Chain of LoRA:
Efficient Fine-tuning of Language Models via Residual Learning

Anonymous ACL submission

Abstract

Fine-tuning is the primary methodology for
tailoring pre-trained large language models to
specific tasks. As the model’s scale and the
diversity of tasks expand, parameter-efficient
fine-tuning methods are of paramount impor-
tance. One of the most widely used family of
methods is low-rank adaptation (LoRA) and its
variants. LoRA encodes weight update as the
product of two low-rank matrices. Despite its
advantages, LoRA falls short of full-parameter
fine-tuning in terms of generalization error for
certain tasks.

We introduce Chain of LoRA (COLA), an iter-
ative optimization framework inspired by the
Frank-Wolfe algorithm, to bridge the gap be-
tween LoRA and full parameter fine-tuning,
without incurring additional computational
costs or memory overheads. COLA employs
a residual learning procedure where it merges
learned LoRA modules into the pre-trained lan-
guage model parameters and re-initialize opti-
mization for new born LoORA modules. We pro-
vide theoretical convergence guarantees as well
as empirical results to validate the effective-
ness of our algorithm. Across various models
(OPT and Llama-2) and 11 benchmarking tasks,
we demonstrate that COLA can consistently
outperform LoRA without additional computa-
tional or memory costs.

1 Introduction

Pre-trained language models have become instru-
mental in natural language processing, demonstrat-
ing remarkable performance across various fields.
Large language model fine-tuning is a process for
adapting pre-trained models to specific tasks, al-
lowing for improved performance on various real-
world applications, such as machine translation and
code analysis (Lewis et al., 2019; Wang et al., 2021;
Qin et al., 2023). Despite the notable benefits of
full parameter fine-tuning, the computational ex-
penses and memory requirements it entails present

significant challenges, particularly in light of the
ever-growing size of large language models.

For this reason, parameter efficient fine-tuning
(PEFT) methods have received significant atten-
tion (Pfeiffer et al., 2020; He et al., 2021). Instead
of adjusting all the parameters of the model, PEFT
involves fewer adjustments to the original model
parameters to specialize its knowledge for a partic-
ular application (Houlsby et al., 2019; Lester et al.,
2021). One of the most widely used paradigms in
parameter efficient fine-tuning is Low-Rank Adap-
tation (LoRA) (Hu et al., 2021). LoRA focuses on
modifying only a small, low-rank portion of the
model’s weights. This is achieved by adding low-
rank matrices to the weights of the model during
training. The advantage of LoRA is that it signifi-
cantly reduces the computational burden and time
required for fine-tuning, making it more efficient
and scalable, especially for very large models. De-
spite the significant computational advantage of
LoRA, it is inferior to full parameter fine-tuning in
terms of generalization error.

In this paper we investigate whether the general-
ization error gap between LoRA and full parameter
fine-tuning can be reduced albeit preserving the
computational efficiency. We do this by learning a
higher rank augmentation of the LLM weights by
the method of residual learning. The high-rank aug-
mentation is composed of several low-rank struc-
tures. Namely, we use an iterative procedure to
learn a low-rank addition to the existing approx-
imation, thereby increasing its rank. Hence, we
call the procedure “Chain of LoRA”, or COLA for
short.

This residual learning method is inspired by the
Frank-Wolfe algorithm as applied to matrix com-
pletion, which augments an existing completion
by a rank one addition. Over many iterations, this
residual learning procedure can be shown to pro-
duce an accurate higher rank completion.

Our contributions

* We present an iterative optimization frame-
work, COLA, for parameter-efficient fine-
tuning. COLA is based on the Frank Wolfe
method from mathematical optimization, and
we formalize this relationship.

* We demonstrate the effectiveness of COLA
via extensive experiments across datasets and
models. COLA consistently outperforms
LoRA in terms of generalization error with
no additional cost of computation. For exam-
ple, fine-tuning OPT-1.3B with COLA brings
a relative 6.47% test accuracy gain to LoRA
on WSC. Llama2-7B experiments show up to
4.36% relative test score improvement.

* We provide theoretical analyses of the itera-
tive learning framework employed in our pro-
posed method, demonstrating the convergence
to stationary points in the setting of smooth
nonconvex optimization.

2 Related Work

Conventional full-parameter fine-tuning becomes
computationally impractical as both model size
and the number of downstream tasks increase. In
response to this challenge, recent advancements
in parameter-efficient finetuning methods suggest
modifying only a small portion of parameters while
maintaining the majority of pre-trained model pa-
rameters unchanged.

Adapter based methods Within this domain,
a line of research known as adapter-based ap-
proach involves inserting compact adapter mod-
ules between transformer layers. Throughout the
fine-tuning process, only the newly introduced
lightweight adapters are trained, while the pre-
trained model remains frozen and shared across
tasks, thus significantly enhancing the practicality
and efficiency of adapting large models to diverse
tasks. Houlsby et al. (2019) propose a new bottle-
neck adapter module and position it twice within
each transformer layer (Vaswani et al., 2017). The
adapter employs a bottleneck architecture, incorpo-
rating a skip connection to effectively constrain the
number of parameters involved in the module de-
sign. Variant adapter architecture and placements
are proposed in concurrent work (Bapna and Fi-
rat, 2019; Stickland and Murray, 2019). Build-
ing upon the success of adapter-based approaches
for single-task adaptation, subsequent studies ex-
tend the adapter-based architecture to the realm

of multi-task learning scenarios (Mahabadi et al.,
2021). AdapterFusion proposes a two-stage learn-
ing framework where task-specific adapters are
learned and then later combined in a separate
knowledge composition step (Pfeiffer et al., 2020).

Prefix tuning methods Alternative research in-
vestigates the incorporation of tunable parameters
into both the input and hidden layers, as explored
by Li and Liang (2021). These lightweight task-
specific vectors, commonly referred to as the pre-
fix, offer a notable reduction in the memory load
required for storing task-specific models. Addition-
ally, they outperform full fine-tuning, particularly
in scenarios with limited data availability. Efficient
prompt tuning further simplifies prefix tuning by
concatenating a trainable tensor (“soft prompt”)
with the model’s input embeddings (Lester et al.,
2021). These “soft prompts” are learned through
backpropagation to perform downstream tasks.

LoRA and its variants The most closely re-
lated work to ours is LoRA (Hu et al., 2021),
which introduces trainable low-rank matrices to
approximate weight updates during fine-tuning.
Building on LoRA, numerous recent studies have
explored its variants from different perspectives.
QLoRA (Dettmers et al., 2023) further leverages
4-bit quantization to effectively and efficiently fine-
tune LLMs. To enhance parameter efficiency, Tied-
LoRA, introduced by Renduchintala et al. (2023),
incorporates weight tying and selective training.
Chen et al. (2023) propose LongLLoRA to extend
the context sizes of LLMs with limited computation
cost. MultiLoRA (Wang et al., 2023) is designed
specifically for better multi-task adaptation. Con-
currently, Sheng et al. (2023) introduce S-LoRA,
offering a framework that enhances the scalable
serving of multiple LoRA adapters. Lialin et al.
(2023) ! explores pre-training with multiple stages
of low-rank matrices to facilitate efficiency.

Optimization for fine-tuning LLMs has special
challenges, notably memory constraints. For this
reason, zero-order optimization methods were pro-
posed (Malladi et al., 2023).

3 Our Method

In this section we describe our method for fine-
tuning. It is divided into two parts, in the first we
present necessary background for our exposition,
and the second gives details of COLA.

'this is independent and concurrent work to our paper.

Tie a knot

Extend Chain

LoRA Tuning (Merge) (Relnit)
é))
INSEIN
Pretrained A Merged Merged \i/
weights weights weights
(frozen) |:|I:||:I (frozen) (frozen) |:||:||:|
Frozen LLM w
_ Chaino y

Figure 1: An illustration of Chain of LoRA. Our approach starts with a frozen LLM, and learns a sequence of
low-rank matrices to approximate a high-rank augmentation to perform task adaptation. As shown in the dashed
line box, each residual learning procedure consists of three steps: (1) LoRA Tuning, (2) Tie a knot, and (3) Extend
the chain. In step 1, low-rank LoRA modules are fine-tuned, In step 2, the learned LoRA weights are merged into
the frozen model. In step 3, a new LoRA module is instantiated and the optimizer state is reset. These three steps

are repeated in this residual learning paradigm.

3.1 Preliminaries

Low Rank Adaptation (LoRA) LoRA (Huetal.,
2021) aims to improve the efficiency of fine-
tuning large language models by training much
smaller low-rank decomposition matrices of certain
weights. It hypothesizes a low “intrinsic rank” of
weight updates at task adaptation and injects train-
able low-rank decomposition matrices into each
layer of the Transformer architecture. Consider a
weight matrix W;.o.ep, from the pre-trained model,
the weight update AW for task adaptation is rep-
resented with a low-rank decomposition BA. The
forward pass with LoRA is as follows:

Wfrozen$ + AWz = WfrozenfE + BAx,

where Wypozen, AW € Rk A € R™* B ¢
R and r < min(d,k). During training,
Wrozen is frozen and only B, A are optimized.
At deployment, the learned low-rank matrices can
merge with the frozen pre-trained model weights.

Frank-Wolfe The Frank-Wolfe method, also
known as the conditional gradient method, is an
optimization algorithm for solving constrained con-
vex, and more recently nonconvex, optimization

problems. The key feature of the Frank-Wolfe
method is how it handles the constraints. Instead
of projecting onto the constraint set via projections,
it uses a linear optimization oracle. Iteratively, the
method finds a linear approximation of the objec-
tive function within the feasible region and moves
towards the minimizer of this approximation.

The Frank-Wolfe algorithm is particularly suited
for problems in which linear optimization is eas-
ier than Euclidean projections. For this reason,
“projection free" methods were considered in the
machine learning community (Hazan, 2008; Jaggi,
2013; Hazan and Kale, 2012; Garber and Hazan,
2016). More recently nonconvex optimization
was considered using the Frank Wolfe method in
Lacoste-Julien (2016); Reddi et al. (2016).

3.2 Chain of LoRA

In this section we give the details of our optimiza-
tion framework. The key idea of our method is to
form a chain (sequence) of LoRAs and iteratively
learn the low-rank adaptation LORA modules. As
illustrated in Figure 1, our method is comprised of
three stages: Tune LoRA, Tie a knot, Extend the
chain. We first introduce notations, followed by an
explanation of the three stages in the workflow. We

also provide the detailed step-by-step procedure in
Algorithm 1.

Algorithm 1 Chain of LoRA (COLA)

1: Input: frozen pre-trained weights W, chain
knots {7i,...,Tm}, fine-tuning dataset D,
training objective L, total training iterations
T.
Initialize LoRA parameters to Ag, By
fort=1,...,Tdo
Sample minibatch B, C D
ift € {r,..., 7} then
Tie knot: Merge LoRA to backbone
weights W =W + B, Ay
7: Extend chain: Re-initialize LoRA pa-
rameters A; = Ay, By = By and opti-
mizer states
8: endif
: forward pass with LoRA
10: backward pass and update LoRA parameters

A A

(At7 Bt) = (At—1, Bt—l) _nt*@A,B»C(W)

11: end for

For a pre-trained LLM weight matrix
Woretrained € R¥*k we denote the weights
update occurred during fine-tuning as AW. Ideal
adaptation yields the optimal weights W* tailored
for the given task and the corresponding optimal
weight update AW™, as shown below.

wW* = Wpretrained + AW

In COLA, we propose to approximate AW™
with a chain (basically a sequence) of low-rank ma-
trix decompositions {(A1, B1),...,(Anm, Bu)}s
where A; € R"*F B, € R¥"i and r; <
min(d, k) for 1 < ¢ < M. Each low-rank tuple
(A;, B;) is obtained by optimizing

(2
arg g:g: C(Wpretrained + Z:l BjAj)7
j=
where L is the task-specific objective function.
COLA follows an iterative residual learning
paradigm. Fine-tuning each (A4;, B;) can be
viewed as learning the residual of AW™* —
Z;;l BjA;, which is an easier optimization prob-
lem compared to learning AW™* from scratch. We
hypothesize that Zf\i 1 BiA; approximates AW™
better than a single LoRA update B A, and we de-
sign a chaining framework to achieve this with less
computation compared to the baseline LoRA.

COLA forms a chain of LoRAs by iteratively
tuning, merging, and extending LoRA modules, as
depicted in Figure 1. We denote the length of the
chain in COLA as the number of residual LoRA
modules optimized. For COLA with a chain length
of M, the three sub-steps in Figure 1 are repeated
M times. Below we describe the three sub-steps in
detail.

Tune LoRA In this step, we perform standard
LoRA tuning, i.e., learning only the A and B ma-
trices and leaving all other model parameters un-
touched. At initialization of COLA, this step learns
LoRA modules (A1, By) on top of the frozen pre-
trained LLM weights W,,.ctrqineq. After the initial
phase of COLA, the LoRA modules (A;, B;) are
fine-tuned on top of fixed model weights incorpo-
rated with previously learned LoRAs’ weights. The
fixed model weights at the i-th iteration of COLA

is Wpretrained + Z;_:l BjAj'

Tie a knot After the current LoORA modules
(A;, B;) are trained, we merge them into the previ-
ously frozen LLM weights and we refer to this
step as "tie a knot". This way, we incorporate
the weight update, approximated by B;A;, into
the frozen model weights. The resulting frozen
model weights becomes Wpretrained'i_z:;:l BjA;.
This allows learning only the residual information
AW* — 23':1 BjA; for the next iteration. Addi-
tionally, merging the LoRA modules into the frozen
LLM helps reduce memory burden under limited re-
source scenarios. Instead of storing a list of LoORA
modules introduced in the COLA, merging them to
the frozen model weights in a running fashion helps
keep the GPU memory consumption the same as
training LoRA only once.

Extend the chain We extend the COLA chain
by re-initializing a new set of LoRA module
(Ai+1, Biy1) to learn the residual weights update
needed to adapt the LLM to certain task. In this
step, the newly introduced A;; adopts Gaussian
initialization and B, is initialized to zero, follow-
ing Hu et al. (2021). Additionally, we reset all
of the optimizer states, including but not limited
to the parameters to be optimized and the gradient
history.

4 Convergence of COLA and the
Non-convex Frank-Wolfe method

The COLA algorithm described in Figure 1 is mo-
tivated by and closely related to the Frank Wolfe

algorithm (Frank et al., 1956). To see this, notice
that COLA is an iterative algorithm whose itera-
tions are succinctly described by the equation

W W—i—argrgile(W—i—BA).

Taking the linear Taylor approximation we can
write

LW + BA)~ L(W)+ VL(W) x BA,

and thus, a constrained minimization over a set
I C R? can be seen to be approximately

arg min L(W+BA) ~ arg min VL(W)xBA.
BAeK BAeK

This is reminiscent of the Frank-Wolfe algorithm,
which was historically developed in the context
of linear programming. Below we analyze a vari-
ant of the Frank Wolfe algorithm for stochastic
non-convex smooth optimization. The algorithm
pseudo-code is given in Algorithm 2, and it is writ-
ten in COLA notations as an application to fine
tuning of LLM. The stochasticity is captured in
equation (1), where it is assumed that the direction
of the gradient is approximated up to € using a
stochastic gradient method.

Algorithm 2 Idealized COLA
Input: step sizes {n; € (0,1], t € [T}, initial
Wy e IC.
fort =1to7 do
Approximate via stochastic optimization

Vi €. arg min {WTVE(Wt)} (1)

Wt+1 — Wi + nt(Vt — Wt).
end for

Specifically, we assume that COLA performs
gradient updates such that after every epoch we
have that

T - T
V, VL(W;) < arg min {W VE(Wt)} +e.

Notice that we have replaced the low rank matrices
A, B with a single matrix W. This deviates from
the exact specification of COLA, but can be justi-
fied according to the following intuition. Linear
optimization over the trace norm ball results in a
rank one solution, as shown in the context of the
Frank Wolfe method in Hazan (2008); Allen-Zhu

et al. (2017). In COLA, we perform non-convex
optimization over A, B directly, and their rank can
be larger than one.

Below we give an analysis of this algorithm
which incorporates the stochastic approximation of
the iterates A;, By. Henceforth, let hy = L(W}) —
L(W*), and

o Lo eovy v - W0}

The latter quantity is a metric of convergence
in non-convex optimization, which is sometimes
called the Frank-Wolfe gap. Notice that g; is zero
if and only if the projected gradient of £ at W is
Zero.

The following theorem establishes that Algo-
rithm 2 guarantees average duality gap approaching
zero for stochastic smooth non-convex optimiza-
tion, as long as the distribution shift is bounded
sublinearly with time.

Theorem 4.1. Algorithm 2 applied to a sequence
of stochastic gradients of B-smooth non-convex

functions that are bounded in K by M, with step

sizes ny = D\\%I—T attains the following convergence

guarantee

T

% Z gt < 2\/\7?) +e
t=1
Proof. We denote Vi = V.L(W;). For any set of
step sizes, we have
hiy1 = L(Wiy1) — L(W™)
= LWy + (Ve — W) — L(WF)
< LWy) — LOW*) + (Ve — W) TV,
025 Ve — W2
< LWy) = LOV*) +m(Ve — W) TV
07 5D
< ht +ne(ge +) + 77?%])2. V., choice.

smoothness

Here we denoted by D the diameter of the set K.

. — 2
We reached the equation g4 +¢ < % +ny B%.
Summing up over all iterations and normalizing we

get,

T

1 _

T g g+e < L,ﬂf@ +nBD?
t=1

< 2 +nBD?

< 2V/MBD
—= \/T i
which implies the Theorem. O

Task

|SST-2| WSC | CB | WIC |BoolQ | MultiRC | RTE | DROP | SQuAD | COPA | ReCoRD

LoRA
COLA (ours)
relative gains

93.16
93.32
0.17%

56.53
60.19
6.47%

75.35
76.42
1.42%

63.47
64.26
1.24%

70.70
72.08

1.95%

68.94 | 72.49 | 30.89 | 83.23 | 75.80 | 70.80
70.63 | 74.15 | 31.49 | 83.56 | 76.80 | 71.02
245% [2.29%(1.94% | 0.39% |1.31%| 0.31%

Finetune

| 93.33 | 60.00 | 72.50 | 62.73 | 68.44 | 7036 | 71.62 | 31.34 | 83.07 | 77.50 | 72.14

Table 1: Experiments on OPT-1.3B with 1,000 test examples over various tasks. Task performance is reported after
averaging over five random seeds. COLA consistently outperforms LoRA across all tasks.

5 Experimental Setup

In this section, we initially outline the tasks and
models, followed by an introduction to the methods
under comparison in our study. Finally, we provide
details on the implementation.

5.1 Models and Tasks

Models We experiment with OPT-1.3B (Zhang
et al., 2022) and Llama2-7B (Touvron et al., 2023).
We use the pre-trained checkpoints from Hugging-
Face for both models.

Datasets We evaluate the effectiveness of our
method and compare it with the LoRA baseline
on task adaptation across classification, multiple-
choice, and generation tasks. Following the bench-
mark selection in Malladi et al. (2023), we use SST-
2, WSC, CB, WIC, BoolQ, MultiRC, and RTE for
classification tasks. For multiple-choice tasks, we
evaluate on COPA and ReCoRD. For generation
tasks, we use DROP and SQuAD.

Methods Compared We compare COLA with
LoRA and full parameter fine-tuning. For Llama2-
7B experiments, we also add in-context learning
(ICL) and 0-shot performance.

5.2 Implementation Details

We implemented our method with the PyTorch and
Transformers library (Wolf et al., 2020). All ex-
periments are carried out on NVIDIA A100 (80G)
GPU.

For comprehensive experimental details, includ-
ing information on the dataset, hyperparameters
and LoRA implementations, please refer to Ap-
pendix A.1.

6 Results and analysis

6.1 Main Results

We report the test performance of our method and
baseline across various tasks in this section. The

experiment results on OPT-1.3B are detailed in Ta-
ble 1, and the results for Llama2-7B are provided in
Table 2. Notably, our method consistently outper-
forms LoRA on all datasets under the same training
budget and inference cost, showcasing its superior
performance.

Specifically, for OPT-1.3B experiments, COLA
brings a performance boost to LoRA by 3.66 (rel-
ative improvement of 6.47%), 1.38 (relative im-
provement of 1.95%), 1.66 (relative improvement
of 2.29 %) on tasks WSC, BoolQ and RTE, re-
spectively. For Llama2-7B experiments, COLA
boosts the test score on WSC from 57.30 to 59.80,
which corresponds to a 2.5 gain and 4.36% relative
improvement.

In our reported results, as detailed in Table 1
and Table 2, we maintain consistency by setting
the rank of all injected modules in the sequence to
8, aligning with the baseline LoRA setup. Addi-
tionally, we use an equal training epoch budget for
different methods and thus ensuring the same train-
ing computation cost, as explained in Appendix
AS.

6.2 Ablation Study

Different number of LoRAs in the chain As de-
scribed in Section 3.2, COLA consists of repeated
iterations of LoRA tuning and merging. We de-
note the length of COLA as the number of LoRAs
learned and merged in the fine-tuning process. To
investigate the effect of the chain length of COLA
on task adaptation performance, we further con-
duct experiments by varying the length of COLA.
Specifically, we studied chain length of 1, 2, 3 and
present the findings in Table 3 and Figure 2. In
Figure 2, test score refers to test accuracy for tasks
WSC, CB, Copa, MultiRC and RTE. For SQuAD,
test score specifically denotes the f1 score.

Here, chain length of 1 corresponds to the base-
line LoRA fine-tuning. All experiments are con-
ducted with a total of 5 training epochs. For exam-
ple, in COLA experiments with chain length of 2,

Task

| WSC | CB | RTE | Copa | SQuAD

LoRA 57.30 | 91.78 | 85.70 | 84.59 | 90.66
COLA (ours) 59.80 | 93.21 | 86.21 | 85.60 | 90.76
relative improvement | 4.36% | 1.56% | 0.59% | 1.19% | 0.11%
Finetune 62.30 | 90.35 | 86.35 | 86.40 | 91.19
ICL 62.50 | 82.14 | 72.56 | 91.00 | 86.81
0-shot 36.53 | 32.14 | 62.09 | 79.00 | 55.84

Table 2: Experiments on Llama2-7B with 1,000 test examples over various tasks. Task performance is reported after
averaging over five random seeds. COLA consistently outperforms LoRA across all tasks.

| WSC

56.53 (£ 7.67)
59.81 (< 4.10)
60.19 (+ 3.77)

| cB

75.35 (£ 4.84)
76.78 (£ 6.38)
76.42 (+ 4.97)

SQuAD MultiRC

83.23 (& 1.42) 68.94 (< 3.06)
83.28 (& 1.35) 69.44 (+ 1.55)
83.55 (+ 0.80) 70.63 (£ 2.12)

Copa RTE

75.8 (£2.40) 72.49 (£ 2.39)
76.8 (£ 1.83) 72.63 (£ 1.46)
76.8 (£ 1.60) 74.15 (£ 1.36)

length =1
length =2
length =3

length =1
length =2
length =3

Table 3: Evaluation of COLA with varying chain length.
Test score across tasks is reported using 5 random seeds
and is presented in the “average (4 standard deviation)”
format. The highest average performance for each task
is highlighted in bold.

the first LoRA training phase lasts from epoch 1 to
epoch 3. After the first LORA module merges with
the pre-trained LLM weights and optimizer states
reinitialize, the second LoRA starts from epoch 4 to
epoch 5, which in total uses the same 5 total train-
ing epochs. All experiments results are reported
over five random seeds.

As shown in Figure 2, there is a growing trend of
test accuracy as the chain length increases across
tasks. This is consistent with our hypothesis that
residual learning of LoRA modules will lead to a
better approximation of the optimal weight update
to the fixed pre-trained LLM for task adaptation.
For a majority of tasks, COLA is more robust in
terms of generalization error compared to baseline
LoRA, as shown by COLA’s smaller standard devi-
ations.

Different base optimizer We conduct experi-
ments on the COLA framework with different base
optimizers to show its effectiveness. We consider
swapping the default AdamW optimizer with the
SGD and AdaGrad (Duchi et al., 2011) optimizer.
This ablation study is conducted on OPT-1.3B fol-
lowing the same experiment setup in Appendix A.1.

WsC CB
o 5421 83.2
£ 6114 80.6 -
S 5&1—.',//"—4. 78.1 S ~—
o 55.0 75.5 {@—
$ s1.9 73.0 A
* 489 1 : — 70.4 4 |
SQUAD Copa
o 8461 78.6
5 841 77.6 4
g 8315 76.5—/”—‘
w2 829 75.5 4
@ 82.4 74.4 1
* slety . = 7341 :
MultiRC RTE
o 7281 75.5 4
5 714+ o] 7441
R R — 73.3 4
o 68.6% 72.3
D 67.3 71.2 4
*~ 65.9 70.1 4,

2 2
chain length chain length

Figure 2: Test performance of COLA with varying chain
length across tasks. Results are reported after averaging
five different seeds and the shaded area corresponds to
standard deviation. The general trend is that the test
accuracy increases with the chain length.

We report the average test score over five random
seeds in Table 5. For both SGD and AdaGrad as
the base optimizer, COLA outperforms the baseline
LoRA across tasks, demonstrating the robustness
of our framework.

For fine-tuning with SGD, the learning rate grid
we searched is {2 x 1073,5 x 1073, 1 x 1072, 2 x
1072,5 x 10~2}. For Adagrad, we search learn-
ing rate from {1 x 1073,8 x 10745 x 107%,1 x
1074,5 x 1075},

Rank step-down Since COLA operates on a
residual learning paradigm, we are interested in
exploring whether the residual weight updates can
be learned with even lower ranks. This could poten-
tially reduce the number of learnable parameters
and computational costs while maintaining satisfac-
tory test performance. Therefore, instead of using
a chain of LoRAs with a fixed rank of eight, as de-
scribed in Section 6.1, we conduct further studies

CB

WSC

WIC

Methods test score train FLOPs saved test score train FLOPs saved test score train FLOPs saved
LoRA 75.35 - 56.53 - 63.47 -

COLA (8,8) 76.78 - 59.81 - 63.51

COLA (8,6) 76.43 3.60x10M 58.26 4.28x1010 63.85 5.21x10M1
COLA (8,4) 7535 7.20x 101 57.30 8.56x 1010 64.04 1.04x1012
COLA (8,2) 76.07 1.08x10'2 57.30 1.28x 101 63.19 1.56x1012

Table 4: COLA rank step-down experiments. Test scores and train FLOPs saved compared to LoRA are reported.
Method COLA (71, r2) indicates that the first iteration learns LoRAs with rank 7, and the second iteration learns

LoRAs with rank r. All numbers are reported over five random seeds. COLA (8,8) uses the same amount of

T3]

training FLOPs as the baseline, as denoted by

| WSC| CB | WIC | Copa | SQuUAD

SGD LoRA 52.31169.29 |58.97|76.60 | 82.19
COLA (ours) | 55.0 |70.71|60.40 | 77.40 | 82.63
AdaGrad LoRA 56.73169.29 | 63.42|76.60 | 83.09
COLA (ours) | 61.92 | 73.21 | 64.23 | 76.60 | 83.24

Table 5: Experiments of COLA with different base
optimizers: SGD and AdaGrad.

on lowering the rank.

Here, we consider a simple setting of COLA
with length of two. We fix the rank to 8 for the
first three epochs and set the rank for the remaining
epochs to either 2, 4, 6, or 8. We show the results in
Figure 3 and report the test performance in Table 4.

Figure 3 shows that COLA with rank step-down
outperforms LoRA with a fixed rank of 8 for all
tasks (with the exception of one data point—WIC
with rank 2). Thus COLA with rank step-down
offers both superior generalization ability over stan-
dard LoRA and lower computational cost. In ad-
dition, our results indicate that the optimal rank to
use for COLA is task-dependent. The CB and WSC
tasks both benefit from higher rank LoRA modules
in the second learning phase. The WIC task, on
the other hand, surprisingly shows maximal test
accuracy at a rank of 4 for (As, Bo).

Computation comparison Table 4 provides a
detailed comparison of the training computation
cost between COLA of different rank step-down
configurations and the baseline. We also include
discussion on computational cost in Appendix A.5.

The training FLOPs are obtained from the Hug-
gingFace trainer state, and are reported as the ag-
gregate over five random seeds. The baseline LoORA
uses a fixed rank of 8 throughout training, while
COLA starts with rank 8 and continues with dif-
ferent ranks in the residual learning phase. As ex-

CB WSC WIC
76.8
& coLA u 505 COLA 64.0
76.6 7 —— LoRA LoRA
59.0
E 76.4 63.8
5 72 . 585
© 76.0 58.0 63.6 Z
G s Ny AP IR SR
= 373 63.4 /
e 57.0 / —*— COLA
A== —W====F==—o 56.5 63214 =j=LORA

2 4 6 8 2 4 6 8 2 4 6 8

rank (A;,B;) rank (A, B)

Figure 3: COLA with rank step-down. Experiments are
conducted with COLA of length 2 where (A;, B;) has
a fixed rank of 8, and (As, Bs) rank is as shown in the
figure.

pected, stepping down the rank in the chain results
in higher FLOPs savings. Overall, COLA offers
lower generalization error with less compute.

Additional study We conduct additional abla-
tion studies on COLA, exploring low-resource and
large-scale settings, as well as the effects of aug-
mentation ranks. For detailed results, please see
Appendix A.2, A.3 and A 4.

7 Conclusions and future work

In this work, we introduce Chain of LoRA (COLA)
for efficient fine-tuning of large language mod-
els. The idea is to use an iterative low rank resid-
ual learning procedure to approximate the optimal
weight update needed for task adaptation. Exper-
imental results show that COLA consistently out-
performs LoRA albeit using the same, or less, com-
putational resources.

Future work may explore automating the selec-
tion of hyperparamters involved in the optimization
procedure such as the location to extend the COLA
chain and the learning rate schedule. For example,
one direction is to use the convergence behavior of
the loss to determine where and whether to intro-
duce additional LoRAs.

Limitations

Due to the fine-tuning cost, we conduct experi-
ments and evaluation on subsets of training, valida-
tion and test data. For ablation study, we evaluate
on representative tasks. Future work could involve
investigating a wider variety of tasks.

References

Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, and Yuanzhi
Li. 2017. Linear convergence of a frank-wolfe type
algorithm over trace-norm balls. Advances in neural
information processing systems, 30.

Ankur Bapna and Orhan Firat. 2019. Simple, scal-
able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1538—
1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023. Longlora:
Efficient fine-tuning of long-context large language
models. arXiv preprint arXiv:2309.12307.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning
research, 12(7).

Marguerite Frank, Philip Wolfe, et al. 1956. An algo-
rithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95-110.

Dan Garber and Elad Hazan. 2016. A linearly con-
vergent variant of the conditional gradient algorithm
under strong convexity, with applications to online
and stochastic optimization. SIAM Journal on Opti-
mization, 26(3):1493-1528.

Elad Hazan. 2008. Sparse approximate solutions to
semidefinite programs. In LATIN, pages 306-316.

Elad Hazan and Satyen Kale. 2012. Projection-free
online learning. In Proceedings of the 29th Interna-
tional Conference on Machine Learning, ICML 2012,
Edinburgh, Scotland, UK, June 26 - July 1, 2012.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.

Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Martin Jaggi. 2013. Revisiting frank-wolfe: Projection-
free sparse convex optimization. In ICML.

Simon Lacoste-Julien. 2016. Convergence rate of frank-
wolfe for non-convex objectives. arXiv preprint
arXiv:1607.00345.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association for
Computational Linguistics.

Vladislav Lialin, Namrata Shivagunde, Sherin Muck-
atira, and Anna Rumshisky. 2023. Stack more layers
differently: High-rank training through low-rank up-
dates. arXiv preprint arXiv:2307.05695.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations (ICLR).

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transform-

ers via shared hypernetworks. arXiv preprint
arXiv:2106.04489.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D Lee, Danqgi Chen, and Sanjeev
Arora. 2023. Fine-tuning language models with just
forward passes. arXiv preprint arXiv:2305.17333.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

Chengwei Qin, Wenhan Xia, Fangkai Jiao, and Shafiq
Joty. 2023. Improving in-context learning via bidirec-
tional alignment. arXiv preprint arXiv:2312.17055.

https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165

Sashank J Reddi, Suvrit Sra, Barnabas Péczos, and
Alex Smola. 2016. Stochastic frank-wolfe methods
for nonconvex optimization. In 2016 54th annual
Allerton conference on communication, control, and
computing (Allerton), pages 1244—1251. IEEE.

Adithya Renduchintala, Tugrul Konuk, and Oleksii
Kuchaiev. 2023. Tied-lora: Enhacing parameter ef-
ficiency of lora with weight tying. arXiv preprint
arXiv:2311.09578.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman
Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al.
2023. S-lora: Serving thousands of concurrent lora
adapters. arXiv preprint arXiv:2311.03285.

Asa Cooper Stickland and Iain Murray. 2019. BERT
and PALs: Projected attention layers for efficient
adaptation in multi-task learning. In Proceedings of
the 36th International Conference on Machine Learn-

ing, volume 97 of Proceedings of Machine Learning
Research, pages 5986-5995. PMLR.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guan-
nan Zhang. 2023. Multilora: Democratizing lora
for better multi-task learning. arXiv preprint
arXiv:2311.11501.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-

derstanding and generation. arXiv preprint
arXiv:2109.00859.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38—45.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for
parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

10

A Appendix

A.1 Implementation Details

We adopt the experimental setup outlined in Mal-
ladi et al. (2023), where we randomly select 1000
examples for training, 500 for validation, and an-
other 1000 for testing across each dataset under
consideration. In COLA training, we use AdamW
(Loshchilov and Hutter, 2019) as the default base
optimizer and train for a total of 5 epochs. For a
fair comparison, we keep the total epoch number
consistent with our baseline. A linear learning rate
schedule is applied with the initial learning rate
selected from {1 x 1073,8 x 1074,5 x 10741 x
10745 x 107} for both COLA and LoRA ex-
periments. The batch size is set to 8 for OPT-1.3B
experiments and 4 for Llama2-7B experiments. For
the Llama2-7B full parameter fine-tuning baseline,
we report the best results by searching the learn-
ing rate from {1 x 1077,5 x 1077,8 x 1077, 1 x
1076,5x1076,8 x1076,1x 107%,5 x 1075, 8 x
107°}. For full parameter fine-tuning of OPT-1.3B,
the learning rate grid is set to {1 x 107¢,5 x
10768 x 107%,1 x 107°,5 x 107°,8 x 107°}.
The reported results represent the best score af-
ter hyperparameter grid-search for all experiments,
conducted over five random seeds.

In implementing LoRA, we adhere to the prac-
tice outlined in Hu et al. (2021), introducing train-
able linear low-rank modules to both query and
value projections within all self-attention layers.
While some research has explored the application
of LoRA to all projection matrices or all weight
matrices, the specific choice of where to apply
LoRA is not a pivotal aspect of our work (Zhang
et al., 2023). For OPT experiments, we incorpo-
rate bias into the injected LoRA modules, aligning
with the approach taken in Mahabadi et al. (2021).
Conversely, in Llama-2 experiments, we deliber-
ately disable bias in LoRA to ensure module key
matching with the pre-trained checkpoint "meta-
llama/Llama-2-7b-hf." We set the rank of LoRA
(denoted as "r") to 8 and « to 16, where the ratio
a/r is employed to scale the weight updates.

A.2 Performance of COLA in low data setting

In the preceding sections, we report performance
of COLA with the experiment setup detailed in
Appendix A.1, where we use 1000 training sam-
ples, 500 validation samples, and 1000 test samples
across each dataset under consideration. LoRA is
extremely effective in low-resource scenarios as

Task

Model SST2 WSC CB WIC BoolQ MultiRC RTE SQuAD DROP Copa ReCord
100 data
LoRA 89.80 61.60 72.76 58.80 61.60 59.00 59.20 78.99 2799 75.60 70.00
COLA 90.00 63.20 73.21 60.40 64.19 60.60 63.40 79.63 29.01 76.19 70.20
Relative gains 0.22% 2.60% 0.62% 2.72% 4.20% 2.71% 7.09% 081% 3.64% 0.78% 0.28%
50 data
LoRA 87.60 60.80 70.00 60.00 64.80 56.80 59.20 78.03 2232 76.40 68.80
COLA 89.60 61.60 70.80 62.40 67.60 61.20 62.80 78.59 24.10 78.00 70.00
Relative gains 2.28% 131% 1.14% 4.00% 4.32% 775% 6.08% 0.72% 797% 2.09% 1.74%
Table 6: Performance comparison of LoRA and COLA under low-resource setting
WIC SST2 BoolQ Tasks
LoRA 68.18 94.56 77.02 SST2 WSC WIC RTE SQuAD

COLA 69.53 94.89 77.66 rank=16
Table 7: Performance Comparison of LoRA and COLA LoRA 93.07 5596 6231 7270 83.22
with 5000 training samples. COLA 93.53 57.88 62.60 73.72 83.57

rank=32
well. Consequently, we extend our investigations LoRA 93.14 5750 6294 7249 83.18
of COLA under low-data conditions to assess its COLA 9356 61.15 63.73 74.51 83.57

effectiveness. rank=64
Shpfgz)ﬁcauyj we Conflder g"s’“(;res‘’“_rce Se““igs LoRA 9295 5480 6228 75.66 82.97
Wit training samples an training samples. ~y1 A 9362 63.08 6423 75.60 83.44

We report the test results of OPT-1.3B in Table 6.
For experiments with 100 training samples, we ran-
domly select 100 test samples for evaluation. For
experiments on 50 training samples, we randomly
select 50 test samples.

The test results in Table 6 conclusively demon-
strate that COLA consistently surpasses the base-
line performance under low-resource settings. For
training with 100 samples, COLA achieves up to
7.09% test score improvement on top of LoRA. For
training with 50 samples, COLA achieves up to
7.97% test score relative gains compared to LoRA.

A.3 Performance of COLA in large scale
setting

To evaluate the scalability and efficacy of COLA
in larger-scale tasks with substantial fine-tuning
datasets, we conduct experiments involving 5000
training samples while maintaining the experimen-
tal setup as previously outlined.

Notably, among the 11 benchmark tasks con-
sidered in this research, only seven tasks possess
training sets exceeding the 5000-sample thresh-
old. We experiment on three representative tasks
and present the average test scores with five ran-

11

Table 8: Experiments with varying LoRA ranks. Test
score across tasks is reported using 5 random seeds. The
highest average performance for each task is highlighted
in bold.

dom seeds for COLA and LoRA in Table 7. As
the results show, COLA consistently outperforms
the baseline in larger-scale fine-tuning setting with
5000 training samples.

A.4 Effects of varying augmentation ranks

The main results reported so far are obtained with
the augmentation rank set to 8. This choice of
rank is primarily guided by empirical performance
considerations and aligns with the hyper-parameter
selection utilized in (Malladi et al., 2023). (Hu
et al., 2021) systematically explored the impact
of varying the augmentation matrix’s rank used in
LoRA.

In this context, we focus on evaluating our frame-
work’s performance under different rank settings.
To this end, we conduct three additional sets of
experiments with ranks set to 16, 32, and 64, as
demonstrated in Table 8. We present the baseline

LoRA results corresponding to each rank across
various tasks. For COLA’s performance under each
rank, we report the test scores of the three-stage
COLA configuration, wherein all stages employ a
consistent rank.

From Table 8, we observe consistent findings
akin to those reported in (Hu et al., 2021), indi-
cating that varying rank of LoRA offers competi-
tive performance with the optimal rank being task-
dependent. Nonetheless, COLA shows superiority
to LoRA across tasks and ranks.

A.5 Training and Inference cost of COLA

The training cost of COLA is determined by the
rank of the LoORA modules used to form the chain.
The training computation for COLA is the same
as LoRA when the rank is the same. In COLA,
progressively lowering the rank of the LoRA mod-
ules may be an effective strategy to approximate
optimal residual weight updates for specific tasks
and lower the overall training cost. We explore this
direction in our experiment section. At inference,
all of the learned B;A; can be integrated into the
original model weights. Since Wirerainea has the
same shape as B;A;, the final integrated model
weight has the same number of parameters as the
original pre-trained LLM. Therefore, no latency
overhead is introduced during inference.

12

	Introduction
	Related Work
	Our Method
	Preliminaries
	Chain of LoRA

	Convergence of COLA and the Non-convex Frank-Wolfe method
	Experimental Setup
	Models and Tasks
	Implementation Details

	Results and analysis
	Main Results
	Ablation Study

	Conclusions and future work
	Appendix
	Implementation Details
	Performance of COLA in low data setting
	Performance of COLA in large scale setting
	Effects of varying augmentation ranks
	Training and Inference cost of COLA

