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ABSTRACT

The ability to distinguish subtle differences between visually similar images is
essential for diverse domains such as industrial anomaly detection, medical imag-
ing, and aerial surveillance. While comparative reasoning benchmarks for vision-
language models (VLMs) have recently emerged, they primarily focus on images
with large, salient differences and fail to capture the nuanced reasoning required
for real-world applications. In this work, we introduce VLM-SubtleBench, a
benchmark designed to evaluate VLMs on subtle comparative reasoning. Our
benchmark covers ten difference types—Attribute, State, Emotion, Temporal,
Spatial, Existence, Quantity, Quality, Viewpoint, and Action—and curate paired
question—image sets reflecting these fine-grained variations. Unlike prior bench-
marks restricted to natural image datasets, our benchmark spans diverse domains,
including industrial, aerial, and medical imagery. Through extensive evaluation
of both proprietary and open-source VLMs, we reveal systematic gaps between
model and human performance across difference types and domains, and provide
controlled analyses highlighting where VLMs’ reasoning sharply deteriorates. To-
gether, our benchmark and findings establish a foundation for advancing VLMs
toward human-level comparative reasoning.
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Figure 1: Comparison of VLM-SubtleBench and
MLLM-CompBench with GPT-4o.

Recently, vision-language models (VLMs) have shown remarkable progress toward artificial general
intelligence (AGI), showing promising results in various tasks, such as visual question answering
(VQA) and scene description (Zhang et al., 2024). Yet, most progress has primarily centered on
single visual inputs, e.g., an image or a video, while comparative tasks that require comparison
over multiple inputs, e.g., two images, have received relatively little attention. However, narrowing
this gap is increasingly important, as recent applications often deploy VLMs as agents to perform
complex tasks involving comparative reasoning across multiple observations, e.g., self-reflection
over previously observed scenes (Hong et al., 2024). To truly serve as human-level surrogates,
advancing VLMs’ capacity for advanced comparative reasoning is becoming indispensable.
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Figure 2: Example tasks from the VLM-SubtleBench, covering ten difference categories (Attribute,
State, Emotion, Temporal, Spatial, Existence, Quality, Quantity, Viewpoint, Action) and six do-
mains (natural, game, medical, industry, aerial, synthetic). For each example, the correct answer is
highlighted in bold green. Model responses from GPT-5, Claude-Sonnet-4, and Gemini-2.5-Pro are
shown beneath each question in order. Some VQA instances are simplified due to space constraints;
full versions and additional examples are provided in the appendix.

A few benchmarks have been presented to evaluate the comparative reasoning capabilities of VLMs.
However, as shown in Figure [T} prior benchmarks focus on relatively simple comparisons between
fairly dissimilar scenes, e.g., identifying differences in salient features (states) of distinct objects
(two lemons), as indicated by the low average subtleness scores of MLLM-CompBench measured
by embedding similarity with DINOv3 (Siméoni et al.} [2025). As a result, they are easily solved by
state-of-the-art VLMs, such as GPT-40. In addition, most prior benchmarks are composed of natural
images, and thus fail to assess performance in specialized domains such as industry or medical (See
Table[T)). Therefore, this calls for a new benchmark that can evaluate human-level subtle comparative
reasoning across diverse domains and high-difficulty tasks.

To this end, we present VLM-SubtleBench, a benchmark designed to evaluate human-level com-
parative reasoning capabilities of VLMs. As illustrated in Figure [2) VLM-SubtleBenchcomprises
11.7k triplets of image pairs, questions, and answers, covering 10 representative difference types,
i.e., Attribute, State, Emotion, Temporal, Spatial, Existence, Quality, Quantity, Viewpoint, and Ac-
tion, collected from diverse image domains, i.e., Natural, Game, Industry, Aerial, Synthetic, and
Medical. Each instance presents a non-trivial challenge even for advanced proprietary VLMs such
as GPT-5 and Gemini-2.5-Pro, while remaining straightforward for humans to solve.

We conduct systematic studies on the performance of open-source and proprietary VLMs, the ef-
fectiveness of test-time prompting strategies on comparative tasks, and controlled experiments with
synthetic image pairs, which reveal the extent to which VLMs align with human performance and
where their reasoning sharply deteriorates. Our findings show that (1) proprietary VLMs still strug-
gle with subtle visual comparison, leaving large gaps from human performance; (2) simple prompt-
ing strategies, such as chain-of-thought prompting, grid layouts, and overlapping images, yield only
limited improvements; and (3) VLMs are highly sensitive to difficulty factors such as object size and
count. Together, VLM-SubtleBench and our experimental studies provide critical insights toward
narrowing the gap between VLMs and humans in subtle comparative reasoning.
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Table 1: Summary of Comparative Reasoning Benchmarks. ‘Is Subtle?” indicates whether
the benchmark contains image pairs whose DINOv3 similarity averages at least 0.8, meaning the
differences are subtle. VLM-SubtleBench is the only benchmark that focuses on subtle comparison,
spans diverse domains, and includes both multiple-choice questions and captioning tasks.

Benchmarks \ Is Subtle? # Domains  # Diff. Types MCQ  Captioning
Birds-to-Words (Forbes et al.|[2019) X 1 1 X v
Spot-the-Diff (Jhamtani et al., 2018) Ve 1 1 X v
MLLM-CompBench (Kil et al.,2024) X 1 8 v X
VLM-SubtleBench (Ours) | v 6 10 v v

2 RELATED WORK

Vision-Language Models. Vision-Language Models (VLMs) have been introduced to address the
limitation of Large Language Models (LLMs), which are restricted to processing text-only data (Bai
et al.} 2025 [Zhu et al.| 2025} [Li et al.| [2024a). VLMs integrate pre-trained vision encoders (e.g.,
CLIP (Radford et al., 2021)) with LLMs via vision-to-language adaptors (Liu et al., 2023} |Alayrac
et al.|2022)), enabling the joint processing and reasoning over visual and textual modalities. VLMs
extend the applicability of LLMs to multimodal tasks, including visual question answering (Goyal
et al.| 2017), image captioning (Agrawal et al.|2019)), and visual grounding (Chen et al., 2023)).

Benchmarks for Vision-Language Models. A variety of benchmarks have been proposed to as-
sess VLMs, primarily focusing on single-image understanding tasks such as VQA, captioning, and
visual grounding (Liu et al.,[2024bj Ying et al.,[2024)). More recently, multi-image benchmarks have
emerged to examine models’ abilities in cross-image comparison, relational reasoning, and integrat-
ing information across visual contexts (Kazemi et al.| 2024} |Zhang et al., [2025; [Tong et al., [2024).
Specifically, MLLM-CompBench (Kil et al., |2024) investigates comparative reasoning by asking
models to judge relative properties. However, many of its comparisons rely on salient differences
between images that involve different subjects or settings, and a considerable portion of its VQAs
can be solved by inspecting individual images rather than comparing the two together. In contrast,
our benchmark emphasizes subtle differences within nearly identical contexts, with VQAs that can
only be answered by simultaneously examining both images, thus providing a more fine-grained
and challenging evaluation of the comparative capabilities of VLMs. Table[T]shows the summary of
comparative reasoning benchmarks for VLMs.

Difference Understanding in Classical Vision Tasks. Prior work has examined difference un-
derstanding across diverse domains. Spot-the-Diff (Jhamtani & Berg-Kirkpatrickl 2018)) studied
textual descriptions of fine-grained differences between surveillance frames. In the medical domain,
MIMIC-Diff-VQA (Johnson et al., 2019) introduced a large-scale chest X-ray dataset for disease
and difference-focused visual question answering. In remote sensing, GeoBench (Lacoste et al.,
2023) provided a benchmark of classification and segmentation tasks to assess foundation models
for Earth monitoring.

Beyond these domain-specific efforts, more general approaches to Image Difference Captioning
(IDC) have also emerged. Img-Diff (Jiao et al.,2025) proposed an automated data synthesis pipeline
that generates object replacement samples to improve MLLMs on image difference and VQA tasks.
OneDiff (Hu et al.l 2025) introduced a generalist model with a Visual Delta Module and a new
DiffCap dataset, achieving strong performance across multiple IDC benchmarks. DiffTell (Di
et al.| 2025)) provided a large-scale dataset covering global, object-level, and text-based differences,
demonstrating significant gains in IDC performance. While these works substantially improve IDC
modeling and resources, their coverage of difference types remains relatively limited compared to
the wide range of variations that can occur between pairs of images.

3 VLM-SUBTLEBENCH

In this section, we introduce VLM-SubtleBench, a benchmark designed to evaluate subtle compar-
ative reasoning capabilities of VLMs. VLM-SubtleBench focuses on whether models can reliably
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identify subtle differences between two highly similar images, a key aspect of comparative visual
reasoning. In the following, Section describes the scope of the benchmark, covering the vi-
sual domains and difference categories included. Section [3.2] details the dataset curation process,
and Section [3.3|explains how caption annotations were performed to ensure high-quality textual de-
scriptions. Section [3.4] presents dataset statistics that highlight the diversity of VLM-SubtleBench.

3.1 ScoPE OF VLM-SUBTLEBENCH

Covered Image Domains. To evaluate whether a model possesses human-level subtle compara-
tive reasoning across diverse, cognitively demanding tasks, it is essential to cover images from a
wide range of domains. Thus, we design VLM-SubtleBench to span six representative image do-
mains: Natural Scenes, capturing everyday real-world photographs (Abu-El-Haija et al., 2016; |Lin
et al.| 2014} Soucek et al., [2022; |Cao et al.,[2014; Livingstone & Russo}, [2018}; |Kossaifi et al., 2017}
Gupta et al., 2016; Zhou et al., [2025; |Wang et al., 2024; Idrees et al., 2018; [Lin et al., |2025); Game
Environments, simulated yet realistic scenes that test generalization beyond natural images (Abu-
El-Haija et all 2016 [Lin et al. 2025)); Aerial Imagery, covering remote sensing and overhead
views where subtle spatial differences are critical (Liu et al., 2024a; [Huang et al., [2022)); Indus-
trial Inspection, representing structured settings where fine-grained defects or anomalies need to
be detected (Bergmann et al.l 2019} [2022); Medical Imaging, where diagnostic reasoning often
requires distinguishing subtle changes across visits (Johnson et al., [2019; |[Hu et al., [2023)); and Syn-
thetic Primitives, consisting of abstract 2D shapes with varying colors and arrangements on plain
backgrounds, which further allows controlled analysis.

Covered Difference Types. We also design VLM-SubtleBench to cover diverse type of differ-
ences. Specifically, we follow the categorization proposed in [Kil et al|(2024), while extending it
by adding two new types of differences, Viewpoint and Action. In total, VLM-SubtleBench encom-
passes fen difference types: Attribute captures variations in object properties such as color, size,
or shape; State reflects the condition of an object, such as whether an apple is peeled; Emotion
addresses comparative judgments of facial expressions; Temporal involves identifying which im-
age corresponds to a later stage of an event; Spatial describes changes in arrangement or relative
position; Existence refers to whether an object is missing; Quantity handles whether the number of
objects differs across images; Quality captures degradations such as blur, noise, or overexposure;
Viewpoint reflects changes in camera perspective; and Action denotes differences in human or ani-
mal poses or activities. Together, these ten categories establish a comprehensive taxonomy of subtle
differences, spanning from low-level visual variations to high-level semantic changes.

3.2 DATASET CURATION

For each difference category, we curate paired images from diverse sources and generate compara-
tive question-answer pairs through a mix of rule-based, annotation-driven, and model-assisted meth-
ods. Existing datasets with rich ground-truth labels and metadata enable systematic pairing and QA
construction, while synthetic edits and primitives provide controlled settings for specific attributes.
Below we briefly summarize the curation strategy for each category. Refer to appendix [A]for details.

Attribute. We use four sources: MVTEC-AD (Bergmann et al., |2019) for industrial inspection,
COCO (Lin et al.,[2014) for natural images, MIMIC-Diff-VQA (Hu et al.,[2023)) for medical domain,
and synthetic primitives. [In MVTEC-AD, pairs are formed by selecting anomalies of the same type
but with different severity, using pixel-level defect annotations to order defect size. In COCO, we
apply image editing model, namely gemini-2.5-flash-image-preview (also known as ‘“nano-banana’)
to change object colors, producing minimally different pairs. For primitives, we render shapes on
a blank canvas with controlled variations in size or color. Question-answers (QAs) then ask which
image has a larger defect, which object’s color is stronger, or which shape is bigger. For the medical
domain, we leverage MIMIC-Diff-VQA dataset, which provides chest X-ray pairs from different
visits of the same patient and comparative questions about clinical changes. Since our benchmark
focuses on models’ ability to detect visually perceptible differences independent of medical knowl-
edge, we reformulated the original clinical questions into layperson-friendly forms (e.g., converting
“lung opacity progression” into “Which image shows whiter lungs?”). The reformulation was per-
formed using GPT-40, and annotators verified the consistency between questions and images. For
synthetic data, we render primitive scenes containing objects with distinctive shapes and colors.
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Figure 3: Data Curation Pipeline of VLM-SubtleBench.

We then select one object and apply a transformation, either brightness adjustment (brightening or
darkening) or size modification (increasing or decreasing). The resulting QA pairs ask what change
occurred and to which object.

State. From MVTEC-AD, we focus on object breakage or cracks. Akin to attribute, image pairs
are constructed by sampling images with different levels of damage, with annotations guiding the
relative severity. The resulting QAs ask which crack is larger or which state shows more breakage.
We also include natural domain pairs from Changelt (Souéek et al.} [2022), where human annotators
manually annotated the state-modifying action together with the object states in a set of internet
videos. From each video, we sample multiple frames based on the provided state information, and
human annotators then select frame pairs that capture the object before and after the state-modifying
action. The QA pairs then ask which image reflects a greater degree of state modification. For
example, if the object is an apple and the action is peeling, the QA would ask “In which image is
the apple peeled more?”.

Emotion. We draw images from emotional video datasets—CREMA-D, RAVDESS, AFEW-VA,
and DAISEE (Cao et all 2014} [Livingstone & Russol 2018}, [Kossaifi et al., 2017; [Gupta et all}
[2016)—all of which provide clip-level emotion annotations. From these clips, we randomly sample
frames and construct paired examples based on the relative intensity of expressed emotion. The QA
pairs ask which image conveys a stronger or weaker emotion, based on the annotations.

Temporal. From YT8M (Abu-El-Haija et al} 2016) and VLM4D (Zhou et all, [2025) video
datasets, we randomly select two frames from the same clip. Their temporal order is determined
by timestamps, and QA pairs ask which image depicts the earlier event. This task requires models
to capture temporal progression rather than static differences, sometimes relying on commonsense
knowledge (e.g., a boat cutting through water can only move forward, not backward).

Spatial. We use VLM4D, which provides 4D annotations of the object’s translational and rota-
tional motions in video. From each video, we uniformly sample multiple frames. Human annotators
then select frame pairs that visually align with the ground-truth motion annotations. Using these
pairs and their associated motion data, we generate QA that ask the spatial changes resulting from
the motion. The model is required to identify which of these six transformations the object has
undergone.

Existence. For aerial imagery, LEVIR-MCI (Liu et al., 2024a)) provides image pairs of the same
location across years, along with segmentation maps capturing object-level appearance or disap-
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Figure 4: Statistics of the VLM-SubtleBench Test Split.

pearance and human-labeled difference captions. We also construct synthetic settings by rendering
primitives and removing one object to create a pair. Additionally, COCO is used to remove objects
from natural images, similar to attribute. For synthetic data, we render primitive scenes containing
multiple types of shapes and colors, and then add or remove one instance. In all cases, QAs ask what
has disappeared or appeared between the two images, grounded in annotations or edit prompts.

Quantity. We combine multiple domains to capture differences in object counts. MVTEC-
LOCO (Bergmann et al, [2022) provides annotated anomaly and normal images, enabling com-
parisons of object multiplicity. UCF-QNRF (Idrees et al., [2018) offers crowded street scenes with
dense human annotations, from which we sample pairs with count differences. Aerial imagery
datasets (LEVIR-MCI, UBC (Huang et al.} 2022)) allow comparisons of building counts. Synthetic
datasets and Gemini-edited images (MegaFruit 2024)) further introduce controlled ob-
ject additions. QAs consistently ask which image contains more objects, people, or buildings. For
synthetic data, we render primitive scenes containing a single type of shape and color, and then
create quantity differences by adding or removing one instance of the shape. The QA pairs then ask
which image contains more (or fewer) shapes.

Quality. From YT8M, we randomly sample two frames that are temporally proximate within the
same video. When the two frames differ in visual quality, e.g., blur, noise, overexposure, or artifacts,
human annotators label which image is of higher or lower quality. Based on these annotations, we
construct multiple-choice QA pairs that ask which image has better or worse quality.

Viewpoint. CameraBench provides camera-centric and object-centric annota-
tions describing translations and rotations. From each video, we uniformly sample frames, and
human annotators then select pairs of frames that are visually aligned with ground-truth camera
annotations (e.g., sufficient visual cues for viewpoint change). Based on these pairs, we construct
binary QA tasks: for example, if the camera rotated to the right, the question asks “In which direction
did the camera move?” with answer choices right or left. Similarly, for object-centric annotations,
QAs ask whether the camera orbited an object clockwise or counterclockwise.

In case of synthetic data, we render primitive scenes and simulate camera motion by translating the
objects or by rotating them clockwise or counterclockwise around the center. From the six possible
transformations, we randomly sample four options to form multiple-choice QAs, where the model
must identify the ground-truth motion.

Action. Finally, from YT8M, we sample pairs of frames that capture changes in human or object
actions and interactions. Human annotators identify objects that exhibit different actions in the two
frames and provide the corresponding action labels. Based on these annotations, we generate QA
pairs that compare the type or intensity of the actions, thereby extending comparative reasoning
beyond static attributes.
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3.3 DIFFERENCE CAPTIONS

In practical scenarios across diverse VLM application domains, the ability to directly describe differ-
ences between two images is crucial. To enable such forms of evaluation, we additionally collected
human-written captions explicitly highlighting the differences between paired images, thereby com-
plementing the comparative QA tasks. We sampled 1,200 random image pairs (10% of the test split)
for human caption annotation. Annotators were instructed to identify at least one difference between
the two images and to write a comparative caption using the annotation interface.

3.4 DATASET STATISTICS

Each difference category contains at least 1K question—answer pairs, resulting in a total of 13K
pairs. Every difference type includes data from the natural domain, where foundation models are
most commonly applied in practice. We split the dataset into a test set (11.7K) and a validation set
(1.3K). The test set is used for evaluation, while the validation set is used for fine-tuning models in
our experiments. Figure ] presents the statistics of VLM-SubtleBench test set.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Models. We evaluated both open-source and proprietary vision—language models. For the open-
source side, We used the Qwen2.5-VL (Bai et al., 2025) family at three scales (7B, 32B, and 72B), as
well as LLaVA-NeXT and LLaVA-OneVision (both 7B). For proprietary models, we included GPT-
40 (Achiam et al.| 2023), 03, GPT-5-main, GPT-5-thinking, Claude Sonnet 4 (Anthropicl 2025)),
Gemini-2.5-Flash (Team et al.||2023)), and Gemini-2.5-Pro. This set spans both non-reasoning mod-
els (e.g., GPT-40, GPT-5-main) and reasoning-oriented models (e.g., 03, GPT-5-thinking).

Prompting Strategies. To better understand the role of prompting, we experimented with several
strategies. We adopted the standard Chain-of-Thought (CoT) approach, which encourages models
to generate intermediate reasoning before producing final answers (Wei et al., [2022). We further
introduce a two-step reasoning setup in which the VLM generates responses in two stages. In the first
step, the VLM is prompted to describe the differences between the two images that are relevant to
the question; in the second stage, the two images, the question, and the output from the first step are
provided together to answer the question. We also augmented images with a grid and instructed the
models to parse them sequentially along the horizontal axis (Izadi et al.l 2025). To investigate how
models handle multiple images, we tested different fusion techniques: (i) horizontally concatenating
the two images into a single composite input, (ii) creating an overlap image by averaging the pixel
values of the two input images and using it together with the original images, (iii) generating a
grayscale subtraction image by computing the absolute pixel-wise difference, normalizing it by the
maximum value to highlight regions of change, and providing it along with the original images, and
(iv) highlighting regions of interest by retaining pixels with large differences, clustering adjacent
pixels, and drawing bounding boxes around at most three of the largest clusters to emphasize the
main regions of change. Further details of these prompting techniques and their comparative results
are provided in Appendix [B.2}

Evaluation Metric. We used task-appropriate metrics to evaluate model performance. For
multiple-choice questions, performance was measured by accuracy, capturing the proportion of cor-
rect answers. For the captioning task, we applied CSS (Reimers & Gurevych, [2019) and LLM-as-a-
judge (Zheng et al., [2023)), to assess the quality and relevance of generated captions.

4.2 BENCHMARK RESULTS

Multiple-Choice Questions. Table[2]summarizes the performance of proprietary and open-source
VLMs on VLM-SubtleBench. Among proprietary models, GPT-5-thinking achieves the strongest
results overall, ranking first in 7 out of the 10 difference types and yielding the highest average
accuracy. Other reasoning-oriented models such as 03 and Gemini also show strong performance,
highlighting the advantage of models explicitly designed for reasoning. Within the open-source
models, Qwen2.5-VL-72B stands out with competitive accuracy, in some cases approaching that of
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Table 2: Performance of open-source and proprietary vision-language models in VLM-SubtleBench.
Human evaluation was conducted on a randomly selected 10% of the samples.

Model AT ST EM TM SP EX QN QL VP AC | AVG

920 93.0 93.0 930 950 970 97.0 99.0 98.0 98.0 | 955

Human Eval

Open-source

LLaVA-NeXT-7B 37.0 513 518 474 373 256 495 480 437 469 | 43.6
LLaVA-OneVision-7B | 41.6 56.8 739 487 355 442 549 627 49.1 605 | 52.0
Qwen2.5-VL-7B 46.5 637 878 502 395 738 580 709 475 693 | 594
Qwen2.5-VL-32B 483 640 853 504 43,6 842 675 725 474 720 | 622
Qwen2.5-VL-72B 539 689 859 499 478 81.7 67.7 784 562 741 | 654
Proprietary
GPT-40 515 73.6 895 527 424 60.6 582 724 514 767 | 61.6
03 780 795 929 604 551 822 782 87.6 64.6 848 | 757
GPT-5-main 729 784 927 53,6 50.1 754 726 845 575 83.6 | 713
GPT-5-thinking 83.6 80.7 931 602 599 854 799 848 685 849 | 77.8
Claude-sonnet-4 489 647 833 493 487 875 63.1 708 535 663 | 62.6
gemini-2.5-flash 493 725 884 539 407 732 600 77.1 518 723 | 625
gemini-2.5-pro 553 764 898 576 448 799 68.0 848 603 76.8 | 68.2

proprietary systems. Among the 7B-scale models, Qwen2.5-VL-7B achieved the highest accuracy,
followed by LLaVA-OneVision-7B, while LLaVA-NeXT-7B showed lowest performance.

Across different difference types, VLMs show strong performance on emotion, with GPT-5-thinking
achieving 93.1% accuracy. In contrast, all models perform weakly on temporal, spatial, and view-
point differences, which require common-sense reasoning (e.g., predicting the future position of
a person or distinguishing between object and camera motion) and spatial understanding. These
findings underscore the need for VLMs to incorporate richer spatial-temporal representations.

Captioning. Table[3|presents the performance of VLMs on VLM-SubtleBench’s captioning task.
Similar to VQA tasks, GPT-5-thinking achieved the strongest overall performance across all metrics.
However, when captions were evaluated with the LLM-as-a-judge metric, its accuracy reached only
43.0%, leaving a noticeable gap compared to ground-truth captions. Large open-source VLMs,
such as Qwen2.5-VL-32B/72B, performed on par with proprietary models in terms of CSS score,
but exhibited substantially lower performance under the LL.M-as-a-judge evaluation. In particular,
Qwen2.5-VL-72B scored 24.3, which is significantly behind GPT-5-thinking’s 43.0.

4.3 EFFECT OF PROMPTING

Table 4] reports the effect of different prompting strategies. Adding reasoning steps before the an-
swer improved performance in 9 out of 10 domains. While such gains are intuitive in tasks like
temporal that require world knowledge, it is particularly interesting that reasoning also boosts per-
formance in tasks such as attribute and quality, where success hinges on capturing fine-grained
visual differences. This suggests that explicit textual reasoning supports not only abstract inference
but also subtle perceptual discrimination, consistent with our main finding that models with stronger
inherent reasoning achieve higher accuracy. In contrast, the two-step reasoning approach leads to
a slight decrease in performance. We observe that the model frequently produces intermediate de-
scriptions indicating “no difference” in the first stage, which results in incorrect final predictions.
The highlighting method yields a modest improvement in performance. It is particularly effective on
datasets with limited variations (e.g., synthetic data); however, its performance declines on datasets
exhibiting substantial variations in brightness or image quality (e.g., YT8M), where bounding boxes
often fail to accurately localize regions of change.

Other strategies generally led to performance drops. In particular, concatenating two images into a
single input, a common setup in prior work (Kil et al., 2024} Jiao et al.| [2025)), degraded accuracy in
9 out of 10 domains. Overlap and subtract showed mixed effects: they yielded clear gains in spatial
and existence tasks where only objects change under fixed views, and in viewpoint tasks where the
scene is mostly static with camera movements. However, in other domains these strategies provided
little or no benefit, reflecting their dependence on highlighting layout differences between images.
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Table 3: Performance of open-source Attribute (Color) Attribute (Size) Spatial
and proprietary vision-language models » » 4
in VLM-SubtleBench captioning.
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gemini-2.5-pro 0.52 294 data under controlled difficulty factors.

Table 4: Effect of prompting strategies and fine-tuning in VLM-SubtleBench.

Model | AT ST EM TM SP EX QN QL VP AC |AVG

Prompting Strategies

GPT-5-main 729 784 927 53.6 50.1 754 72.6 845 575 836 | 713
+ Reasoning 765 79.1 912 56.1 516 802 758 86.1 570 854 | 73.1
+ Two-Step Reasoning | 70.8 79.1 934 569 474 813 664 835 58.0 83.6 | 71.0
+ Grid 71.6 775 89.1 528 51.0 758 725 82.6 572 842 | 70.6
+ Concat 703 779 922 516 446 755 648 812 523 824 | 682
+ Overlap 69.5 767 918 524 536 761 69.1 79.0 588 83.0 | 70.2
+ Subtract 73.8 764 918 509 554 78.0 69.8 80.1 60.0 820 | 71.2
+ Highlight 71.1 752 920 S51.1 549 86,5 743 778 573 829 | 715
Fine-Tuning
Qwen-2.5-VL-7B 46.5 637 87.8 502 395 738 580 709 475 693 | 594
+ fine-tuned 62.0 69.1 922 525 470 853 77.0 859 575 754 | 695

4.4 CONTROLLED EVALUATION WITH SYNTHETIC DATA

Setup. We leverage synthetic data generation to systematically manipulate task difficulty, which
allows precise control over the factors that may cause VLMs to fail. For each difference type, we
selected two primary factors that strongly influence difficulty and varied them along a controlled
axis. Specifically, for attribute, we considered the size of changed objects and the magnitude of
variation (brightness shifts in [0, 1] for color, or size-change ratios for scale). For spatial, we
manipulated object size and the degree of translation. For existence and quantity, the two axes
were object size and scene complexity, defined as the total number of objects. For viewpoint, we
varied camera translation and scene complexity. For each configuration, we generated 100 paired
images to probe VLM performance. Evaluation was performed using GPT-40. Notably, for quantity
differences, random guessing achieves a 50%, while for the other categories the baseline is 25%.

Results. Our experiments reveal distinct failure modes across difference types. For attribute
(color), the decisive factor is the magnitude of brightness change: the model requires shifts of
roughly 25% to show strong performance above 70%, while smaller changes, e.g., 5%, lead to
random-like performance. In the attribute (size) condition, the model depends more on the absolute
size of the changed object than on relative scaling, achieving reliable accuracy only when large ob-
jects undergo substantial transformations. For spatial differences, accuracy is largely influenced by
both translation and object size, with the model responding more strongly to relative displacement
than absolute pixel shifts; notably, smaller objects moving larger relative distances are easier to de-
tect. In the existence setting, scene complexity emerges as the dominant factor: accuracy is nearly
perfect with four or fewer objects but rapidly degrades to below 60% once scenes exceed 32 objects,
though larger disappearing objects remain easier to track. Similarly, in quantity, performance re-
mains high nearly 80% in simple scenes with 5 objects, but drops to close to 60% in complex scene
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Table 5: Rank correlation of our benchmark and Table 6: Downstream performance after fine-
MLLM-CompBench with MMAD and QAG. tuning on each benchmark.

MMAD QAG MMAD QAG

VLM-SubtleBench 0.8424 0.7212 Qwen2.5-VL-7B 65.0 34.4
MLLM-CompBench  0.8110  0.7195 + VLM-SubtleBench 69.6 35.5
+ MLLM-CompBench 66.3 322

containing ten or more objects, approaching the 50% random baseline. Finally, for viewpoint, the
model shows an interesting opposite trend: performance improves as scene complexity increases,
benefiting from richer visual cues, and stable accuracy requires camera translations of around 160
pixels (which is 27% of the image height).

4.5 EFFECT OF FINE-TUNING

To evaluate whether additional supervision can mitigate the comparative reasoning challenge, we
fine-tune Qwen2.5-VL-7B using the validation set. Table ] presents the results. Fine-tuning yields
consistent performance improvements across all difference types, with particularly notable gains in
existence, quantity, and quality categories. In contrast, the spatial and temporal dimensions showed
more modest gains, suggesting that richer spatial-temporal reasoning rather than in-distribution
adaptation may be required for further progress. Despite these improvements, a substantial gap
remains compared to GPT-5-thinking and human performance, indicating that broader data diversity
and advanced training method could offer promising future directions beyond the present scope.
Details on fine-tuning are provided in Appendix [B.4]

4.6 REAL-WORLD RELEVANCE ANALYSIS

We assess the real-world relevance of VLM-SubtleBench through correlation and transfer studies on
industrial anomaly detection (MMAD (Jiang et al.| 2025))) and aerial surveillance (QAG-360k (Li
et al., [2024b)), both requiring fine-grained visual discrimination. Table |§| reports the rank correla-
tions (Spearmanl [1904) between each benchmark and the downstream tasks. Across models, our
benchmark shows higher rank correlations with MMAD and QAG-360K than MLLM-CompBench,
suggesting that it better captures the comparative cues underlying downstream performance. Model-
wise results are summarized in Appendix [C.1]

To evaluate practical transfer, we fine-tune Qwen2.5-VL-7B on a validation split of VLM-
SubtleBench and compare it with an equally sized subset of MLLM-CompBench. Table [6] reports
the resulting downstream accuracies on MMAD and QAG-360K. Fine-tuning on VLM-SubtleBench
consistently yields larger gains on both application benchmarks, whereas fine-tuning on MLLM-
CompBench provides limited or even negative transfer. These results indicate that the subtle, fine-
grained difference types in VLM-SubtleBench more effectively encode cues required for real-world
perceptual reasoning.

5 CONCLUSION

In this paper, we introduce VLM-SubtleBench, a benchmark for evaluating subtle comparative rea-
soning in vision—language models. VLM-SubtleBench deliberately focuses on pairs with subtle
changes—those that humans can spot but are highly challenging for current VLMs. The dataset
comprises both VQA and captioning instances spanning ten difference types (attribute, state, emo-
tion, temporal, spatial, existence, quantity, quality, viewpoint, and action) and six domains (natural,
game, industrial, aerial, medical, synthetic), thus covering both everyday and specialized settings.
Our evaluation of proprietary and open-source models shows that even state-of-the-art proprietary
systems struggle on VLM-SubtleBench. We further find that explicit reasoning can enhance com-
parative performance. Controlled studies with synthetic pairs reveal consistent failure modes and
sensitivities, highlighting the challenges posed by subtle differences. Together, these findings posi-
tion VLM-SubtleBench as both a rigorous benchmark for measuring subtle comparative reasoning
and a diagnostic tool that reveals where current VLMs fall short, offering valuable insights for guid-
ing future model development and dataset design.
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A BENCHMARK CURATION DETAIL

A.1 ATTRIBUTE

MVTEC-AD (Bergmann et al.}[2019) data was used to construct the attribute dataset. We compared
images containing anomalies and selected pairs with small cosine similarity differences. Ques-
tion—answer pairs were then generated by comparing the relative size of the anomalies in the images.

COCO (Lin et al.l 2014) data was also used. We modified attributes related to color or size us-
ing nano-banana, and generated question—answer pairs by paraphrasing the changes applied to the
images.

MIMIC (Johnson et al}, 2019), a large-scale medical dataset, was also utilized. Since the original
captions contain advanced medical terminology that is difficult for non-experts to understand, we
simplified them into accessible language (e.g., whether the chest region appears darker).

A.2 STATE

MVTEC-AD pairs constructed in Section [A.1] were also used for state differences, since some
anomalies pertain to state rather than attribute.

Changelt (Soucek et al.} [2022) contains annotations of state-modifying actions and resulting object
states in internet videos. A subset of the videos is manually annotated, and we use this portion of the
data. From each video, we sample multiple frames corresponding to either statel, action, or state2.
Based on object and action, we automatically generate questions. For example, if the object is an
apple and the action is peeling, the question becomes: In which image is the apple peeled more?
Annotators then select frame pairs in which the state-modifying action is more evident in the second
frame (Figure[6).

Question:

In which image is the apple peeled more?

Folder: apple_2gQYivaDXW0 Selected Pairs

Select 2 images to create a pair

In which image is the apple peeled

R
y

Figure 6: Annotation interface for Changelt.

A.3 EMOTION

CREMA-D, RAVDESS, AFEW-VA, and DAISEE (Cao et al/, 2014} [Livingstone & Russol 2018},
[Kossaifi et al., 2017; [Gupta et al 2016)) are clip-level video datasets annotated for emotion. Specif-
ically, CREMA-D and RAVDESS consist of actors speaking sentences with specified emotions and
intensity levels. AFEW-VA contains movie clips annotated with valence and arousal, while DAiSEE
provides short video snippets capturing users’ emotions. From these clips, we randomly sample
frames and construct paired examples based on the relative intensity of expressed emotions. For
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question generation, we use the labeled emotion categories; in the case of AFEW-VA, which lacks
explicit emotion labels, annotators are asked to choose the most appropriate emotion depicted in the
scene.

A.4 TEMPORAL

VLM4D is a benchmark designed to evaluate the spatiotemporal reasoning ca-
pabilities of video LLMs. It provides video clips depicting exocentric and egocentric movements of
people, animals, or objects, along with VQA tasks about their motion. We adapt these VQA ques-
tions into comparative form using GPT-40. For example, if the original question is “Which direction
is the horse moving towards?” with the answer “left”’, we reformulate it as “In which image is the
horse relatively in a left position?” Annotators then select the frame pairs that reflect the correspond-
ing spatial change. In some cases, such as a person riding a bicycle or running, the movement cannot
be reversed; in these instances, annotators mark the sample as temporal, and it is included as part of
the temporal pairs.

YT8M (Abu-El-Haija et al.,|2016)) contains a diverse collection of YouTube videos spanning numer-
ous domains. For each video, we segment clips using histogram matching and construct image pairs
by randomly selecting frames with cosine similarity below 0.99, thereby avoiding frame extraction
from frozen screens. Annotators then select frame pairs whose order cannot be reversed, marking
them as temporal pairs (Figure 7).

v Annotated as Temporal Pair
This image pair is marked as suitable for temporal analysis. Press ENTER to remove annotation.

Image 1 Image 2

<~ PREVIOUS 95 GO TO NEXT —
PRESS ENTER OR SPACE TO TOGGLE ANNOTATION

Figure 7: Annotation interface for YT8M temporal pairs.

A.5 SPATIAL

VLMA4D is used to construct spatial data. We collect pairs of frames and corresponding questions in
the same manner as in the Section[A.4] However, in this case, reversible pairs are also used.

A.6 EXISTENCE

LEVIR-MCI is an aerial dataset for image change detection. A subset of the
data includes captions describing changes within the same region. We construct image pairs in
which less than 20% of the total area has changed, further filtering for pairs with cosine similarity
greater than 0.8. GPT-4o0 is then employed to paraphrase the captions in order to generate answers
and distractors for the before and after images, and to determine whether each question pertains to
existence or quantity.
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Image 1724/1778: 01972.png

Figure 8: Annotation interface for quantity pairs.

A.7 QUANTITY

MVTEC-LOCO data was used to construct the quantity dataset. Using the annotated anomalies
related to quantity, we formed pairs by selecting those with small cosine similarity.

Changelt data with ’pouring” as action can be used as quantity. We used the same annotation
method as we used in the Section[A2]

LEVIR-MCI data related to quantity is being used. We used the same annotation method as we
used in the Section[A.€]

MegaFruits, UCF-QNRF-ECC, and UBC (Wang et all, 2024} Idrees et al, 2018} [Huang et al
[2022) are datasets containing multiple instances of fruits, people, or buildings. Annotators first
draw a bounding box around a selected object in the image (Figure[8). A black box of the same size
is then overlaid on the image, after which nano-banana is tasked with inpainting the region while
ensuring that no new object is introduced. In this way, we obtain modified images in which one or
more objects have been removed.

A.8 QUALITY

YT8M was also used to construct the quality dataset. Many videos in YT8M contain frames of
varying quality due to object motion, camera motion, lighting, or smoke. We constructed pairs in
the same manner as described in Section [A:4] Human annotators then assessed whether a quality
difference was present and, if so, identified which frame had better quality.

A.9 VIEWPOINT

CameraBench (Lin et al.|2025)) provides extensive annotations of ground-truth camera movements
in video clips. Human annotators selected appropriate frame pairs that capture the ground-truth
camera movement, and ground-truth annotations were used to generate corresponding questions and
answers.

A.10 AcCTION
YT8M was also used to construct the action dataset. We formed pairs in the same manner as

described in Section [A:4] Human annotators then specified the item, the location (first image or
second image), and the action (i.e., the relative change in location).
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A.11 SYNTHETIC DATA

Synthetic data were generated using a simple Python script that draws circles, squares, and triangles
on a white background. During generation, we stored the metadata to enable controlled experiments.

B EVALUATION DETAIL

B.1 PROMPT DESIGN FOR EVALUATION TASKS

Figures [OH17| provide the exact prompts used in our experiments. Unless otherwise noted, tempera-
ture was fixed at 0.5 and the repetition penalty at 1.0.

\
System Prompt

You are a helpful assistant that answers multiple-choice questions about differences between two images.
Your task is to carefully analyze both images and identify the main difference between them.

Guidelines:

- Unless specified in the options, the difference is described in terms of the second image relative to the first.
- Respond **only** with the answer letter (A, B, C, D, etc.). Do not provide any reasoning or explanation.

User Prompt

Question: {question_text}
Carefully examine the images and choose the best description of the key visual difference.

Options:
K{optionsitext} /

Figure 9: Standard prompt used in our benchmark.

/

System Prompt
You are a helpful assistant that answers multiple-choice questions about differences between two images.
Your task is to carefully analyze both images and identify the main difference between them.

Guidelines:
- Unless specified in the options, the difference is described in terms of the second image relative to the first.

- Respond **only** in the following format. The answer should be a single letter.

### Reasoning
[explanation of the key visual difference between the two images]

### Answer
[answer (single letter)]

User Prompt

Question: {question_text}
Carefully examine the images and choose the best description of the key visual difference.

Options:
\\{options_text} )

Figure 10: Reasoning prompt used in our benchmark.
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/System Prompt (1st step) A

You are an expert image analyst. Your task is to carefully describe the differences between two images. Do not
answer any questions about the images yet - only analyze and describe what is different between them.

User Prompt (1st step)

Please provide a careful and detailed description of the differences between these two images. Focus on what
changed, what's different, or what distinguishes the first image from the second image. Using the description of
the differences, you will be asked the following question and you will need to choose one correct answer.
However, do not answer the question yet - just analyze the differences:

{question_text}
{options_text}

System Prompt (2nd step)

You are a helpful assistant that answers multiple-choice questions about differences between two images.
Your task is to carefully analyze both images and identify the main difference between them. You will be
provided with a description of the differences to help guide your analysis.

Guidelines:
- Use the provided difference description to understand what has changed between the images.
- Verify the described difference by examining the images.

- Unless specified in the options, the difference is described in terms of the second image relative to the first.
- Respond **only** with the answer letter (A, B, C, D, etc.). Do not provide any reasoning or explanation.

User Prompt (2nd step)

I am showing you two images (first and second).

Description of the differences: {diff description}

Question: {question_text}

Based on the images and the description of differences, choose the best answer.

Options:
K{optionsitext} /

Figure 11: Two-step reasoning prompt used in our benchmark.

e N
System Prompt

You are a helpful assistant that answers multiple-choice questions about differences between two images. The
grid lines are added to both images to help you compare the objects better.
Your task is to carefully analyze both images and identify the main difference between them.

Guidelines:
- Unless specified in the options, the difference is described in terms of the second image relative to the first.
- Respond **only** with the answer letter (A, B, C, D, etc.). Do not provide any reasoning or explanation.

User Prompt

Question: {question_text}
Carefully examine the images and choose the best description of the key visual difference.

Options:
{options_text}

-

Figure 12: Grid prompt used in our benchmark.
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@ N
System Prompt

You are a helpful assistant that answers multiple-choice questions about differences between two images that
are concatenated horizontally (first image on the left and second image on the right, separated by a black line).
Your task is to carefully analyze both images and identify the main difference between them.

Guidelines:
- Unless specified in the options, the difference is described in terms of the second image relative to the first.
- Respond **only** with the answer letter (A, B, C, D, etc.). Do not provide any reasoning or explanation.

User Prompt

Question: {question_text}
Carefully examine the images and choose the best description of the key visual difference.

Options:
{options_text}

(S

Figure 13: Concatenating prompt used in our benchmark.

fSystem Prompt R

You are a helpful assistant that answers multiple-choice questions about differences between two images.
Your task is to carefully analyze the images and identify the main difference between them. I am showing you
four images:

1. Original first image

2. Original second image

3. Highlighted first image (with areas of significant change marked with green boxes, and other areas dimmed)
4. Highlighted second image (with the same areas marked)

The highlighted images help you focus on the most significant differences between the two images. Use them
to quickly identify where the changes occur, then examine those areas carefully in the original images.

Guidelines:

- Unless specified in the options, the difference is described in terms of the second image relative to the first.
- Focus on the green-boxed regions in the highlighted images to identify where changes occur.

- Respond **only** with the answer letter (A, B, C, D, etc.). Do not provide any reasoning or explanation.

User Prompt

I am showing you four images:

1. Original first image

2. Original second image

3. Highlighted first image (green boxes mark significant change areas, other areas dimmed)
4. Highlighted second image (same areas marked)

The highlighted images (3 and 4) show you WHERE the main differences are located. The green boxes
indicate the top 2-3 most significant change regions. Use these to guide your attention, then carefully examine
those specific areas in the original images (1 and 2) to determine WHAT the difference is.

Question: {question_text}

Carefully examine the images and choose the best description of the key visual difference.

Options:
options_text
\Joptions text} J

Figure 14: Highlighting prompt used in our benchmark.
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fSystem Prompt
You are a helpful assistant that answers multiple-choice questions about differences between two images.
Your task is to carefully analyze first and second images and identify the main difference between them. The
third image is the overlay of the first and second images. You may use the third image to help you analyze the
difference between the first and second images.

Guidelines:
- Unless specified in the options, the difference is described in terms of the second image relative to the first.
- Respond **only** with the answer letter (A, B, C, D, etc.). Do not provide any reasoning or explanation.

User Prompt

I am showing you three images:

1. First image

2. Second image

3. Overlapped image (50/50 blend of first and second images)

Question: {question_text}

Carefully examine the images and choose the best description of the key visual difference of first and second
images.

Options:
Q options_text}

~

Figure 15: Overlapping prompt used in our benchmark.

/System Prompt

You are a helpful assistant that answers multiple-choice questions about differences between two images.
Your task is to carefully analyze first and second images and identify the main difference between them. The
third image is a black-and-white difference map between the first and second images, where brighter areas
indicate larger differences. You may use the third image to help you analyze the difference between the first
and second images.

Guidelines:
- Unless specified in the options, the difference is described in terms of the second image relative to the first.
- Respond **only** with the answer letter (A, B, C, D, etc.). Do not provide any reasoning or explanation.

User Prompt

I am showing you three images:

1. First image

2. Second image

3. Black-and-white difference map between the first and second images

Question: {question_text}

Carefully examine the images and choose the best description of the key visual difference of first and second
images.

Options:
Q options_text}

~

Figure 16: Subtracting prompt used in our benchmark.
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a I
System Prompt
You are an expert at visual analysis and image comparison. Compare the two images and briefly describe
what's different between them.

Keep your response concise and direct. Use simple phrases like "In the first image, X, however in the second
image, Y" or "X appeared in the second image" or "In the first image, X is relatively Y". Avoid detailed
explanations or structured lists.

User Prompt

Describe the differences between the two images

Figure 17: Captioning prompt used in our benchmark.

B.2 VISUAL INPUT CONSTRUCTION AND EXAMPLES

We describe how visual inputs are constructed for prompting, including grid overlays, image con-
catenation, image overlap, and image subtraction.

Grid Overlays. A 4x4 grid overlay is generated by drawing black lines with 30% opacity and a line
width of 3 pixels on both images.

Concatenated Images. Image pairs are concatenated horizontally with a 1-pixel-wide black sepa-
rator, forming a single composite image that is then used as the VQA input.

Overlap Images. Two aligned inputs are blended with equal weights (50% contribution each) in
pixel space, producing a composite image that visually merges both inputs. The generated overlap
image is provided to the VLM together with the original input pair. Figure [I8] shows an exam-
ple of the overlap image construction, illustrating the two aligned inputs and the resulting blended
composite.

(a) First image (b) Second image (c) Overlap result

Figure 18: Example of overlap-image construction. Two aligned inputs are blended with equal
weights (50% each) to produce a composite image that visually merges both inputs.

Subtraction Images. Subtraction images are generated by computing the absolute pixel-wise dif-
ference between the aligned inputs, converting the result to grayscale, and normalizing it to highlight
regions of maximal change. Specifically, for two images I, I € [0, 255]7*Wx3,

1 3
G(l’,y) = gz |Il($7yac) - IQ(%,’]J,C)L
c=1

G(r,y)

—955. — )
S(w.y) =255 max,, , G(u,v)’

where S denotes the grayscale subtraction image. For both overlap and subtraction variants, the gen-
erated images are provided to the VLM alongside the original inputs. Figure[T9)shows an example
of the subtraction images, illustrating the two input images and the resulting difference map.

Highlight Images. Highlight images are generated by drawing bounding boxes on the largest re-
gions of change. Given the pixel-wise difference map GG, we obtain a mask of considerable change
by computing a percentile threshold: letting 7, be the p-th percentile of values in G' (we use p = 90),
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‘ | 3% ‘¥‘JJ

(a) First image (b) Second image (c) Subtraction result

Figure 19: Example of subtraction-image construction. Given two aligned images (/;, Is), the
subtraction map S highlights regions with maximal pixel-wise change.

we define the binary mask

1, G(z,y) >
M _ ) ) jo3)
() {0, otherwise.

Morphological closing and opening are applied to M to connect nearby changes and remove noise,
producing a cleaned mask with connected components {C}, }. The clusters {C}; } are sorted by area,
and the three largest clusters are selected. To avoid highlighting insignificant regions, we retain
the second and third clusters only if their areas are at least 50% of the area of the largest cluster;
otherwise, they are discarded. Highlight images are then constructed by dimming the background
(using o = 0.5) while preserving the original appearance only inside the selected bounding boxes.
Finally, we draw a green-colored boundary around each box to emphasize the regions of change.
Figure 20 shows example highlight images produced on a pair, illustrating how bounding boxes are
drawn over the largest regions of change.

(a) Highlighted first image (b) Highlighted second image

Figure 20: Example highlight images. Significant regions of change, extracted via percentile thresh-
olding and morphological filtering, are emphasized by dimming the background and drawing green
bounding-box boundaries.

B.3 HUMAN EVALUATION

Human evaluation was conducted by sampling 1,000 examples from each dataset. For each differ-
ence type, 100 examples were selected, and the sampling ratio across sources was adjusted to align
with the random-guess baseline. During evaluation, annotators were asked to answer questions us-
ing the interface shown in Figure[21] The interface displays two images side by side for comparison,
and evaluators can also view the images sequentially in the bottom left corner by pressing the left
and right arrow keys.

B.4 FINE-TUNING SETUP

Training is performed on 4 NVIDIA A100 GPUs, each equipped with 80GB memory. We use a
learning rate of le-5, a per-device batch size of 8, resulting in an effective batch size of 32. The

23



Under review as a conference paper at ICLR 2026

Instructions: Use left/right arrows to navigate images and questions. Use up/down arrows to navigate choices, Enter to select. Click buttons for direct navigation.

*  *

Which of the choices is the correct difference between the two
images?

In the second image, the camera translated to the down compared to the first
image.

In the second image, the camera rotated clockwise compared to the first
image.

In the second image, the camera translated to the left compared to the first
image.

Image 1

In the second image, the camera rotated counterclockwise compared to the
first image.

Figure 21: human evaluation interface.

models were trained for 3 epoch, with all parameters including vision encoder, projector, and lan-
guage model jointly optimized.

For transferability study (table [6), we fine-tune Qwen-2.5-VL-7B on our 1,277-sample training split
of SubtleBench and a size-matched subset of MLLM-CompBench for comparison. For MMAD
evaluation, all training instances are converted to the standardized MMAD task format, and for
QAG-360K, all training samples are adapted to our standard prompt template. Aside from this
dataset-specific formatting, the fine-tuning procedure is identical across all settings, and we use the
same hyperparameters described above.

C ADDITIONAL RESULTS

C.1 CORRELATION ANALYSIS WITH DOWNSTREAM BENCHMARKS

Table[7]shows the accuracy of all evaluated models across VLM-SubtleBench, MLLM-CompBench,
MMAD, and QAG-360K. For MMAD evaluation, we randomly sample 10% of the test set and
evaluate models using this subset. For QAG-360K evaluation, we exclude the change-ratio category
due to its continuous answer format and converted the remaining question types into multiple-choice
queries following our base prompt template. We then randomly sampled 723 validation examples
for evaluation.

C.2 ADDITIONAL PROMPTING STRATEGY

We explore an additional prompting strategy based on pure language-only comparison.

For the emotion, existence, and quality categories—similar to MLLM-CompBench (Kil et al.|
[2024)—we ask the following questions for each image:

* Emotion: “Describe the emotion expressed in the image in detail and rate its intensity on
a scale of 1-10.”
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Table 7: Model-wise accuracy on VLM-SubtleBench, MLLM-CompBench, MMAD, and QAG-
360K.

Models VLM-SubtleBench MLLM-CompBench MMAD QAG-360K
Qwen-2.5-VL-7B 59.4 73.6 65.0 344
Qwen-2.5-VL-32B 62.2 74.6 67.6 355
Qwen-2.5-VL-72B 65.4 76.9 68.9 41.2
GPT-40 61.6 75.7 67.7 35.2
03 75.7 86.3 72.9 39.7
GPT-5-main 71.3 83.9 70.6 36.3
GPT-5-thinking 77.8 86.3 73.5 421
Claude-sonnet-4 62.6 73.6 70.9 30.7
gemini-2.5-flash 62.5 85.2 71.4 36.8
gemini-2.5-pro 68.2 87.2 72.2 36.3

Table 8: Effect of pure language-based comparison for emotion, existence, and quality categories.

Category GPT-5-main Two-stage Reasoning

Emotion 92.7 87.8
Existence 754 63.2
Quality 84.5 84.6

» Existence: “Carefully list all objects visible in the image, including their approximate
locations.”

* Quality: “Analyze the quality of the image and rate it on a scale of 1-10, considering blur,
noise, overexposure, compression artifacts, and other quality issues.”

We then perform VQA using only the generated descriptions, without providing the original images,
to evaluate the model’s ability to answer purely from language-based reasoning.

Results. The results for the pure language-based comparison are shown in Table[8] For the emo-
tion and existence categories, this method exhibits lower performance, consistent with the findings
reported in MLLM-CompBench. Interestingly, performance on the quality category remains nearly
identical, suggesting that explicit 1-10 rating prompts may serve as a reliable intermediate repre-
sentation for comparative judgment in this aspect.

C.3 DOMAIN-WISE PERFORMANCE ANALYSIS

Table [9] shows domain-wise accuracy for proprietary VLMs. Among proprietary models, 03 and
GPT-5-thinking achieved the highest scores in most categories. In particular, they exhibited a sub-
stantial performance gap over other models in the synthetic and medical domains, while both showed
comparatively weaker results on the aerial domain.

C.4 EXTENDED COLOR-SENSITIVITY ANALYSIS

Inspired by (Hyeon-Woo et al.,[2024), we extended our synthetic-control analysis to include a color-
sensitivity axis, probing whether hue-level perceptual biases compound subtle comparative reason-
ing failures. We incorporated five representative colors (two green tones and three non-green: blue,
red, and magenta) and systematically varied AE (hue shift in OKLAB space), brightness (L chan-
nel), size, count, and translation. OKLAB was chosen for its perceptual uniformity, where L encodes
lightness and (a, ) correspond to green-magenta and blue—yellow opponent axes. To isolate hue
effects, AF adjustments were applied by modifying (a,b) while keeping L constant, and bright-
ness variation fixed hue while sampling L € [0.4, 0.8]. All other setup conditions followed those in

Figure [
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Table 9: Domain-wise accuracy (%) of open-source and proprietary VLMs.

Model Natural Game Industry Aerial Synthetic Medical

Open-source

LLaVA-NeXT-7B 48.6 479 53.8 354 30.0 41.5
LLaVA-OneVision-7B 59.3 56.0 54.7 62.2 324 50.9
Qwen2.5-VL-7B 65.2 61.8 66.3 62.8 43.8 50.3
Qwen2.5-VL-32B 66.1 63.4 64.4 64.6 53.0 54.5
Qwen2.5-VL-72B 69.6 65.1 69.6 64.1 54.8 65.2
Proprietary
GPT-40 68.4 65.8 71.5 46.9 45.0 62.4
03 77.3 76.4 79.3 71.4 72.5 68.5
GPT-5-main 74.1 72.1 77.9 60.8 63.6 78.8
GPT-5-thinking 77.2 75.5 81.2 70.7 78.8 82.4
Claude-sonnet-4 64.2 60.3 66.3 74.1 56.3 54.8
Gemini-2.5-flash 68.1 66.5 73.7 73.4 43.3 62.4
Gemini-2.5-pro 73.2 71.8 79.7 75.7 50.6 68.8

Results are presented in Figure 22} Consistent with prior work (Hyeon-Woo et all, [2024), models
exhibited pronounced difficulty in distinguishing green hues, showing significantly lower accuracy
than for red or blue tones. Magenta elicited the most severe degradation (approaching 0%), re-
vealing a systematic color-specific weakness in GPT-40. In contrast, brightness variation produced
no notable color-dependent gap, suggesting that VLMs are relatively invariant to luminance when
performing comparative reasoning. Cross-factor analyses (color x size/count/viewpoint) showed
minimal interaction, implying that these tasks are largely unaffected by color sensitivity, as hue
discrimination itself contributes little to the reasoning objective.

Brightness Size Quantity Viewpoint

Colo
z
&
g
-
-
-

0.01 0.02 0.03 0.04 0.05 0.05 . 0.15 5 10 2 30 40
Magnitude Magnitude Change (%)

160

15 40
# Objects Translation

Figure 22: Color-sensitivity analysis of GPT-40 under controlled synthetic settings.

C.5 SOURCE VALIDATION AND DISTRIBUTIONAL CONSISTENCY

To examine whether the use of nano-banana may introduce stylistic artifacts or distribution shifts
that could confound evaluation, we conduct an analysis on our caption dataset. Specifically, we
compare approximately 1K original (non-edited) caption pairs with subsets in which one image of
each pair was reconstructed using nano-banana. Evaluation is performed on both VQA accuracy
and captioning metrics (CSS and LLM-Judge). Table [I0] reports the comparison between edited
and non-edited pairs. Across all metrics, the differences are negligible, indicating that the use of
nano-banana editing does not introduce measurable stylistic or distributional bias that could affect
evaluation.

C.6 EFFECT OF PROMPTING IN OPEN-SOURCE VISION-LANGUAGE MODELS

Table [T1] shows effect of prompting in open-source Vision-Language models.
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Table 10: Comparison between real and nano-banana-reconstructed image pairs on VQA and cap-
tioning metrics.

Type Accuracy CSS LLM-Judge
Real 60.6 0.51 26.3
Reconstructed 60.6 0.51 27.3

Table 11: Effect of different prompting strategies in VLM-SubtleBench.

Model AT ST EM T™ SP EX QN QL VP AC

Qwen2.5-VL-72B 539 689 859 499 478 81.7 67.7 784 562 74.1

+ Reasoning 50.6 68.0 87.5 51.0 444 817 650 77.1 547 750
+ Grid 549 676 856 498 463 834 701 757 544 7T1.1
+ Concat 55.7 680 864 500 39.6 675 610 654 470 737
+ Overlap 463 632 853 49.7 488 787 63.1 725 497 71.6
+ Subtract 55.7 644 856 495 511 798 634 63.0 499 712

C.7 PERFORMANCE OF PROPRIETARY MODELS BY DATA SOURCE

Table[T2]shows performance of proprietary models by data source.
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Table 12: Performance of proprietary models by data source

Dataset Random GPT-40 GPT-5- GPT-5- GPT-03 Claude- Gemini- Gemini-
main thinking sonnet-4 2.5-flash 2.5-pro
Attribute
MVTEC-AD 50.0 76.7 79.0 82.0 79.0 66.3 76.3 83.3
COCO 25.0 78.1 82.5 86.0 84.2 71.1 69.3 77.2
MIMIC-DIFF-VQA 50.0 62.4 78.8 82.4 68.5 54.8 62.4 68.8
Synthetic 25.0 31.3 66.0 84.4 81.1 35.0 28.3 334
State
MVTEC-AD 50.0 67.2 73.5 75.9 74.9 64.0 71.5 75.1
Changelt 50.0 81.7 84.5 86.7 85.4 65.6 73.8 78.1
Emotion
CREMA-D, RAVDESS, 50.0 89.5 92.7 93.1 92.9 83.3 88.4 89.8
AFEW-VA, DAISE
Temporal
YTS8M 50.0 52.7 55.4 62.3 63.0 49.4 55.8 60.4
VLM4D 50.0 52.7 49.3 54.8 53.8 49.0 493 50.7
Spatial
VLM4D 50.0 58.5 57.3 62.5 60.4 52.1 56.5 58.5
Synthetic 25.0 28.5 43.8 57.7 50.5 45.7 27.0 33.0
Existence
LEVIR-MCI 20.0 43.7 59.1 74.6 73.6 79.2 80.5 79.7
COCO 25.0 77.6 86.7 80.6 88.8 83.7 75.5 92.9
Synthetic 25.0 69.0 84.2 93.3 86.8 93.5 68.0 77.8
Quantity
MVTEC-LOCO 50.0 75.6 87.6 93.2 90.6 71.8 75.6 86.8
MegaFruits 50.0 50.9 59.7 66.1 67.0 57.9 51.5 62.7
UCF-QNRF-ECC 50.0 51.5 71.2 78.8 83.3 50.0 56.1 71.2
UBC 50.0 51.9 60.9 59.4 66.9 61.7 52.6 59.4
LEVIR-MCI 20.0 59.2 73.5 69.4 65.3 67.3 73.5 87.8
Changelt 50.0 41.4 58.6 55.2 56.9 50.0 60.3 62.1
Synthetic 50.0 59.4 79.0 92.4 86.0 65.8 59.4 63.2
Quality
YTSM \ 50.0 72.4 84.5 84.8 87.6 70.8 77.1 84.8
Camera
CameraBench 50.0 56.2 63.8 69.9 68.5 57.6 58.1 64.8
Synthetic 25.0 41.0 44.0 65.4 56.2 44.8 38.2 50.4
Action
YTSM \ 50.0 76.7 83.6 84.9 84.8 66.3 72.3 76.8
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