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ABSTRACT

Real world evolves in continuous time but computations are done from finite
samples. Therefore, we study algorithms using finite observations in continuous-
time linear dynamical systems. We first study the system identification problem,
and propose a first non-asymptotic error analysis with finite observations. Our
algorithm identifies system parameters without needing integrated observations
over certain time intervals, making it more practical for real-world applications.
Further we propose a lower bound result that shows our estimator is provably
optimal up to constant factors. Moreover, we apply the above algorithm to online
control regret analysis for continuous-time linear system. Our system identification
method allows us to explore more efficiently, enabling the swift detection of
ineffective policies. We achieve a regret of O(

√
T ) over a single T -time horizon

in a controllable system, requiring only O(T ) observations of the system.

1 INTRODUCTION

Finding optimal control policies requires accurately modelling the system (Kirk, 2004). However, real-
world environments often involve unknown system parameters. In such cases, estimating unknown
parameters from exploration becomes essential to identify the unseen dynamics. This process is
recognized as system identification, a fundamental tool employed in various research fields, including
time-series analysis (Korenberg, 1989), control theory (Kumar, 1983), robotics (Johansson et al.,
2000), and reinforcement learning (Ross & Bagnell, 2012).

The identification of linear systems has long been studied because linear systems, as one of the most
fundamental systems in both theoretical frameworks and practical applications, has wide applications
ranging from natural physical processes to robotics. Most classical results provide only asymptotic
convergence guarantees for parameter estimation (Åström & Eykhoff, 1971; Ljung, 1998b; Campi &
Kumar, 1998b).

On the other hand, with the rapid increase in data scale, there is a growing concern for statistical
efficiency. Consequently, the non-asymptotic convergence of discrete-time linear system identifi-
cation has emerged as another pivotal topic in this field. Investigations into this matter delve into
understanding how estimation confidence is influenced by the sample complexity of trajectories (Dean
et al., 2018), or the running time on a single trajectory (Simchowitz et al., 2018; Sarkar & Rakhlin,
2019). Furthermore, many of these studies operate under the common assumption of stochastic noise,
there has been a parallel exploration into the identification of discrete-time linear dynamical systems
with diverse setups. This includes scenarios where perturbations are adversarial (Hazan et al., 2020)
or when only black-box access is available (Chen & Hazan, 2021).

In contrast to studies in discrete time system, there have been relatively fewer non-asymptotic results
addressing parameter identification for continuous-time systems. Two problems exist for continuous
time analysis. First, nonasymptotic analysis in continuous system without noise can be degenerate,
as a short time interval can contain infinite pieces of information. Second, if we consider the non-
degenerate case when finite noisy observations are available, then the analyses require concentration
results that become known only as in (Simchowitz et al., 2018; Dean et al., 2018; Sarkar & Rakhlin,
2019). Recently Basei et al. (2022) provides novel analyses for estimating system parameters, which

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

relies on continuous data collection and interaction with the environment. Motivated by progress
in these works, our first goal is to answer the question below: Can we design a continuous-time
stochastic system identification algorithm that provides nonasymptotic error bounds with only a finite
number of samples?

We will introduce our system identification algorithms tailored to meet the above requirements. As
expected, we discretize time into small intervals, thereby reducing the problem to a discrete system.
The interesting part involves ensuring that the discretization remains bijective and that the inversion
is unbiased. Our algorithm identifies the continuous system using only a finite number of samples
from the discrete system. We further propose a information theoretic lower bound that shows our
algorithm is optimal.

As an application of our system identification methods, we study an online continuous-time linear
control problem as introduced in (Shirani Faradonbeh & Shirani Faradonbeh, 2023). In this context,
exploration is essential for estimating unknown parameters, with the goal of identifying a more
optimal control policy that narrows the performance gap. The primary challenge involves finding the
right balance between exploration and exploitation. Leveraging our identification method for more
efficient parameter estimation allows us to effectively manage exploration and exploitation, achieving
an expected regret of O(

√
T ) over a single trajectory with only O(T ) samples in time horizon T .

This surpasses the previously best known result of O(
√
T log(T )), which needs continuous data

collection from the system.

We summarize our contributions below.

1. When the system can be stabilized by a known controller, we establish an algorithm with
O(T ) samples that achieves estimation error O(

√
1/T ) on a single trajectory with running

time T , which is shown in Theorem 1. We also provide Theorem 2 which shows that the
estimation error of our system identification method is optimal up to constant factors.

2. When a stable controller is not available, we can use N independent short trajectories to
obtain estimators with error O(

√
1/N), as is shown in Theorem 3 .

3. We apply our system identification method to an online continuous linear control algorithm,
which only requires O(T ) samples and achieves O(

√
T ) regret on a single trajectory

with lasting time T (Theorem 5), improving upon the best known result O(
√
T log(T ))

in (Shirani Faradonbeh & Shirani Faradonbeh, 2023).

2 RELATED WORKS

Control of both discrete and continuous linear dynamical systems have been extensively studied
in various settings, such as linear quadratic optimal control (Mehrmann, 1991), H2 stochastic
control (Dragan et al., 2004), H∞ robust control (Stengel, 1994; Khalil et al., 1996) and system
identification (Kumar, 1983; Ljung, 1998b). Below we introduce some of the important results on
both system identification and optimal control for linear dynamical systems.

System Identification Earlier literature focused primarily on the asymptotic convergence of system
identification (Campi & Kumar, 1998a; Ljung, 1998a). Recently, there has been a resurgence of
interest in non-asymptotic system identification for discrete-time systems. Dean et al. (2018) studied
the sample complexity of multiple trajectories, with O(

√
1/N) estimation error on N independent

trajectories. For systems with dynamics xt+1 = Axt + wt(without controllers), Simchowitz et al.
(2018) established an analysis for O(

√
1/T ) estimation error on a single stable trajectory with

running time T , while Faradonbeh et al. (2018) and Sarkar & Rakhlin (2019) extended to more
general discrete-time systems.

Non-asymptotic analyses for continuous-time linear system are less studied. Recently, Basei et al.
(2022) examined continuous-time linear quadratic control systems with standard brown noise and
unknown system dynamics. Our algorithm is specifically designed for finite observations, achieving
an error rate that cannot be attained through the direct discretization of integrals as done in (Basei
et al., 2022).
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Regret Analysis of Online Control In online control, if the system’s parameters are known,
achieving the optimal control policy in this setup can be straightforward (Stengel, 1994; Yong &
Zhou, 1999). However, when the system parameters are unknown, identifying the system incurs
regret. Abbasi-Yadkori & Szepesvári (2011) achieved an O(

√
T ) regret for discrete-time online

linear control, which has been proven optimal in T under that setting in Simchowitz & Foster (2023).
Subsequent works have extended this setup, focusing on worst-case analysis with adversarial noise
and cost, including (Mania et al., 2019; Cohen et al., 2019; Lale et al., 2020; Simchowitz & Foster,
2023). These analyses are limited to discrete systems. For continuous-time systems, works of
Shirani Faradonbeh et al. (2022); Shirani Faradonbeh & Shirani Faradonbeh (2023) established
algorithms for online continuous control that achieves O

(
T 1/2 log(T )

)
regret.

3 PROBLEM SETUPS AND NOTATIONS

In this section, we introduce the background and notation for system identification in linear systems.
We then discuss optimal control problems to motivate the setup for online control.

3.1 LINEAR DYNAMICAL SYSTEMS

We first introduce discrete-time linear dynamical systems as follows: Let xk ∈ Rd represent the
state of the system at time k, and let uk ∈ Rp denote the action at time k. Then, for some linear
time-invariant dynamics characterized by A ∈ Rd×d and B ∈ Rd×p, the transition of the system to
the next state can be represented as:

xk+1 = Axk +Buk + wk, (1)

where wk ∈ Rd are i.i.d. Gaussian random vectors with zero means and certain covariance.

Similarly, a continuous-time linear dynamical system with stochastic disturbance at time t is defined
by a differential equation, instead of a recurrence relation:

dXt = AXtdt+BUtdt+ dWt. (2)

In this context, we use Xt and Ut to represent the state and action in the continuous-time linear
system, distinguishing them from xt and ut in discrete-time systems. Wt denotes the stochastic noise,
which is modeled by standard Brownian motion.

For a continuous control problem, an important question of a linear dynamical system is whether such
system can be stably controlled. Below we define the concepts of stable dynamics and stabilizers.
Definition 1. For any square matrix A, define α(A) = maxi{ℜ(λi)|λi ∈ λ(A)}, where ℜ(λ)
represents the real part of complex number λ, λ(A) is the set of all eigenvalues of A.
Definition 2. A matrix A ∈ Rd×d is stable if α(A) < 0. A control matrix K ∈ Rp×d is said to be a
stabilizer for system (A,B) if A+BK is stable.

Under the above definition, a stable dynamic guarantees that the state can automatically go to the
origin when no external forces are added, while applying a stabilizer as the dynamic for controller
will also ensure that the state does not diverge.

3.2 CONTINUOUS-TIME LQR PROBLEMS AND OPTIMAL CONTROL

For continuous-time linear systems disturbed by stochastic noise, as introduced in 3.1, we denote
the strategy of applying control to such systems through a specific causal policy, f : X → U . This
policy maps states X to control inputs U , where the policy at time t can only depend on the states
and actions prior to t.

The optimal controls in linear systems are often linear (Stengel, 1994; Yong & Zhou, 1999), which
takes the following form

Ut = KtXt,

where Kt ∈ Rp×d represents the linear parameterization at time t under some policy f(X) = KX .
Additionally, we define the cost function of applying the action Ut = KtXt with linear quadratic
regulator (LQR) control. Given predefined symmetric positive definite matrices Q ∈ Rd×d and
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R ∈ Rp×p, along with the initial state X0, the cost during t ∈ [0, T ] is denoted by JT , as represented
in the following equation:

JT = E

[∫ T

t=0

(
XT

t QXt + UT
t RUt

)
dt

]
. (3)

Here the expectation is taken over the randomness of Xt and the choice of linear dynamic Kt.

Among all the polices there exists an optimal mapping f∗ which minimizes JT . When the system is
dominated by dynamics (A,B), with the state transits according to equation 2, such optimal Kt can
be computed via the Lyapunov matrix Pt that solves the Ricatti differential equation (Yong & Zhou,
1999):

d

dt
Pt = PtBR

−1BTPt −ATPt − PtA−Q,PT = 0 , (4)

Then, under f∗ the action dynamic is set to be Kt = −R−1BTPt.

When T → +∞, the starting dynamic P0 converges to some special dynamic P∗ satisfying

P∗BR
−1BTP∗ −ATP∗ − P∗A−Q = 0 , (5)

and the optimal control policy for infinite time horizon is by setting Kt = −R−1BTP∗ := K∗ and
apply the action by Ut = K∗Xt.

Online Control Problems. Online learning aims to find a strategy to output a sequence of controls
{Ut} that minimizes the cost JT without knowing the system parameters A,B. In this scenario,
online learning algorithms must explore to obtain valuable information, such as estimators (Â, B̂) for
(A,B), while simultaneously exploit gathered information to avoid large instantaneous cost.

To quantify the progress in an online learning problem with horizon T , one quantity of interest is
the regret RT , which quantifies the performance gap between the control taken Ut = f(Xt) and a
baseline policy which takes Ut = KtXt, where Kt is defined in equation 4. Formally, by denoting
JT be the expected cost under f , and J∗

T be the expected cost under the baseline policy, the regret
RT is represented as:

RT = JT − J∗
T . (6)

We have seen that in LQR problems with an infinite-time horizon, the optimal policy uses a time-
invariant control dynamic K∗, expressed by K∗ = −R−1BTP∗ equation 5. For finite horizon, the
dynamic Kt equation 4 corresponds to the optimal policy converges exponentially fast in T to the
fixed dynamic K∗. Therefore, in this work, also following Shirani Faradonbeh & Shirani Faradonbeh
(2023), for any horizon T , we adopt the same baseline policy, which performs the control by setting
the following:

Ut = K∗Xt = −R−1BTP∗Xt.

Other Notations Denote the d-dimensional unit sphere Sd−1 = {v ∈ Rd, ∥v∥2 = 1}, where ∥ · ∥2
is the L2 norm. For any matrix A ∈ Rm×n, denote ∥A∥ be the spectral norm of A, or equivalently,

∥A∥ = sup
v∈Sn−1

∥Av∥2 = sup
u∈Sm−1,v∈Sn−1

uTAv.

4 THE PROPOSED SYSTEM IDENTIFICATION METHOD

In this part we propose our system identification method. Under finite time and samples, we develop
a strategy to construct sets of states and actions which transit according to equation 1 a discrete
update rule, with intermediate dynamics (A

′
, B

′
) (see Algorithm 1 and Algorithm 2).

In particular, we can establish a one-to-one mapping between the constructed discrete system and
the original continuous-time system as in equation 10 so that we can estimate (A,B). This avoids
computing on an integration, which is never achieved in previous works. We then bound the estimation
errors in Theorem 1 and Theorem 3. The results are consistent with current best convergence rates of
discrete-time linear system identification (Simchowitz et al. (2018), Dean et al. (2018)). Moreover, we
present Theorem 2, which establishes the lower bound of the estimation error in this continuous-time
system identification problem. It suggests our algorithm is optimal in sample complexity.
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4.1 IDENTIFYING CONTINUOUS-TIME SYSTEMS WITH FINITE OBSERVATIONS

We highlight the finite-sample requirement in our analyses of system identification for continuous
systems. Under this setting, not only the running time is finite, but the number of observed states
is also limited. In other words, for a trajectory with lasting time T , we can only get access to a
finite set of states {Xt1 , Xt2 , ..., Xtk} instead of a continuous uncountable collection of trajectory
{Xt}, where t is in some interval. One key difference is that quantities such as

∫
I
ϕ(Xt, Ut)dt

with any function ϕ cannot be evaluated without error over an interval I . In addressing the system
identification problem, we underscore a key distinction between our methodology and the traditional
techniques employed for integral approximation.

In previous approaches, computations have relied on the approximation Xt+ϵ ≈ (I + ϵA)Xt +
ϵBUt + (Wt+ϵ −Wt). However, this approximation does not accurately reflect the true dynamics as
expressed in equation 7, leading to a systematic error between the approximated and actual dynamics.
This discrepancy, characterized by the error term ϵ−1(eϵA−I)−A, is of the order of ϵ. As a result, to
achieve the desired error bound, a super-linear sampling complexity relative to the total running time
T is required, which significantly increases computational demands. Our method addresses this issue
by utilizing the bijection between domains of S = {X

∣∣∥X∥ ≤ 1
4} and their matrix exponentials,

thereby overcoming the limitations of direct discretization.

4.2 ALGORITHMS FOR CONTINUOUS SYSTEM IDENTIFICATION

With the transition of the state of a continuous system, represented in equation 2, when we take
observations of state with sampling gap h, the states transit as in equation 7:

Xt+h = eAhXt +

∫ h

s=0

eA(h−s)BUt+sds+

∫ h

s=0

eA(h−s)dWt+s , (7)

This transition equation connects continuous-time and discrete-time systems. However, the matrix
exponential and integration make identifying system parameters from this relationship challenging.
We address this challenge by first applying appropriate controls to simplify the analysis and then
proposing a novel method to estimate A from the matrix exponential, followed by recovering B using
the estimate of A.

In our method, the whole trajectory is partitioned into intervals with proper determined length h.
During time t ∈ [kh, (k + 1)h], we observe a state xk at time t = kh, and fix the action Ut ≡ uk in
this interval. Then the set of observations {xk|k = 0, 1, 2, ...} and actions {uk|k = 0, 1, 2, ...} has
the following relation:

xk+1 = eAhxk +

[∫ h

s=0

eA(h−s)ds

]
Buk + wk , (8)

Here wk ∼ N (0,Σh) with Σh =
∫ h

s=0
eAseA

Tsds is a sequence of independent random noise.

Denoting A
′
= eAh and B

′
=
[∫ h

s=0
eA(h−s)ds

]
B, the observed state transitions follow the

standard discrete-time linear dynamical system:

xk+1 = A
′
xk +B

′
uk + wk.

Next, we show how to identify (A,B) from observations {xt}, {ut} which follow the transition law
in 8. Different from classical discrete-time systems, continuous-time systems present new challenges.
The crucial one is that knowing eAh is not sufficient to determine A, because the matrix exponential
function f(X) = eX is not one-to-one. This means we might obtain an incorrect estimator Â by
solving eÂh =M , where M is the estimate of eAh.

The key to overcoming this challenge is the observation that when ∥X∥ ≤ 1
4 , the map f(X) = eX

becomes one-to-one. Furthermore, if ∥X∥ ≤ 1
6 , we have ∥eX − Id∥ ≤ 1

5 , which allows us to find a
X̄ using Taylor expansion (see 10), with ∥X̄∥ ≤ 1

4 and eX̄ = eX . This X̄ is exactly X due to the
one-to-one property of f in the restricted domain. This insight enables direct analysis of the matrix
exponential eAh under the condition that ∥A∥h is small. The detailed proof is provided in Lemma 7.
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Algorithm 1 System identification algorithm for stable system

Input: Running time T , sample interval h satisfying the condition in Assumption 1.
Define the number of samples T0 = ⌈T/h⌉.
for k = 0, . . . , T0 − 1 do

Sample the action uk
i.i.d.∼ N (0, Ip).

Use the action Ut ≡ uk during the time period t ∈ [kh, (k + 1)h].
Observe the new state xk+1 at time (k + 1)h.

end for
Compute (Ã, B̃) by equation 9, and then (Ā, B̄) by equation 10.
Let (Â, B̂) = (Ā, B̄) be the estimates for system dynamics (A,B).

With the above analysis, we can set the sampling interval h ≤ 1
6∥A∥ to ensure that eAh can recover A.

When Assumption 1 holds, we propose Algorithm 1, which identifies the system parameters from a
single trajectory.
Assumption 1 (Assumptions for Algorithm 1 and Theorem 1). We assume

1. The linear dynamic A is stable, with α(A) < 0 (see Definition 1). This is equivalent to
assuming the existence of a stable controller K and then set A← A+BK.

2. ∥A∥ ≤ κA, ∥B∥ ≤ κB for some known κA, κB (κA, κB need not be closed to ∥A∥, ∥B∥).

3. The sample interval h is chosen to be h = 1
15κA

.

Description of Algorithm 1 In the k-th interval with length h, a state xk is observed at the
beginning, and a randomly selected action uk is uniformly performed during this interval. The
state-action set {xk, uk} is then utilized for estimating discretized (A

′
, B

′
), as in equation 9.

(Ã)T =

[
T0−1∑
k=0

xkx
T
k

]† T0−1∑
k=0

xkx
T
k+1 , (B̃)T =

[
T0−1∑
k=0

uku
T
k

]† T0−1∑
k=0

uk

(
xk+1 − Ãxk

)T
. (9)

Next, the continuous-time dynamics (A,B) are recovered through the estimates (Ã, B̃). Given that
∥A∥h is small, we can use the Taylor expansion to compute the logarithm of Ã, denoted by Āh,
which closely approximates Ah. The estimator (Ā, B̄) for (A,B) is expressed as follows:

Ā =
1

h

∑
k≥1

(−1)k−1

k
(Ã− I)k, B̄ =

[∫ h

t=0

eĀtdt

]−1

B̃ . (10)

Algorithm 1 outlines the structured form of this entire procedure, achieving an O(T−1/2) estimation
error of (A,B) for a single trajectory with a duration of T (see Theorem 1). An interesting thing is
that Algorithm 1 can be generalized to the case where A is not necessarily stable, but a stabilizer K
for (A,B) (see Definition 2) is known. This generalization is applied in Algorithm 3 and will be
discussed in Section 5. Finally, we note that the number of samples is linear in T .

Summary of Notations Below, we summarize several notations discussed.

1. Denote the ground truth (A,B) as the continuous-time system dynamics.

2. Let A
′
= eAh and B

′
=
[∫ h

s=0
eA(h−s)ds

]
B be the discretization of the ground truth A,B.

3. (Ã, B̃) refers to the estimates for (A
′
, B

′
) from the observations, and are defined in equa-

tion 9.
4. Let (Â, B̂) denote the algorithm output of the continuous-time system dynamics (A,B).

This output notation is used in Algorithm 1, 2, 3 as well as their corresponding theorems.

5. (Ā, B̄) refers to the estimates recovered from the discretization (Ã, B̃), defined in equa-
tion 10. In Algorithm 1, 2 it is just (Â, B̂). In Algorithm 3 it is the estimates for
(A+BK,B).

6
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Now we show that the above algorithm efficiently estimates the system dynamics. We first present
the upper bound and postpone its proof sketch to the next subsection.
Theorem 1 (Upper bound). In Algorithm 1, there exists a constant C ∈ poly

(
|α(A)|−1, κA, κB

)
such that, ∀ 0 < δ < 1

2 , when T ≥ C
(
∥X0∥22 + log2 1/δ

)
, with probability at least 1− δ, we have:

∥Â−A∥, ∥B̂ −B∥ ≤ C
√

log(1/δ)

T
. (11)

Furthermore, our subsequent Theorem 2 establishes that this method has already attained the optimal
convergence rate for parameter estimation. This theorem primarily asserts that, given a single
trajectory lasting for time T , any algorithm that estimates system parameters solely based on an
arbitrarily large number of finite observed states cannot guarantee an estimation error of o(

√
1/T )

Theorem 2 (Lower bound). Suppose T ≥ 1 be the running time of a single trajectory of continuous-
time linear differential system, represented as in equation 2. Then there exist constants c1, c2
independent of d such that, for any finite set of observed points {t0 = 0, t1, t2, ..., tN = T}, and any
(possibly randomized) estimator function ϕ : {Xt0 , Xt1 , ..., XtN } → Rd×d, there exists bounded

A,B satisfying P
[
∥ϕ({Xi}i≤N )−A∥ ≥ c1√

T

]
≥ c2. Here the probability is with respect to system

noise.

In Theorem 2, the mapping ϕ can refer to the output of any algorithm that exclusively relies on the
finite set of states Xt0 , Xt1 , ..., XtN . The interesting observation is that the lower bound does not
decrease with a larger observation number N .

The proof sketch of Theorem 2 is as follows: We consider two sets of dynamics, (A, 0) and (Ā, 0),
where both A and Ā are stable, and |A − Ā| = 2c1√

T
. The challenge is ensuring the lower bound

when the samples are uneven. Our key observation is that for the two distributions of observed
states Sk = {Xt0 , Xt1 , ..., Xtk} and S̄k = {X̄t0 , Xt1 , ..., Xtk}, where X corresponds to the linear
dynamic A and X̄ corresponds to Ā, the KL divergence between Sk+1 and S̄k+1 increases by at most
c
T (tk+1 − tk). Here, c is a universal constant independent of tk and tk+1. Thus, regardless of how
the observation times are selected, the KL divergence between the observed states remains bounded.

4.3 FINDING AN INITIAL STABLE CONTROLLER

For general (A,B), where a stabilizer is not known in advance, sticking to a single trajectory is
not feasible as the state might diverge rapidly before obtaining a stable controller. We first list the
assumptions on system parameters below.
Assumption 2 (Assumptions for Algorithm 2 and Theorem 3). We assume

1. The constants κA, κB , h follow the same assumptions as in 1.

2. The running time T for each trajectory is small, say, T = T0h where T0 ∈ N and T0 ≤ 10.

Then, we employ multiple short trajectories to identify A and B as outlined in Algorithm 2. Similar
to what is demonstrated in Dean et al. (2018), this procedure results in an O(H−1/2) estimation error
on the trajectory number H (Theorem 3).
Theorem 3. In Algorithm 2, there exists a constant C ∈ poly(κA, κB) such that w.p. at least 1− δ,
the estimation error of (Â, B̂) from H trajectories satisfies:

∥Â−A∥, ∥B̂ −B∥ ≤ C
√

log(1/δ)

H
.

The proof is similar to that of Theorem 1, and details are shown in the Appendix. A stable controller
can hence be designed from Â, B̂.

4.4 ANALYSIS FOR THEOREM 1

In this section, we will primarily discuss the rationale behind the proof of our key theorems. Due to
space limitations, detailed proofs of these theorems are provided in the appendix.

7
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Algorithm 2 Multi-trajectory system identification algorithm

Input: T , T0, h as in Assumption 2, number of trajectories H .
for l = 1, . . . ,H do

for k = 0, . . . , T0 − 1 do
Sample the action ulk

i.i.d.∼ N (0, Ip), use the action Ut ≡ ulk during t ∈ [kh, (k + 1)h].
Observe the new state xlk+1 at time (k + 1)h.

end for
end for
Compute (Ã, B̃) by (Ã, B̃) ∈ argmin(A,B)

1
2

∑H
l=1

∥∥xlT0
−AxlT0−1 −BulT0−1

∥∥2
2
.

Compute Ā, B̄ as in equation 10, let (Â, B̂) = (Ā, B̄) be estimates for system dynamics (A,B).

Our initial focus is on examining the error transformation from the discrete system to the original
system. In Algorithm 1 and 2, discrete system identification methods are applied for estimating the
intermediate dynamics (A

′
, B

′
). We will prove Lemma 4, which show that the errors of dynamics in

the discrete system and the original system only differ by some constant factor, allowing us to only
focus on discrete system identification problems:

Lemma 4. In Algorithm 1, 2, suppose we have obtained the relative error ∥Ã−A′∥, ∥B̃ −B′∥ ≤ ϵ
for some ϵ ≤ 1

15 and ∥Ah∥ ≤ 1
15 , then we have the following relative error of the primal system:

∥Â−A∥, ∥B̂ −B∥ ≤ 1

h

(
2 +

κB
κA

)
ϵ . (12)

From this lemma, it becomes clear that if we develop a system identification algorithm for the
discrete system that outputs the dynamics estimations Ã and B̃ with minimal error, we can obtain the
estimation of the primal system with relatively small error. Then it remains to develop the analysis
for the discrete system with transition function xk+1 = Axk +Buk + wk, which has actually been
well discussed in previous works such as Simchowitz et al. (2018).

5 A CONTINUOUS ONLINE CONTROL ALGORITHM WITH IMPROVED REGRET

In this section, we apply our system identification method to a continuous LQR online control
algorithm. Recall the setup introduced in Section 3.2 where we want to minimize the regret RT

defined in equation 6. We will show in this section that with O(T ) samples, our algorithm achieves
O(
√
T ) expected regret on a single trajectory, thereby improving upon the previous O

(√
T log(T )

)
result. We list the assumption for the online LQR problems below.
Assumption 3 (Assumptions for Algorithm 3 and Theorem 5). We assume that:

1. A stabilizer K for (A,B) (see Definition 2) with α(A+BK) < 0 is known in advance.

2. Sample distance h satisfies h = 1
15κ , where κ ≥ ∥A∥+ ∥B∥∥K∥ ≥ ∥A+BK∥ is known.

3. Denote P∗ be the solution in equation 5 and K∗ = −R−1BTP∗ be the baseline control
dynamic.

4. Q,R are positive-definite symmetric matrices with bounded spectral norms ∥Q∥, ∥R∥ ≤M
and for some µ > 0, µI ⪯ Q,µI ⪯ R.

5.1 AN O(
√
T ) REGRET ALGORITHM FOR CONTINUOUS ONLINE CONTROL

Our online continuous control algorithm is outlined in Algorithm 3, and we provide a detailed
description below. Algorithm 3 is divided into two phases, exploration and exploitation. For the first
exploration phase, a previously known stabilizer K is applied to prevent the state from diverging.
During the k-th interval, by setting Ut = KXt + uk, the state Xt transits according to

dXt = (A+BK)Xtdt+Bukdt+ dWt.

8
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Algorithm 3 Continuous online control algorithm

Input: K,h which follows Assumption 3, running time T
for k = 0, . . . , [

√
T
h ]− 1 do

Sample the action uk
i.i.d.∼ N (0, Ip).

For t ∈ [kh, (k + 1)h], set Ut = KXt + uk.
Observe the new state xk+1 at time (k + 1)h.

end for
Do system identification and estimate dynamics:
Compute (Ã, B̃) according to equation 9 by using {xk, uk}.
Compute Ā, B̄ by equation 10 with Ã, B̃, and estimators (Â, B̂) by Â = Ā− B̄K,B̂ = B̄.
If Â is stable, compute P by equation 5 with estimated Â, B̂, and set K̄ = −R−1(B̂)TP .
If Â is not stable or P computed above satisfies ∥P∥ ≥ T 1

5 , then set K̄ = K.
Perform exploitation:
For t ∈ [

√
T , T ], set Ut = K̄Xt.

Detect bad policy and prevent the trajectory from diverging:
If for some t0 ≥

√
T , ∥Xt0∥ ≥ T

1
5 , then set Ut = KXt for t ∈ [t0, T ].

Since A + BK is stable, through replacing A in Theorem 1 by A + BK in Algorithm 3, we can
obtain a set of estimators (Â, B̂) for (A,B) with small error. This further allows us to accurately
estimate (A,B), thereby a controller K̄ = −R−1(B̂)TP closed to K∗ is obtained.

During exploitation phase, the near-optimal controller is deployed to minimize the cost, resulting
in a regret of O(

√
T ) (see Theorem 5). However, as we lack direct feedback on whether K̄ is a

stabilizer, we need to detect its stability. Our approach involves replacing it with the known stabilizer
K whenever the state deviates too far.
Theorem 5. Let JT be the expected LQR cost introduced in equation 3 that takes the action Ut as
in Algorithm 3. Then for some constant C ∈ poly

(
κ,M, µ−1, |α(A+BK)|−1, |α(A+BK∗)|−1

)
,

the regret satisfies:

RT = JT − J∗
T ≤ C

√
T .

Proof Sketch of Theorem 5 We analyze the two phases of our algorithm. During the exploration
phase, the stabilizing controller K effectively bounds the trajectory’s radius, ensuring the average
cost per unit time is within O(1), resulting in a total exploration cost of C

√
T .

In the subsequent exploitation phase, we analyze two scenarios separately. The first scenario occurs
when the estimators (Â, B̂) have large errors or when ∥Xt∥2 ≥ T 1/5 for some t ∈ [

√
T , T ]. This

situation is rare and contributes a limited expected cost that can be bounded by a constant. The second
scenario occurs when (Â, B̂) are accurately estimated, and the control Ut = −R−1(B̂)TPXt is
applied throughout the exploitation phase. In this case, the trajectory’s performance is straightforward
to analyze, and the expected cost is bounded by O(

√
T ) + J∗

T .

By summing the expected costs, the total exploration cost is bounded byO(
√
T ), and the exploitation

cost is bounded by J∗
T + O(

√
T ). By the definition of regret, RT = JT − J∗

T , the total regret is
O(
√
T ), leading to the conclusion of Theorem 5.

5.2 COMPARISON AGAINST SHIRANI FARADONBEH & SHIRANI FARADONBEH (2023)

Our result is closely related to the result in Shirani Faradonbeh & Shirani Faradonbeh (2023), along
with its similar version Faradonbeh (2022). They achieve O(

√
T log(T )) regret for both expectation

and worst cases. We highlight some comparisons below. Both our and their setups assume a previously
known stabilizer, which is also common for online control (Abeille & Lazaric, 2018; Ouyang et al.,
2019; Faradonbeh et al., 2020; Shirani Faradonbeh & Shirani Faradonbeh, 2023). However, the work
of Shirani Faradonbeh & Shirani Faradonbeh (2023) further assumes a known stabilization set for
obtaining a stable controller, which is slightly stronger compared with ours. Such difference exists
because our approach detects divergence and avoids sticking to a controller which is not stable.

9
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More importantly, our system identification method is different. In Shirani Faradonbeh & Shi-
rani Faradonbeh (2023), the exploration and exploitation is simultaneous, where a random matrix is
added to the near-optimal controller so that both A and B can be identified. This additional noise
cannot be too small, to ensure that the system can be well identified. This causes an extra log(T )
factor to the regret. In contrast, our algorithm follows an explore-then-commit structure, which is
enabled by the efficient system identification results presented previously.

Finally, we additionally considered the setup of finite observation, which is not discussed in Shi-
rani Faradonbeh & Shirani Faradonbeh (2023).

5.3 EXPERIMENTS

In this section, we conduct simulation experiments for the baseline algorithm and our proposed
algorithm. The baseline algorithm follows the work of Shirani Faradonbeh & Shirani Faradonbeh
(2023). We set d = p = 3 for simplicity. Each element of A is sampled uniformly from [−1, 1],
making A unstable with high probability. The matrix B is set as the identity matrix I3. Q and R are
also set as I3. The sampling interval is set to h = 1

30 .

First, we run Algorithm 1 and Algorithm 2 for system identification. We plot the expected Frobenius
norms of the error matrices ∥Â−A∥2F and ∥B̂ −B∥2F . The results demonstrate that our algorithm
can identify A and B within sufficient running time or number of trajectories.

Next, we compare Algorithm 3 with the baseline algorithm. We compute the average regret for
different t ∈ [600, 10000] and plot the results in Figure 1. We also analyze the normalized regret
R(T )/T 1/2. The results show that our online control algorithm with system identification outperforms
the baseline algorithm for sufficiently large T .

Figure 1: The empirical validation of our algorithm. Left: Identification of system dynamics using a single
trajectory. Middle: Identification of system dynamics using multiple trajectories. Right: The normalized regret
R(T )/T 1/2 of the baseline algorithm and our algorithm. The results show that our algorithm achieves small
identification error within finite time and trajectories and is more efficient than the baseline algorithm.

6 CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS

In this work, we establish a novel system identification method for continuous-time linear dynamical
systems. This method only uses a finite number of observations instead of requiring the integration of
a consequent trajectory, and can be applied to an algorithm for online LQR continuous control which
achieves O(

√
T ) regret on a single trajectory. Compared with existed works, our work not only eases

the requirement for data collection and computation, but achieves fast convergence rate in identifying
the unknown dynamics as well.

Although our method achieves near-optimal results in system identification and LQR online control
for continuous systems with stochastic noise, many questions remain unsolved. First, it is unclear
whether our system identification approach can be extended to more challenging setups, such as
deterministic or adversarial noise. Additionally, many practical models are non-linear, raising the
question of under what conditions discretization methods are effective. We believe these questions
are crucial for real-world applications.

10
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A SYSTEM IDENTIFICATION FOR CONTINUOUS-TIME LINEAR SYSTEM

We begin by presenting the analysis for our system identification method in Algorithm 1 and
Algorithm 2. As a preparation, we establish some properties of matrix exponentials and their inverses.

A.1 MATRIX EXPONENTIAL

For a matrix exponential eAt, where the largest real component of A’s eigenvalues is denoted by
α(A), the spectral norm of eAt can be well-bounded (Golub & Van Loan, 2013), as demonstrated in
Lemma 6.

Lemma 6. Suppose an n × n matrix A satisfies that 0 > α(A) = max{ℜ(λi)|λi ∈ λ(A)}. Let

QHAQ = diag(λi) +N be the Schur decomposition of A, and let MS(t) =
∑n−1

k=0
∥Nt∥k

2

k! . Then for
t > 0, we have:

∥eAt∥ ≤ eα(A)tMs(t) , (13)

∥∥e(A+E)t − eAt
∥∥

∥eAt∥
≤ t∥E∥2(Ms(t))

2e(tMS(t)∥E∥2) . (14)

In a special case where α(A) ≤ 0, since Ms(t) ≥ 1 for all t, we obtain

∥eAt∥ ≤ eα(A)t .

We also show some properties of matrix inverse in the following Lemma 7.

Lemma 7 (Matrix inverse). For any A ∈ Rd×d and t such that 0 < ∥At∥ ≤ 1
10 , we have the

following estimation of eAt:

∥eAt − Id∥ ≤ e∥At∥ − 1 ,

and if we denote A1 = eAt, then A also satisfies that

A =
1

t

∑
k≥1

(−1)k+1

k
(A1 − Id)k .

Proof. We expand eAt by

eAt =
∑
k≥0

1

k!
(At)k ,

which follows that

∥eAt − Id∥ =

∥∥∥∥∥∥
∑
k≥1

1

k!
(At)k

∥∥∥∥∥∥ ≤
∑
k≥1

1

k!
∥At∥k = e∥At∥ − 1 ≤ 1

9
.

Since ∥A1 − Id∥ < 1, the progression A2 =
∑

k≥1
(−1)k+1

kt (A1 − Id)k converges, and thus eA2t =

eAt. Furthermore, it can be computed that

∥A2t∥ ≤
∑
k≥1

∥∥∥∥1k (A1 − Id)
∥∥∥∥ ≤∑

k≥1

1

k
(
1

9
)k ≤ 1

8
.

Now we show that A2 = A. We have already known that ∥At∥ and ∥A2t∥ are small. We also
note that the function f : X → eX

(
∥X∥ ≤ 1

8

)
constitutes a one-to-one mapping. This assertion

13
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is supported by the observation that for any X1, X2 such that ∥X1∥, ∥X1 + X2∥ ≤ 1
8 , we have

∥X2∥ ≤ 1
4 , implying that

∥∥eX1+X2 − eX1 −X2

∥∥ =

∥∥∥∥∥∥
∑
k≥2

1

k!
(X1 +X2)

k −Xk
1

∥∥∥∥∥∥ (15)

≤
∑
k≥2

1

k!

2k − 1

4k−1
∥X2∥ (16)

≤ 1

2
∥X2∥ . (17)

Then
∥∥eX1+X2 − eX1

∥∥ ≥ 1
2∥X2∥, which means f is one-to-one, and thereby leading that A2 = A.

A.2 PROOF OF LEMMA 4

We restate Lemma 4 and provide the proof here.

Lemma 4 In Algorithm 1, 2, suppose we have obtained the relative error ∥Ã−A′∥, ∥B̃ −B′∥ ≤ ϵ
for some ϵ ≤ 1

15 and ∥Ah∥ ≤ 1
15 , then we have the following relative error of the primal system:

∥Â−A∥, ∥B̂ −B∥ ≤ C

h
ϵ , (18)

where C is a constant independent of h.

Proof. Firstly, according to Lemma 7, the estimated Ã is not too far away from Id, as we have:∥∥∥Ã− Id∥∥∥ ≤ ∥∥∥Ã− eAh
∥∥∥+ ∥∥eAh − Id

∥∥ ≤ ϵ+ e∥A∥h − 1 ≤ 1

7
,

Then, from equation 10 we can bound the matrix norm
∥∥∥Âh∥∥∥ by

∥∥∥Âh∥∥∥ =

∥∥∥∥∥∥
∑
k≥1

(−1)k−1

k
(Ã− I)k

∥∥∥∥∥∥ ≤
∑
k≥1

1

k
(
1

7
)k ≤ 1

6
.

Now, let’s denote A1 = Ah and A2 = Âh−A1, satisfying the relations A
′
= eA1 and Ã = eA1+A2 .

It is given that ∥A1∥ ≤ 1
15 and ∥A2∥ ≤ ∥A1∥ + ∥Âh∥ ≤ 1

4 , so by equation 15, we obtain that
∥Â−A∥h = ∥A2∥ ≤ 2∥Ã−A′∥, which follows that ∥Â−A∥ ≤ 2

h∥Ã−A
′∥ ≤ 2

hϵ.

Next, we will upper bound the estimation error of B. Let Ah =
∫ h

t=0
eAtdt and Āh =

∫ h

t=0
eÂtdt,

satisfying

∥Ah − hI∥ =

∥∥∥∥∥
∫ h

t=0

(eAt − I)dt

∥∥∥∥∥ ≤
∫ h

t=0

∥∥eAt − I
∥∥ dt ≤ ∫ h

t=0

(e∥A∥t − 1)dt ≤ 1

20
h ,

∥Āh −Ah∥ =

∥∥∥∥∥
∫ h

t=0

eÂt − eAtdt

∥∥∥∥∥ ≤
∫ h

t=0

∥∥∥eÂt − eAt
∥∥∥ dt ≤ 3

2

∫ h

t=0

∥Â−A∥tdt ≤ 3

4
hϵ .

This follows that∥∥A−1
h

∥∥ =
1

h

∥∥∥∥∥
[
I + (

Ah

h
− I)

]−1
∥∥∥∥∥ ≤ 1

h

∑
k≥0

∥∥∥∥Ah

h
− I
∥∥∥∥k ≤ 20

19h
,

∥(Āh)
−1 −A−1

h ∥

=
∥∥A−1

h

∥∥∥∥∥[I + (Āh −Ah)A
−1
h

]−1 − I
∥∥∥ ≤ ∥∥A−1

h

∥∥ 1

1−
∥∥(Āh −Ah)A

−1
h

∥∥ ≤ 1

h
ϵ .
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Since B and its estimator B̂ satisfy that

B = (Ah)
−1B

′
, B̂ = (Āh)

−1B̃ ,

we can upper bound the estimation error
∥∥∥B̂ −B∥∥∥ by∥∥∥B̂ −B∥∥∥ ≤ ∥∥(Āh)

−1 −A−1
h

∥∥ ∥∥∥B′
∥∥∥+ ∥∥(Āh)

−1
∥∥∥∥∥B̃ −B′

∥∥∥ ≤ ∥B′∥
h

ϵ+
2

h
ϵ ≤ (2∥B∥+ 2

h
)ϵ ,

where the last inequality is because ∥B′∥ ≤ ∥Ah∥∥B∥ ≤ 2h∥B∥.

Since 2∥B∥ ≤ 2κB ≤ 1
h ·

2κB

15κA
≤ κB

κA
, we obtain Lemma 4.

A.3 ANALYSIS FOR SYSTEM IDENTIFICATION WITH SINGLE TRAJECTORY

In this section, we upper bound the estimation errors of intermediate dynamics (A
′
, B

′
), obtained as

in equation 9. We primarily prove Lemma 8 below, providing system identification results on a single
trajectory with a stable controller.
Lemma 8. Consider the trajectory xk+1 = Axk +Buk +wk with A ∈ Rd×d, ∥A∥ < 1, B ∈ Rd×p;
uk ∼ N (0, Ip) and wk ∼ N (0,Σ) are i.i.d. random variables. Suppose we compute (Â, B̂) by

(Â)T =

[
T0−1∑
k=0

xkx
T
k

]† T0−1∑
k=0

xkx
T
k+1 , (B̂)T =

[
T0−1∑
k=0

uku
T
k

]† T0−1∑
k=0

uk

(
xk+1 − Âxk

)T
. (19)

Then there exists a constant C (depending only on A, B, d, p and Σ) such that for T ≥
C
(
∥X0∥22 + log2(1/δ)

)
, w.p. at least 1− δ:

∥Â−A∥, ∥B̂ −B∥ ≤ C
√

log(1/δ)

T
, (20)

We first provide Lemma 9, which is used as the base of Lemma 8.
Lemma 9. Consider A ∈ Rd×d such that ρ(A) < 1 and the system Xk+1 = AXk + wk with
wk ∼ N (0,Σ) be i.i.d. random variables. Suppose we estimate A as in equation 9. Then there exists
a constant C depending on A, Σ and d such that for T ≥ C(∥X0∥22 + log(1/δ)), w.p. at least 1− δ,
we have:

∥Â−A∥ ≤ C
√

log(1/δ)

T
.

The work of (Simchowitz et al., 2018) has discussed such systems in their Theorem 2.4, and we list it
below:
Theorem 10. Fix ϵ, δ ∈ (0, 1), T ∈ N and 0 ≺ Γsb ≺ Γ̄. Then if (Xt, Yt)t≥1 ∈ (Rd × Rn)T is a
random sequence such that (a) Yt = A∗Xt + ηt, where ηt|Ft is σ2-sub-Gaussian and mean zero, (b)

X1, ..., XT satisfies the (k,Γsb, p)-small ball condition, and (c) such that P
[∑T

t=1XtX
T
t ̸⪯ T Γ̄

]
≤

δ. Then if

T ≥ 10k

p2
(
log(1/δ) + 2d log(10/p) + log det(Γ̄Γ−1

sb )
)
,

we have

P

∥Â−A∗∥ >
90σ

p

√
n+ d log 10

p + log det(Γ̄Γ−1
sb ) + log( 1δ )

Tλmin(Γsb)

 ≤ 3δ .

Here, the (k,Γsb, p)-small ball condition is defined as follows. Let (Zt)t≥1 be an Ftt≥1-adapted
random process taking values in R. We say (Zt)t≥1 satisfies the (k, ν, p)-block martingale small-ball
(BMSB) condition if, for any j ≥ 0, one has 1

k

∑k
i=1 P(|Zj+i| ≥ ν|Fj) ≥ p almost surely. Given

a process (Xt)t≥1 taking values in Rd, we say that it satisfies the (k,Γsb, p)-BMSB condition for
Γsb ≻ 0 if, for any fixed w ∈ Sd−1, the process Zt := ⟨w,Xt⟩ satisfies (k,

√
wTΓsbw, p)-BMSB.
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In the work of (Simchowitz et al., 2018), they have discussed the case when X0 = 0, and now we
modify it to a general starting state X0. From equation 9, we derive the estimation error of A as

ÂT −AT =

[
T−1∑
k=0

XkX
T
k

]† T−1∑
k=0

XkX
T
k+1 −AT

=

[
T−1∑
k=0

XkX
T
k

]† T−1∑
k=0

Xk(AXk + wk)
T −AT

=

[
T−1∑
k=0

XkX
T
k

]† T−1∑
k=0

Xkw
T
k .

For the first term, consider any v ∈ Sd−1, we lower bound vT
(∑T−1

k=0 XkX
T
k

)
v. Let ak = vTXk,

then ak = vTAXk−1 + vTwk. We claim that for any k ≥ 1, P
[
|ak| ≥ 1

2 |Xk−1

]
≥ 1

2 . Let bk =

vTwk, which is independent of Xk−1. It suffices to show that for any c ∈ R, P [bk ∈ [c, c+ 1]] ≤ 1
2 .

Since ∥v∥2 = 1 and wk ∼ N (0, Id), we have bk ∼ N (0, 1), from which we estimate the probability
as

P [bk ∈ [c, c+ 1]] =

∫ c+1

x=c

1√
2π
e−

1
2x

2

dx ≤ 1√
2π
≤ 1

2
. (21)

Based on equation 21, we can simply choose k = 1, Γsb =
1
4Id and p = 1

2 , then the random sequence
(Xi)i≥0 satisfies the (k,Γsb, p)-BMSB condition. It remains to choose a proper Γ̄ that meets the
condition (c) in Theorem 10.

Since Xk = AkX0 +
∑k

i=1A
k−iwi, we have:

E

[
T−1∑
k=0

XkX
T
k

]
= E

T−1∑
k=0

(
AkX0 +

k∑
i=1

Ak−iwi

)(
AkX0 +

k∑
i=1

Ak−iwi

)T


=

T−1∑
k=0

AkX0X
T
0 (A

k)T + E

[
T−1∑
k=0

k∑
i=0

AkX0w
T
i (A

k−i)T

]

+ E

[
T−1∑
k=0

k∑
i=0

Ak−iwiX
T
0 (A

k)T

]
+ E

T−1∑
k=0

k∑
i,j=0

Ak−iwiw
T
j (A

k−j)T


=

T−1∑
k=0

AkX0X
T
0 (A

k)T +

T−1∑
k=0

k∑
i=0

Ak−iΣ(Ak−i)T .

Let Γ∞ =
∑

k≥0A
kΣ(Ak)T which is bounded and C1 be a constant such that C1 ≥

∑
k≥0 ∥Ak∥2.

We then show that for Γ̄ =
(

C1∥X0∥2
2

T dId + d∥Γ∞∥Id
)
/δ, the condition (c) in Theorem 10 is

satisfied. This is because E
[
tr
(∑T−1

k=0 XkX
T
k

)]
= tr

(
E
[∑T−1

k=0 XkX
T
k

])
≤ Tδ

d tr(Γ̄) so that

P
[
tr(
∑T−1

k=0 XkX
T
k ) ≥ 1

dT tr(Γ̄)
]
≤ δ. Furthermore, a necessary condition for∑T−1

k=0 XkX
T ̸≺ T Γ̄ is tr(

∑T−1
k=0 XkX

T) ≥ 1
dT tr(Γ̄).

Now, we apply such Γ̄ to Theorem 10. It can be computed that
log det(Γ̄Γ−1

sb ) = d log
(
4d(C1∥X0∥22/T + ∥Γ∞∥)

)
+ d log(1/δ) .

Then when T ≥ C1∥X0∥2 as well as T ≥ 40 (2d log(20) + d log(4d(1 + ∥Γ∞∥)) + 2d log(1/δ)),
we have:

P

∥Â−A∥ > 360

√
d+ d log(20) + d log(4d(1 + ∥Γ∞∥)) + 2d log( 1δ )

T

 ≤ 3δ .

This implies our Lemma 9.
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Proof of Lemma 8 As for the estimation error ∥Â−A∥, let w
′

k = Buk +wk ∼ N (0,Σ+BBT),
which form a sequence of i.i.d random variables. With the results in Lemma 9, there exist some
constants C1, C2 such that, as long as T ≥ C1

(
∥X0∥22 + log(1/δ)

)
we have:

∥Â−A∥ ≤ C2

√
log(1/δ)

T
.

Now we upper bound the estimation error ∥B̂ −B∥. With the expression in equation 9, we obtain:

∥B̂ −B∥ =

∥∥∥∥∥∥
[
T−1∑
k=0

uku
T
k

]† T−1∑
k=0

uk

[
(A− Â)Xk + wk

]T∥∥∥∥∥∥
≤ λ−1

min(

T−1∑
k=0

uku
T
k )

[∥∥∥∥∥
T−1∑
k=0

ukX
T
k

∥∥∥∥∥ ∥∥∥Â−A∥∥∥+
∥∥∥∥∥
T−1∑
k=0

ukw
T
k

∥∥∥∥∥
]
.

For the quantities λ−1
min(

∑T−1
k=0 uku

T
k ) and ∥

∑T−1
k=0 ukw

T
k ∥, we apply Lemma 2.1. and Lemma 2.2.

in the work of (Dean et al., 2018), where they present the following results.
Lemma 11. Let N ≥ 2 log(1/δ). Suppose fk ∈ Rm, gk ∈ Rn are independent vectors such that
fk ∼ N (0,Σf ) and gk ∼ N (0,Σg) for 1 ≤ k ≤ N . With probability at least 1− δ,∥∥∥∥∥

N∑
k=1

fkg
T
k

∥∥∥∥∥ ≤ 4∥Σf∥1/22 ∥Σg∥1/22

√
N(m+ n) log(9/δ) .

Lemma 12. Let X ∈ RN×n have i.i.d. N (0, 1) entries. With probability at least 1− δ,√
λmin(XTX) ≥

√
N −

√
n−

√
2 log(1/δ) .

With these two lemmas, we can conclude that if T ≥ 32(d+ p) log(4/δ), then both λmin(uku
T
k ) ≥

1
2T and

∥∥∥∑T−1
k=0 ukw

T
k

∥∥∥ ≤ 4 ∥Σ∥1/22

√
T (d+ p) log(18/δ), w.p. at least 1− δ.

Now we concentrate on the term
∥∥∥∑T−1

k=0 ukX
T
k

∥∥∥. Since w
′

i = Bui +wi ∼ N (0,Σ+BBT), it can

be directly computed that, w.p. at least 1− δ/T ,
∥∥∥w′

i

∥∥∥
2
≤ 2

∥∥d(Σ +BBT)
∥∥1/2
2

√
log(T/δ). Then

by union bound we get P
[
sup0≤i≤T−1

∥∥∥w′

i

∥∥∥
2
≤ 2∥Σ+BBT∥1/22

√
d log(T/δ)

]
≤ δ. Furthermore,

when sup0≤i≤T−1

∥∥∥w′

i

∥∥∥
2
≤ 2

∥∥Σ+BBT
∥∥1/2
2

√
d log(T/δ), we must have

∥Xk∥2 =

∥∥∥∥∥AkX0 +

k−1∑
i=0

Ak−1−iwi

∥∥∥∥∥ ≤ ∥A∥k∥X0∥2 +
2

1− ∥A∥
∥∥Σ+BBT

∥∥1/2
2

√
d log(T/δ) .

(22)

For any u ∈ Sp−1 and v ∈ Sd−1, let xi = uTui(0 ≤ i ≤ T − 1). Then, xi follows a normal
distribution xi ∼ N (0, 1) and {xi} is a sequence of independent random variables. Furthermore, xk
is also independent of (Xi)0≤i≤k. On the other hand, denote yk = XT

k v, equation 22 implies that

w.p. at least 1 − δ, for all k we have |yk| ≤ ∥X0∥2 + 2
1−∥A∥

∥∥Σ+BBT
∥∥1/2
2

√
d log(T/δ) := Y .

Let

Zk :=

k∑
i=0

uT
(
ukX

T
k

)
v · 1∥Xk∥2≤Y =

k∑
i=0

xkyk · 1∥Xk∥2≤Y ,

and let F0,F1, ...,FT be the filtration of X0, X1, ..., XT , then for any α ≥ 0,

E
[
e

αZk+1
Y |Fk

]
= e

αZk
Y EXk+1

[
Ex∼N (0,1)

[
exp

(
αxyk+1 · 1∥Xk+1∥2≤Y

Y

)]]
≤ e 1

2α
2

e
αZk
Y ,
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implying that E
[
e

αZk+1
Y

]
≤ e

1
2α

2E
[
e

αZk+1
Y

]
So we have: E

[
e

αZT−1
Y

]
≤ e

1
2α

2T . By choosing

α = ±
√

1
T , we obtain that

P
[
|ZT−1| ≥ 2Y

√
T log(4/δ)

]
≤ δ

For Td be a 1
4 -net of Sd−1 and Tp be a 1

4 -net of Sp−1, we use union bound on them and obtain that,
w.p. at least 1− δ

|ZT−1| ≤ 2Y
√
T log(4|Tp||Td|/δ) ≤ 2Y

√
T [4(d+ p) + log(4/δ)] .

Where the last inequality is because |Tp| ≤ 9p and |Td| ≤ 9d

Next we upper bound
∥∥∥∑T−1

k=0 ukX
T
k

∥∥∥. For any u∗ ∈ Sp−1 and v∗ ∈ Sp−1, with some u ∈ Tp and

v ∈ Td s.t. ∥u− u∗∥2, ∥v − v∗∥2 ≤ 1
2 , we have:∣∣∣∣∣uT∗ (

T−1∑
k=0

ukX
T
k )v∗

∣∣∣∣∣
≤

∣∣∣∣∣uT(
T−1∑
k=0

ukX
T
k )v

∣∣∣∣∣+
∣∣∣∣∣(u∗ − u)T(

T−1∑
k=0

ukX
T
k )v∗

∣∣∣∣∣+
∣∣∣∣∣uT(

T−1∑
k=0

ukX
T
k )(v − v∗)

∣∣∣∣∣
≤ sup

u∈Tp,v∈Td

∣∣∣∣∣uT(
T−1∑
k=0

ukX
T
k )v

∣∣∣∣∣+ 1

2

∥∥∥∥∥
T−1∑
k=0

ukX
T
k

∥∥∥∥∥ .
This leads

∥∥∥∑T−1
k=0 ukX

T
k

∥∥∥ ≤ 2 supu∈Tp,v∈Td

∣∣∣uT(∑T−1
k=0 ukX

T
k )v

∣∣∣. Therefore, for any δ ∈ (0, 12 ),
we have:

P

[∥∥∥∥∥
T−1∑
k=0

ukX
T
k

∥∥∥∥∥
2

≥ 4Y
√
T [4(d+ p) + log(4/δ)]

]

≤ P

[
sup

u∈Td,v∈Tp

∣∣∣∣∣uT
(

T−1∑
k=0

ukX
T
k 1∥Xk∥2≤Y

)
v

∣∣∣∣∣ ≥ 2Y
√
T [4(d+ p) + log(4/δ)]

]
+ P [∃ 0 ≤ k ≤ T − 1, ∥Xk∥2 ≥ Y ]

≤ 2δ .

We choose constant C depending on A,B, d, p such that for all T ≥ C
(
∥X0∥22 + log2(1/δ)

)
,

4Y
√
T [4(d+ p) + log(4/δ)] ≤ T ,

and we further have: whenever T ≥ C
(
∥X0∥22 + log2(1/δ)

)
, w.p. at least 1− 3δ,∥∥∥∥∥

T−1∑
k=0

ukX
T
k

∥∥∥∥∥ ∥Â−A∥ ≤ C2

√
log(1/δ)T .

Finally, when T ≥ max
(
C
(
∥X0∥22 + log2(1/δ)

)
, 32(d+ p) log(4/δ)

)
, we combine this upper

bound with P
(
λmin(

∑T−1
k=0 uku

T
k ) ≤ 1

2T
)
≤ δ, and obtain Lemma 8.

A.4 SYSTEM IDENTIFICATION WITH MULTIPLE TRAJECTORIES

Now, we aim to establish Theorem 3. The analysis of system identification for discrete-time linear
dynamical systems with multiple trajectories has been thoroughly investigated by (Dean et al., 2018).
We hereby cite their findings, denoting the relevant result as Lemma 13.
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Lemma 13. Suppose we have N i.i.d. trajectories Xi
k, each is defined by Xi

(k+1)h = AXi
k +

Buik + wi
k, where T0 is any integer, uik ∼ N (0, Ip) and wi

k ∼ N (0,Σ) are two sets of i.i.d. random
variables. Then, for the estimator (Â, B̂) of

(Â, B̂) ∈ arg min
(A,B)

1

2

N∑
i=1

∥∥Xi
T0
−AXi

T0−1 −BuiT0−1

∥∥2
2

(23)

with probability at least 1− δ, we have:

∥Â−A∥, ∥B̂ −B∥ ≤ O

(√
log(1/δ)

N

)
.

Combining Lemma 13 with Lemma 4, we directly obtain Theorem 3.

A.5 LOWER BOUND OF SYSTEM IDENTIFICATION WITH FINITE OBSERVATION

We restate and provide the proof of Theorem 2.

Theorem 2 Suppose T ≥ 1 be the running time of a single trajectory of continuous-time linear
differential system, represented as in equation 2. Then there exist constants c1, c2 independent of
d such that, for any finite set of observed points {t0 = 0, t1, t2, ..., tN = T}, and any (possibly
randomized) estimator function ϕ : {Xt0 , Xt1 , ..., XtN } → Rd×d, there exists bounded A,B

satisfying P
[
∥ϕ({Xi}i≤N )−A∥ ≥ c1√

T

]
≥ c2. Here the probability corresponds to the dynamical

system dominated by (A,B).

Proof. Firstly, we consider a special case where d = 1, and let A = [−1] and Ā = [−1 − δ].
We show that when δ = 1

5
√
T

, for the two dynamical systems ψθ : dXt = AXtdt + dWt and
ψθ̄ : dXt = ĀXtdt + dWt, any algorithm A that outputs according only to {Xt0 , Xt1 , ..., XtN }
satisfies:

max

{
P
[
∥A(Xt0 , Xt1 , ..., XtN )−A∥ ≥ 1

10
√
T

]
,P
[
∥A(Xt0 , Xt1 , ..., XtN )− Ā∥ ≥ 1

10
√
T

]}
≥ 1

4e3
.

We note that this special case can be easily generalized to any dimension d, since we can consider
A = −Id and Ā satisfies Ā1,1 = A1,1 − δ, and for any (i, j) ̸= (1, 1), Āi,j = Ai,j . In this case the
last d− 1 dimension is independent of the first dimension, so it is essentially the same as the simplest
one-dimensional case.

Denote X = {Xt0 , Xt1 , ..., XtN } and g(X), ḡ(X) be the probability density of ψθ and ψθ̄, respec-
tively. For these two probability densities we have:

g(X) =

N∏
i=1

1√
2πΓ(ti − ti−1)

exp

(
− 1

2Γ(ti − ti−1)
(Xti − e−(ti−ti−1)Xti−1

)2
)
,

and

ḡ(X) =

N∏
i=1

1√
2πΓ̄(ti − ti−1)

exp

(
− 1

2Γ̄(ti − ti−1)
(Xti − e−(1+δ)(ti−ti−1)Xti−1

)2
)
.

Where

Γ(t) =

∫ t

s=0

e−2sds =
1

2
(1− e−2t) Γ̄(t) =

∫ t

s=0

e(−2−2δ)sds =
1

2 + 2δ
(1− e−(2+2δ)t) .
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Denote αi =
√

1
Γ(ti−ti−1)

(Xti − e−(ti−ti−1)Xti−1
),

βi =
√

1
Γ(ti−ti−1)

(e−(ti−ti−1) − e−(1+δ)(ti−ti−1))Xti−1
and γi =

√
Γ(ti−ti−1)

Γ̄(ti−ti−1)
. Then

ln

(
g(X)

ḡ(X)

)
=

N∑
i=1

− ln(γi) +
1

2
γ2i (αi + βi)

2 − 1

2
α2
i .

Next we show that
∣∣∣ln( g(X)

ḡ(X)

)∣∣∣ is not large with high probability when X follows the probability den-

sity of g. Consider the following subsets of X: E1 =
{
X
∣∣ ∣∣∣∑N

i=1− ln(γi) +
1
2 (γ

2
i − 1)α2

i

∣∣∣ ≤ 1
}

.

E2 =
{
X
∣∣|∑N

i=1 γ
2
i αiβi| ≤ 1

}
and E3 =

{
X
∣∣ 1
2

∑N
i=1 γ

2
i β

2
i ≤ 1

}
. When X lies in the intersection

of these three sets,
∣∣∣ln( g(X)

ḡ(X)

)∣∣∣ is guaranteed to be not very large.

Let P be the probability with respect to density g. We will explicitly show that P[X ∈ Ek] ≥ 5
6 (k =

1, 2, 3).

Lower bound P[X ∈ E1] Firstly, we estimate
∑N

i=1
1
2 (γ

2
i − 1) − ln(γi). We first prove the

following inequality:

0 ≤ γ2i − 1 ≤ 2δmin{1, ti − ti−1} . (24)

Let t = ti − ti−1. Then γ2i = (1 + δ) 1−e−2t

1−e−(2+2δ)t .

The left hand side of this inequality is because Γt ≥ Γ̄t, due to the reason that e−2s ≥ e−(2+2δ)s

for all s ≥ 0 and when f(x) ≥ g(x) for any x ∈ I we have:
∫
x∈I

f(x)dx ≥
∫
x∈I

g(x)dx. Now we
consider the right hand side of the inequality.

Case 1: When t ≥ 1, we directly use the fact that 1− e−2t ≤ 1− e−(2+2δ)t and obtain γi ≤ 1 + δ.

Case 2: When t ∈ (0, 1], it suffices to show that

(1 + δ)(1− e−2t) ≤ (1 + 2δt)(1− e−(2+2δ)t) .

Let h(t) = (1 + δ)(1− e−2t)− (1 + 2δt)(1− e−(2+2δ)t), then

h(t) = δ(1− 2t)− e−2t[1 + δ − (1 + 2δt)e−2δt]

≤ δ(1− 2t− e−2t)

≤ 0 .

Where for the first inequality we use the relation that e−2δt ≤ 1
1+2δt . The second inequality is

obtained by the relation that e−2t ≥ 1− 2t.

Now we bound 1
2 (γ

2
i − 1)− ln(γi). We first show that

0 ≤ 1

2
(γ2i − 1)− ln(γi) ≤

1

4
(γ2i − 1)2 .

Let x = γ2i − 1 and we obtain 1
2 (γ

2
i − 1)− ln(γi) =

1
2 [x− ln(1+ x)], and the inequality is obtained

directly since we have x ≥ ln(1 + x) ≥ x− 1
2x

2(x ≥ 0).

Then we can bound
∑N

i=1
1
2 (γ

2
i − 1)− ln(γi) as
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0 ≤
N∑
i=1

1

2
(γ2i − 1)− ln(γi) ≤

N∑
i=1

1

4
(γ2i − 1)2

≤
N∑
i=1

δ2 min(1, (ti − ti−1))
2

≤
N∑
i=1

δ2(ti − ti−1)

≤ δ2T

≤ 1

25
.

Now we bound
∑N

i=1
1
2 (γ

2
i − 1)(α2

i − 1). Notice that this variable has zero mean, so we can bound
its variance and then apply Markov inequality to obtain a high probability bound.

At first, consider the variance of α2
i − 1, denoted as V ar(α2

i − 1). By noticing that αi ∼ N (0, 1),
we can directly calculate that

V ar(α2
i − 1) =

∫
x∈R

1√
2π
e−

1
2x

2

(x2 − 1)2dx = 2 .

Since all the αi’s are independent, we have:

V ar

(
N∑
i=1

1

2
(γ2i − 1)(α2

i − 1)

)
=

N∑
i=1

1

4
(γ2i − 1)2V ar(α2

i − 1)

≤ 1

2

N∑
i=1

(γ2i − 1)2

≤ 2δ2
N∑
i=1

min(1, ti − ti−1)
2

≤ 2δ2T

≤ 2

25
.

By Markov inequality, we have:

P

[∣∣∣∣∣
N∑
i=1

1

2
(γ2i − 1)(α2

i − 1)

∣∣∣∣∣ ≥ 4

5

]
≤ V ar

(
N∑
i=1

1

2
(γ2i − 1)(α2

i − 1)

)
/

(
4

5

)2

≤ 1

8
.

Finally, for the subset E1 =
{
X
∣∣ ∣∣∣∑N

i=1− ln(γi) +
1
2 (γ

2
i − 1)α2

i

∣∣∣ ≤ 1
}

, we have:

P [x ∈ E1] ≥ 1− P

[∣∣∣∣∣
N∑
i=1

1

2
(γ2i − 1)(α2

i − 1)

∣∣∣∣∣ ≥ 4

5

]
≥ 7

8
.

Lower bound P[X ∈ E2] Since all the αi’s are independent, and αi is independent of {β1, ..., βi}
and {γ1, ..., γN}, we obtain that
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E

( N∑
i=1

γ2i αiβi

)2
 = E

[
N∑
i=1

(γ2i αiβi)
2

]

= E

[
N∑
i=1

(γ2i βi)
2

]

=

N∑
i=1

E
[
(γ2i βi)

2
]
.

We have shown that γ2i ≤ 1 + 2δ. Then for T ≥ 1 we have: γ4i ≤ (1 + 2
5 )

2 ≤ 2. Therefore, we
obtain:

E

( N∑
i=1

γ2i αiβi

)2
 ≤ 2

N∑
i=1

E
[
β2
i

]
.

Now we upper bound E
[
β2
i

]
, where βi =

√
1

Γ(ti−ti−1)
(e−(ti−ti−1) − e−(1+δ)(ti−ti−1))Xti−1

Firstly, we show that√
1

Γ(ti − ti−1)
(e−(ti−ti−1) − e−(1+δ)(ti−ti−1)) ≤ δ

√
ti − ti−1 . (25)

Again denote t = ti − ti−1. By using Γt =
1
2 (1− e

−2t), it suffices to show that

e−t − e−(1+δ)t ≤ δ
√

1

2
t(1− e−2t) .

By multiplying et on both sides, the inequality is equivalent to

1− e−δt ≤ δ
√

1

2
t(e2t − 1) .

This is true since e−δt ≥ 1− δt, and e2t ≥ 1 + 2t, implying that

1− e−δt ≤ δt ≤ δ
√

1

2
t(e2t − 1) .

With this result, we can upper bound 2
∑N

i=1 E
[
β2
i

]
by

2

N∑
i=1

E
[
β2
i

]
≤

N∑
i=1

2δ2(ti − ti−1)E
[
X2

ti−1

]
.

Finally, since Xt ∼ N (0,Γ(t)), for all t ≥ 0,

E
[
X2

t

]
= Γt =

1

2
(1− e−2t) ≤ 1 .
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Therefore, we obtain

E

( N∑
i=1

γ2i αiβi

)2
 ≤ 2

N∑
i=1

E
[
β2
i

]
≤

N∑
i=1

2δ2(ti − ti−1)E
[
X2

ti−1

]
≤

N∑
i=1

2δ2(ti − ti−1) = 2Tδ2 =
2

25

Again by using Markov inequality, we obtain:

P

[
|

N∑
i=1

γ2i αiβi| > 1

]
≤ 2

25
.

Which follows that

P [X ∈ E2] = 1− P

[
|

N∑
i=1

γ2i αiβi| ≥ 1

]
≥ 23

25
.

Lower bound P[X ∈ E3] We have shown that γ2i ≤ 2,∀i and
∑N

i=1 E
[
β2
i

]
≤ δ2T . Therefore,

E

[
1

2

N∑
i=1

γ2i β
2
i

]
≤ δ2T ≤ 2

25
.

And we also have

P [X ∈ E3] = 1− P

[
1

2

N∑
i=1

γ2i β
2
i > 1

]
≥ 23

25
.

Now we come back to prove the theorem. With lower bounds of P[X ∈ E1],P[X ∈ E2],P[X ∈ E3],
we have

P [X ∈ E1 ∩ E2 ∩ E3] ≥ 1− (1− P[X ∈ E1])− (1− P[X ∈ E2])− (1− P[X ∈ E3]) ≥
1

2
.

With this bound, we have:

EX∼g

[
1

(
|ϕ(X)−A| ≥ 1

10
√
T

)]
+ EX∼ḡ

[
1

(
|ϕ(X)− Ā| ≥ 1

10
√
T

)]
≥
∫
X∈E1∩E2∩E3

g(X)E
[
1

(
∥ϕ(X)−A∥ ≥ 1

10
√
T

) ∣∣X]+ ḡ(X)E
[
1

(
∥ϕ(X)− Ā∥ ≥ 1

10
√
T

) ∣∣X] dX
≥
∫
X∈E1∩E2∩E3

min{g(X), ḡ(X)}dX

≥
∫
X∈E1∩E2∩E3

1

e3
g(X)dX

≥ 1

2e3
.

Where the second inequality is because ∥ϕ(X) − A∥ + ∥ϕ(X) − Ā∥ ≥ ∥A − Ā∥ = 1
5
√
T

so we
cannot have both ∥ϕ(X)−A∥ ≤ 1

10
√
T

and ∥ϕ(X)− Ā∥ ≤ 1
10

√
T

. The third inequality is because
for any X ∈ E1 ∩ E2 ∩ E3, we have
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∣∣∣∣ln g(X)

ḡ(X)

∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

− ln(γi) +
1

2
γ2i (αi + βi)

2 − 1

2
α2
i

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

− ln(γi) +
1

2
(γ2i − 1)α2

i

∣∣∣∣∣
+

∣∣∣∣∣
N∑
i=1

γ2i αiβi

∣∣∣∣∣
+

1

2

N∑
i=1

γ2i β
2
i

≤ 3 ,

implying that ḡ(X) ≥ 1
e3 g(X).

Therefore, we have:

max

{
PX∼g

[
|ϕ(X)−A| ≥ 1

10
√
T

]
,PX∼ḡ

[
|ϕ(X)− Ā| ≥ 1

10
√
T

]}
≥ 1

4e3
.

This means that for any algorithm, it cannot achieve 1
10

√
T

estimation error with success probability
1− 1

4e3 for at least one of the systems controlled by (A, 0) and (Ā, 0).

B REGRET ANALYSIS

Having demonstrated the results of system identification for continuous-time linear systems, we
leverage these findings to establish upper bounds on the regret for Algorithm 3. Elaborations on the
details will be presented in the subsequent sections.

B.1 CONVERGENCE OF P AND THE ESTIMATION ERROR OF K

In this section we provide the following Lemma 14, along with its proof, which shows that ∥P −P∗∥
converges at the same speed as ∥Â−A∥+ ∥B̂ −B∥.
Lemma 14. There exist constants ϵ0 > 0 and C2 > 0 such that as long as ∥Â−A∥, ∥B̂ −B∥ ≤ ϵ
for some 0 < ϵ < ϵ0, with P obtained from equation 5 we have:

∥P − P∗∥ ≤ C2ϵ . (26)

Recall that the optimal dynamic is K∗ = −R−1BTP∗ with P∗ obtained from equation equation 5.
Now we consider the distance between it and the sub-optimal dynamic K̄ = −R−1BTP with P
obtained from equation 5 with (Â, B̂). Denote ∆A = Â − A and ∆B = B̂ − B, along with
∥∆A∥, ∥∆B∥ ≤ ϵ where ϵ ∈ [0, ϵ0] with some ϵ0 determined later. We establish the proof by
constructing a sequence of matrices (Pk)k≥0, and we will prove that such sequence converges to the
unique symmetric solution P satisfying

PB̂R−1B̂TP − ÂTP − PÂ−Q = 0 .

At first we introduce a solution of a particular kind of matrix equation (Kleinman, 1968).
Lemma 15. Suppose A satisfies α(A) = max{ℜ(λi)|λi ∈ λ(A)} < 0. Q is a symmetric matrix.
Consider such a function

ATX +XA+Q = 0 . (27)
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Then, the unique symmetric solution X of this equation can be expressed as:

X =

∫
t≥0

eA
TtQeAtdt . (28)

Now we consider the relation between P and P∗. The core is iteratively constructing a sequence
of matrices Pk such that P0 = P∗ and limk→+∞ Pk = P . Such matrices follows the relation
Pk+1 = Pk +∆Pk where ∆Pk converges rapidly. As for the starting case, consider the expansion

(P∗ +∆P )(B +∆B)R−1(B +∆B)T(P∗ +∆P )

− (A+∆A)T(P∗ +∆P )− (P∗ +∆P )(A+∆A)−Q

=
[
(B +∆B)R−1(B +∆B)TP∗ −A−∆A

]T
∆P

+∆P
[
(B +∆B)R−1(B +∆B)TP∗ −A−∆A

]
+
[
P∗BR

−1BTP∗ −ATP∗ − P∗A−Q
]
+ P∗

[
∆B

(
R−1(B +∆B)T

)
+BR−1∆B

]
P∗

+∆P (B +∆B)R−1(B +∆B)T∆P .

Define
A0 = A+∆A− (B +∆B)R−1(B +∆B)TP∗ ,

F0 = −P∗
[
∆B

(
R−1(B +∆B)T

)
+BR−1∆B

]
P∗ .

We set ∆P0 be a solution of

AT
0 ∆P0 +∆P0A0 + F0 = 0 .

which satisfies that (see Lemma 15)

∆P0 =

∫
t≥0

eA
T
0 tF0e

A0tdt ,

∥∆P0∥ ≤
∫
t≥0

e2α(A0)t∥F0∥dt =
1

−2α(A0)
∥F0∥ ≤

1

−α(A0)
∥P∗∥2(∥BR−1∥ϵ+ ∥R−1∥ϵ2) .

This ∆P0 also satisfies
(P∗ +∆P0)(B +∆B)R−1(B +∆B)T(P∗ +∆P0)

− (A+∆A)T(P∗ +∆P )− (P∗ +∆P )(A+∆A)−Q
= ∆P0(B +∆B)R−1(B +∆B)T∆P0 .

An important thing is to guarantee that A0 is stable, and |α(A0)| can not be too closed to zero.
For any ϵ1 ∈ (0, 1) and C1 = ∥R−1∥∥P∗∥ + 1 + 2∥BR−1∥∥P∗∥, as long as ϵ ≤ ϵ1, ∥A0 − (A −
BR−1BTP∗)∥ ≤ C1ϵ. Furthermore, there exists ϵ2 > 0 such that if ∥X − (A−R−1BTP∗)∥ ≤ ϵ2,
then α(X) ≤ 1

2α(A−R
−1BTP∗)(the work of (Shirani Faradonbeh & Shirani Faradonbeh, 2023)

shows this result). We can further let this ϵ2 satisfies that, as long as ∥∆A∥, ∥∆B∥, ∥∆P∥ ≤ ϵ2, we
always have:

α
(
A+∆(A)− (B +∆B)R−1(B +∆B)T(P∗ +∆P )

)
≤ 1

2
α(A−BR−1BTP∗) . (29)

Now we additionally set ϵ1 satisfying ϵ1 ≤ 1
2C1

ϵ2 and ∥R−1∥ϵ1 ≤ 1, then for all ϵ ≤ ϵ1,

∥∆P0∥ ≤
2

−α(A−BR−1BTP∗)
∥P∗∥2(1 + ∥BR−1∥)ϵ .

Denote P1 = P0 +∆P0, C2 = 2
−α(A−BR−1BTP∗)

∥P∗∥2(1 + ∥BR−1∥), and set some constant C3

satisfying C3 ≥ ∥BR−1BT∥ + 2∥BR−1∥ + ∥R−1∥. We then inductively define Pk+1 and ∆Pk

(k ≥ 1). For defined ∆Pk−1, we set Pk = Pk−1 +∆Pk−1, which satisfies

Pk(B +∆B)R−1(B +∆B)TPk − (A+∆A)TPk − Pk(A+∆(A))−Q
= ∆Pk−1(B +∆B)R−1(B +∆B)T∆Pk−1 .
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Then we denote Ak = A+∆A− (B +∆B)R−1(B +∆B)TPk, and set ∆Pk satisfying:

AT
k∆Pk +∆PkAk = ∆Pk−1(B +∆B)R−1(B +∆B)T∆Pk−1 .

By the hypothesis of ϵ2, as long as ∥Pk − P∗∥ ≤ ϵ2, we have α(Ak) ≥ 1
2α(A−BR

−1BTP∗). By
using equation 28 we obtain that ∥∆Pk∥ ≤ C4∥∆Pk−1∥2, where C4 = 2

−α(A−BR−1BTP∗)
C3. Now

if we define Pk+1 = Pk +∆Pk, Pk+1 also satisfies:

Pk+1(B +∆B)R−1(B +∆B)TPk+1 − (A+∆A)TPk+1 − Pk+1(A+∆(A))−Q
= ∆Pk(B +∆B)R−1(B +∆B)T∆Pk ,

Then these sequences ∆Pk and Pk are well defined, along with the relation that Pk+1 = Pk +∆Pk.
Furthermore, when ∥Pk − P∗∥ ≤ ϵ2, we have∥∆Pk+1∥ ≤ C4∥∆Pk∥2. Note that for the base case
we have ∥∆P0∥ ≤ C2ϵ.

Finally, it remains to constrain ∥Pk − P∗∥. By choosing ϵ ≤ min( 1
2C2C4

, 1
2C2

ϵ2, 1), we obtain
∥∆P0∥ ≤ C2ϵ. We can also see that if for all 0 ≤ k ≤ m, ∥∆Pk∥ ≤ 2−kC2ϵ, then ∥Pm − P∗∥ ≤
2(1 − 2−m+1)C2ϵ ≤ ϵ2 so that ∥∆Pm+1∥ ≤ C4∥∆Pm∥2 ≤ 2−m−1C2ϵ. So by induction we see
that ∥∆Pk∥ ≤ 2−kC2ϵ for any k.

On the other hand, since ∥∆Pk∥ ≤ 2−k∥∆P0∥, limk→+∞ Pk = P∞ exists, and such P∞ is the
unique symmetric solution of

P (B +∆B)R−1(B +∆B)TP − (A+∆A)TP − P (A+∆(A))−Q = 0 ,

such that (A+∆A)− (B+∆B)R−1(B+∆B)TP is stable (recall the stable margin in equation 29,
which implies that (A+∆A)− (B +∆B)R−1(B +∆B)TP∞ is stable).

So P∞ is exactly P , satisfying ∥P − P∗∥ ≤ 2C2ϵ.

Therefore, we conclude that there exists some ϵ0 > 0 and constantC, both depending onA,B,K, d, p
such that for any ϵ ∈ [0, ϵ0], ∥P − P∗∥ ≤ Cϵ as long as ∥Â−A∥, ∥B̂ −B∥ ≤ ϵ.
Then we apply our results for system identification to establish an upper bound for ∥K̄ −K∗∥.
Based on Lemma 14, fix constant ϵ1 > 0 and constant C1 ≥ 0 so that we have ∥P − P∗∥ ≤
C1

(
∥Â−A∥+ ∥B̂ −B∥

)
whenever ∥Â−A∥+ ∥B̂ −B∥ ≤ ϵ1

We set C2 ≥ 1 be two times the constant C in Lemma 8, and obtain that, when log2(1/δ) ≤ T 1/2

C2

and T 1/2 ≥ C2∥X0∥22, we have:

P

[
∥Â−A∥+ ∥B̂ −B∥ ≤ 2C2

√
log(1/δ)

T 1/2

]
≥ 1− δ .

Then, for log(1/δ) ≤ min

{
Tϵ21
4C2

2
, T

1/4

C
1/2
2

}
≤ T 1/4ϵ21

4C2
2

, we have:

P

[
∥P − P∗∥ ≤ 2C1C2

√
log(1/δ)

T 1/2

]
≥ 1− δ . (30)

Finally, since K̄ = −R−1(B̂)TP , K∗ = −R−1BTP∗, we have:∥∥K̄ −K∗
∥∥ ≤ ∥R−1∥

[
∥B̂ −B∥∥P∥+ ∥B∥∥P − P∗∥

]
.

We can resetC1 such that ∥K̄−K∗∥ ≤ C1

(
∥Â−A∥+ ∥B̂ −B∥

)
whenever ∥Â−A∥+∥B̂−B∥ ≤

ϵ1, and combine this with equation 30, we have: for any log(1/δ) ≤ T 1/4ϵ21
4C2

2

P

[
∥K̄ −K∗∥ ≤ 2C1C2

√
log(1/δ)

T 1/2

]
≥ 1− δ . (31)

With this probability bound on ∥K̄ − K∗∥, we can further upper bound the regret, shown in the
following part.
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B.2 KEY LEMMAS

We first upper bound the radius of a single trajectory with stable controller, for which we introduce
and provide a proof for the following lemma:
Lemma 16. Consider the continuous system dXt = AXtdt+ dWt such that α(A) < 0 where α(A)
is the largest real component of A and W is a standard Brownian noise. Then, w.p. at least 1− δ:

sup
0≤t≤T

(
∥Xt∥2 − eα(A)t∥X0∥2

)
≤ C

√
d log((1 + T )/δ) .

Then we concentrate on how the error ∥P − P∗∥ will influence the regret during the exploitation
phase. For a dynamic U with α(A+BU) < 0, we define a cost function:

cost(U) = tr

(∫
t≥0

(e(A+BU)t)T(Q+ UTRU)e(A+BU)tdt

)
.

The convergence rate of this cost function is stated in the following lemma:
Lemma 17. Let U∗ minimize cost(U). Then, there exists ϵ0 ≥ 0 such that for any ∥∆U∥ = 1 and
ϵ ∈ [0, ϵ0], we have:

cost(U∗ + ϵ∆U)− cost(U∗) ≤ C1ϵ
2 .

The above result shows the average cost per unit time when applying fixed controller for infinite time.

Then we further consider the case when the running time is finite. We derive the following lemma:
Lemma 18. Let U∗ follows the same definition as in Lemma 17. Then, for some ϵ > 0, there exist
constants C2 and C3 (independent of U ) such that for all T > 0 and any U such that ∥U − U∗∥ ≤ ϵ,

|JT − cost(U)T | ≤ C2∥x∥22 + C3 .

Here JT is the expected cost of the policy that takes action by Ut = UXt (t ∈ [0, T ]), with initial
state X0 = x.

With this lemma, by definition of U∗, we actually have U∗ = K∗, where K∗ = −R−1BTP∗ and P∗
is the solution of equation 4. Since such C2, C3 also satisfy:

|J∗
T − cost(U∗)T | ≤ C2∥x∥22 + C3 ,

so it follows that

RT = JT − J∗
T ≤ 2C2∥x∥22 + 2C3 . (32)

B.3 PROOF OF LEMMA 16

We first upper bound the radius of a single trajectory with stable controller, for which we introduce
and provide a proof for the following lemma:
Lemma 16. Consider the continuous system dXt = AXtdt+ dWt such that α(A) < 0 where α(A)
is the largest real component of A and W is a standard Brownian noise. Then, w.p. at least 1− δ:

sup
0≤t≤T

(
∥Xt∥2 − eα(A)t∥X0∥2

)
≤ C

√
d log((1 + T )/δ) .

Proof. The trajectory Xt with differential equation dXt = AXt + dWt can be derived as

Xt = eAtX0 +

∫ t

s=0

eA(t−s)dWt .

Lemma 6 tells that when A is stable,
∥∥eAtX0

∥∥
2
≤ eα(A)t∥X0∥2. So it suffices to show that

P
[

sup
0≤t≤T

∥∥∥∥∫ t

s=0

eA(t−s)dWt

∥∥∥∥
2

≥ C
√
d log(1 + T )/δ

]
≤ δ .
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Let T = T0h with T0 be an integer. We first consider the set of points {Xkh}. Denote wk :=∫ kh

t=0
eA(kh−t)dWt, then wk ∼ N (0,Σk) with Σk =

∫ kh

t=0
eAteA

Ttdt. This Σh also satisfies

∥Σk∥ ≤
∫ h

t=0

∥∥eAt
∥∥2 dt ≤ ∫ kh

t=0

e2α(A)tdt ≤ 1

2|α(A)|
.

Which follows that sup0≤k≤T0
∥wk∥2 ≤ 2

√
d

|α(A)| log((1 + T0)/δ), w.p. at least 1− δ.

Next we consider any Xkh+t with t ∈ [0, h]. Bounding such terms requires the Doob’s martingale
inequality (Durrett), stated as in Lemma 19. We denote xkt =

∫ t

s=0
eA(t−s)dWkh+sds with corre-

sponding filtration Ft. We also define Zk
t := eλ∥e

−Atxk
t ∥22 with λ ≥ 0. Then Zk

t is a submartingale
under the filtration Ft, since for any t ≥ s,

E
[
Zk
t |Fs

]
= E

[
exp

(
λ

∥∥∥∥e−Asxks +

∫ t

t1=s

e−At1dWkh+t1

∥∥∥∥2
2

)∣∣xks
]
≥ eλ∥e

−Asxk
s∥22 = Zk

s .

Where we notice that E
[∥∥∥e−Asxks +

∫ t

t1=s
e−At1dWkh+t1

∥∥∥2
2

∣∣xks] ≥ ∥∥e−Asxks
∥∥2
2
, and apply

Jensen’s inequality on the non-decreasing convex function f(x) = eλx to obtain the above inequality.

Now we apply Lemma 19 and get

P

[
sup

t∈[0,h]

∥∥e−Atxkt
∥∥
2
≥ C

]
≤ e−λC2

E[Zk
h ] . (33)

We next estimate E(Zk
h). Since e−Ahxkh =

∫ h

t=0
e−AtdWkh+t, we obtain that e−Ahxkh ∼ N (0, Σ̄),

where

Σ̄ =

∫ h

t=0

e−Ate−ATtdt .

By setting λ = 1
4∥Σ̄∥ , it can be computed that

E
[
eλ∥e

−Ahxk
h∥22
]
=

∫
x∈Rd

1

(2π)d/2
√

det(Σ̄)
e−

1
2x

TΣ−1
1 xeλx

TIdxdx

=

√
1

det(Σ̄) det(Σ−1
1 − 2λId)

=

√
1

det(Id − 2λΣ̄)

≤ 2d/2 ,

where the last inequality is because Id − 2λΣ̄ ⪰ 1
2Id.

We combine this result with equation 33 and obtain:

P

[
sup

0≤k≤T0−1,0≤t≤h

∥∥xkt ∥∥2 ≥ 2e∥A∥h ∥∥Σ̄∥∥1/2√log(2d/2T0/δ)

]

≤
T0−1∑
k=0

P

[
sup

t∈[0,h]

Zk
t ≥ 2d/2

T0
δ

]

≤
T0−1∑
k=0

P

[
sup

t∈[0,h]

Zk
t ≥

T0
δ
E(Zk

h)

]
≤ δ .
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Finally, since Xkh+t = eA(kh+t)X0 + eAtwk + xkt , it follows that

∥Xkh+t∥2 ≤
∥∥∥eA(kh+t)X0

∥∥∥
2
+
∥∥eAtwk

∥∥
2
+
∥∥xkt ∥∥2

≤ eα(A)(kh+t) ∥X0∥2 + ∥wk∥2 +
∥∥xkt ∥∥2 .

By applying union bound on ∥wk∥2 and
∥∥xkt ∥∥2 we finally obtain Lemma 16.

Lemma 19 (Doob’s martingale inequality). LetX1, . . . , Xn be a discrete-time submartingale relative
to a filtration F1, . . . ,Fn of the underlying probability space, which is to say:

Xi ≤ E [Xi+1 | Fi] .

The submartingale inequality says that

P
[
max
1≤i≤n

Xi ≥ C
]
≤ E [max (Xn, 0)]

C

for any positive number C.

Moreover, let Xt be a submartingale indexed by an interval [0, T] of real numbers, relative to a
filtration Ft of the underlying probability space, which is to say:

Xs ≤ E [Xt | Fs]

for all s < t. The submartingale inequality says that if the sample paths of the martingale are
almost-surely right-continuous, then

P
[

sup
0≤t≤T

Xt ≥ C
]
≤ E [max (XT , 0)]

C

for any positive number C.

B.4 PROOF OF LEMMA 17

In this section, we proof Lemma 17 which refers to the convergence rate of the cost function:

Lemma 17. Let U∗ minimize cost(U). Then, there exists ϵ0 ≥ 0 such that for any ∥∆U∥ = 1 and
ϵ ∈ [0, ϵ0], we have:

cost(U∗ + ϵ∆U)− cost(U∗) ≤ C1ϵ
2 .

Proof. For any ∥∆U∥ = 1 and ϵ > 0, consider U = U∗ + ϵ∆U , we show that as ϵ→ 0, there exists
V ∈ Rd such that tr(V ) = 0, and∫

t≥0

e(A+BU)Tt(Q+ UTRU)e(A+BU)tdt−
∫
t≥0

e(A+BU∗)
Tt(Q+ UT

∗ RU∗)e
(A+BU∗)tdt

= ϵV +O(ϵ2) .

Let D(ϵ, t) = e(A+B(U∗+ϵ∆U))t − e(A+BU∗)t. The most important intuition is that D(ϵ, t) can be
represented by the form of D(ϵ, t) = ϵD1(t) + ϵ2D2(ϵ, t), where D1(t) does not depend on ϵ, and
the residual D2(ϵ, t) can be well bounded. Now we find such D1(t) and upper bound ∥D2(ϵ, t)∥.
For t ≤ t0 = 1

max{∥A+BU∗∥,∥B∥} and ϵ < 1, the Taylor expansion of e(A+B(U∗+ϵ∆U))t can be
represented as follows:

D(ϵ, t) =
∑
k≥1

1

k!

[
(A+BU∗ + ϵB∆U)ktk − (A+BU∗)

ktk
]

=
∑
k≥1

1

k!

[(
k−1∑
i=0

(A+BU∗)
i(B∆U∗)(A+BU∗)

k−1−i

)
ϵ+D1(ϵ, k)ϵ

2

]
tk ,
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where D1(ϵ, k) is the residual of (A + BU + ϵB∆U)k − (A + BU)k with order at least ϵ2. This
sequence of matrices are expressed and bounded as follows.

D1(k, ϵ) =

k∑
i=2

ϵi
∑

j1+...+ji+1=k−i

(A+BU∗)
j1(B∆U)(A+BU∗)

j2(B∆U)...(A+BU∗)
ji+1 ,

∥D1(k, ϵ)∥ ≤
k∑

i=2

k!

i!(k − i)!
∥A+BU∗∥k−i∥B∥iϵi−2 .

Thus we have: ∥∥∥∥∥∥
∑
k≥1

tk

k!
D1(k, ϵ)

∥∥∥∥∥∥ ≤
∑
k≥2

∑
i≥2

1

i!(k − i)!
≤ 4 .

Define E(t) and E1(ϵ, t) as follows: for 0 ≤ t ≤ t0, let

E(t) =
∑
k≥1

tk

k!

k−1∑
i=0

(A+BU∗)
i(B∆U∗)(A+BU∗)

k−1−i, E1(ϵ, t) =
∑
k≥1

tk

k!
D1(k, ϵ) ,

and for t ∈ [ 12 t0, t0], l ≥ 1, we inductively define E(2lt) and E1(2
lt) as follows:

E(2lt) = e(A+BU∗)2
l−1tE(2l−1t) + E(2l−1t)e(A+BU∗)2

l−1t ,

E1(ϵ, 2
lt) =e(A+BU∗)2

l−1tE1(ϵ, 2
l−1t) + E1(ϵ, 2

l−1t)e(A+BU∗)2
l−1t

+
(
E(2l−1t) + ϵE1(ϵ, 2

l−1t)
)2
.

Then we have the relation that e(A+BU∗+B∆U)t − e(A+BU∗)t = ϵE(t) + ϵ2E1(ϵ, t).

Now we upper bound ∥E(t)∥ and ∥E1(ϵ, t)∥. When t ≤ t0:

∥E(t)∥ ≤
∑
k≥1

tk

k!

k−1∑
i=0

∥∥(A+BU∗)
i(B∆U∗)(A+BU∗)

k−1−i
∥∥ ≤∑

k≥1

1

(k − 1)!
= e

For t ≥ t0, let t = 2l1t1, with l1 be an integer and t1 ∈ ( 12 t0, t0], then

∥E(2l1t1)∥ =
∥∥∥e(A+BU∗)2

l1−1t1E(t) + E(t)e(A+BU∗)2
l1−1t1

∥∥∥
≤ 2eα(A+BU∗)2

l1−1t1
∥∥E(2l1−1t1)

∥∥
≤ 2l1e1+α(A+BU∗)2

l1−2t0

≤ 4

−α(A+BU∗)t0
,

where the last inequality is because for any x, a > 0, xe−ax ≤ 1
ae , and thus for any t ≥ 0,

∥E(t)∥ ≤ C = 4
−α(A+BU∗)t0

.

When t ≥ 2
−α(A+BU∗)

, we additionally have

∥E(t)∥ ≤ 2e
1
2α(A+BU∗)t

∥∥∥∥E(
t

2
)

∥∥∥∥ ≤ 4t

t0
e

1
2α(A+BU∗)t ≤ 8

−α(A+BU∗)t0
e

1
4α(A+BU∗)t .

Now we consider E1(ϵ, t). When t ≤ t0,

∥E1(ϵ, t)∥ ≤
∑
k≥1

∥∥∥∥ tkk!D1(k, ϵ)

∥∥∥∥ ≤ 4 .

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

When t > t0, with t = 2lt1 and t1 ∈ ( 12 t0, t0], we obtain:∥∥E1(ϵ, 2
lt1)
∥∥ =∥∥∥e(A+BU∗)2
l−1t1E1(ϵ, 2

l−1t1) + E1(ϵ, 2
l−1t1)e

(A+BU∗)2
l−1t1 +

(
E(2l−1t1) + ϵE1(ϵ, 2

l−1t1)
)2∥∥∥

≤ 2eα(A+BU∗)2
l−1t1

∥∥E1(ϵ, 2
l−1t1)

∥∥+ ∥∥E(2l−1t1) + ϵE1(ϵ, 2
l−1t1)

∥∥2
≤ 2eα(A+BU∗)2

l−1t1
∥∥E1(ϵ, 2

l−1t1)
∥∥+ 2

∥∥E(2l−1t1)
∥∥2 + 2ϵ2

∥∥E1(ϵ, 2
l−1t1)

∥∥2 .
Now, we show that

∥∥E1(ϵ, 2
lt1)
∥∥ converges exponentially eventually. The proof consists of two

parts: first, for t which is not too large, ∥E1(ϵ, t)∥ can be bounded uniformly over all possible ∆U
and any constrained ϵ. Then, for larger t we can utilize the construction of ∥E1(ϵ, t)∥ to estimate its
convergence speed.

Let ϵ ≤ −α(A+BU∗)t0
(64C)2 , l0 = 1 + ⌊log2 4

−α(A+BU∗)t0
⌋. We first inductively show that for any l ≤ l0,∥∥E1(ϵ, 2

lt1)
∥∥ ≤ (2l+3 − 4)C2. The base case where l = 0 is certainly true. Suppose we already

have
∥∥E1(ϵ, 2

l−1t1)
∥∥ ≤ (2l+2 − 4)C2. Then for the case of l, we obtain:

∥∥E1(ϵ, 2
lt1)
∥∥ ≤ 2

∥∥E1(ϵ, 2
l−1t1)

∥∥+ 4C2 ≤ (2l+3 − 4)C2 ,

where for the first inequality we use the inductive hypothesis that

ϵ
∥∥E1(ϵ, 2

l−1t1)
∥∥ ≤ 2l0+3C2ϵ ≤ 64

−α(A+BU∗)t0
C2ϵ ≤ C ,

along with facts that
∥∥E(2l−1t1)

∥∥ ≤ C and 2eα(A+BU∗)2
l−1t1 ≤ 2. Specifically, we have∥∥E1(ϵ, 2

l0t1)
∥∥ ≤ 64C2

−α(A+BU∗)t0
.

Now, we consider l > l0. We first show that for all such l,
∥∥E1(ϵ, 2

lt1)
∥∥ ≤ 64C2

−α(A+BU∗)t0
. Since

2l−1t1 ≥ 2l0−1t0 ≥ 2
−α(A+BU∗)

, we have 2eα(A+BU∗)2
lt1 ≤ 2e−2, and thus∥∥E1(ϵ, 2

lt1)
∥∥ ≤ 2eα(A+BU∗)2

l−1t1
∥∥E1(ϵ, 2

l−1t1)
∥∥+ 2

∥∥E(2l−1t1)
∥∥2 + 2ϵ2

∥∥E1(ϵ, 2
l−1t1)

∥∥2
≤ 2e−2

∥∥E1(ϵ, 2
l−1t)

∥∥+ 4C2

≤ 64C2

−α(A+BU∗)t0
,

which holds for all l ≥ l0 with induction on l. Now we reuse the above expression and obtain that∥∥E1(ϵ, 2
lt1)
∥∥

≤ 2eα(A+BU∗)2
l−1t1

∥∥E1(ϵ, 2
l−1t1)

∥∥+ 2
∥∥E(2l−1t1)

∥∥2 + 2ϵ2
∥∥E1(ϵ, 2

l−1t1)
∥∥2

≤ 2e−2l−l0 64C2

−α(A+BU∗)t0
+

128

α2(A+BU∗)t20
e−2l−l0−1

+ 2ϵ2
∥∥E1(ϵ, 2

l−1t1)
∥∥2 .

Let l∗ be the smaller integer greater than l0 + 1 which satisfies:

2e−2l∗−l0 64C2

−α(A+BU∗)t0
+

128

α2(A+BU∗)t20
e−2l∗−l0−1

≤ 1

4
.

Then by using the relation that 2ϵ2
∥∥E1(ϵ, 2

l−1t1)
∥∥2 ≤ 2ϵ2

(
64C2

−α(A+BU∗)t0

)2
≤ 1

4 , we have:∥∥E1(ϵ, 2
l∗t1)

∥∥ ≤ 1

2
.

Now we inductively show that for all k ≥ 0,∥∥E1(ϵ, 2
l∗+kt1)

∥∥ ≤ 2−2k .
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By using the hypothesis for k and 2ϵ2 ≤ 1
4 , we obtain:

∥∥E1(ϵ, 2
l∗+k+1t1)

∥∥ ≤ 2ϵ2
∥∥E1(ϵ, 2

l∗+kt1)
∥∥2 + 1

4
e−2k+l∗−l0+2l∗−l0

≤ 1

4
2−2k+1

+
1

4
e−2k+2+22

≤ 2−2k+1

,

leading to the claim. This means there exist some constants C1, c1 > 0 depending on α(A+BU∗)
such that for all t ≥ 0, ∥E1(ϵ, t)∥ ≤ C1e

−c1t .

Finally, we consider
∫
t≥0

e(A+BU)Tt(Q+ UTRU)e(A+BU)tdt. Since

e(A+BU∗+ϵ∆U)t = e(A+BU∗)t+ ϵE(t)+ ϵ2E1(ϵ, t), with ∥E(t)∥ ≤ 8
−α(A+BU∗)t0

e
1
4α(A+BU∗)t and

bounded E1(ϵ, t), we obtain:∫
t≥0

e(A+BU)Tt(Q+ UTRU)e(A+BU)tdt

=

∫
t≥0

(e(A+BU∗)
Tt + ϵET(t) + ϵ2ET

1 (ϵ, t))(Q+ UTRU)(e(A+BU∗)t + ϵE(t) + ϵ2E1(ϵ, t))dt

=

∫
t≥0

e(A+BU∗)
Tt(Q+ UT

∗ RU∗)e
(A+BU∗)tdt

+ ϵ

∫
t≥0

ET(t)(Q+ UT
∗ RU∗)e

(A+BU∗)t + e(A+BU∗)
Tt(Q+ UT

∗ RU∗)E(t)dt

+ ϵ

∫
t≥0

e(A+BU∗)
Tt
(
∆UTRU∗ + UT

∗ R∆U
)
e(A+BU∗)tdt

+O(ϵ2) .

Where the last term O(ϵ2) contains any terms with order at least ϵ2, whose norm is at most C2ϵ
2

for any ϵ ∈ [0, ϵ0) and ∥∆U∥ = 1, where the constant C2 depends on A,B, α(A+BU∗) and ϵ0 is
some small constant.

For any ∥∆U∥ = 1, define V by

V =

∫
t≥0

ET(t)(Q+ UT
∗ RU∗)e

(A+BU∗)t + e(A+BU∗)
Tt(Q+ UT

∗ RU)E(t)dt

+

∫
t≥0

e(A+BU∗)
Tt
(
∆UTRU∗ + UTR∆U

)
e(A+BU∗)tdt ,

then cost(U) = cost(U∗) + ϵtr(V ) +O(ϵ2).

Since U∗ minimizes cost(U), tr(V ) = limϵ→0 ϵ
−1(cost(U∗ + ϵ∆U)− cost(U∗)) = 0. Therefore,

we obtain that cost(U) = cost(U∗) +O(ϵ2).

B.5 PROOF OF LEMMA 18

In this section, we proof Lemma 18.

Lemma 18. Let U∗ follows the same definition as in Lemma 17. Then, for some ϵ > 0, there exist
constants C2 and C3 (independent of U ) such that for all T > 0 and any U such that ∥U − U∗∥ ≤ ϵ,

|JT − cost(U)T | ≤ C2∥x∥22 + C3 .

Here JT is the expected cost of the policy that takes action by Ut = UXt (t ∈ [0, T ]), with initial
state X0 = x.
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Proof. By definition of JT , we have:

JT = E

[∫ T

t=0

(
XT

t QXt + UT
t RUt

)
dt

]
= E

[∫ T

t=0

XT
t (Q+ UTRU)Xtdt

]
.

Since the state transits according to dXt = AXtdt+BUXtdt+ dWt, we can derive the expression
of Xt by Xt = e(A+BU)tX0 +

∫ t

s=0
e(A+BU)(t−s)dWs. Then by utilizing this expression we obtain:

E
[
XT

t (Q+ UTRU)Xt

]
= (e(A+BU)tX0)

T(Q+ UTRU)e(A+BU)tX0

+ 2E
[
(e(A+BU)tX0)

T(Q+ UTRU)

(∫ t

s=0

e(A+BU)(t−s)dWs

)]
+ E

[(∫ t

s=0

e(A+BU)(t−s)dWs

)T

(Q+ UTRU)

(∫ t

s=0

e(A+BU)(t−s)dWs

)]
= XT

0 e
(A+BU)Tt(Q+ UTRU)e(A+BU)tX0

+ tr

(∫ t

s=0

e(A+BU)Ts(Q+ UTRU)e(A+BU)sds

)
= XT

0 e
(A+BU)Tt(Q+ UTRU)e(A+BU)tX0

+

∫ t

s=0

tr
(
e(A+BU)Ts(Q+ UTRU)e(A+BU)s

)
ds .

Then, the expected cost on a trajectory lasting for time T can be computed as:

E

[∫ T

t=0

XT
t (Q+ UTRU)Xtdt

]

=

∫ T

t=0

E
[
XT

t (Q+ UTRU)Xt

]
dt

=

∫ T

t=0

XT
0 e

(A+BU)Tt(Q+ UTRU)e(A+BU)tX0dt

+

∫ T

t=0

(T − t)tr
(
e(A+BU)Tt(Q+ UTRU)e(A+BU)t

)
dt

=

∫ T

t=0

XT
0 e

(A+BU)Tt(Q+ UTRU)e(A+BU)tX0dt+ cost(U)T

−
∫ T

t=0

tr
(
e(A+BU)Tt(Q+ UTRU)e(A+BU)t

)
tdt

− T
∫ +∞

t=T

tr
(
e(A+BU)Tt(Q+ UTRU)e(A+BU)t

)
dt .

Here the first term satisfies∣∣∣∣∣
∫ T

t=0

XT
0 e

(A+BU)Tt(Q+ UTRU)e(A+BU)tX0dt

∣∣∣∣∣ ≤
∫
t≥0

e2α(A+BU)t ∥X0∥22 dt

≤ 1

−2α(A+BU)
∥X0∥22 ,
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and the latter two integral terms can be bounded as follows.∣∣∣∣∣
∫ T

t=0

tr
(
e(A+BU)Tt(Q+ UTRU)e(A+BU)t

)
tdt

∣∣∣∣∣
≤
∫
t≥0

d · e2α(A+BU)t
∥∥Q+ UTRU

∥∥ tdt
≤
d
∥∥Q+ UTRU

∥∥
4α2(A+BU)

,

∣∣∣∣T ∫ +∞

t=T

tr
(
e(A+BU)Tt(Q+ UTRU)e(A+BU)t

)
dt

∣∣∣∣
≤ T

∫
t≥T

d · e2α(A+BU)t
∥∥Q+ UTRU

∥∥ dt
≤
Td
∥∥Q+ UTRU

∥∥
−2α(A+BU)

e2α(A+BU)T

≤
d
∥∥Q+ UTRU

∥∥
4α2(A+BU)

.

Therefore, for C2 ≥ − 1
2α(A+BU) and C3 ≥

d∥Q+UTRU∥
2α2(A+BU) , we have

|JT − cost(U)T | ≤ C2∥x∥22 + C3 .

B.6 PROOF OF LEMMA 20

Finally, we prove Lemma 20. In this part we suppose T ≥ T0, where T0 ≥ 1 is a constant depending
on some hidden constants and ∥X0∥22.
Lemma 20. regret Let Ut be the action applied as in Algorithm 3. Then there exists a constant
C ∈ poly(κ,M, µ−1, |α(A+BK)|−1, |α(A+BK∗)|−1) such that for sufficiently large T :

E

[∫ √
T

t=0

(
XT

t QXt + UT
t RUt

)
dt

]
≤ C ·

√
T ,

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt

]
≤ C ·

√
T + J∗

T .

Define the following events where the stabilizing controller K might ever be applied during the
exploitation phase. Let E1 =

{
∥X√

T ∥2 ≥
1
2T

1/5
}

, E2 =
{
∥Xt∥2 ≥ T 1/5 for some t ∈ [

√
T , T ]

}
,

and E3 =
{
∥K̄ −K∗∥ ≤ ϵ3

}
, where ϵ3 > 0 depends on the constant ϵ0 in Lemma 17, which will be

determined later. In this part, we again let C1, C2 be the same as in equation 31, and denote C3 be
the constant C1 in Lemma 17. We firstly analyze these three events.

Upper bound P[E1] By Lemma 16, we can find some constant C0 depending on
∥A∥, ∥B∥, ∥K∥, d, p, h such that

P
[
∥X√

T ∥2 ≥ C0

√
log(2T/δ)

]
≤ δ .

This is because we have the recursive function of {Xkh} that

X(k+1)h = e(A+BK)hXkh +

∫ h

t=0

e(A+BK)(h−t)dWkh+t +

∫ h

t=0

e(A+BK)(h−t)ukdt ,
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from which we can derive that

Xkh

= e(A+BK)khX0 +

∫ kh

t=0

e(A+BK)(kh−t)dWt +

k−1∑
i=0

e(A+BK)(k−i−1)h

(∫ h

t=0

e(A+BK)tdt

)
ui .

Then, for sufficiently large T ,
∥∥∥e(A+BK)

√
TX0

∥∥∥
2

can be bounded by 1, and from the proof in
Lemma 16 we can apply similar idea to upper bound the norm of the last two terms. So we can obtain
the probability bound on ∥X√

T ∥2.

By setting δ = 2T · e
−T1/5

4C2
0 , we obtain that P[E1] ≤ 2T · e

−T1/5

4C2
0 .

Upper bound P[EC3 ] By equation 30, we obtain that, for ϵ3 ≤ C1ϵ1
T 1/84C2

2
, we have:

P
[
∥K̄ −K∗∥ ≥ x

]
≤ e

−T1/2x2

4C2
1C2

2 ∀x ≤ ϵ3 ,

and we also have: P[EC3 ] ≤ e
−T1/2ϵ23

4C2
1C2

2 .

By setting ϵ3 = C1ϵ1
T 1/84C2

2
, we have: P[EC3 ] ≤ e

−T1/4ϵ21
64C2

2 .

Upper bound P[E2] Consider any ∥X√
T ∥2 ≤

1
2T

1/5 and any ∥K̄ − K∗∥ ≤ ϵ3, we claim that

P
[
E2
∣∣X√

T , K̄
]
≤ e−Ω(T 1/5).

As what have discussed in Lemma 14 (see the discussion about stable margin near equation 29),
such K̄ satisfies α(A+BK̄) ≤ 1

2α(A+BK∗).

Then by Lemma 16 we can derive that, for some constant C,

P

[
sup

t∈[
√
T ,T ]

∥Xt∥2 − ∥X√
T ∥2 ≤

1

2
T 1/5

]
≤ CTe−T1/5

C ≤ e−Ω(T 1/5) .

Therefore,

P [E2] ≤ 1− P
[
EC1 ∩ E3

]
+ e−Ω(T 1/5)P

[
EC1 ∩ E3

]
≤ P [E1] + P

[
EC3
]
+ e−Ω(T 1/5)

≤ e−Ω(T 1/5) .

Now we come to estimate the expected cost of Algorithm 3, as well as bound the regret. We separately
calculate the cost during the two phases.

Cost During Exploration Phase For (k + 1)h ≤
√
T and t ∈ [0, h], we have:

Xkh+t = e(A+BK)tXkh +

∫ kh+t

s=kh

e(A+BK)(kh+t−s)dWs +

(∫ t

s=0

e(A+BK)sds

)
uk .

Then

E
[
XT

kh+tQXkh+t + UT
kh+tRUkh+t

]
= E

[
XT

kh+t(Q+KTRK)Xkh+t + uTkRuk
]
+ 2E

[
XT

kh+tK
TRuk

]
≤ E

[
XT

kh+t(Q+KTRK)Xkh+t + uTkRuk
]

+ 2E

[
uTk

(∫ t

s=0

e(A+BK)sds

)T

KTRuk

]
,
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where the inequality is because uk is independent of Xkh and Ws(s ∈ [kh, kh+ t]).

For the first term, we first upper bound E
[
∥Xkh+t∥22

]
.

Denotewk,t =
∫ kh+t

s=kh
e(A+BK)(kh+t−s)dWs+

(∫ t

s=0
e(A+BK)sds

)
uk, which is a Gaussian variable

with zero mean and is independent of Xkh. Then

E
[
∥Xkh+t∥22

]
= E

[∥∥∥e(A+BK)tXkh + wk,t

∥∥∥2
2

]
= E

[∥∥∥e(A+BK)tXkh

∥∥∥2
2

]
+ E

[
∥wk,t∥22

]
≤ E

[
∥Xkh∥22

]
+ E

[
∥wk,t∥22

]
.

For E
[
∥Xkh∥22

]
, since

Xkh

= e(A+BK)hX0 +

∫ kh

t=0

e(A+BK)(kh−t)dWt +

k−1∑
i=0

e(A+BK)(k−i−1)h

(∫ h

t=0

e(A+BK)tdt

)
ui .

We have:

E
[
∥Xkh∥22

]
=
∥∥∥e(A+BK)khX0

∥∥∥2
2

+ E

∥∥∥∥∥
∫ kh

t=0

e(A+BK)(kh−t)dWt

∥∥∥∥∥
2

2


+

k−1∑
i=0

E

∥∥∥∥∥e(A+BK)(k−i−1)h

(∫ h

t=0

e(A+BK)tdt

)
ui

∥∥∥∥∥
2

2


≤ e2α(A+BK)·kh∥X0∥22

+ tr

(∫ kh

t=0

e(A+BK)te(A+BK)Ttdt

)

+

k−1∑
i=0

tr

[e(A+BK)ih

(∫ h

t=0

e(A+BK)tdt

)][
e(A+BK)ih

(∫ h

t=0

e(A+BK)tdt

)]T
≤ e2α(A+BK)·kh∥X0∥22 +

∫ kh

t=0

d · e2α(A+BK)tdt+

k−1∑
i=0

d · e2α(A+BK)ih · h2

≤ e2α(A+BK)·kh∥X0∥22 +
d

−2α(A+BK)
+

dh2

1− e2α(A+BK)h

≤ C3 + e2α(A+BK)·kh∥X0∥22 .

Where C3 is a constant depending on α(A+BK) and d.

For the second term E
[
∥wk,t∥22

]
, can follow the same process of the above bound and obtain

E
[
∥wk,t∥22

]
≤ C3. Therefore, E

[
∥Xkh+t∥22

]
≤ 2C3.

Now we can upper bound E
[
XT

kh+tQXkh+t + UT
kh+tRUkh+t

]
. Since

E
[
XT

kh+t(Q+KTRK)Xkh+t

]
≤ E

[∥∥Q+KTRK
∥∥ ∥Xkh+t∥22

]
≤
∥∥Q+KTRK

∥∥E [∥Xkh+t∥22
]
,
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E
[
uTkRuk

]
= tr(R) ,

E

[
uTk

(∫ t

s=0

e(A+BK)sds

)T

KTRuk

]

≤ (d+ p) ·

∥∥∥∥∥
(∫ t

s=0

e(A+BK)sds

)T

KTR

∥∥∥∥∥
≤ (d+ p)h∥KR∥ .

We can conclude that there exists constant C4 depending on A,B,K,Q,R, d, p, h such that

E
[
XT

kh+tQXkh+t + UT
kh+tRUkh+t

]
≤ C4

(
1 + e2α(A+BK)·(kh+t)∥X0∥22

)
,∀k, t

Then the cost during exploration phase can be bounded as

E

[∫ √
T

t=0

(
XT

kh+tQXkh+t + UT
kh+tRUkh+t

)
dt

]
≤ C4

(√
T +

∥X0∥22
−2α(A+BK)

)
. (34)

Cost During Exploitation Phase

Upper Bound of the Cost when E2 happens We first concentrate on E2, which is the hardest event
for the analysis of the cost. Consider the following two cases:

Case 1: ∥X√
T ∥2 ≥ T 1/5. In this case, the action is applied by Ut = KXt, t ∈ [

√
T , T ].

Case 2: ∥X√
T ∥2 < T 1/5. In this case, the trajectory is unfortunately controlled by a bad controller,

and suffers from large risk of diverging.

We first consider Case 1. By equation 7 we can derive that

Xt = e(A+BK)(t−
√
T )X√

T +

∫ t

s=
√
T

e(A+BK)(t−s)dWs .

Then, we have:

E
[
XT

t QXt + UT
t RUt

]
= E

[
XT

t (Q+KTRK)Xt

]
≤
∥∥Q+KTRK

∥∥E [∥Xt∥22
]

≤
∥∥Q+KTRK

∥∥ [∥X√
T ∥

2
2 +

∫ t

s=
√
T

tr
(
e(A+BK)(t−s)e(A+BK)T(t−s)

)
dt

]
≤
∥∥Q+KTRK

∥∥ [∥X√
T ∥

2
2 +

∫ t

s=
√
T

d · e2α(A+BK)(t−s)dt

]
.

Therefore, for some constants C5, C6, we have:

E
[
XT

t QXt + UT
t RUt

]
≤ C5∥X√

T ∥
2
2 + C6 .

Now we consider Case 2. Let t0 = inft{∥Xt∥2 ≥ T 1/5, t ≥
√
T}, then ∥Xt0∥2 = T 1/5 almost

surely.

For t ∈ [
√
T , t0], since we always have

∥Ut∥2 ≤ max
{
∥K∥,

∥∥R−1BTP
∥∥} ∥Xt∥2 ≤

(
∥K∥+

∥∥R−1BT
∥∥T 1/5

)
T 1/5 ,

the cost satisfies:

XT
t QXt + UT

t RUt ≤ C7T
4/5 .
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Where C7 is a constant depending on B,R,K, P .

For t ∈ [t0, T ], the trajectory Xt satisfies

Xt = e(A+BK)(t−t0)Xt0 +

∫ t

s=t0

e(A+BK)(t−s)dWs .

Similar to the analysis for Case 1, we have:

E
[
XT

t QXt + UT
t RUt

]
≤ C5T

2/5 + C6

Combining them, we can conclude that for some constant C8, no matter whether E2 happens, we
always have:

E
[
XT

t QXt + UT
t RUt

]
≤ C8

[
T 4/5 + ∥X√

T ∥
2
2

]
∀t ∈ [

√
T , T ] .

Now we establish the upper bound for the regret. Since

1 = 1EC
1 ∩E3

+ 1E1
+ 1EC

1 ∩EC
3

Then we can rewrite E
[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt
]

as

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt

]

= E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩E3

]

+ E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1E1

]

+ E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩EC
3

]
.

For the first term, we can upper bound it by

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩E3

]

≤ E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩EC
2 ∩E3

]

+ E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩E2

]
≤ E

[(
cost

(
R−1BTP

)
T + C9∥X√

T ∥
2
2

)
· 1EC

1 ∩E3

]
+ E

[
C8

(
T 4/5 + ∥X√

T ∥
2
2

)
· 1EC

1 ∩E2

]
≤ C9T

2/5 + cost(R−1BTP∗)T + C10TE
[
∥K̄ −K∗∥2 · 1E3

]
+ 2C8T

4/5 · E
[
1EC

1 ∩E2

]
.

Here the first inequality is because 1EC
1 ∩E3

= 1EC
1 ∩EC

2 ∩E3
+ 1EC

1 ∩E2∩E3
and 1EC

1 ∩E2∩E3
≤ 1EC

1 ∩E3
.

For the second inequality, the first term is because we can assume a situation that we do not change
the dynamic when E2 happens, and that will not make the expectation smaller. By applying the results
of Lemma 17 and Lemma 18 we can get this term, where the constant C9 is related to constants
in these two lemmas. The last inequality is obtained from these two lemmas and the definitions of
E1, E2, E3.

As for E
[
∥K̄ −K∗∥2 · 1E3

]
, we use the bound that

P
[
∥K̄ −K∗∥ ≥ x

]
≤ e

−T1/2x2

4C2
1C2

2 ∀x ≤ ϵ3 ,
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and compute that
E
[
∥K̄ −K∗∥2 · 1E3

]
≤
∫ ϵ23

x=0

P
[
∥K̄ −K∗∥2 ≥ x

]
· dx

≤
∫
x≥0

e
− T1/2x

4C2
1C2

2 dx

=
4C2

1C
2
2

T 1/2
.

For E
[
1EC

1 ∩E2

]
, we directly have E

[
1EC

1 ∩E2

]
≤ P [E2] ≤ e−Ω(T 1/5). Combining these results and

Lemma 18 we obtain that for some constant C,

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩E3

]
≤ Jθ∗,T + C

√
T .

For the second term E
[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1E1

]
, given any X√

T , we always have

E
[
XT

t QXt + UT
t RUt

]
≤ C8

[
T 4/5 + ∥X√

T ∥
2
2

]
∀t ∈ [

√
T , T ] .

So we can upper bound E
[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1E1

]
by

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1E1

]
≤ C8T

9/5P[E1] + C8TE
[
∥X√

T ∥
2
2 · 1E1

]
≤ O(1) + C8TE

[
∥X√

T ∥
2
2 · 1E1

]
,

where for the last inequality we apply the upper bound of P[E1] shown before.

For E
[
∥X√

T ∥22 · 1E1

]
, we can apply Lemma 16 and obtain that for some constant c > 0, for any

x ≥ 1
2T

1/5, we have

P
[
∥X√

T ∥2 ≥ x
]
≤ e−cx2

.

Thus we have:
TE
[
∥X√

T ∥
2
2 · 1E1

]
≤ 1

4
T 7/5P

[
∥X√

T ∥2 ≥
1

2
T 1/5

]
+ T

∫
x≥ 1

4T
2/5

P
[
∥X√

T ∥
2
2 ≥ x

]
dx

≤ O(1) .

Therefore, we have E
[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1E1

]
≤ O(1)

Finally, for the last term E
[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩EC
3

]
, when condition on any

∥X√
T ∥2 ≤

1
2T

1/5, estimator (Â, B̂) and Xt0 , where t0 = inft≥
√
T (∥Xt∥2 ≥ T 1/5), we still

have:
E
[
XT

t QXt + UT
t RUt

]
≤ C8

[
T 4/5 + ∥X√

T ∥
2
2

]
≤ 2C8T

4/5 ,∀t ∈ [
√
T , T ] .

So we can upper bound it by

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩EC
3

]
≤ 2C8T

9/5P
[
EC1 ∩ EC3

]
≤ 2C8T

9/5P[EC3 ]

≤ O(1) .

Combining them we finally obtain Lemma 20.
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