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Abstract

Aleatoric uncertainty captures the inherent randomness of the data, such as mea-
surement noise. In Bayesian regression, we often use a Gaussian observation
model, where we control the level of aleatoric uncertainty with a noise variance pa-
rameter. By contrast, for Bayesian classification we use a categorical distribution
with no mechanism to represent our beliefs about aleatoric uncertainty. Our work
shows that explicitly accounting for aleatoric uncertainty significantly improves
the performance of Bayesian neural networks. We note that many standard bench-
marks, such as CIFAR-10, have essentially no aleatoric uncertainty. Moreover,
we show that data augmentation in approximate inference softens the likelihood,
leading to underconfidence and misrepresenting our beliefs about aleatoric uncer-
tainty. Accordingly, we find that a cold posterior, tempered by a power greater
than one, often more honestly reflects our beliefs about aleatoric uncertainty than
no tempering — providing an explicit link between data augmentation and cold
posteriors. We further show that we can match or exceed the performance of
posterior tempering by using a Dirichlet observation model, where we explicitly
control the level of aleatoric uncertainty, without any need for tempering.

1 Introduction

Uncertainty is often compartmentalized into epistemic and aleatoric uncertainty [27, 33, 41]. Epis-
temic uncertainty, sometimes called model uncertainty, is the reducible uncertainty about which
solution is correct given limited information. Bayesian methods naturally represent epistemic uncer-
tainty through a distribution over model parameters, leading to a posterior distribution over functions
that are consistent with data. As we observe more data, this posterior concentrates around a single
solution. Aleatoric uncertainty is the irreducible uncertainty in data, often representing measurement
noise in regression, or mislabeled training points in classification [e.g. 4]. Although measurement
noise can be reduced, for example, with better instrumentation, it is often a fixed property of the
data we are given. Correctly expressing our assumptions about aleatoric uncertainty is crucial for
achieving good predictive performance, both with Bayesian and non-Bayesian models [56].

In particular, our assumptions about aleatoric uncertainty profoundly affect predictive accuracy, not
only predictive uncertainty.1 In Figure 1(a,b) we show the predictive distributions of two Gaussian
process (GP) regression models [54] trained on the same data and using the same RBF kernel func-
tion. The only difference between these models is their assumptions about the aleatoric uncertainty.
The model in Figure 1(a) assumes a high observation noise (each point is corrupted by N (0,�2),

⇤Equal contribution.
1Epistemic uncertainty also has a significant effect on predictive accuracy, see Wilson and Izmailov [62].
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(a) GP regression, �2 = 1 (b) GP regression, �2 = 10�2 (c) Classification

Figure 1: Effect of aleatoric uncertainty. In regression, we can express our assumptions about
aleatoric uncertainty by setting the observation noise parameter �2. (a): GP regression with high
observation noise �

2 explains many of the observations with noise. The datapoints are shown with
purple circles, the dashed line shows the predictive mean, and the shaded region shows one standard
deviation of the predictive distribution. (b): GP regression on the same data, but with low obser-
vation noise �

2 fits the training data nearly perfectly. (c): In classification, we do not have a direct
way to specify our assumptions about aleatoric uncertainty. We might use the same Bayesian neural
network model if we know the data contains label noise (Scenario A) and if we know that there is
no label noise (Scenario B), leading to poor performance in at least one of these scenarios.

with �
2 = 1). Consequently, this model explains many of the observations with noise — such that

the predictive mean does not closely fit the training datapoints. The model in Figure 1(b) assumes a
low observation noise (�2 = 10�2), and consequently the predictive mean runs through the training
data, leading to very different predictions compared to the model in Figure 1(a).

Our assumptions about the aleatoric uncertainty are just as important in classification. We illustrate
this point in Figure 1(c), where we fix a dataset and consider two possible scenarios. Scenario A:
suppose we know that the data contains label noise, with some incorrectly labeled training examples.
In this case, it is reasonable to believe that the data points shown in red in Figure 1(c) are highly likely
to be incorrectly labeled, and we should opt for a solution with a decision boundary shown with a
dotted red line. Scenario B: now, suppose that we know that the data are correctly labeled. In this
case, we want our model to perfectly classify all the training data and would prefer a solution shown
by the dashed blue line. Both of these solutions are reasonable descriptions of the data, and we can
only make an informed choice between them by incorporating our assumptions about the aleatoric
uncertainty. While in regression problems we can easily express our assumptions about aleatoric
uncertainty, such as through a noise variance parameter in a Gaussian likelihood, in classification
we do not have a direct way to express these beliefs. Indeed, in practice we might use the same
Bayesian neural network (BNN) with the same likelihood and prior in both scenarios A and B
above, necessarily leading to poor performance in at least one of these scenarios.

In this paper, we explicitly characterize aleatoric uncertainty in BNN classification. We show that
cold posteriors [61] more honestly reflect our beliefs about aleatoric uncertainty than standard
Bayesian posteriors. Further building on our analysis of aleatoric uncertainty in Bayesian classi-
fication, we describe an alternative to cold posteriors called the noisy Dirichlet model. The noisy
Dirichlet model can be viewed as simply modifying the prior over the parameters of a BNN to put
more mass on the solutions that make highly confident predictions on the training data, but only in
scenarios with low aleatoric uncertainty. Unlike standard BNN classifiers, we get control over the
aleatoric uncertainty through the prior. This approach achieves competitive performance on image
classification problems with a valid Bayesian model and removes the cold posterior effect.

Finally, we show theoretically how data augmentation counterintuitively softens the likelihood, lead-
ing to solutions that underfit the training data. These results precisely characterize the empirical link
between data augmentation and the success of cold posteriors observed by Izmailov et al. [31] and
Fortuin et al. [14], and show that cold posteriors in fact serve to correct for the effects of data
augmentation on aleatoric uncertainty.

2 Related Work

Early work on Bayesian neural networks focused on hyperparameter learning and mitigating over-
fitting, using Laplace approximations, variational methods, and MCMC [e.g. 37, 25, 47]. More
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recently, Wilson and Izmailov [62] show how Bayesian model averaging is especially compelling
for modern deep neural networks. A number of recent works have focused on making Bayesian
deep learning practical [e.g., 63, 38, 49, 65, 12, 11], with improved performance, and essentially no
overhead.

Modeling label noise. In the context of label noise for classification, prior works focus on mod-
ifying the loss function. For example, Collier et al. [9, 10] propose input-dependent noise losses
for label noise in classification to improve accuracy, but do not focus on the uncertainty estimates.
Similarly, Zhang and Sabuncu [66] and Feng et al. [13] propose modifications of the standard cross-
entropy loss to provide increased robustness to label noise, but do not focus on modeling the inherent
uncertainty in label noise settings.

Dirichlet-based uncertainty (DBU). Recent literature proposes neural networks where the output
is a Dirichlet distribution, capturing both the epistemic and aleatoric uncertainty [41, 57, 40, 42, 7,
67, 46, 59, 58, 34]. These models are generally proposed as efficient alternatives to ensembles
and Bayesian models, and targeted for improved uncertainty quantification, anomaly detection and
adversarial robustness. Joo et al. [32] reformulate the problem of minimizing the softmax cross-
entropy loss over the data into a collection of distribution matching problems. In this paper, we
study the Dirichlet distributions associated with the posterior over the predictive class probabilities,
which arise naturally in standard Bayesian classification models. Contrary to the methods in the
DBU family, we do not modify the observation model or the structure of the network.

Cold posterior effect. Wenzel et al. [61] demonstrated with several examples that raising the pos-
terior to a power 1/T , with T < 1, in conjunction with SGLD inference, improves performance
over classical training, but T = 1 can provide worse results than classical training, in what has been
termed the cold posterior effect. However, in a study using HMC inference, Izmailov et al. [31]
showed that for all cases considered in Wenzel et al. [61] there is no cold posterior effect when data
augmentation is removed. The sufficiency of data augmentation to observe the cold posterior effect
has been confirmed by several works using SG-MCMC inference [14, 48, 45]. Several works have
suggested that misspecified priors explain cold posteriors, arguing that the current default choice of
isotropic Gaussian priors in BNNs are inadequate [61, 64, 14]. However, Fortuin et al. [14] find
that the cold posterior effect cannot be alleviated for convolutional neural networks by using heavy
tailed or correlated priors under data augmentation. With HMC inference and no data augmentation,
Izmailov et al. [31] also show that standard Gaussian priors perform similarly to a range of other pri-
ors, such as heavy-tailed logistic or mixtures of Gaussian priors, and generally are high performing.
Noci et al. [48] argue that many different factors — likelihoods, priors, data augmentation — can
cause cold posteriors, and that there may be no one cause in general. Aitchison [2] argue that BNN
likelihoods are misspecified since many benchmark datasets have been carefully curated by human
labelers. They also show that posterior tempering is less helpful in the presence of label noise. Ad-
lam et al. [1] also consider model misspecification, showing a cold posterior effect can arise even
with exact inference in GP regression when the aleatoric uncertainty is misestimated. Nabarro et al.
[45] modify the likelihood to accommodate data augmentation, using as the observation model the
average of the neural network outputs over augmentations, but still find a cold posterior effect. In
concurrent work, Bachmann et al. [3] provide an alternative argument to how data augmentations
introduce misspecification due to correlation between errors which cold posteriors correct for.

Our paper makes several distinctive contributions in the context of prior work: (1) we argue that
standard likelihoods do not represent our beliefs about aleatoric uncertainty, and that standard bench-
marks have essentially no aleatoric uncertainty; (2) we show how tempering and data augmentation
specify aleatoric uncertainty, beyond curation; (3) we show the precise way in which data augmen-
tation with SGLD leads to underconfidence in the likelihood, a counterintuitive result which finally
resolves the empirical connection between data augmentation and cold posteriors; (4) we show that a
T < 1, particularly with data augmentation, is a more honest reflection of our beliefs about aleatoric
uncertainty than T = 1; (5) we show how the noisy Dirichlet likelihood, originally used for tractable
GP classification [43], can naturally reflect our beliefs about aleatoric uncertainty, and for the first
time remove the cold posterior effect in the presence of data augmentation.
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3 Background

Bayesian Model Averaging. With Bayesian inference, we aim to infer the posterior distribu-
tion over parameters having observed a dataset D = {(xi, yi)}Ni=1 of input-output pairs, given
by p(w | D) / p(D | w)p(w) for a given observation likelihood under the i.i.d. assumption
p(D | w) =

Q
(x,y)2D p(y | x,w), and prior over parameters p(w). For any novel input x?, we

compute the posterior predictive distribution via Bayesian model averaging (BMA) given by

p(y? | x?) =

Z
p(y? | x?, w)p(w | D)dw. (1)

The BMA integral in Eq. (1) cannot generally be expressed in closed form for a Bayesian neural
network, and is typically approximated with variational inference (VI), the Laplace approximation,
or Markov Chain Monte Carlo (MCMC) [e.g., 62, 44].

Bayesian Classification. For a C-class classification problem, a standard choice of observation
likelihood is the categorical distribution p(y | x,w) = Cat([⇡1, . . . ,⇡C ]), where each class proba-
bility is computed using a softmax transform of logits g(x;w) = [g1(x;w), . . . , gC(x;w)] 2 RC as
⇡c / fc(x;w) = exp{gc(x;w)}, and hence called the softmax likelihood. The prior over parameters
p(w) is often chosen to be an isotropic Gaussian N

�
0,�2

I
�

with some fixed variance �
2. Approx-

imate posterior samples are often obtained via SGLD [60], and used for a Monte Carlo estimator of
the BMA in Eq. (1).

Cold Posteriors. Let U(w) = � log p(D | w)� log p(w) denote the posterior energy function of
a BNN. Following Wenzel et al. [61], we define a cold posterior for T < 1 as

pcold(w | D) / exp

⇢
� 1

T
U(w)

�
, (2)

which effectively raises both the likelihood and the prior to a power 1/T . T = 1 recovers the
standard Bayes’ posterior. A tempered likelihood posterior (e.g. [17]) only raises the likelihood to
a power 1/T as

ptemp(w | D) / p(D | w)1/T p(w). (3)

4 Aleatoric Uncertainty in Bayesian Classification

We will now discuss how we represent aleatoric uncertainty in classification (Section 4.1), how
tempering reduces aleatoric uncertainty (Section 4.2), and how we can explicitly represent aleatoric
uncertainty without tempering with a noisy Dirichlet observation model (Section 4.3).

4.1 How do we represent aleatoric uncertainty in classification?

Let us consider the Bayesian neural network posterior over parameters w in a classification problem:
p(w | D) / p(w)

Q
(x,y)2D fy(x;w), where we denote the output of the softmax layer of the model

corresponding to class y on input x as fy(x;w).

Alternatively, we can think of the class probability vectors
f(x) , f(x;w) = [f1(x;w), . . . , fC(x;w)] as latent variables2 in a C � 1 simplex �C�1,
such that

PC
c=1 fc(x;w) = 1. A prior distribution p(w) over the parameters of the network implies

a joint prior distribution over f = {f(x)}x2D. We can then do inference directly in function space
over the variables f , yielding a posterior p(f | D) equal to the distribution over f implied by the the
parameter space posterior p(w | D) [see e.g. 54, Ch. 2.2]. We will use this function space posterior
to analyze the assumptions on aleatoric uncertainty encoded by the Bayesian classification models.

Let us consider the likelihood p(y | f(x)) for a single observation (x, y):
p(y | f(x)) = fy(x) /f(x) C! · fy(x)

= Dir.(1, . . . , 1, 2|{z}
position y

, 1, . . . , 1)(f(x)), (4)

2We use f(x;w) and f(x) interchangeably to denote the latent variable corresponding to the class proba-
bility vector on the input x. We use f(x;w) to emphasize the dependence on the weights w.
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where the left hand side is equal to the right hand side of Eq. (4) up to a scalar multiplier C!
(normalizing constant of the Dirichlet distribution), which does not depend on f(x).3 We note that
the algebra in Eq. (4) is the same as the algebra used to show the conjugacy of the Dirichlet prior
and the categorical likelihood [e.g. 6, Ch. 2.2]. Eq. (4) describes the distribution induced by the
observation y on the predicted class probabilities for the corresponding input x by the likelihood.
Consequently, the joint posterior over the class probability vectors f = {f(x)}x2D with the full
dataset can then be written as

p(f | D) /f p(f)
Y

(x,y)2D

Dir.(1, . . . , 1, 2|{z}
position y

, 1, . . . , 1)(f(x)). (5)

Eq. (5) provides intuition for how BNNs estimate aleatoric uncertainty in classification. If we further
assume that the implied prior p(f) over f(x) for each x is uniform on �C�1 and independent across
different inputs x, then for an observation (x, y) the posterior over f(x) is Dir.(1, . . . , 2, . . . , 1) and
the posterior mean for the probability of the correct class y is E[fy(x)] = 2/(C + 1). For example,
with a dataset containing 100 classes (e.g. CIFAR-100), the model on average will only be less than
2% confident in the correct label on the training data!

In practice, however, the prior p(w) will imply a non-trivial joint distribution p(f) over
{f(x;w)}x2D, so the actual posterior may be more (or less) confident than suggested by the analysis
above. Moreover, we have a very limited understanding of the implied distribution p(f) [see 61, 62,
for empirical analysis]. In particular, most practitioners use simple p(w) = N (0,↵2

I) priors, re-
gardless of the amount of label noise in the data. Explicitly constructing a prior in the parameter
space that leads to highly confident predictive distributions over f(x) is challenging, but we will
show how modifying the likelihood can be viewed as providing an input-dependent prior that more
accurately reflects our beliefs about aleatoric uncertainty in Section 4.3.

Eq. (5) suggests two natural ways of modifying the posterior to account for the aleatoric uncertainty:
(i) increasing the Dirichlet concentration for the observed class (equivalent to likelihood tempering),
or (ii) decreasing the concentration for the unobserved classes (noisy Dirichlet model). Next, we
describe both of these approaches in detail.

4.2 Likelihood tempering reduces aleatoric uncertainty

The tempered likelihood posterior over the parameters w in Eq. (3) for BNN classification can be
written as ptemp(w | D) /w p(w)

Q
(x,y)2D fy(x;w)1/T , where T is the temperature. Analogous

to the derivation above, we can rewrite the corresponding function space posterior as

ptemp(f | D) /f p(f)
Y

(x,y)2D

Dir.
�
1, . . . , 1, 1 + 1/T| {z }

position y

, 1, . . . , 1
�
(f(x)), (6)

In other words, the tempered posterior corresponds to the same model as the regular posterior, but
assumes that we observed 1/T counts of class y for each input x in the training data. Assuming the
prior p(w) implies a uniform distribution over f(x;w), the confidence in the correct labels on the
train data under the tempered posterior E[fy(x)] = (1 + 1/T )/(C + 1/T ). For a dataset with 100
classes, at T = 10�2 we get a much higher average confidence of more than 50% on the training
data, much higher than the 2% for the standard observation model.

Tempering the Likelihood vs Posterior. Prior work has mostly considered tempering the full
Bayesian posterior as opposed to just the likelihood (see Section 3). In Appendix G.2 we show that
tempering the full Bayesian posterior is almost always equivalent to changing the prior distribution,
and tempering the likelihood, and that likelihood tempering recovers the cold posterior effect.

How should we think about tempering? Prior work has asserted that posterior tempering sharply
deviates from the Bayesian paradigm and the cold posterior effect is highly problematic [61, 48, 14].
We, on the other hand, argue that likelihood tempering is in fact a practical way to incorporate our
assumptions about aleatoric uncertainty. Relatedly, Aitchison [2] argue that the cold posterior effect
can be caused by data curation. For example, CIFAR-10 and ImageNet datasets have relatively very
little label noise and are carefully curated [e.g. 53]. Thus, we may expect that tempered likelihoods
with low temperatures will lead to optimal performance.

3We use notation /✓ to denote proportionality with respect to ✓.
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Is a Tempered Likelihood a Valid Likelihood? The observation model is a distribution p(y | x)
over the labels conditioned on the input. The tempered softmax likelihood is in general not a valid
likelihood because it does not sum to 1 over classes. But Wenzel et al. [61] argue that the tempered
softmax likelihood with T < 1 can be interpreted as a valid likelihood if we introduce a new class
which is not observed in the training data. Moreover, from Eq. (6), we can naturally interpret the
tempered likelihood as using the multinomial observation model, assuming 1/T counts of the label
are observed for each of the training datapoints, which is uncontroversial and perfectly valid.

Smoothed softmax model. Guo et al. [19] show that softmax temperature scaling can be used to
fix the uncertainty calibration of trained neural networks. Analogously, we can simply divide the
logits of the model by a scalar temperature T , before computing the softmax likelihood, resulting
in the smoothed softmax model, a valid Bayesian model with a tunable temperature parameter. In
Appendix F, we show that the smoothed softmax behaves differently than the tempered softmax
likelihood, and is insufficient to model the aleatoric uncertainty in Bayesian classification. In par-
ticular, Figure 10 shows that the smoothed softmax likelihood does not address the cold posterior
effect.

4.3 Noisy Dirichlet model: changing the prior over class probabilities

As we have seen in Eq. (6), likelihood tempering increases the posterior confidence by increasing
the Dirichlet concentration for the observed class y from 2 to 1 + 1/T . We can achieve a similar
effect by decreasing the concentration of the unobserved classes4. Indeed, consider the distribution

pND(f | D) /f p(f)
Y

(x,y)2D

Dir.(↵✏, . . . ,↵✏, ↵✏ + 1| {z }
position y

,↵✏, . . . ,↵✏)(f(x)), (7)

where ND in pND stands for noisy Dirichlet and ↵✏ is a tunable parameter. The noisy Dirichlet
model was originally proposed by Milios et al. [43] in the context of Gaussian process classification,
where they designed a tractable approximation to this model. Using our running example, if p(w)
induces a uniform distribution over f(x;w), for a problem with 100 classes and ↵✏ = 10�2 we
have expected confidence E[fy(x)] = (↵✏ + 1)/(C↵✏ + 1), slightly more than 50%, similar to the
tempered likelihood with T = 10�2.

Going back to the parameter space, we can write the posterior distribution over w corresponding to
the noisy Dirichlet model as

pND(w | D) /w p(w)
Y

(x,y)2D

Dir.(↵✏, . . . ,↵✏, ↵✏ + 1| {z }
position y

,↵✏, . . . ,↵✏)(f(x;w)). (8)

The noisy Dirichlet model corresponds to a different prior. Using the conjugacy of the Dirichlet
and multinomial distributions [e.g., 6, Ch. 2.2.1], we can rewrite pND from Eq. (8) as follows:

pND(w | D) /w p(w)
Y

(x,y)2D

Dir.(↵✏, . . . ,↵✏)(f(x;w)) · fy(x;w) =

qND(w)
Y

(x,y)2D

fy(x;w).
(9)

We can interpret qND(w) , p(w) ·
Q

x2D Dir.(↵✏, . . . ,↵✏)(f(x;w)) as a prior over the parameters
w of the model. Indeed, qND(w) does not depend on the labels y, and simply forces the predicted
class probabilities to be confident in any one of the classes for the training data. Then, the only
difference between the noisy Dirichlet model in Eq. (9) and the standard Bayesian neural network
for classification is the choice of the prior over the parameters: instead of using a generic prior p(w)
such as the standard Gaussian distribution, we use the noisy Dirichlet prior qND. See the EmpCov
prior in Izmailov et al. [30] for another example of a prior that depends on the training inputs but
not training labels.

The noisy Dirichlet prior is intuitively appealing: in many practical settings a priori we believe that
the aleatoric uncertainty on the training data is low, and the model should be confident in one of the

4While we discuss increasing the confidence of the model here, we can equivalently decrease the confidence
of the model by increasing the concentration parameters for the unobserved classes.
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classes. At the same time, we would not want to enforce low aleatoric uncertainty everywhere in the
input space, as we do not expect that all the possible inputs to the model should be classified with
high confidence.

The noisy Dirichlet model is a valid Bayesian model. In short, the noisy Dirichlet model corre-
sponds to using a valid likelihood — the softmax likelihood — with a prior that explicitly enforces
the model predictions to be confident on the training data. In Section 6.2 we will see that the noisy
Dirichlet model removes the cold posterior effect.

Gaussian approximation. Milios et al. [43] considered the distribution in Eq. (9) in the context of
Gaussian process classification, but with a different goal: they aimed to create a regression likelihood
which would approximate the softmax likelihood. We describe their Gaussian approximation which
amounts to solving a regression problem in the space of logits z(x) with a Gaussian observation
model in Appendix D. While theoretically we do not need to use the Gaussian approximation for
Bayesian neural networks and can directly use Eq. (9), we found that in practice the approximation
is much more stable numerically. We use the Gaussian approximation in all experiments.

5 The Effect of Data Augmentation

Data augmentation is a key ingredient of modern deep learning. Surprisingly, however, data aug-
mentation has not been studied in the context of Bayesian methods until recently. Several works have
shown that data augmentation often causes the cold posterior effect in BNNs [31, 64, 14, 45]. We
show that data augmentation, as applied in practice5, is closely connected to likelihood tempering
with T > 1. In this case, the cold posteriors counterbalance the effect of data augmentation.

First, we consider the interaction between data augmentation and SGLD (or, equivalently, any other
SGMCMC method). With SGLD, we aim to construct an unbiased estimator of the gradient of
the posterior log-density (see Appendix C). In prior work, e.g. in Wenzel et al. [61], the stochastic
gradient is estimated using a randomly augmented mini-batch of the data. For a minibatch of the full
dataset Dm = {xi, yi}mi=1 ⇢ D, and a finite set of augmentations T = {t1, . . . , tK}, this stochastic
gradient is given by reU(w) = N

m

P
(xi,yi)2Dm

rw log p(yi | tj(xi)) + rw log p(w), where the
transformations tj are sampled uniformly from T . There are two sources of randomness in reU(w)
— the choice of the mini-batch Dm and the choice of augmentation tj used for each xi. The limiting
distribution of SGLD is determined by the expectation of the stochastic gradient above, given by

NX

i=1

Et[rw log p(yi|t(xi))] +rw log p(w) =
NX

i=1

KX

j=1

[rw log p(yi|tj(xi))
1
K ] +rw log p(w),

(10)

where tj ⇠ T are augmentations sampled uniformly from T . Therefore, we conclude that the
limiting distribution of SGLD under data augmentation is given by

paug(w | D) /w p(w)
NY

i=1

KY

j=1

p(yi | tj(xi))
1/K

. (11)

We can interpret the limiting distribution in Eq. (11) as a tempered likelihood posterior for a new
dataset D0 = {(tj(xi), yi)}i,j which contains all augmentations of every data point from the original
dataset D. Furthermore, the likelihood is tempered with a temperature K > 1, corresponding
to a warm posterior. In other words, the limiting distribution of SGLD with data augmentation
corresponds to a posterior over the augmented dataset with a softened likelihood, leading to less
confidence about the labels. By applying a cold temperature T = 1/K to the posterior in Eq. (11),
we can recover the standard Bayesian posterior on the augmented dataset D0. In Section 6.2, we
explore the effect of data augmentation on aleatoric uncertainty in practice and show that it does
indeed soften the likelihood and lead to increased aleatoric uncertainty.

5Data augmentation is a practical procedure, where at each iteration of optimization or sampling, we draw
random augmentation for each object in each mini-batch of the data. Consequently, we can only reason about
the effect of the data augmentation on the limiting distributions of approximate inference procedures: data
augmentation is not defined for true Bayesian neural networks.
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Figure 2: Effect of data augmentation on GP regression. As we increase the number K of
augmentations of the dataset, a GP model fit becomes more diffuse. Here the original training data
is shown with black stars, and the augmented datapoints tj(x) = x + ⌧j are not shown. Both the
predictive mean and confidence change with the number K of augmentations.

What about Other Inference Procedures? While the derivation in Eq. (11) comes directly from
studying the stochastic gradient evaluated in SGMCMC, we can equivalently derive the same poste-
rior distribution in stochastic variational inference [26] as we show in Appendix I.

Should we always use temperature T = 1/K? While using the temperature T = 1/K recovers
the standard Bayesian posterior on the augmented dataset D0, it is not necessarily a correct approach
to modeling data augmentation. Indeed, the standard posterior p(w | D0) / p(w)

QN
i=1

QK
j=1 p(yi |

tj(xi)) assumes independence across both augmentations and data points. In practice, however, we
share the same label yi across all the augmented versions of the image; treating the observations as
independent then leads to underestimating the aleatoric uncertainty. Indeed, consider the extreme
scenario, where all the augmentations tj(x) simply return x. In this case, treating the observations
(tj(x), y) as independent will simply raise the likelihood to a power of K, while in reality we have
not received any additional information from the augmentation policy. Correcting the likelihood by a
factor of 1/K is the correct approach only when the predictions on tj(x) are completely independent
from each other (see Section 6.1). See also Nabarro et al. [45] for a related discussion.

6 Experiments

In this section we provide empirical support for the observations presented in Sections 4 and 5. First,
in Section 6.1 we visualize the effect of data augmentation on the limiting distribution of SGMCMC
using a Gaussian process regression model. Next, in Section 6.2 we report the results for BNNs on
image classification problems. In Appendix E we additionally illustrate the effects of tempering,
noisy Dirichlet model and data augmentation using a Bayesian neural network on a synthetic 2-D
classification problem. Appendix K provides detailed numerical results for reference. All results
report the mean and one standard deviation over 3 trials. The code to reproduce experiments is
available at github.com/activatedgeek/understanding-bayesian-classification.

6.1 Visualizing the Effect of Data Augmentation

To illustrate our analysis in Section 5 we show the posterior in Eq. (11) under data augmentation in
a Gaussian process (GP) regression model. We use a GP with a RBF kernel, noting that data points
where k(x, x0) ⇡ 0 are effectively independent from each other, which occurs when kx� x

0k � �.
Consequently, the implied correlations between inputs beyond the distance � are zero. We use
augmented samples that are given by tj(x) = x + ⌧j , for vectors {⌧j}Kj=1 such that k⌧jk � �,
assuming that k(x, tj(x0)) = 0 for all datapoints x, x0 and all augmentations tj . Thus, the outputs
of the GP on the training data are independent from the outputs on the augmented datapoints.

We show the posterior near the original data in Eq. (11) for K = 1, 4 and 10 augmentations per
datapoint in Figure 2. As the predictions on the train data are independent from the predictions on
the augmented datapoints, the posterior in Eq. (11) corresponds to tempering the posterior on the
original training data with a warm temperature equal to the number K of augmentations. As a result,
increasing K softens the likelihood, leading to a less confident fit on the training data.
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6.2 Image Classification with Bayesian Neural Networks

In this section we experimentally verify the results of the analysis in Sections 4 and 5 for Bayesian
neural networks in image classification problems. First, we show that both the noisy Dirichlet model
and tempered softmax likelihood can be successfully used to express our beliefs about the amount
of label noise in the data. Then, we show that the noisy Dirichlet model does not require tempering
to achieve optimal performance. Finally, we show that data augmentation softens the likelihood for
BNNs, and that the optimal temperature depends on the complexity of the data augmentation policy.
For all experiments we use a ResNet-18 model [20] and the CIFAR-10 [35] and Tiny Imagenet [36]
datasets. We use the SGLD sampler with a cyclical learning rate schedule [60, 65] to sample from
the posterior. We provide details on the hyper-parameters in Appendix L.

(a) CIFAR-10 (b) Tiny Imagenet

Figure 3: Label noise in image classification. BMA test accuracy and average sample NLL for
the softmax, tempered softmax and noisy Dirichlet model (a) on CIFAR-10 and (b) Tiny Imagenet.
Accounting for the label noise via the noisy Dirichlet model or the tempered softmax likelihood
significantly improves accuracy accross the board. Moreover, the best performance is achieved by
different values of temperature T

⇤ in the tempered softmax likelihood or noise ↵
⇤
✏ in the noisy

Dirichlet model, i.e. no one model describes the data optimally across all levels of label noise.

Modeling label noise. In classification problems the aleatoric uncertainty corresponds to the
amount of label noise in the data. Throughout the paper we argued that aleatoric uncertainty is
misrepresented by standard Bayesian neural networks, and that likelihood tempering and the noisy
Dirichlet model are compelling approaches to incorporate information about the amount of label
noise. In Figure 3, we show the BMA test accuracy and average sample negative log-likelihood
(NLL) for the standard softmax likelihood, tempered softmax likelihood and the noisy Dirichlet
model on CIFAR-10 and Tiny Imagenet under varying amounts of label noise. We plot the results
for the best performing temperature T 2 [10�5

, 10] or noise ↵✏ 2 [10�6
, 10�1] for the noisy Dirich-

let model. On both datasets and across label noises, we can significantly improve performance over
the softmax likelihood by explicitly modeling the aleatoric uncertainty with either tempering or the
noisy Dirichlet model.

Figure 4: BMA test accuracy
for the noisy Dirichlet model
with ↵✏=10�6 and the soft-
max likelihood as a function
of temperature on CIFAR-
10. The noisy Dirichlet model
shows no cold posterior effect.

No cold posterior effect in the noisy Dirichlet model. We ex-
plore the effect of posterior tempering on the standard softmax
classification likelihood and the noisy Dirichlet model with noise
parameter ↵✏=10�6. In Figure 4 we show the results on the
CIFAR-10 dataset. As reported by Wenzel et al. [61], for the stan-
dard softmax likelihood, tempering is required to achieve optimal
performance, with T=10�3 providing the best results. For the
noisy Dirichlet model on the other hand, tempering does not sig-
nificantly improve the results with roughly constant performance
across the temperature values. In particular, the noisy Dirichlet
model achieves near-optimal results at T=1. These results agree
with our analysis in Section 4: both tempering and the noisy Dirich-
let model are alternative ways of expressing our beliefs about the
aleatoric uncertainty in the data; with the noisy Dirichlet model, we
can achieve strong results without any need for tempering.

Data augmentation leads to underfitting on train data. In Fig-
ure 5a we show the average sample train NLL for the models
trained with and without data augmentation. Across temperatures for the tempered softmax and
↵✏ parameters for the noisy Dirichlet model, adding data augmentations reduces the quality of the
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(a) Softmax & noisy Dirichlet (b) Augmentations vs Tempering

Figure 5: Effect of data augmentation on BNN image classification. For all plots we use ResNet-
18 on the CIFAR-10 dataset. (a): NLL on the train data for the tempered softmax model across
different temperatures T and the noisy Dirichlet model across different values of noise ↵✏, with and
without data augmentation. As predicted in Section 5, data augmentation softens the likelihood,
leading to a more diffuse fit on the train data. Tempering or reducing the noise parameter ↵✏ is
needed to counteract the effect of data augmentation. (b) BMA test accuracy and NLL for various
augmentation policies. As predicted in Section 5, more complex policies corresponding to a higher
effective number of augmentations K require lower temperatures.

fit on the original training data. This result is analogous to the GP results in Section 6.1 and our
analysis in Section 5: data augmentation softens the likelihood, leading to a more diffuse fit.

Complex augmentations require lower temperatures. In Section 5 we showed that under data
augmentation the likelihood is effectively tempered with a temperature K, assuming the predic-
tions on the augmented datapoints are completely independent from the original datapoints. In
practice however, the augmentations can be close to the original images, and the corresponding pre-
dictions can be highly correlated. In Figure 5b, we consider five separate types of augmentations
for ResNet-18 on CIFAR-10 at various posterior temperatures: horizontal and vertical flips, random
crops, combinations of flips and crops, and AugMix [23] — an augmentation policy employing a
very diverse set of transformations. We find that, as predicted by the analysis in Section 5, the
optimal temperatures are different for different policies: in terms of test NLL, the simple policies
(vertical and horizontal flips) corresponding to K = 2 work best at warmer temperatures T = 1,
intermediate policies (crops and crops+flips) corresponding to K ⇡ 100 require lower temperatures
T 2 [10�2

, 10�1], and the most complex AugMix policy requires the lowest temperature T  10�4.

Robustness to corruptions. Finally, we consider robustness to dataset corruptions by considering
the CIFAR-10C dataset [22], evaluating our models with both tempered softmax (TS) and noisy
Dirichlet models. A full plot is shown in Appendix K; summarizing those results, we see that TS has
the best performance at T = 10�3 with an accuracy of 93.2 (with T = 1 again under-performing),
while again the noisy Dirichlet model performs well, with an accuracy of 92.6 (at ↵✏ = 10�4).

7 Discussion

A correct representation of aleatoric uncertainty is crucial to achieve strong performance with
Bayesian neural networks. Standard Bayesian classifiers have no explicit mechanism to represent
our beliefs about aleatoric uncertainty, which can lead to inadequate fits to the training data. This
effect is exaggerated by data augmentation, which softens the likelihood, making the models under-
confident on the training data. Posterior tempering is a simple and practical way to correct for this
misspecification and express our beliefs about the aleatoric uncertainty: most benchmark datasets
have very low levels of label noise, and we can express this belief by tempering the softmax likeli-
hood. We also showed that we can achieve a similar effect without tempering, by using a prior that
forces the model to be confident on the training datapoints with the noisy Dirichlet model.
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