300 0.0 6.0 0.0 05 115 20 50 35 45 11.0 55 0.5 16.5
Qwen2.5-7B-Inst 122 | 360 55 0.5 485 375 0.5 245 15 4.0 37.0 0.0 9.0 0.0 35 17.0 9.0 8.0 155 05 21.0 9.0 25 16.0
SimpleRL-7B-Zoo 119 | 29.5 9.5 0.5 45.0 442 0.5 27.0 0.0 3.0 285 10 9.5 0.0 2.0 16.5 85 8.0 120 3.0 16.0 14.0 55 14.5
GENERAL-REASONER-TB 125 | 285 155 1.0 425 458 25 19.5 0.0 35 345 1.0 12.0 0.0 1.5 18.0 85 95 150 1.5 18.5 8.0 4.0 220
Qwen2.5-14B-Base 10.8 | 345 13.0 1.5 48.5 417 0.5 9.0 25 3.0 31.0 0.5 115 0.0 0.0 17.0 4.5 0.5 10.0 1.0 16.0 8.0 6.0 15.0
Qwen3-14B-Base 13.0 36.0 10.5 1.0 40.5 45.0 5.0 19.5 25 5.0 41.0 35 12.0 0.0 1.0 25.0 7.0 55 14.0 1.5 19.5 9.0 6.5 135
Qwen2.5-14B-Inst 152 | 435 225 1.5 50.5 50.0 20 39.0 9.0 70 43.0 3.0 13.5 0.0 20 29.0 6.0 10.0 19.5 20 285 130 45 19.0
SimpleRL-14B-Zoo 136 | 29.0 70 00 500 48.3 4.0 330 1.0 35 425 0.5 135 0.0 25 250 1.0 8.5 19.5 20 235 130 80 6.0
GENERAL-REASONER-QW2.5-14B | 152 | 350 240 0.0 50.5 45.8 25 225 0.5 6.0 535 45 14.0 1.5 20 220 75 13.0 185 20 10.5 180 9.0 16.5
GENERAL-REASONER-Qw3-14B 17.3 | 330 215 2.0 49.5 533 4.0 245 25 9.0 49.0 18.5 10.5 0.5 1.5 255 100 135 220 2.0 435 17.0 85 6.5
A.4 Verifier Input-Output Example
Verifier Input:
User: ### Question: Solve the Bernoulli equation
dy 2 2
r—+y=x"y
dx
### Ground Truth Answer: .
2
g =—-z +Cx
### Student Answer:
y= 2
Cr—zx

For the above question, please verify if the student’s answer is equivalent to the ground truth answer.
You don’t need to redo the question yourself, just check if the student’s answer equivalent to the ground
truth answer. If the student’s answer is correct, output "Final Decision: Yes". If the student’s answer is
incorrect, output "Final Decision: No".

Verifier Output:
Assistant:
1. Ground Truth Answer:
— =2’ +Ca
2. Student Answer: .
i Cx — x>
We can rewrite the ground truth answer as:
= =0np=ag
m 1B = 3
3 1
Y= Cz-22

Comparing this with the student’s answer, we see that they are the same.
Final Decision: Yes

A.5 Detailed Hyper-Parameters

We provide the detailed hyperparameters for training our GENERAL-REASONER variants in Table [T}
The difference in batch size configurations between the Qwen2.5 and Qwen3 series is due to the
limitations in earlier versions of vVLLM (e.g., v0.6.3), which did not support engine sleep and wake
mechanisms for properly loading and unloading the verifier model. As a result, we had to dedicate
2 GPUs to the verifier and 6 GPUs to policy model for each node. With the newer vLLM version
(v0.8.5), we are able to share GPU resources more efficiently by leveraging proper parameter loading
and unloading.
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Table 11: Hyperparameter settings for General-Reasoner variants.

parameter ‘ GENERAL-REASONER-7B ‘ GENERAL-REASONER-QW2.5-14B ‘ GENERAL-REASONER-4B ‘ GENERAL-REASONER-Qw3-14B
n_nodes 4 4 4 4

n_gpu 8xH100 8xH100 8xH100 8xH100
backbone_hgf_id Qwen/Qwen2.5-7B Qwen/Qwen2.5-14B Qwen/Qwen3-4B-Base Qwen/Qwen3-14B-Base
v1llm_version 0.6.3 0.6.3 0.8.5 0.8.5
train_batch_size 768 768 1024 1024
max_prompt_length 1024 1024 1024 1024
max_response_length 4096 4096 4096 4096
learning_rate Se-7 Se-7 Se-7 Se-7
ppo_mini_batch_size 192 192 256 256
ppo_micro_batch_size 4 4 4 4
clip_ratio_low 0.3 0.3 0.2 0.2
clip_ratio_high 0.3 0.3 0.3 0.3
k1l_loss_coef 0.0001 0.0001 0.0001 0.0001
k1_loss_type low_var_kI low_var_kl low_var_kI low_var_kl
temperature 1.0 1.0 0.7 0.7
rollout_n 8 8 8 8

k1_coef 0.001 0.001 0.001 0.001
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: (1) constructing a large-scale, high-quality dataset of questions with verifiable
answers curated from web-crawled data; and (2) developing a generative model-based
answer verifier. These are covered by the methods and experiments.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We include the discussion of limitations in Appendix [A.1]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
Justification: This is an empirical paper; thus, there is no theoretical result included.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include all the high-level information to reproduce our models in Sec[4.1]
and Sec .2] and due to space limitation, more detailed information are included in Ap-

pendix[A.5]

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA] .
Justification: We will release the code, data, and model checkpoints based on acceptance.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide training details in Sec .1 Secf.2] as well as Appendix [A.5]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .

Justification: We follow the evaluation setting of commonly used benchmarks such as
MMLU-Pro, the model comparison is based on the average of multiple sub-tasks evaluations.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the required computation resources in Sec and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed and made sure our paper conforms the NeurIPS Code of
Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have included the discussion of broader impacts in Appendix [A.2]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: this paper poses no such risks.

Guidelines:
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cite the usage of existing assets and respect the license and
terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The dataset we create is described in details in Sec[3.1]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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