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ABSTRACT

Real world evolves in continuous time but computations are done from finite
samples. Therefore, we study algorithms using finite observations in continuous-
time linear dynamical systems. We first study the system identification problem,
and propose a first non-asymptotic error analysis with finite observations. Our
algorithm identifies system parameters without needing integrated observations
over certain time intervals, making it more practical for real-world applications.
Further we propose a lower bound result that shows our estimator is provably
optimal up to constant factors. Moreover, we apply the above algorithm to online
control regret analysis for continuous-time linear system. Our system identification
method allows us to explore more efficiently, enabling the swift detection of
ineffective policies. We achieve a regret of O(+/T') over a single T-time horizon
in a controllable system, requiring only O(T") observations of the system.

1 INTRODUCTION

Finding optimal control policies requires accurately modelling the system (Kirk}[2004). However, real-
world environments often involve unknown system parameters. In such cases, estimating unknown
parameters from exploration becomes essential to identify the unseen dynamics. This process is
recognized as system identification, a fundamental tool employed in various research fields, including
time-series analysis (Korenberg, [1989), control theory (Kumar, |1983)), robotics (Johansson et al.,
2000), and reinforcement learning (Ross & Bagnell, [2012).

The identification of linear systems has long been studied because linear systems, as one of the most
fundamental systems in both theoretical frameworks and practical applications, has wide applications
ranging from natural physical processes to robotics. Most classical results provide only asymptotic
convergence guarantees for parameter estimation (Astrom & Eykhoff, 1971} Ljung, |1998b; Campi &
Kumar, |1998b).

On the other hand, with the rapid increase in data scale, there is a growing concern for statistical
efficiency. Consequently, the non-asymptotic convergence of discrete-time linear system identifi-
cation has emerged as another pivotal topic in this field. Investigations into this matter delve into
understanding how estimation confidence is influenced by the sample complexity of trajectories (Dean
et al.,|2018)), or the running time on a single trajectory (Simchowitz et al., 2018 Sarkar & Rakhlin,
2019)). Furthermore, many of these studies operate under the common assumption of stochastic noise,
there has been a parallel exploration into the identification of discrete-time linear dynamical systems
with diverse setups. This includes scenarios where perturbations are adversarial (Hazan et al., [2020)
or when only black-box access is available (Chen & Hazanl, 2021)).

In contrast to studies in discrete time system, there have been relatively fewer non-asymptotic results
addressing parameter identification for continuous-time systems. Two problems exist for continuous
time analysis. First, nonasymptotic analysis in continuous system without noise can be degenerate,
as a short time interval can contain infinite pieces of information. Second, if we consider the non-
degenerate case when finite noisy observations are available, then the analyses require concentration
results that become known only as in (Simchowitz et al., 2018} Dean et al., 2018} Sarkar & Rakhlin,
2019). Recently Basei et al.|(2022) provides novel analyses for estimating system parameters, which
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relies on continuous data collection and interaction with the environment. Motivated by progress
in these works, our first goal is to answer the question below: Can we design a continuous-time
stochastic system identification algorithm that provides nonasymptotic error bounds with only a finite
number of samples?

We will introduce our system identification algorithms tailored to meet the above requirements. As
expected, we discretize time into small intervals, thereby reducing the problem to a discrete system.
The interesting part involves ensuring that the discretization remains bijective and that the inversion
is unbiased. Our algorithm identifies the continuous system using only a finite number of samples
from the discrete system. We further propose a information theoretic lower bound that shows our
algorithm is optimal.

As an application of our system identification methods, we study an online continuous-time linear
control problem as introduced in (Shirani Faradonbeh & Shirani Faradonbeh, [2023)). In this context,
exploration is essential for estimating unknown parameters, with the goal of identifying a more
optimal control policy that narrows the performance gap. The primary challenge involves finding the
right balance between exploration and exploitation. Leveraging our identification method for more
efficient parameter estimation allows us to effectively manage exploration and exploitation, achieving
an expected regret of O(v/T') over a single trajectory with only O(T") samples in time horizon 7.
This surpasses the previously best known result of O(+/T log(T)), which needs continuous data
collection from the system.

We summarize our contributions below.

1. When the system can be stabilized by a known controller, we establish an algorithm with
O(T) samples that achieves estimation error O(4/1/T") on a single trajectory with running
time 7", which is shown in Theorem[I] We also provide Theorem 2] which shows that the
estimation error of our system identification method is optimal up to constant factors.

2. When a stable controller is not available, we can use /N independent short trajectories to
obtain estimators with error O(1/1/N), as is shown in Theorem.

3. We apply our system identification method to an online continuous linear control algorithm,
which only requires O(T") samples and achieves O(y/T') regret on a single trajectory
with lasting time 7" (Theorem , improving upon the best known result O(v/T log(T'))
in (Shirani Faradonbeh & Shirani Faradonbeh, [2023)).

2 RELATED WORKS

Control of both discrete and continuous linear dynamical systems have been extensively studied
in various settings, such as linear quadratic optimal control (Mehrmann, [1991), H» stochastic
control (Dragan et al.l [2004)), H., robust control (Stengell |1994; |Khalil et al.l [1996) and system
identification (Kumar, 1983} [Ljung, [1998b). Below we introduce some of the important results on
both system identification and optimal control for linear dynamical systems.

System Identification Earlier literature focused primarily on the asymptotic convergence of system
identification (Campi & Kumar, [1998a; Ljung| [1998a). Recently, there has been a resurgence of
interest in non-asymptotic system identification for discrete-time systems. |Dean et al.| (2018)) studied
the sample complexity of multiple trajectories, with O(1/1/N) estimation error on N independent
trajectories. For systems with dynamics x;;1 = Axy + w(without controllers), [Simchowitz et al.
(2018) established an analysis for O(1/1/T") estimation error on a single stable trajectory with
running time 7', while [Faradonbeh et al.[| (2018) and |Sarkar & Rakhlin| (2019) extended to more
general discrete-time systems.

Non-asymptotic analyses for continuous-time linear system are less studied. Recently, Basei et al.
(2022) examined continuous-time linear quadratic control systems with standard brown noise and
unknown system dynamics. Our algorithm is specifically designed for finite observations, achieving
an error rate that cannot be attained through the direct discretization of integrals as done in (Basel
et al., [2022).
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Regret Analysis of Online Control In online control, if the system’s parameters are known,
achieving the optimal control policy in this setup can be straightforward (Stengel, |1994; Yong &
Zhou| 1999). However, when the system parameters are unknown, identifying the system incurs
regret. |Abbasi-Yadkori & Szepesviri| (2011) achieved an O(v/T') regret for discrete-time online
linear control, which has been proven optimal in 7" under that setting in|Simchowitz & Foster| (2023).
Subsequent works have extended this setup, focusing on worst-case analysis with adversarial noise
and cost, including (Mania et al.,[2019; |Cohen et al.l 2019; |Lale et al., [2020; Simchowitz & Foster,
2023). These analyses are limited to discrete systems. For continuous-time systems, works of
Shirani Faradonbeh et al.| (2022); Shiran1 Faradonbeh & Shirani Faradonbeh| (2023) established
algorithms for online continuous control that achieves O (T/2 log(T')) regret.

3 PROBLEM SETUPS AND NOTATIONS

In this section, we introduce the background and notation for system identification in linear systems.
We then discuss optimal control problems to motivate the setup for online control.

3.1 LINEAR DYNAMICAL SYSTEMS

We first introduce discrete-time linear dynamical systems as follows: Let x;, € R represent the
state of the system at time k, and let u;, € RP denote the action at time k. Then, for some linear
time-invariant dynamics characterized by A € R%*? and B € R%*?, the transition of the system to
the next state can be represented as:

Tpt1 = Axy, + Buy + wy, (D
where w;, € R? are i.i.d. Gaussian random vectors with zero means and certain covariance.

Similarly, a continuous-time linear dynamical system with stochastic disturbance at time ¢ is defined
by a differential equation, instead of a recurrence relation:

In this context, we use X; and U, to represent the state and action in the continuous-time linear
system, distinguishing them from x; and u in discrete-time systems. W; denotes the stochastic noise,
which is modeled by standard Brownian motion.

For a continuous control problem, an important question of a linear dynamical system is whether such
system can be stably controlled. Below we define the concepts of stable dynamics and stabilizers.

Definition 1. For any square matrix A, define a(A) = max;{R(\;)|\; € A(A)}, where R(N)
represents the real part of complex number A, A\(A) is the set of all eigenvalues of A.

Definition 2. A matrix A € R9*? is stable if a(A) < 0. A control matrix K € RP*< is said to be a
stabilizer for system (A, B) if A+ BK is stable.

Under the above definition, a stable dynamic guarantees that the state can automatically go to the
origin when no external forces are added, while applying a stabilizer as the dynamic for controller
will also ensure that the state does not diverge.

3.2 CONTINUOUS-TIME LQR PROBLEMS AND OPTIMAL CONTROL

For continuous-time linear systems disturbed by stochastic noise, as introduced in 3.1} we denote
the strategy of applying control to such systems through a specific causal policy, f : X — U. This
policy maps states X to control inputs U, where the policy at time ¢ can only depend on the states
and actions prior to t.

The optimal controls in linear systems are often linear (Stengel, |1994} |[Yong & Zhoul [1999)), which
takes the following form
Uy = Ky Xy,

where K; € RP*? represents the linear parameterization at time ¢ under some policy f(X) = K X.
Additionally, we define the cost function of applying the action U; = K; X, with linear quadratic
regulator (LQR) control. Given predefined symmetric positive definite matrices @ € R?*? and
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R € RP*?_along with the initial state X, the cost during ¢ € [0, T'] is denoted by Jr, as represented
in the following equation:

T
Jr=E V (X! QX, +ULRU,) dt| . )
t=0

Here the expectation is taken over the randomness of X; and the choice of linear dynamic K.

Among all the polices there exists an optimal mapping f,. which minimizes Jr. When the system is
dominated by dynamics (A, B), with the state transits according to equation |2} such optimal K; can
be computed via the Lyapunov matrix P; that solves the Ricatti differential equation (Yong & Zhou,
1999):

%Pt — PBR'BYP, — AP, - PA—Q,Pr =0, 4)

Then, under f, the action dynamic is set to be K; = —R~'BTP,.

When T" — 400, the starting dynamic F, converges to some special dynamic P, satisfying
P.BR'BTP, - ATP, - P.A-Q =0, 3)

and the optimal control policy for infinite time horizon is by setting K; = —R~'BTP, := K, and
apply the action by U; = K, X,.

Online Control Problems. Online learning aims to find a strategy to output a sequence of controls
{U;} that minimizes the cost Jr without knowing the system parameters A, B. In this scenario,
online learning algorithms must explore to obtain valuable information, such as estimators (A, B ) for
(A, B), while simultaneously exploit gathered information to avoid large instantaneous cost.

To quantify the progress in an online learning problem with horizon 7', one quantity of interest is
the regret Ry, which quantifies the performance gap between the control taken U; = f(X;) and a
baseline policy which takes U; = K;X;, where K is defined in equation[d] Formally, by denoting
Jr be the expected cost under f, and J7 be the expected cost under the baseline policy, the regret
R is represented as:

Ry =Jr— J5. (6)

We have seen that in LQR problems with an infinite-time horizon, the optimal policy uses a time-
invariant control dynamic K, expressed by K, = —R~'BTP, equation For finite horizon, the
dynamic K, equation[dcorresponds to the optimal policy converges exponentially fast in 7" to the
fixed dynamic K. Therefore, in this work, also following |Shirani Faradonbeh & Shirani Faradonbeh
(2023)), for any horizon 7', we adopt the same baseline policy, which performs the control by setting
the following:

U= K. X, = -R'BTP.X,.

Other Notations Denote the d-dimensional unit sphere S~ = {v € R?, |Jv||; = 1}, where || - |2
is the Lo norm. For any matrix A € R™*", denote || A|| be the spectral norm of A, or equivalently,
|All = sup [|Av]2 = sup uT Av.
veSn—1 ueSm—1 yesSn—1

4 THE PROPOSED SYSTEM IDENTIFICATION METHOD

In this part we propose our system identification method. Under finite time and samples, we develop
a strategy to construct sets of states and actions which transit according to equation |l|a discrete

update rule, with intermediate dynamics (A/, B/) (see Algorithm and Algorithm .

In particular, we can establish a one-to-one mapping between the constructed discrete system and
the original continuous-time system as in equation [L0|so that we can estimate (A, B). This avoids
computing on an integration, which is never achieved in previous works. We then bound the estimation
errors in Theorem [T]and Theorem [3] The results are consistent with current best convergence rates of
discrete-time linear system identification (Simchowitz et al.|(2018)), Dean et al.|(2018)). Moreover, we
present Theorem 2] which establishes the lower bound of the estimation error in this continuous-time
system identification problem. It suggests our algorithm is optimal in sample complexity.
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4.1 IDENTIFYING CONTINUOUS-TIME SYSTEMS WITH FINITE OBSERVATIONS

We highlight the finite-sample requirement in our analyses of system identification for continuous
systems. Under this setting, not only the running time is finite, but the number of observed states
is also limited. In other words, for a trajectory with lasting time 7', we can only get access to a
finite set of states { X, , X4,, ..., X3, } instead of a continuous uncountable collection of trajectory
{X.}, where ¢ is in some interval. One key difference is that quantities such as [, ¢(Xy, Uy)dt
with any function ¢ cannot be evaluated without error over an interval I. In addressing the system
identification problem, we underscore a key distinction between our methodology and the traditional
techniques employed for integral approximation.

In previous approaches, computations have relied on the approximation X; ;. ~ (I + €A)X; +
eBU; + (Wiy. — W;). However, this approximation does not accurately reflect the true dynamics as
expressed in equation [7] leading to a systematic error between the approximated and actual dynamics.
This discrepancy, characterized by the error term e~ (e — I') — A, is of the order of €. As a result, to
achieve the desired error bound, a super-linear sampling complexity relative to the total running time
T is required, which significantly increases computational demands. Our method addresses this issue
by utilizing the bijection between domains of S = {X ||| X|| < {1} and their matrix exponentials,
thereby overcoming the limitations of direct discretization.

4.2  ALGORITHMS FOR CONTINUOUS SYSTEM IDENTIFICATION

With the transition of the state of a continuous system, represented in equation [2] when we take
observations of state with sampling gap h, the states transit as in equation 7}

h
Xirn = e X, +/
s=0

h

A=) BU,, ods + / A= aw, ., (7
s=0

This transition equation connects continuous-time and discrete-time systems. However, the matrix
exponential and integration make identifying system parameters from this relationship challenging.
We address this challenge by first applying appropriate controls to simplify the analysis and then
proposing a novel method to estimate A from the matrix exponential, followed by recovering B using
the estimate of A.

In our method, the whole trajectory is partitioned into intervals with proper determined length h.
During time ¢ € [kh, (k + 1)h], we observe a state xj, at time ¢ = kh, and fix the action U; = uy, in
this interval. Then the set of observations {x;|k = 0,1,2,...} and actions {ui|k = 0,1,2, ...} has
the following relation:

h
Tht1 = ey + / A =9) ds| Buy, + wy , ®)
s=0

Here w, ~ N(0,%p) with &, = fSh:O eAseA s ds is a sequence of independent random noise.
Denoting A° = e4" and B’ = [f’L

S=

0 eA(h_S)ds} B, the observed state transitions follow the

standard discrete-time linear dynamical system:

Tit1 = A xp + B ug, + wi.

Next, we show how to identify (A, B) from observations {z; }, {u;} which follow the transition law
in [8] Different from classical discrete-time systems, continuous-time systems present new challenges.
The crucial one is that knowing e is not sufficient to determine A, because the matrix exponential

function f(X) = e¥ is not one-to-one. This means we might obtain an incorrect estimator A by
solving eA" = M, where M is the estimate of e,

The key to overcoming this challenge is the observation that when || X || < 1, the map f(X) = e*

becomes one-to-one. Furthermore, if || X || < &, we have |[[e* — I4|| < £, which allows us to find a
X using Taylor expansion (see , with [| X|| < 1 and e¥ = e¥. This X is exactly X due to the
one-to-one property of f in the restricted domain. This insight enables direct analysis of the matrix
exponential e under the condition that || A||k is small. The detailed proof is provided in Lemma
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Algorithm 1 System identification algorithm for stable system

Input: Running time 7", sample interval h satisfying the condition in Assumption I}
Define the number of samples Ty = [T'/h].
fork=0,...,7p —1do
Sample the action uy, = A (0, I,).
Use the action U; = uy, during the time period ¢ € [kh, (k + 1)h].
Observe the new state x4 at time (k + 1)h.
end for o
Compute (A, B) by equation@, and then (A, B) by equation
Let (A, B) = (A, B) be the estimates for system dynamics (A, B).

With the above analysis, we can set the sampling interval A < m to ensure that e can recover A.
When Assumption [T holds, we propose Algorithm[I} which identifies the system parameters from a
single trajectory.

Assumption 1 (Assumptions for Algorithm[I]and Theorem|[I). We assume

1. The linear dynamic A is stable, with a(A) < 0 (see Definition[I). This is equivalent to
assuming the existence of a stable controller K and then set A + A + BK.

2. JJA|| € Ka,

B|| < kp for some known k 4, kg (K4, k5 need not be closed to || A]|, || B)).

1
15k 4 °

3. The sample interval h is chosen to be h =

Description of Algorithm [I] In the k-th interval with length h, a state xj, is observed at the
beginning, and a randomly selected action uy, is uniformly performed during this interval. The

state-action set {2, uy } is then utilized for estimating discretized (A', B), as in equation@

N Ty—1 fr,—1 B Ty—1 f -1 7
(A)T = lz a:ka:g] Z xk:cg_H .(B)T = [Z ukuﬂ Z U (J:k.+1 — Axk.) ()
k=0 k=0 k=0 k=0
Next, the continuous-time dynamics (A, B) are recovered through the estimates (A, B). Given that

||A||h is small, we can use the Taylor expansion to compute the logarithm of A, denoted by Ah,
which closely approximates Ah. The estimator (A, B) for (A, B) is expressed as follows:

ho -1
/ eMdt
t=0

B. (10)
Algorithmoutlines the structured form of this entire procedure, achieving an O(T~1/2) estimation
error of (A, B) for a single trajectory with a duration of T" (see Theorem . An interesting thing is
that AlgorithmI|can be generalized to the case where A is not necessarily stable, but a stabilizer K
for (A, B) (see Definition [2)) is known. This generalization is applied in Algorithm and will be
discussed in Section[5] Finally, we note that the number of samples is linear in T".

k>1

Summary of Notations Below, we summarize several notations discussed.

—_

. Denote the ground truth (A, B) as the continuous-time system dynamics.

2. Let A" = e and B' = U:L:o eA(h_s)ds} B be the discretization of the ground truth A, B.

3. (A, B) refers to the estimates for (A’, B") from the observations, and are defined in equa-
tion

4. Let (A, B) denote the algorithm output of the continuous-time system dynamics (A, B).
This output notation is used in Algorithm[I] [2] [3]as well as their corresponding theorems.

5. (A, B) refers to the estimates recovered from the discretization (A, B), defined in equa-

tion In Algorithm m it is just (A, B). In Algorithm [3| it is the estimates for
(A+ BK, B).
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Now we show that the above algorithm efficiently estimates the system dynamics. We first present

the upper bound and postpone its proof sketch to the next subsection.

Theorem 1 (Upper bound). In Algorithm there exists a constant C' € poly (|04(A)|*1, KA, /<;B)

such that, V0 < § < %, when T > C (|| Xo|3 + log? 1/6), with probability at least 1 — 6, we have:
log(1/9)

A= AlLIB = Bl < ¢/ == (11)

Furthermore, our subsequent Theorem [2]establishes that this method has already attained the optimal
convergence rate for parameter estimation. This theorem primarily asserts that, given a single
trajectory lasting for time 7, any algorithm that estimates system parameters solely based on an

arbitrarily large number of finite observed states cannot guarantee an estimation error of o(+/1/T)
Theorem 2 (Lower bound). Suppose T’ > 1 be the running time of a single trajectory of continuous-
time linear differential system, represented as in equation [2| Then there exist constants c1, co
independent of d such that, for any finite set of observed points {to = 0,t1,ts,...,txy = T}, and any
(possibly randomized) estimator function ¢ : { X, Xty s ooy Xty b — R%4 there exists bounded
A, B satisfying P [H¢({Xi}i§N) —A| > %} > co. Here the probability is with respect to system

noise.

In Theorem 2] the mapping ¢ can refer to the output of any algorithm that exclusively relies on the
finite set of states X;,, X;,, ..., Xt . The interesting observation is that the lower bound does not
decrease with a larger observation number N.

The proof sketch of Theoremis as follows: We consider two sets of dynamics, (4, 0) and (4, 0),
where both A and A are stable, and |[A — A| = % The challenge is ensuring the lower bound
when the samples are uneven. Our key observation is that for the two distributions of observed
states S, = { Xy, X4y, ..., Xy, } and Sy, = { Xy, X4y, ..., Xy, }, Where X corresponds to the linear
dynamic A and X corresponds to A, the KL divergence between Sy41 and Sy increases by at most
%(tk;+1 — ti). Here, ¢ is a universal constant independent of ¢;, and ;1. Thus, regardless of how
the observation times are selected, the KL divergence between the observed states remains bounded.

4.3 FINDING AN INITIAL STABLE CONTROLLER

For general (A, B), where a stabilizer is not known in advance, sticking to a single trajectory is
not feasible as the state might diverge rapidly before obtaining a stable controller. We first list the
assumptions on system parameters below.

Assumption 2 (Assumptions for Algorithm 2]and Theorem3). We assume
1. The constants k 4, K, h follow the same assumptions as inm
2. The running time 7" for each trajectory is small, say, T' = Tyh where Ty € N and T < 10.

Then, we employ multiple short trajectories to identify A and B as outlined in Algorithm[2} Similar
to what is demonstrated in|Dean et al.[(2018), this procedure results in an O(H -1/ 2) estimation error
on the trajectory number H (Theorem3).
Theorem 3. In Algorithm there exists a constant C' € poly(k a, kp) such that w.p. at least 1 — §,
the estimation error of (A, B) from H trajectories satisfies:
: : log(1/5)

A=Al [|B-B|<C —g
The proof is similar to that of Theorem [I] and details are shown in the Appendix. A stable controller
can hence be designed from A, B.

4.4 ANALYSIS FOR THEOREMIII

In this section, we will primarily discuss the rationale behind the proof of our key theorems. Due to
space limitations, detailed proofs of these theorems are provided in the appendix.
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Algorithm 2 Multi-trajectory system identification algorithm

Input: 7', Ty, h as in Assumption number of trajectories H.
fori=1,...,Hdo
for k = O To — 1do
Sample the action u}, N (0,1,), use the action U; = u!, during ¢t € [kh, (k + 1)h].
Observe the new state x}, , , at time (k + 1)h.
end for
end for o . )
Compute (4, B) by (4, B) € argmln( B) 3 Yo ||, — Azl 4 — BulTO_1H2.

Compute A, B as in equation let (A, B) = (A, B) be estimates for system dynamics (A, B).

Our initial focus is on examining the error transformation from the discrete system to the original
system. In Algorithm[I]and[2] discrete system identification methods are applied for estimating the

intermediate dynamics (A'7 B/). We will prove Lemma@> which show that the errors of dynamics in
the discrete system and the original system only differ by some constant factor, allowing us to only
focus on discrete system identification problems:

Lemma 4. In Algorlthml l suppose we have obtained the relative error |A — A'||,||B — B'|| < e

for some e < 1= and ||Ah|| < {5, then we have the following relative error of the primal system:

- . 1 K
AAIl,BBllsh(HHj)e. (12)

From this lemma, it becomes clear that if we develop a system identification algorithm for the

discrete system that outputs the dynamics estimations A and B with minimal error, we can obtain the
estimation of the primal system with relatively small error. Then it remains to develop the analysis
for the discrete system with transition function x 1 = Axy + Buy + wy, which has actually been
well discussed in previous works such as Simchowitz et al.| (2018).

5 A CONTINUOUS ONLINE CONTROL ALGORITHM WITH IMPROVED REGRET

In this section, we apply our system identification method to a continuous LQR online control
algorithm. Recall the setup introduced in Section [3.2] where we want to minimize the regret Ry
defined in equatlon@ We will show in this section that with O(T) samples, our algorithm achieves

(’)(\/T) expected regret on a single trajectory, thereby improving upon the previous O (\/T log(T))
result. We list the assumption for the online LQR problems below.

Assumption 3 (Assumptions for Algorithm [3|and Theorem[3). We assume that:

1. A stabilizer K for (A, B) (see Definition[2) with a(A + BK) < 0 is known in advance.

2. Sample distance h satisfies h = where k > || A|| + || B|||| K| > ||A + BK]|| is known.

F’
3. Denote P, be the solution in equation [5|and K, = —R!BTP, be the baseline control
dynamic.

4. @, R are positive-definite symmetric matrices with bounded spectral norms ||Q||, || R|| < M
and for some it > 0, ul < Q,ul X R.

5.1 AN O(V/T) REGRET ALGORITHM FOR CONTINUOUS ONLINE CONTROL

Our online continuous control algorithm is outlined in Algorithm 3, and we provide a detailed
description below. Algorithm [3is divided into two phases, exploration and exploitation. For the first
exploration phase, a previously known stabilizer K is applied to prevent the state from diverging.
During the k-th interval, by setting U; = K X; + uy, the state X; transits according to



Under review as a conference paper at ICLR 2025

Algorithm 3 Continuous online control algorithm

Input: K, h which follows Assumption [3] running time T’
fork:O,...,[g]—ldo

Sample the action uy, "= N (0, 1,).

Fort € [kh, (k + 1)h], set Uy = K X; + uy.

Observe the new state x4 at time (k + 1)h.

end for
Do system identification and estimate dynamics:

Compute (A B) according to equatlon@by using {x, uk}
Compute A, B by equat10nw1th A, B, and estimators (A B)by A=A— BK,B=B.
If A is stable, compute P by equat10nw1th estimated A B,andset K = —R~ Y B )TP

If A is not stable or P computed above satisfies | P|| > 7', then set K = K.
Perform exploitation:

Fort € [V/T,T),setU; = KX,.

Detect bad policy and prevent the trajectory from diverging:

If for some ¢ty > VT, | X0 || > T3, thenset U, = KX, fort € [to, T

Since A + BK is stable, through replacing A in Theorem [I[|by A + BK in Algorithm [3] we can
obtain a set of estimators (A, B) for (A, B) with small error. This further allows us to accurately
estimate (A, B), thereby a controller K = —R~(B )TP closed to K, is obtained.

During exploitation phase, the near-optimal controller is deployed to minimize the cost, resulting

in a regret of O(v/T) (see Theorem . However, as we lack direct feedback on whether K is a
stabilizer, we need to detect its stability. Our approach involves replacing it with the known stabilizer
K whenever the state deviates too far.

Theorem 5. Let Jr be the expected LOR cost introduced in equation 3| that takes the action Uy as
in Algorithm 3. Then for some constant C' € poly (k, M, p~ ', |o(A + BK)| ™!, |a(A + BK,)|7}),
the regret satisfies:

Ry =Jr—J;p <CVT.

Proof Sketch of Theorem|S| We analyze the two phases of our algorithm. During the exploration
phase, the stabilizing controller K effectively bounds the trajectory’s radius, ensuring the average
cost per unit time is within O(1), resulting in a total exploration cost of C'v/T.

In the subsequent exploitation phase, we analyze two scenarios separately. The first scenario occurs
when the estimators (A, B) have large errors or when || X||2 > T'/? for some ¢ € [v/T, T]. This
situation is rare and contributes a limited expected cost that can be bounded by a constant. The second
scenario occurs when (A, B) are accurately estimated, and the control Uy = —R~'(B)TPX, is
applied throughout the exploitation phase. In this case, the trajectory’s performance is straightforward
to analyze, and the expected cost is bounded by O(v/T) + J&.

By summing the expected costs, the total exploration cost is bounded by O(+/T'), and the exploitation
cost is bounded by J7 + (’)(\/T) By the definition of regret, R = Jr — Jr, the total regret is
O(\/T), leading to the conclusion of Theorem

5.2 COMPARISON AGAINST|SHIRANI FARADONBEH & SHIRANI FARADONBEH] (202 3))

Our result is closely related to the result in|Shirani Faradonbeh & Shirani Faradonbeh| (2023)), along
with its similar version |Faradonbeh| (2022). They achieve O(+/T log(T")) regret for both expectation
and worst cases. We highlight some comparisons below. Both our and their setups assume a previously
known stabilizer, which is also common for online control (Abeille & Lazaric, 2018} |Ouyang et al.,
2019; [Faradonbeh et al., [2020; [Shirani Faradonbeh & Shirani Faradonbeh, 2023). However, the work
of Shirani Faradonbeh & Shirani Faradonbeh| (2023)) further assumes a known stabilization set for
obtaining a stable controller, which is slightly stronger compared with ours. Such difference exists
because our approach detects divergence and avoids sticking to a controller which is not stable.
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More importantly, our system identification method is different. In Shirani Faradonbeh & Shi+
rani Faradonbeh| (2023)), the exploration and exploitation is simultaneous, where a random matrix is
added to the near-optimal controller so that both A and B can be identified. This additional noise
cannot be too small, to ensure that the system can be well identified. This causes an extra log(7")
factor to the regret. In contrast, our algorithm follows an explore-then-commit structure, which is
enabled by the efficient system identification results presented previously.

Finally, we additionally considered the setup of finite observation, which is not discussed in [Shi}
[rani Faradonbeh & Shirani Faradonbeh| (2023)).

5.3 EXPERIMENTS

In this section, we conduct simulation experiments for the baseline algorithm and our proposed
algorithm. The baseline algorithm follows the work of |Shirani Faradonbeh & Shirani Faradonbeh|
(2023). We set d = p = 3 for simplicity. Each element of A is sampled uniformly from [—1,1],
making A unstable with high probability. The matrix B is set as the identity matrix /3. ¢ and R are
also set as I's. The sampling interval is set to h = 3—10.

First, we run Algorithm[TJand Algorithm [2]for system identification. We plot the expected Frobenius

norms of the error matrices ||A — A||% and || B — B||%. The results demonstrate that our algorithm
can identify A and B within sufficient running time or number of trajectories.

Next, we compare Algorithm [3] with the baseline algorithm. We compute the average regret for
different ¢ € [600, 10000] and plot the results in Figure We also analyze the normalized regret
R(T)/T*/?. The results show that our online control algorithm with system identification outperforms
the baseline algorithm for sufficiently large 7'.

—— Estimation Error of A 3.0 —— Estimation Error of A 40
10 —— Estimation Error of B —— Estimation Error of B
T I S E— 35
2.5
. = =
s 8 3 > 30
u w 2.0 &
5 . 5 3 s
= - N
« ° 15 =
E £ T 20
g o4 & 5
w w 1.0 o
: Z 15
2 0.5 10 —— Our Algorithm
—— Baseline Algorithm
1o 15 20 25 30 35 40 500 1000 1500 2000 2000 4000 6000 8000
Running Time Number of Trajectories Running Time

Figure 1: The empirical validation of our algorithm. Left: Identification of system dynamics using a single
trajectory. Middle: Identification of system dynamics using multiple trajectories. Right: The normalized regret

R(T)/ T'/2 of the baseline algorithm and our algorithm. The results show that our algorithm achieves small
identification error within finite time and trajectories and is more efficient than the baseline algorithm.

6 CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS

In this work, we establish a novel system identification method for continuous-time linear dynamical
systems. This method only uses a finite number of observations instead of requiring the integration of
a consequent trajectory, and can be applied to an algorithm for online LQR continuous control which
achieves O(ﬁ ) regret on a single trajectory. Compared with existed works, our work not only eases
the requirement for data collection and computation, but achieves fast convergence rate in identifying
the unknown dynamics as well.

Although our method achieves near-optimal results in system identification and LQR online control
for continuous systems with stochastic noise, many questions remain unsolved. First, it is unclear
whether our system identification approach can be extended to more challenging setups, such as
deterministic or adversarial noise. Additionally, many practical models are non-linear, raising the
question of under what conditions discretization methods are effective. We believe these questions
are crucial for real-world applications.

10
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A SYSTEM IDENTIFICATION FOR CONTINUOUS-TIME LINEAR SYSTEM

We begin by presenting the analysis for our system identification method in Algorithm [I] and
Algorithm[2] As a preparation, we establish some properties of matrix exponentials and their inverses.

A.1 MATRIX EXPONENTIAL

For a matrix exponential e1, where the largest real component of A’s eigenvalues is denoted by
a(A), the spectral norm of et can be well-bounded (Golub & Van Loan, 2013), as demonstrated in
Lemmal[6l

Lemma 6. Suppose an n x n matrix A satisfies that 0 > a(A) = max{R(\;)|\; € A(A)}. Let

QY AQ = diag(\;) + N be the Schur decomposition of A, and let Mg(t) = >}~ 01 HNtHQ . Then for
t > 0, we have:

le?|| < e (13)

He(A+E)t _ eAtH

leAt]] < | Bla(M,(1))2eMsOI1El2) (14)

In a special case where a(A) < 0, since M,(t) > 1 for all ¢, we obtain

A a(A
le]] < e~ "

We also show some properties of matrix inverse in the following Lemma([7}

Lemma 7 (Matrix inverse). For any A € R™® and t such that 0 < ||At| < {5, we have the
following estimation of et

HeAt _ Id” < eHAtH 1

and if we denote Ay = e, then A also satisfies that

A= 1 Z 7(_1;“_1 (41 — Id)k .

Proof. We expand e?? by

which follows that

let — Lol = Z (A <> HAtH’“—e”At” 1<

k>1 k>1

@\»—t

(—1)F+1

kt (Ay — I)* converges, and thus e?2t =

Since ||A; — I4]| < 1, the progression Ay = Zk>1
et Furthermore, it can be computed that

JAstl] < 3

E>1

Now we show that A, = A. We have already known that || A¢|| and || Ast| are small. We also
note that the function f : X — e® (]| X]| < ) constitutes a one-to-one mapping. This assertion

13
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is supported by the observation that for any X1, X5 such that || X1, [ X1 + X2f < 3, we have
| X2 < 4, implying that
Hexl+x2 _ X —X2H = Z k'(Xl + X))k — Xk (15)
E>2
12k
< = || 2|l (16)
k>2
1
< Sl a7
Then H€X1+X2 — eX1|| > 11X, — A
O

A.2 PROOF OF LEMMA [4]

We restate Lemmad] and provide the proof here.

Lemma@ In Algorlthml l suppose we have obtained the relative error ||[A — A'|,||B — B'|| < ¢

for some e < = and || Ah[] < <&, then we have the following relative error of the primal system:

- - C
1A= AlLIB - B < e, (18)

where C'is a constant independent of .

Proof. Firstly, according to Lemma the estimated A is not too far away from /4, as we have:
~ ~ 1
HA - IdH < HA — eAhH + ||€Ah — Id” <e+teldllh 1< I
Then, from equation |10| we can bound the matrix norm HAhH by
X —1)k-1 1,1
An| = EV Ao <SS ik
]\ > (- () <
E>1 E>1

Now, let’s denote A; = Ah and Ay = Ah — A4, satisfying the relations A” = eA1 and A = eA1 42,

It is given that ||A;]| < 1z and [[A2|| < ||AL] + |Ah|| < L, so by equatlonﬁ we obtain that
|A— Alh=||Az] < QHA A'||, which follows that || A — A|| < EHA ~ A < Ze. O

Next, we will upper bound the estimation error of B. Let Aj, = [, th:O eAtdt and A, = j;hzo eAtdt,

satisfying
h h h 1
|Ap — hI|| = / (et — I)dt|| < / [|ett — 1] dt < / (el At —1)dt < —h,
t=0 t=0 t=0 20
B ho h ) 3 b 3
1, — Ay = / At At gy g/ e — e ae < 7/ 1A — Aljtdt < She.
t=0 t=0 2 t=0 4

This follows that
A -1 k 2
[I + (7" —1 )] <

1| _
||A H — 19h’

1(AR) " = A7

= A7 |17 + Gn - 4] ™ 1] < 47 1 :

—€.

= T <
1— H(Ah_Ah)A;: H h
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Since B and its estimator B satisfy that
B=(Ay)"'B,B=(4,)"'B,
we can upper bound the estimation error HB — BH by

1Bl [

8- 5| <@ - < @IBI+ D)e,

A BB <=

where the last inequality is because || B'|| < ||An||||B|| < 2h||B]|.

Since 2||B|| < 2kp < 7 - 12:& < %2, we obtain Lemmal

A.3 ANALYSIS FOR SYSTEM IDENTIFICATION WITH SINGLE TRAJECTORY

In this section, we upper bound the estimation errors of intermediate dynamics (A/ , B/), obtained as
in equation[9] We primarily prove Lemma|§|below, providing system identification results on a single
trajectory with a stable controller.

Lemma 8. Consider the trajectory xj,,1 = Axj, + Buy +wy with A € R¥*4, ||A|| < 1, B € R¥*P;
u ~ N(0,1,) and wy, ~ N(0,X) are i.i.d. random variables. Suppose we compute (A, B) by

To—1 Tr—1 ) To—1 tr—1 o
[Z xkxk] Z ;Uk:ck+1, B lz ukuk] Z U (:EkH — Axk) . (19

k=0

Then there exists a constant C (depending only on A, B, d, p and X) such that for T >
C (| X013 + log®(1/5)), wp. at least 1 — §:

log(1/4)

A— Al |B-B|<C
| [l | < T

(20)
We first provide Lemma 9] which is used as the base of Lemmalg]

Lemma 9. Consider A € R%* such that p(A) < 1 and the system X1 = AX} + wy, with
wy ~ N(0,X) be i.i.d. random variables. Suppose we estimate A as in equation@] Then there exists
a constant C depending on A, ¥ and d such that for T > C(|| Xo||3 + log(1/)), w.p. at least 1 — 6,
we have:

log(1/0) '

A— Al <
[A-Al<C T

The work of (Simchowitz et al.,2018) has discussed such systems in their Theorem 2.4, and we list it
below:

Theorem 10. Fix e, 6 € (0,1), T € Nand 0 < Ty, < L. Then if (Xt,Y:)i>1 € (R4 x R") T isa
random sequence such that (a) Yy = A. Xy + ny, where n|Fy is o?-sub-Gaussian and mean zero, (b)
X1, ..., X7 satisfies the (k, T sp, p)-small ball condition, and (c) such that P [23:1 X X[ A Tf‘} <
0. Then if
10k -
T > e (log(1/6) + 2d1og(10/p) + log det(TT,,")) ,

we have

n+ dlog 2 + log det(TT1) + log(1) |
pljie > 900\/ B + logdet(TT,) +log(3) | _

T)\min (Psb)

Here, the (k,T' s, p)-small ball condition is defined as follows. Let (Z;);>1 be an Fy;>1-adapted
random process taking values in R. We say (Zy)>1 satisfies the (k, v, p)-block martingale small-ball

(BMSB) condition if, for any j > 0, one has %Zle P(|Z;+i| > v|F;) > p almost surely. Given
a process (Xy)y>1 taking values in RY, we say that it satisfies the (k,T s, p)-BMSB condition for
Ty, = 0 if, for any fixed w € S, the process Z; := (w, X;) satisfies (k,/wTT gyw, p)-BMSB.
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In the work of (Simchowitz et al.l 2018)), they have discussed the case when Xy = 0, and now we
modify it to a general starting state X,. From equation 0] we derive the estimation error of A as

rT—1 1T
AT — AT = |3 X XT | Y XX, - AT

Lk=0 k=0
rr—1 g

= Xka Xk(AXk+wk)T7AT
Lk=0 1 k=0
rT—1 1T

= Z XeX[F Xpwy
Lk=0 k=0

For the first term, consider any v € S, we lower bound v ( Z:_(} X;CXkT) v. Let ar, = vT Xy,
then a, = vTAXy_1 + vTwy. We claim that for any k& > 1, P [|ak\ > %|Xk_1] > % Let by, =
vTwy, which is independent of X1 . It suffices to show that for any ¢ € R, P [b, € [c,c + 1]] < 1.

Since ||v]|2 = 1 and wy, ~ N(0, 1), we have by, ~ A (0, 1), from which we estimate the probability
as
g2 1

1
V2 2 2"
Based on equation we can simply choose k = 1, 'y, = i[d andp = %, then the random sequence

(X;)i>o satisfies the (k, sy, p)-BMSB condition. It remains to choose a proper I' that meets the
condition (c) in Theorem [T0}

Since X = A* X + Zle AF~w,, we have:

T-1 T-1 T
ElZXkX,;f =E > (A’fX +ZA’“ ' ) (AkX0+ZAk ' >
k=0

k=0 i=1 i=1

Plby € [c,c+ 1] / 1)

T-1
=) A"XoX( (AT +E

T—1 k
> A’“XowiT(Aki)T]
k=0 i=0

T—-1 k -1
+E ZAk i Xg (AT +E | ZA" "ww) (AF9)T
k=0 i= k=0 %,7=0
T—1 T-1 k
=) AFXXG (AT 4 Y AR (AT
k=0 k=0 i=0

LetToo = Y7, 5 A¥E(A%)T which is bounded and C} be a constant such that Cy > 37, - [|A¥[%.
We then show that for T' = (%Xo”gdfd + d||Foo||Id> /9, the condition (c) in Theorem |10} is
satisfied. This is because E [tr ( Z;()l XkX,;F)} =tr (IE { f;ol XkX,;F]) < %‘Str(f‘) so that
P [tr( Z 01 XX > 1Ttr(I‘)} < ¢. Furthermore, a necessary condition for
o X XT A TDis tr(Xp—y Xk XT) > 17tx(DD).
Now, we apply such I to Theorem It can be computed that
log det(FT'1) = dlog (4d(Cy | XolI3/T + [Twcl)) + dlog(1/6)

Then when T' > C4 | X, as well as T > 40 (2d log(20) + dlog(4d(1 + ||T]|)) + 2dlog(1/6)),
we have:

<36.

360\/d + dlog(20) + dlog(4d(1 + T |))) + 2d1og(3)

A—A
| [ > T

This implies our Lemma[9]
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Proof of Lemmal As for the estimation error || A — Al|, let w, = Buy, +wy, ~ N(0,% + BBT),
which form a sequence of i.i.d random variables. With the results in Lemma 9] there exist some
constants Cy, Cy such that, as long as T > C (|| Xol|3 + log(1/6)) we have:

. log(1/6
4 - ] < 0py /B

Tr_q

1B - B| = li ukUE] > w [(A- A)xi+ wk}T

Now we upper bound the estimation error | B — B||. With the expression in equation @, we obtain:
k=0
T—1 T—1
T
< Amin Z Uy, ) l
k=0

T-1
k=0
T-1

For the quantities A1, (3, —, uxui) and || Sy o urwj ||, we apply Lemma 2.1. and Lemma 2.2.
in the work of (Dean et al., 2018)), where they present the following results.

Lemma 11. Let N > 2log(1/9). Suppose fi € R™, g, € R™ are independent vectors such that
fr ~N(0,2¢) and g, ~ N(0,%,) for 1 < k < N. With probability at least 1 — ,

N

> fear

k=1

Lemma 12. Let X € RN*™ have i.i.d. N'(0,1) entries. With probability at least 1 — 6,
Amin(XTX) > VN — /n — /21og(1/9) .

With these two lemmas, we can conclude that if 7' > 32(d + p) log(4/4), then both Apin (urug) >
T and sz 0 UKWy ‘ 22T (d+ p)log(18/6), w.p. at least 1 — 6.

|4-a]+

< 4[S4[15211Zg 12" /N (m + n) log(9/3) -

Now we concentrate on the term HZ;‘;& ungH. Since w; = Bu; + w; ~ N'(0,% + BBT), it can

be directly computed that, w.p. at least 1 — <2 ||d (X + BBT Hl/2 log(T'/d). Then

w;

by union bound we get P [sup0<i<T 1 <2+ BBT||1/2 dlog(T/é)] < 6. Furthermore,
2
< 2|z + BBTHl/2 \/dlog(T'/§), we must have

when supg<;<p_q ’

k—1
AkXo + Z /1167177'.11)Z

=0

1/2
[ Xkll2 = < | AI*|I Xoll2 + =+ BBT||,”” /dlog(T/9).

L|
1L —[|A]

(22)

Forany v € SP"'and v € S¥!, let z; = uTu;(0 < i < T —1). Then, ; follows a normal
distribution z; ~ A(0,1) and {x;} is a sequence of independent random variables. Furthermore, x,
is also independent of (X;)o<;<k. On the other hand, denote Y = X gv equationimplies that

w.p. at least 1 — 4, for all k we have |yx| < || Xo|l2 + 1= HAH =+ BBTHI/2 Vdlog(T/d) ==Y
Let
k

k
o T T _
Z =Y u" (X)) v L, o<y = D TkUk - L, o<y
i=0 =0

and let Fy, F1, ..., Fr be the filtration of Xy, X1, ..., X7, then for any a > 0,

QTYR+1 L) Xppr <Y <
v <

k+1

e R
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aZr_1

aZy 1 aZy
implying that E [e é“} < e:’E [e QH} So we have: E [e Y } < e3°T, By choosing

a= j:\/; , we obtain that

P {‘ZT71| > QY\/TIOE’;(4/5)} <é

For 73 be a ;-net of S%~! and 7, be a ;-net of S”~*, we use union bound on them and obtain that,
w.p. at least 1 — §

Zr_1| < 27 \[T1og (AT, Tal/8) < 2 /T + p) + log(4/0)].
Where the last inequality is because |7,| < 97 and |T4| < 9¢

Next we upper bound "Zg:_()l ukaTH. For any u, € SP~! and v, € SP~!, with some u € T, and

v € Ty s.t. [Ju—uslla, [v — vill2 < £, we have:

T—1
UI(Z uk:X];f)U*
k=0
T-1 T-1 T-1
< PO wp X | 4 | (us — u)T(Z up X v | + uT(Z up XE) (v — vy)
k=0 k=0 k=0
T—1 1|12
< sup uT(Z upr Xp)v| + = Z up X
ueTp,ver k=0 2 k=0

This leads Hzf;(} UkX];PH < 28UPyeT, veTy
we have:

|

<P sup
u€Tq,veT,

uT( g:_ol ukaT)v’. Therefore, for any § € (0, 3),

T-1
k=0

> 4Y\/T[4(d + p) + log(4/ 5)]]
2

T—1
ut (Z UkaTl|xk|2<Y> v

k=0
+PE0<E<T-1,[|Xgl2 > Y]
<26.

> 2V \/TA(d + p) + 1og(4/5)]]

We choose constant C' depending on A, B, d, p such that for all T > C' (|| Xo||3 + log*(1/4)),

4Y \/T[A(d +p) +1og(4/0)] < T,

and we further have: whenever T > C (|| Xol|3 + log®(1/6)), w.p. at least 1 — 36,

T—1
> u X || A= Al < Co\/og(1/6)T -
k=0

Finally, when 7' > max (C (||Xo||3 + log®(1/4)) , 32(d + p) log(4/J)), we combine this upper
bound with P (Amin(25;01 uguy) < %T) < §, and obtain Lemma

A.4 SYSTEM IDENTIFICATION WITH MULTIPLE TRAJECTORIES

Now, we aim to establish Theorem [3] The analysis of system identification for discrete-time linear

dynamical systems with multiple trajectories has been thoroughly investigated by (Dean et al.,2018)).
We hereby cite their findings, denoting the relevant result as Lemma

18
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Lemma 13. Suppose we have N i.i.d. trajectories X,i, each is defined by ng+1)h = AX,i +
Bui + wi, where Ty is any integer, u}, ~ N(0, I,,) and w}, ~ N'(0,X) are two sets of i.i.d. random
variables. Then, for the estimator (A, B) of

N
POEDN . 1 i i i
(A,B) € arg &HE) 5 E | X%, — AXG, _, — BUTO—1H§ (23)
’ i=1

with probability at least 1 — 0, we have:

Al log(1/9)
1A~ Al 1B - B] < o< N) .

Combining Lemma [[3] with Lemmaf4] we directly obtain Theorem 3]

A.5 LOWER BOUND OF SYSTEM IDENTIFICATION WITH FINITE OBSERVATION

We restate and provide the proof of Theorem 2]

Theorem Suppose T > 1 be the running time of a single trajectory of continuous-time linear
differential system, represented as in equation 2| Then there exist constants c;, c2 independent of
d such that, for any finite set of observed points {to = 0,¢1,t2,...,ty = T}, and any (possibly
randomized) estimator function ¢ : {X;,, X¢,,..., X¢n } — R9*?, there exists bounded A, B

satisfying [P {H(b({Xl}zg N)—A| > %} > co. Here the probability corresponds to the dynamical
system dominated by (A, B).

Proof. Firstly, we consider a special case where d = 1, and let A = [~1] and A = [~1 — §].

We show that when § = 5 \F’ for the two dynamical systems vy : dX; = AX,dt + dW; and

Yy 1 dXy = AX,dt + dW,, any algorithm A that outputs according only to {X;,, X¢,, ..., Xty }
satisfies:

1 _ 1
max 4 P | AX g, Xoys s Xen) — Al = —— | P |[A(X gy Xoy ooy Xo) — A > ——
x{ [n(t e Xon) — Al mﬁ] [n(to o Xon) — A mﬁ”
1
> — .
~ 4e3

We note that this special case can be easily generalized to any dimension d, since we can consider
A = —1I, and A satisfies A; | = = Ay1 — 0, and for any (¢, j) # (1,1), Am = A, ;. In this case the
last d — 1 dimension is 1ndependent of the first dimension, so it is essentially the same as the simplest
one-dimensional case.

Denote X = {X;,, X4, ..., Xty } and g(X), g(X) be the probability density of 1y and 15, respec-
tively. For these two probability densities we have:

N 1
—e‘r _ (X, — e_(ti—ti—l)X ) 2) ,
H 270 (t; —ti_1) p< 21 (t; fti_l)( ti 1)

i=1
and
N 1 1
g(X) = — exp <_ - X ;= e_(1+6)(ti_t7ﬁ—1)X i 2) .
g( ) };[1 27Tr(t, 7ti_1) QF(tl _tifl)( t t 1)
Where

(1 _ e—(2+25)t) )

t 1 B t
T(t) = —25d — (12 ) = / (—2—25)sd —
(t) /: s=g—e®) T = [ o = s
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Denote a; = \/%(Xt —e it x, ),
B = \/%(e*(ti*tifl) —_ e*(1+5)(ti7ti,1))Xti_l and 7; = % Then

In (Q(X)> = —In(y)+ %%‘2(0‘1' +Bi)* %O‘?'

i=1

9(X)
sity of g. Consider the following subsets of X: £ = {X‘ ‘Zf;l —In(v;) + 3(v% - 1)a12‘ < 1}.

Next we show that ‘ln (M) ’ is not large with high probability when X follows the probability den-

& = {X“ SN il < 1} and &3 = {X’% SN 282 < 1}. When X lies in the intersection

In (#) ’ is guaranteed to be not very large.

of these three sets, )

Let P be the probability with respect to density g. We will explicitly show that P[X € &,] > 2(k =
1,2,3).

Lower bound P[X € &;] Firstly, we estimate Zfil 1(v# = 1) — In(v;). We first prove the
following inequality:

0<~?—1<25min{l,t; —t; 1}. (24)

—2t

The left hand side of this inequality is because I'; > T';, due to the reason that e=25 > ¢ (2+2d)s
for all s > 0 and when f(z) > g(x) forany = € I we have: [ _, f(z)dx > [ _; g(x)dz. Now we
consider the right hand side of the inequality.

Case 1: When ¢ > 1, we directly use the fact that 1 — e =2t < 1 — e~ (2120t and obtain v; < 1 + 6.
Case 2: When t € (0, 1], it suffices to show that

(1+0)(1—e2) < (1+26t)(1 — e~ 3+200t)

Let h(t) = (1 +8)(1 — e™2t) — (1 + 20t)(1 — e~ (3129) then

h(t) = 8(1 —2t) — e 21+ — (1 4 26t)e~ >

<51 —2t—e?

<0.
Where for the first inequality we use the relation that e=2%" < L. The second inequality is
obtained by the relation that e=2¢ > 1 — 2t.
Now we bound 1 (72 — 1) — In(v;). We first show that

L o L o 2

0< 5(% —1)—In(y) < 1(%‘ -1)°.

Let z = 7?2 — 1 and we obtain £ (v? — 1) —In(y;) = 2[z — In(1 + )], and the inequality is obtained
2

directly since we have x > 1n(1 +z) >z — 32%(x > 0).

Then we can bound " | 1 (72 — 1) — In(v;) as
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Noq
(-1 ln(%)ézz(ﬁ—lf

s}

IN
=
l\.’)M—l

@
Il
-
.
I
-

Now we bound 21 1 3(72 = 1)(a? — 1). Notice that this variable has zero mean, so we can bound
its variance and then apply Markov inequality to obtain a high probability bound.

At first, consider the variance of o7 — 1, denoted as Var(a? — 1). By noticing that a;; ~ N(0, 1),
we can directly calculate that

1 1
Var(a? —1) = e 37 (2 —1)%dz = 2.
' zER V2T

Since all the ;s are independent, we have:

1 1 2 2 2
Var Zg 2 1)(a? - 1) :ZZ(%_D Var(af — 1)

S 252 Zmin(l,ti — ti_l)Q

By Markov inequality, we have:

Finally, for the subset & = {X| ’Zfil —In(y) +2(v2 - 1)0[?‘ < 1}, we have:

E

Lower bound P[X € &] Since all the «;’s are independent, and «; is independent of {1, ..., 5;}
and {71, ..., YN }, we obtain that

N|—=

[1‘651 >1— l a—l)

U!M-lk
eI

w\»—‘

3301
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N 2
e (ZW?O@&) _E
=1

-

Il
N

( Eaiﬁi)Q]

7

Mz

('Yz Bi) ]

%

Mzﬁ

[(% ﬂz) ] .

=1

‘We have shown that %2 < 1+ 26. Then for T' > 1 we have: 24 <1+ %)2 < 2. Therefore, we
obtain:

Now we upper bound E 7], where 8; = | /s (e~ (timtim1) — e~ (1O ti~tiza)) ¥

T(ti—ti—1) -1

Firstly, we show that

1
) — Ot < G R es)
7 bi—1

Again denote t = t; — t;_1. By using I'y = £ (1 — e~2"), it suffices to show that

et — eIt < 5 3 (1 —e ).

By multiplying e? on both sides, the inequality is equivalent to

1—e %t <§ 2(e2t 1).

This is true since e =%t > 1 — 6t, and €2 > 1 + 2t, implying that

1
1—e %t <it<s She =1).

With this result, we can upper bound 2 S"~ | E [5?] by

N N
2> E[67] <> 203t~ i )E [ X7
i=1 i=1

Finally, since X; ~ N (0,T(¢)), forall ¢ > 0,

E[X}]=T:= %(1—6—%) <1.
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Therefore, we obtain

N 2 N N N 9
(Z vizaiﬁ,) < QZIE [87] < ZQ&Q(ti —t;1)E [XEH} < Zzaz(ti —ti_1) =2T6% = -
i=1 =1 =1

i=1

Again by using Markov inequality, we obtain:

[@% 0ifi] > 1] =

‘Which follows that

PX€&)=1- [|Z’ylazﬁl| > 11 ;g
Lower bound P[X € £;] We have shown that 2 < 2, Vi and Zfil E [82] < 6*T. Therefore,
Lo 200 2 2
E lzg%ﬂz‘] 0T < 5
And we also have

1S 23
— 22
P[Xeé’g]—l—]P’[QE %ﬂi>11>.

Now we come back to prove the theorem. With lower bounds of P[X € &],P[X € &],P[X € &,
we have

IP’[XESlﬁcfgﬂSg]Z17(17IP’[XEéﬂ)—(lf]P’[XESﬂ)—(lf]P’[XGEgD2%.

With this bound, we have:

Exng {1 (I¢(X) —Al = miﬁ)] +Ex~g [1 (WX) —Alz 103/:7)}

> [ e 1 (1000 - a1 2 22 x] + g0 1 (1000 - 41 2 222 x] ax
> /X o Mm99 )X

1
> / —g(X)dX
X€£1ﬂ£2ﬁ£3
> L
— 23
Where the second inequality is because l6(X) — Al + [|¢(X) — Al > ||[A - A = 5\F SO we

cannot have both [|¢(X) — A < 10\F and ||¢(X) — Al < 101/?. The third inequality is because
forany X € & N&E; N E;3, we have
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N

g(X)’ 1, s 1 4
In =—==1 = —In(y) + 57 (06 + 5i)" — 545
N 1
< —In(y;) + = (72 = 1)a?
< ; n(y) + 5 0; )%‘
N
+ Z%?Oéiﬁi
i=1

¢ 292
+ 5;% B
<3,
implying that §(X) > %g(X).

Therefore, we have:

max { ey [1000) = 412 =] Py 1000 - 12 ooz b >

This means that for any algorithm, it cannot achieve T Oi/f estimation error with success probability

1 — % for at least one of the systems controlled by (A, 0) and (4, 0).
O

B REGRET ANALYSIS

Having demonstrated the results of system identification for continuous-time linear systems, we
leverage these findings to establish upper bounds on the regret for Algorithm 3] Elaborations on the
details will be presented in the subsequent sections.

B.1 CONVERGENCE OF P AND THE ESTIMATION ERROR OF K

In this section we provide the following Lemma|14] along with its proof, which shows that || P — P, ||
converges at the same speed as ||[A — Al| + || B — B|.

Lemma 14. There exist constants eq > 0 and Cy > 0 such that as long as |A — A||, |B — B|| < e
for some 0 < € < €y, with P obtained from equation[3|we have:

| P — P < Cae. (26)

Recall that the optimal dynamic is K, = —R~' BT P, with P, obtained from equation equation
Now we consider the distance between it and the sub-optimal dynamic K = —R~'BT P with P
obtained from equation |5 with (A, B). Denote AA = A — A and AB = B — B, along with
[IAA],||ABJ|| < e where € € [0, ¢o] with some ¢ determined later. We establish the proof by
constructing a sequence of matrices (Py)x>0, and we will prove that such sequence converges to the
unique symmetric solution P satisfying

PBR'BT"P-A"P-PA-Q=0.

At first we introduce a solution of a particular kind of matrix equation (Kleinman) [1968).

Lemma 15. Suppose A satisfies a(A) = max{R(\;)|\; € AM(A)} < 0. Q is a symmetric matrix.
Consider such a function

ATX +XA+Q=0. 27)
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Then, the unique symmetric solution X of this equation can be expressed as:

X = et QeAtdt . (28)

t>0

Now we consider the relation between P and P,. The core is iteratively constructing a sequence
of matrices Pj such that Py = P, and limg_, 1o, Pr = P. Such matrices follows the relation
Pi+1 = P, + AP, where A Py, converges rapidly. As for the starting case, consider the expansion

(P, + AP)(B+ AB)R™ (B + AB)" (P, + AP)

—(A+AA)T (P, + AP) — (P, + AP)(A+ AA) - Q

— [(B+AB)R™(B+AB)"P, — A— AA]" AP

+AP[(B+AB)R Y (B+AB)'P, — A— AA]

+ [P.BR™'B"P, — A"P, - P,A— Q] + P. [AB(R"'(B+ AB)") + BR™'AB| P,
+AP(B+AB)R'(B+AB)TAP.

Define
Ag=A+AA— (B+AB)R Y (B+ AB)TP,,
Fy=—P.[AB(R'(B+AB)") + BR"'AB] P..
We set AP, be a solution of

AF APy + APyAg + Fy = 0.
which satisfies that (see Lemma [15)

APy = / (BA(l’qtFQ(BAOtdt7
>0

IAR] < / Ryt = — IPP(IBR e + |R2).
t

1 1
— || Fo| <
20[(140)” 0“ =

> a(Ao)
This A P, also satisfies
(P, + APRy)(B+ AB)R™Y(B+ AB)T(P, + AR)
—(A+AAT (P, + AP) — (P. + AP)(A+ AA) — Q
= APy(B+AB)R™(B+ AB)TAP,.

An important thing is to guarantee that Ay is stable, and |«(Ag)| can not be too closed to zero.
For any ¢; € (0,1) and Cy = ||R7||||P.|| + 1 + 2||[BR7|||| P.|, as long as € < €y, [[Ag — (A —
BR™'BTP,)| < Cye. Furthermore, there exists ez > 0 such thatif | X — (4 — R7!BTP,)| < e,
then a(X) < 1a(A — R~ BT P,)(the work of (Shirani Faradonbeh & Shirani Faradonbeh, 2023)
shows this result). We can further let this €9 satisfies that, as long as [[AA]], [AB][, [AP] < €2, we
always have:

a(A+A(A) — (B+AB)R 1B+ AB)T (P, + AP)) < %a(A —~BR'BTP,). (29)

Now we additionally set ¢; satisfying e; < ﬁez and |[R™!|le; < 1, then forall € < ¢,

2

<
”APO” = —Oé(A _ BR_lBTP*)

1P+ I BR™ e

Denote Py = Py + APy, Cy = 7Q(A7312{,IBTP*) || Pc|I?(1 4 || BR™1]|), and set some constant C3

satisfying C3 > ||BR™'BT|| + 2||BR™!|| + ||[R~!|. We then inductively define Py and AP,
(k > 1). For defined APy,_1, we set P, = P_1 + APj_1, which satisfies

P.(B4+AB)R Y (B+AB)TP, — (A+AA)TP, — PL(A+A(A) - Q
= AP, 1(B+AB)R Y (B+AB)TAP, ;.
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Then we denote Ay, = A+ AA — (B + AB)R™1(B + AB)T Py, and set APy, satisfying:
AFAP, + AP, A, = AP, (B+AB)R™Y(B+ AB)"AP,_; .

By the hypothesis of €3, as long as || P — Py < €2, we have a(A4y) > 2a(A — BR™'BTP,). By
using equation [28we obtain that | APy || < Cy||APx_1||?, where Cy = —a(A—BI%*lBTP*) Cs. Now
if we define P41 = Py + APy, Pi41 also satisfies:
Po1(B+AB)R Y B+ AB) Poy1 — (A+ AA) TPy — Py (A+A(A) - Q
=AP,(B+AB)RY(B+AB)TAP;,
Then these sequences APy, and Py, are well defined, along with the relation that Py = Py, + AP

Furthermore, when || P, — P,|| < €3, we have|| APy 1| < C4||AP||. Note that for the base case
we have ||APR|| < Cae.

Finally, it remains to constrain || Py — Py||. By choosing ¢ < min(ﬁ, ﬁGQ, 1), we obtain

|APy|| < Coe. We can also see that if for all 0 < k < m, |AP|| < 27%Cae, then || P, — P.|| <
2(1 — 27T Che < € so that ||[AP, 11| < C4l|AP, |2 < 27 1Cse. So by induction we see
that |AP.|| < 27¥Cye for any k.

On the other hand, since ||AP,|| < 27%||APy][, limp_ 100 Px = Pso exists, and such P, is the
unique symmetric solution of

P(B+AB)R™ ' (B+AB)"P— (A+AA)"P - P(A+ A(4)) - Q =0,

such that (A+AA) — (B+AB)R™ (B + AB)T P is stable (recall the stable margin in equation
which implies that (A + AA) — (B + AB)R™Y(B + AB)T P, is stable).

So P, is exactly P, satisfying | P — P|| < 2Cse.

Therefore, we conclude that there exists some €¢g > 0 and constant C, both dependingon A, B, K, d, p
such that for any € € [0, &), || P — Pi|| < Ceaslong as ||[A — A||,||B — B|| < e.

Then we apply our results for system identification to establish an upper bound for || K — K.||.

Based on Lemma fix constant ¢; > 0 and constant C; > 0 so that we have ||[P — P,|| <
o (HA A+ B - B||) whenever |A — A +||B - B| < &1

) . . /
We set Cy > 1 be two times the constant C' in Lemma and obtain that, when log2(1 /0) < TCI;

and T/ > Cy| X, |2, we have:
P |IA— Al +118 - B) < 205/ B >0 5.
Then, for log(1/§) < min {4Tc€§2’ g;ﬁ} < T;g;, we have:
P[P = P <2CC 10?&# >1-9. (30)

Finally, since K = —R~Y(B)TP, K, = —R~'BTP,, we have:
&~ K. < IR [IB = BIIPI + 1 BIIP - P -

We can reset Oy such that || K — K. || < C} (||/1 —A|+ B - B||) whenever | A— A||+||B—B|| <

€1, and combine this with equation , we have: for any log(1/6) < Tigff
f log(1/9)
IP)[|KK*|| <2010 T >1-94. (€29)

With this probability bound on ||K — K. ||, we can further upper bound the regret, shown in the
following part.
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B.2 KEY LEMMAS

We first upper bound the radius of a single trajectory with stable controller, for which we introduce
and provide a proof for the following lemma:

Lemma 16. Consider the continuous system dX; = AX,dt + dW, such that o(A) < 0 where a(A)
is the largest real component of A and W is a standard Brownian noise. Then, w.p. at least 1 — §:

sup_(11X0llz = > Xol|2 ) < Cv/dlog((1+ T)/3).
0<t<T

Then we concentrate on how the error ||P — P.|| will influence the regret during the exploitation
phase. For a dynamic U with «(A + BU) < 0, we define a cost function:

cost(U) = tr </ (eAFBUNT(Q 4 UTRU)S(A+BU)tdt> .
>0

The convergence rate of this cost function is stated in the following lemma:

Lemma 17. Let U, minimize cost(U). Then, there exists ¢g > 0 such that for any |AU|| = 1 and
€ € [0, o), we have:

cost(Uy, + eAU) — cost(U,) < C1€*.

The above result shows the average cost per unit time when applying fixed controller for infinite time.

Then we further consider the case when the running time is finite. We derive the following lemma:

Lemma 18. Let U, follows the same definition as in Lemma[7_7} Then, for some € > 0, there exist
constants C and Cs (independent of U) such that for all T > 0 and any U such that U — U,|| < ¢,

|Jr — cost(U)T| < Csl|z|3 + Cs .

Here Jr is the expected cost of the policy that takes action by Uy = UX, (¢ € [0,T)), with initial
state Xo = x.

With this lemma, by definition of U, we actually have U, = K, where K, = —R1BTP, and P,
is the solution of equationd] Since such Cy, Cs also satisfy:

|5 — cost(U.)T| < Co|lz||3 + Cs,
so it follows that

Ry = Jp — J3 < 20y |23 + 2C;5 . (32)

B.3 PROOF OF LEMMA [T6]
We first upper bound the radius of a single trajectory with stable controller, for which we introduce
and provide a proof for the following lemma:

Lemma 16. Consider the continuous system dX; = AX,dt + dW; such that «(A) < 0 where a(A)
is the largest real component of A and W is a standard Brownian noise. Then, w.p. at least 1 — §:

sup (I1Xella = e Xol2) < C+/dlog((T+T)/3).
0<t<T

Proof. The trajectory X, with differential equation dX; = AX; + dW; can be derived as

t
X, = et Xy + / A=) qw, .
s=0

Lemma@tells that when A is stable,

t
/ eA(t—s) dW,
s=0

et X, ||2 < @t Xq||2. So it suffices to show that

> Cy/dlog(1+T)/0| <94.
2

P [ sup
0<t<T
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Let T = Tyh with T be an integer. We first consider the set of points { X }. Denote wy :=

S eAER=D qW,, then wy, ~ N(0,%y,) with Sy = [ eAteA™ dt. This X, also satisfies

St e 1
HEkHS/ e dtﬁ/ e? Wi < ———
t=0 < =0 2|a(A4)|

Which follows that supg<j. <7, [well2 < 2\/W‘f4)| log((1+Tp)/0), w.p. at least 1 — 4.

Next we consider any Xy, 1¢ with ¢ € [0, h]. Bounding such terms requires the Doob’s martingale
inequality (Durrett), stated as in Lemma ‘We denote xt = f o€ Alt= S)dethsds with corre-

A=Aty Hz with A > 0. Then ZZ“ is a submartingale

-

2 k —A k
Jat] = et

Jensen’s inequality on the non-decreasing convex function f(z) = e** to obtain the above inequality.

sponding filtration ;. We also define ZF := e
under the filtration F, since for any ¢ > s,

E[Zf|F]| =E lexp ()\

AH —As, k

Ty

t
—As, k —A
e Sa:’;+/ e~ AN AW 41,
t

1=S

2:Z§.

As .k t — At
Tg + ftlzs & ldeh+t1

Where we notice that E [ e~ , and apply

Now we apply Lemma[I9]and get

< e AUE[ZH]. (33)

P [ sup He tme2 >C
te[0,h]

We next estimate E(ZF). Since e~ 4hzF = ft 0 € dWpp e, we obtain that e~ zF ~ N(0,5),

where
h
i:/ e_Ate_ATtdt.
t=0

By setting A = W it can be computed that
E [6,\||67Anz1}3||§} :/ ;,féle_lzemwﬂdx
zerd (2m)4/2,/det (D)

1
\/det( ¥) det(S7 — 2A1y)
_
det(Iy — 2)\2)
<292,

where the last inequality is because Iy — 2AY = 11,.

We combine this result with equation [33]and obtain:

P l sup Hzf“z > 2¢ll4llR ||i3||1/2 log(24/2T, /)

0<k<To—1,0<t<h

To—1
Z]P’ sup Z”C 2d/2&
t€[0,h] 0

To—1 e
Z P| sup ZF > “2E(z})
e te[0,h] 4

<§é.
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Finally, since Xy, = eAF 0 X + eAtwy, + ¥, it follows that
| Xknsello < HeA(ktht)XOH2 + HeAtwkHz + |2,

< X WEED | Xy + Jwlly + [|2F ], -

By applying union bound on ||wg||, and H:z:iC H2 we finally obtain Lemma O
Lemma 19 (Doob’s martingale inequality). Let X1, ..., X, be a discrete-time submartingale relative

to a filtration F1, . . ., F,, of the underlying probability space, which is to say:
X; <E[Xi+1 ]| F]-

The submartingale inequality says that

P{max X, >C

1<i<n

] < E [max (X, 0)]
- C

for any positive number C.

Moreover, let X; be a submartingale indexed by an interval [0, T] of real numbers, relative to a
filtration F} of the underlying probability space, which is to say:

X, <E[X; | Fs

for all s < t. The submartingale inequality says that if the sample paths of the martingale are
almost-surely right-continuous, then
E [max (X1, 0)]

P X, > <
[sup t_C]_ C

0<t<T

for any positive number C.

B.4 PROOF OF LEMMA[7]

In this section, we proof Lemma [I7 which refers to the convergence rate of the cost function:

Lemma 17. Let U, minimize cost(U). Then, there exists ey > 0 such that for any ||AU|| = 1 and
€ € [0, €g], we have:

cost(Us, + eAU) — cost(U,) < C1€*.

Proof. Forany |AU|| = 1 and € > 0, consider U = U, + eAU, we show that as ¢ — 0, there exists
V € R? such that tr(V) = 0, and

/ eATBOT L 4 UT RU)ATBD) gt — / eATBUITH (4 UTRU, )eATBU )t gy
t>0

t>0

=V +O(%).

Let D(e,t) = eA+BUAAU) _ o(A+BU)E The most important intuition is that D(e, t) can be
represented by the form of D(e,t) = €Dy (t) + €2 Do(e, t), where D1 (t) does not depend on €, and
the residual Ds (e, t) can be well bounded. Now we find such D (¢) and upper bound || Da(e, t)|].

Fort < tg = max{‘|A+éU*|‘7|‘B‘|} and € < 1, the Taylor expansion of e(A+tBUx+eAUNt cap be
represented as follows:

1
D(e,t) =) o [((A+ BU, + eBAU)"" — (A + BU,)"t"]
k>1

k—1
=> % KZ(A + BU.) (BAU.)(A + BU*)’f—l-i> €+ D (e, k)eﬂ ¢,

k>1 i=0
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where D (¢, k) is the residual of (A + BU + eBAU)¥ — (A + BU)* with order at least €2. This
sequence of matrices are expressed and bounded as follows.

k
Di(k,e)=> "¢ Y (A+BU)"(BAU)(A+ BU.)*(BAU)...(A+ BU,)"+'
=2 ji+..+jir1=k—1

[D1(k, )|l < ZZ, HA+BU 1"~ IBl e 2.

Thus we have:

k>1
Define E(t) and E1 (e, t) as follows: for 0 <t < tg, let
g k-1
Z Z A+ BU,) (BAU,)(A + BU,)* 17" Ey(e, ) Zk'Dl (k)
E>1" =0 k>1

and for t € [1to,t0],1 > 1, we inductively define E(2't) and E; (2't) as follows:

E(2lt) _ e(A-Q—BU*)QL’ltE(Ql—lt) + E(21—1t)e(A+BU*)2Ht’

B (e,2't) =eAHBPUD2T G (¢, 2171) 4 By (e, 2/ ) eAHBU2T
+ (B@7Y) + By (6,27 1))
Then we have the relation that e(A+BU-+BAUE _ o(A+BUIt — ¢ F(t) 4 2 Ey (e, t).

Now we upper bound || E(t)|| and || E; (e, t)||. When ¢t < tq:

1
k 1—14 _
IE(t H—Z ZHA—i—BU (BAU.)(A + BU,) H_Zm—e
E>1 " i=0 k>1
For t > to, lett = 2'1¢y, with 1 be an integer and t; € (1to, to], then
B )] = || B2 ) 1 (e BU
< e APV | (ot |
< 211€1+a(A+BU*)2L1’2t0
4
< T A DT . b
~ —a(A+ BU)ty
where the last inequality is because for any x,a > 0, ze™ % < é, and thus for any ¢ > 0,
_ 4
IEDOI < C = a@zpo6
When t > m, we additionally have
1 t 4t 1 8 1
E(t)|| < 2e3aA+BUI || et 1a(A+BU.)t < $a(A+BU)E
IE@] < 2 (2) =% (At BUt

Now we consider E1 (¢, t). When ¢ < {,

|\E16t||<z

k>1

lee <4.
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When ¢ > to, with t = 2't; and ¢1 € (3o, o], we obtain:
[Ex(e,2't1)]| =
He<A+BU*)2[71t1E1(€, 271) + By (e, 2l_1t1)€(A+BU*)2liltl + (B2 ') + eE (e, 21_1151))2"

< 9 (A+BU)2' ™y ||E1(€72l_1t1)H + HE(zl—ltl) + 6E1(€,2l_1t1)H2
< 22 ATBUDZ T || By (¢, 2070 | 4 2|| B )|+ 262 | Bule, 25 1)

Now, we show that HE1 (e,2') H converges exponentially eventually. The proof consists of two
parts: first, for ¢ which is not too large, || E1 (¢, t)|| can be bounded uniformly over all possible AU
and any constrained e. Then, for larger ¢ we can utilize the construction of || E (e, t)]| to estimate its
convergence speed.

Lete < %, lo =1+ |log, mj. We first inductively show that for any [ < [g,

||E1(e7 2't1) || < (23 — 4)C?. The base case where [ = 0 is certainly true. Suppose we already
have || E1 (€, 27 1) || < (2172 — 4)C?. Then for the case of [, we obtain:

| EL(e, 2't)|| < 2[|Eie, 2 )| +4C% < (2113 — 4)C?,
where for the first inequality we use the inductive hypothesis that

4
6 C?e<C,

-1 lo+3 2 —
e||Bre, 2" My)|| < 20 S AT BUIC €S

along with facts that HE(Zl_ltl)H < C and 2e@(A+BU)2 7t < 9 Specifically, we have

|Erfe.2t)]| < =ii%os-

Ei(e,24)|| < =345 . Since

Now, we consider [ > [. We first show that for all such [, —a (A1 BT
we have 2e®(A+BU)2't < 9.,=2 and thus

2l71t1 > 2l071t0 >

2
—a(A+BU,)’

B (e, 241)|| < 2eXA+BU2 00 | By (e 2014 ) | + 2 || E@E M) || + 262 || Ev (e, 2 t) |
< 2e7?||Er(e, 27| + 4C7

- 64C?
~ —a(A+ BU,)ty’
which holds for all I > [y with induction on [. Now we reuse the above expression and obtain that
| E1(e,2'ty) ||
< 2e0(AFTBUDZ 0 By (¢ 9111 )| 4 2| | B2 )| + 262 || En (e, 2 )|
ol 64C? 128 _gi-tg-1

< 2e H2

262 || Ey (e, 21t
“o(A+ BU T a2(At BU)ES 26 [ Er(e, 27 0)
Let I, be the smaller integer greater than [y + 1 which satisfies:
26_21*40 64C? n 128 6_21*4071
—a(A+ BUJ)ty  o2?(A+ BU,)E3

1
< -.
— 4

2
Then by using the relation that 2¢2 HE1(6, 2l_1t1)H2 < 2¢2 (%C;U*m) < 1, we have:

1
||E1(572l*t1)H < 3

Now we inductively show that for all k£ > 0,

|Ex(e, 208 || < 272"
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By using the hypothesis for k and 2¢2 < i, we obtain:

1 (e, 2541, || < 262 || By (e, 2l*+kt1)H2 N %ei2k+l*flo+21*fl0

12721”1 n 1672k+2+22

< 9—2""

)

leading to the claim. This means there exist some constants C7, ¢; > 0 depending on «(A + BU,.)
such that for all ¢ > 0, || E1 (e, t)|| < Cre=“t.

Finally, we consider [,., e(A* B0 (Q + UTRU)eA+ BV dt, Since
B +A0) — (AP () + B o), with | B(1)]| < g ¢ AP and
bounded E (e, t), we obtain:

(A+BU)Tt(Q + UTRU)e(A+BU)tdt

\

/ eATBUD L BT (1) + ET (e,6))(Q + UTRU) (A BU) 4 cE(t) + €2 Ey (e, t))dt

I\/

/ A+BU*) t(Q+UTRU) (A+BU*)tdt

Q+ UTRU ) (A+BU,)t +6(A+BU (Q+ UTRU ) ( )d

I\/

+e e<A+BU*>Tt (AUTRU, + U RAU) eA+BUtqy
>0
+0(e).
Where the last term O(€?) contains any terms with order at least €2, whose norm is at most Coe?

for any € € [0, o) and || AU|| = 1, where the constant Cy depends on A, B, (A + BU.,.) and € is
some small constant.

For any ||AU|| = 1, define V' by

V= ET)(Q+UTRU,)eATBUIE | o(A+BUI (4 UT RU)E(t)dt

t>0

+ / AFBUDT (AUTRU, + UTRAU) A+ BVt
>0

then cost(U) = cost(U,) + etr(V) + O(€?).

Since U, minimizes cost(U), tr(V) = lim_,¢ e *(cost(U, + eAU) — cost(U,)) = 0. Therefore,
we obtain that cost(U) = cost(U,) + O(€?).

O

B.5 PROOF OF LEMMAI[IS]

In this section, we proof Lemma [I8]

Lemma 18. Let U, follows the same definition as in Lemmalm Then, for some € > 0, there exist
constants C and Cs (independent of U) such that for all T > 0 and any U such that U — U,|| < ¢,

|Jr — cost(U)T| < Cy||z||2 + Cs.
Here Jr is the expected cost of the policy that takes action by Uy = UX, (¢t € [0,T)), with initial

state Xog = .
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Proof. By definition of Jr, we have:

T
X} (Q+ UTRU)X,dt
t=0

T
JT:E/ (X' QX+ URU;)dt| =E
t

=0

Since the state transits according to dX; = AXdt + BU X;dt + dW}, we can derive the expression
of X; by X; = e(A+BU) X 4 f e(A+BU)(t=5) q7, . Then by utilizing this expression we obtain:

E[X(Q+U"RU)X,]
( (A+BU) ty ) (Q+UTRU) (A+BU)tX0

t
L+ 9K l:(e(A+BU)tX0)T(Q + UTRU) (/ €(A+BU)(t_S)dWS>:|

s=0
t t
(/ e(AJrBU)(ts)dWs) (Q + UTRD) (/ e(A+BU)(ts)dWs>‘|
s=0 s=0

= XJ MBI (Q + UTRU)eA TPV X,
t
+tr ( / eAHBUs(Q UTRU)6<A+BU>Sds)
s=0
_ X(')Te(A-i-BU)Tt(Q + UTRU)e(A+BU)tX0

t
+ / tr (e(AJrBU)TS(Q + UTRU)e(AJrBU)S) ds.
s=0

T
+E

Then, the expected cost on a trajectory lasting for time 7' can be computed as:

T
E [ XHQ+ UTRU)Xtdtl
t=0

T

= / E[X'(Q+UTRU)X,| dt
t=0
T

— XTe(A+BU (Q + UTRU) A+BU)tX0dt
t=0

T
+ / (T —t)tr (e(A+BU)Tt(Q + UTRU)e(AJrBU)t) dt
t=0

T
= XTeA+BU (4 UTRU)eAHBY X odt + cost(U)T
t=0

T
_/ i ( (A+BU)™ () 4 [T RUT)e(A+BY) )tdt
t=0

+oo
*T/ tr < (A+BU (Q+UTRU) (A+BU)t) dt .
t=T

Here the first term satisfies

T
/ XT (A+BU)T (Q+UTRU) (A+BU)tX dt
t=0

/ 62a(A+BU)t ||X0H§ dt
>0

1 2
< — || X
= —2a(A + BU) 1%ollz
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and the latter two integral terms can be bounded as follows.

T
/ tr (e“‘*BU)Tt(Q + UTRU)e(“BU)t) tdt
t=0

</ d- > ATBUNNQ + UTRU || tdt
t>0

_d |Q+UTRU||
402(A+ BU)

+o0 T
‘T/ tr (e(‘LHBU) HQ + UTRU)G(AJrBU)t) dt‘
t=T

S T d- eQa(A+BU)t HQ + UTRUH dt

t>T
_TaQ 4 UTRU] arirs s
—2a(A+ BU)
_d|Q+UTRy|
1a2(A+ BU)
T
Therefore, for Cy > —m and C5 > %, we have

|Jr — cost(U)T| < Csl|z|3 + Cs .

B.6 PROOF OF LEMMA 20|

Finally, we prove Lemma[20} In this part we suppose T > Tj, where T > 1 is a constant depending
on some hidden constants and || Xo||3.

Lemma 20. regret Let U, be the action applied as in Algorithm 3| Then there exists a constant
C € poly(k, M, =1, |a(A+ BK)|™, |a(A + BK,)|™') such that for sufficiently large T

VT
/ (XFQX, +UFRU,) dt| <C-VT,
t

=0

T
]E/ (XFQX, +UFRU,) dt| <C-VT + J;.
t=VvT

Define the following events where the stabilizing controller K might ever be applied during the
exploitation phase. Let & = {||X zll2 > 3T'/%}, & = {||Xt||2 > T5 for somet € [VT, T]},

and & = {||K — K.|| < €3}, where €5 > 0 depends on the constant €, in Lemma|17| which will be
determined later. In this part, we again let Cy, C5 be the same as in equation@ and denote C3 be
the constant Cy in Lemma([T7] We firstly analyze these three events.

Upper bound P[£;] By Lemma we can find some constant Cp depending on
AL 1B, (1K1, d, p, b such that

P [||Xﬁu2 > C’O\/log(QT/(S)} <4,

This is because we have the recursive function of { Xy}, } that

h
Xk+1)h = eATBE X, +/

h
e(A+BK)(h_t)deh+t—|—/ e(A+BK)(h_t)ukdt,
t=0

t=0
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from which we can derive that

Xkh
kh k-1 h
:e(A+BK)thO+/ e(A+BK)(kh7t)thJrZe(AJrBK)(kfifl)h / cABR gy oy
t=0 = =0

Then, for sufficiently large T, He(AJrBK )‘/TXOH2 can be bounded by 1, and from the proof in

Lemma|[I6] we can apply similar idea to upper bound the norm of the last two terms. So we can obtain
the probability bound on [|.X /7 ||2.

T1/5 T1/5

By setting d = 27" - e 3 , we obtain that P[£;] < 2T -e 13 .

Upper bound IP’[SBC ] By equation , we obtain that, for e3 < 7:,15}32103 , we have:
T1/2w2
P [||I_(—K*|| > x] <e 1793 Yy <ey,
T1/23
and we also have: IP’[EP)C] <e 4103,
r1/4:2

By setting €3 = we have: P[E] <e 73

Cieq
TU/54C3
Upper bound P[£,] Consider any || X 7|2 < 37'/° and any ||K — K. | < €3, we claim that
P [€2|X\/T’K} < eiﬂ(Tl/s).

As what have discussed in Lemma [I4] (see the discussion about stable margin near equation 29),
such K satisfies «(A + BK) < 1a(A + BK,).

Then by Lemma@we can derive that, for some constant C,
- _zl/® —Q(T/%)
Pl sup || Xl = [ X 7l < 5T <CTe @ <e :
te[VT,T) 2
Therefore,
P[&) <1-P[ECNE] +e TP [e€ N &)
<PE]+PES] +e AT
e*Q(Tl/s) .

IN

Now we come to estimate the expected cost of Algorithm[3] as well as bound the regret. We separately
calculate the cost during the two phases.

Cost During Exploration Phase For (k + 1)h < +/T and t € [0, h], we have:
kh+t ¢
th+t _ e(A+BK)thh +/ €(A+BK)(kh+t_s)dW8 + (/ e(A-i-BK)st) U -
s=kh s=0
Then
E (X1 QXkntt + Upp s RUknv4]
=E [X}(Q + KT RE) Xyt + uj Ruy| + 2E [ X}, K" Ruy|

< E [X44(Q + KTRK) Xyt + up, Ruy]
T

t
up (/ e(A+BK)SdS> K" Ruy,
s=0
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where the inequality is because uy, is independent of Xy, and Wy (s € [kh, kh + t]).

For the first term, we first upper bound E [[| X4¢(13].

Denote wy, ; = f:f;; e(A+BE)(khtt—s) qyy7 4 (fst:o e(AJrBK)Sds) ug, which is a Gaussian variable

with zero mean and is independent of Xj,. Then
2
2}

2
—E |:H6(A+BK)thhH2] +E [||wk,tH§]

E [ Xkn+tl3] =E ["e(A+BK)thh + Wit

<E[I1Xunl3] +E [Jweell3] -
For E [|| X /3], since
Xkn
kh k—1 h
:6(A+BK)hXO+/ e(AJrBK)(khft)th+ZB(A+BK)(k7i71)h / AR gy ) oy
t=0 i=0 t=0
We have:
E [|| Xknll3]
_ He(A-i-BK)thOHQ
2
kh 2
+ E / e(A-‘,—BK)(k’h—t)th
t=0 )
k—1 h 2
n ZE A+ BE) (k—i~1)h (/ e(A+BK)tdt> ”
i=0 =0 2
< e?a(A+BK)-thXO||§
kh
+tr / e(A+BK)te(A+BK)Ttdt
t=0
k—1 h h T
+ 30 [ |etarBrom / arBEI gy | | | (A4 BE)in / JA+BE)E gy
o t=0 t=0
kh k—1
< e2()¢(AJrBK)-I<:hHAX—OHg +/ d- 62Q(A+BK)tdt + Zd . e2o¢(A+BK)ih B2
t=0 i=0
d dh?
20(A+BK) -kh 2
s¢ IXollz + = A BR) T T=czacarmmn

<5+ €2a(A+BK)'thX0||§.
Where Cj is a constant depending on «(A + BK) and d.

For the second term E [||wy[|3], can follow the same process of the above bound and obtain
E [||wk.¢||3] < Cs. Therefore, E [|| Xkn]|3] < 2Cs.

Now we can upper bound E [ X5, ,QXpn vt + Uy, RUkh 4] Since

E [XI;Ftht(Q + KTRK)th+t] <E [HQ + KTRKH HththH%]
< ||Q + KTRK || E [|| Xpntell3]
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E [uj Ruy| = tr(R),

¢ T
E [ug </ e(A+BK)Sds> K" Ruy,
s=0

T

t
|< / 6<A+BK>SdS) KR
s=0

< (d+phlKR].

<(d+p):

We can conclude that there exists constant Cy depending on A, B, K, @, R, d, p, h such that
E (XD :QXnnir + US o RUknia] < Cy (1 + e2a<A+BK>'<’fh+t>||X0H§) Wk, t

Then the cost during exploration phase can be bounded as

E

T T T %3
- (XipstQXpntt + Uy RUgny) dt| < Cy (VT + T30(A+ BR) ) (34)

Cost During Exploitation Phase

Upper Bound of the Cost when & happens We first concentrate on £, which is the hardest event
for the analysis of the cost. Consider the following two cases:

Case 1: || X 72 > T/ In this case, the action is applied by U, = K X;,t € [V/T,T].

Case 2: || X 72 < T'/5. In this case, the trajectory is unfortunately controlled by a bad controller,
and suffers from large risk of diverging.

We first consider Case 1. By equation[7] we can derive that

t
X, = e(A+BK)(t—\/T)Xﬁ+/ e(A+BK)(t—s)dWS.
s=VT

Then, we have:
E [X/QX, + Ul RU,]
=E [X[(Q+ KTRK)X,]
< ||Q + KTRE| E [|| X,|13]

t
< Q@+ K"RK| [nxm% + / tr (e(A+BIO=)(A4BIOT (-0 dt}
s=VT
t
<@+ KRN [IX 7l + [ a-erspoea] .
s=VT
Therefore, for some constants C's5, Cg, we have:
E [X{QX, + UL RU] < C5||X /I3 + Cs .

Now we consider Case 2. Let tg = inf {||X;||o > T'/>,t > \/T}, then | X;, |2 = T"/> almost
surely.

For t € [\/T, to), since we always have

1Ull2 < max {|| K],

R—lBTPH} 1]l < (||K|| T HR_IBTH T1/5) T1/5 ’
the cost satisfies:

XrQx, + UFRU, < C,T*> .
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Where C' is a constant depending on B, R, K, P.
For t € [tg, T, the trajectory X satisfies

t
X, = ATBI) 1) x, +/ (AFBE)(t=3) gy

s=to

Similar to the analysis for Case 1, we have:

E [X!QX, + UFRU;| < CsT*° + Cg

Combining them, we can conclude that for some constant Cg, no matter whether £ happens, we
always have:

E[XTQX, + U RU,] < Cs [TV + |IX /73] vt € VT, 7.
Now we establish the upper bound for the regret. Since
I=1lgcng, +1g + leonee

Then we can rewrite E {ftT:ﬁ (XFQX, + UrRUY) dt} as

T
E / (X! QX, + Ul RU,) dt
t

=T

T
=E V (X! QX, + U RU,) dt - 151%53]
t=VT

+E

T
/ (X' QX + U RU) dt - 1¢,
t=VT

+E

T
/ (XTQX, + UTRU,) dt - Lgepee | .
t:ﬁ 1 3

For the first term, we can upper bound it by

E

T
/ (XX, + U RU,) dt - 151%53]
t=vVT

<E

T
/ (X" QX + U RU,) dt - 1£fn£§n53]
t=vT

+E

T
/ (X, QX+ URU,) dt - 1gc g,
t=VT !

<E [(cost (R'BTP) T + Co|| X /7|2) - 155053] +E [cg (T4/5 + \\Xﬁng) : 151%52]
< CoT?5 + cost(R™'BTP,)T + CyoTR [||K — K.||? - 1g,] + 2CsT** - E {151%52} .

Here the first inequality is because lgcng, = lecnecne, + lecng,ne, and leong,ne, < leong,-
For the second inequality, the first term is because we can assume a situation that we do not change
the dynamic when &£, happens, and that will not make the expectation smaller. By applying the results
of Lemma [T7] and Lemma [I8] we can get this term, where the constant Cy is related to constants
in these two lemmas. The last inequality is obtained from these two lemmas and the definitions of
517 527 53'

AsforE [||K — K, |* - 1¢,], we use the bound that

T1/2,2

P [||K' — K. > w] <e 7% Yy <ey,
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and compute that
E[IIK - K.|* - 1g,]

62
§/3 P[|K — K.|* > 2] - d
x

_rl/2,
S/ e 4c%c§dJU
x>0

ene;

ToT1/2
For E [1510052} , we directly have E [159052} <P[&] < e—UTHP). Combining these results and
Lemma|[I8]we obtain that for some constant C,

T
E V (X QX, + U'RU,) dt - 15%53] < Jp, 7 +CVT.
t=VT !

For the second term E {fszﬁ (X QX+ UFRUy) dt - 151} , given any X 7, we always have

E[XTQX, + UTRU| < Cs [TY° + | X 73] ¥t € VT.T).

So we can upper bound E {ftT:ﬁ (XFQX, + ULRU,) dt - 151] by

E
=vT

< GsTPPl&] + CsTE | X /713 - 1e, |
< O(1) + GSTE [| X 713 - 1¢.]
where for the last inequality we apply the upper bound of P[£;] shown before.

T
/ (X QX, + U RU,) dt - 151]
t

For E [|| X 73 lg, |, we can apply Lemma and obtain that for some constant ¢ > 0, for any

x> %Tl/f’, we have
2

P [\\Xﬁ||2 > a:] <e .
Thus we have:
TE [|I X 75 - 1e, ]

1 1
TR Xl 2 5] 4T [ Bl 2 ] ds

Z%TZ/S

<

<0(1).
Therefore, we have E [ JE 7 (XTQX, + UTRU,) dt - 151} < 0(1)

Finally, for the last term E { ftT: 7 (XF QX + UMRUY) dt -1 59059}, when condition on any

X =lls < LT1/5, estimator (A, B) and X;,, where ¢, = inf Xella > TY/5), we still
VT 2 0 t>VT
have: B

E [X{QX: + ULRU,] < Cs [T4/5 + ||Xﬁ||§] < 205TY° Yt e [VT,T].

So we can upper bound it by

E

T
/ (X QX, + U'RU,) dt - 1ge e
t:\/T 1 3

< 205T°P [£F N £F]
< 2CsT%/°P[£S]
<O(1).

Combining them we finally obtain Lemma [20}

39



	Introduction
	Related Works
	Problem Setups and Notations
	Linear Dynamical Systems
	Continuous-time LQR Problems and Optimal Control

	The Proposed System Identification Method
	Identifying Continuous-time Systems with Finite Observations
	Algorithms for continuous system identification
	Finding an initial stable controller
	Analysis for Theorem 1

	A Continuous Online Control Algorithm with Improved Regret
	An O(T) Regret Algorithm for Continuous Online Control
	Comparison against ref1
	Experiments

	Conclusions, Limitations and Future Directions
	System Identification for Continuous-time Linear System
	Matrix exponential
	Proof of Lemma 4
	Analysis for system identification with single trajectory
	System identification with multiple trajectories
	Lower Bound of System Identification with Finite Observation

	Regret Analysis
	Convergence of P and the estimation error of K
	Key Lemmas
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 18
	Proof of Lemma 20


