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ABSTRACT

We investigate the prominent class of fair representation learning methods for bias
mitigation. Using causal reasoning to define and formalise different sources of
dataset bias, we reveal important implicit assumptions inherent to these methods.
We prove fundamental limitations on fair representation learning when evaluation
data is drawn from the same distribution as training data and run experiments across
a range of medical modalities to examine the performance of fair representation
learning under distribution shifts. Our results explain apparent contradictions in the
existing literature and reveal how rarely considered causal and statistical aspects
of the underlying data affect the validity of fair representation learning. We raise
doubts about current evaluation practices and the applicability of fair representation
learning methods in performance-sensitive settings. We argue that fine-grained
analysis of dataset biases should play a key role in the field moving forward.

1 INTRODUCTION

If we wish to deploy deep predictive models in high-stakes settings, such as medical diagnosis, we
must understand and mitigate performance disparities across population subgroups (Buolamwini &
Gebru, 2018; Seyyed-Kalantari et al., 2021). Despite considerable effort in developing methods for
debiasing representations of deep models, little progress has been made towards understanding the
validity of such methods for real-world deployment. Proposed methods often achieve state-of-the-art
results on one benchmark, only to be beaten by conventional empirical risk minimisation (ERM;
Vapnik, 1999) on more comprehensive evaluations (Zietlow et al., 2022; Zong et al., 2023). Further
analyses have shown a concerning ‘levelling down’ effect (Mittelstadt et al., 2023), indicating that
today’s group fairness methods may even cause harm if deployed in the real world.

One aspect behind the apparent failure of fairness methods is an inconsistent approach to model
evaluation. One prominent approach focuses on maximising subgroup performance for test data that
are independent and identically distributed (IID) to training data, effectively ignoring dataset bias
and treating fairness as a learning problem (e.g. Zietlow et al., 2022; Dutt et al., 2023). A second
approach assumes that training data includes known spurious correlations and seeks to generalise to
an out-of-distribution test set with the bias removed (e.g. Kim et al., 2019; Tartaglione et al., 2021). A
third approach even ignores absolute performance entirely, aiming instead to enforce relative equality
of properties such as predicted positive (Zemel et al., 2013) or true positive (Hardt et al., 2016) rates.

These three branches of research represent fundamentally different paradigms of fairness analysis;
they make different ethical assumptions and require different methods, metrics, and benchmarks.
Concerningly, however, much work leaves the distinction between these approaches implicit, and we
often see methods from one paradigm employed (potentially inappropriately) in others. Specifically,
we will consider the prominent class of fair representation learning methods (FRL; Zemel et al., 2013;
Cerrato et al., 2024), which aim to remove sensitive information from learned representations. These
methods were initially developed to enforce the demographic parity metric (i.e. enforcing an equal
proportion of positive predictions in each group) but have since been applied in settings focusing on
maximising IID performance (e.g. Pfohl et al., 2021; Zhang et al., 2022), or overcoming distribution
shifts (e.g. Kim et al., 2019; Wang et al., 2020), with mixed results.
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We apply tools from causal reasoning (Pearl, 2011) to clarify the distinctions between different
paradigms in fairness analysis. We analyse implicit assumptions harming the validity of FRL methods
when applied outside of the settings they were designed for, deriving theoretical results that explain
apparent contradictions in the existing literature. Our results indicate that bias mitigation methods
must be clearer about their assumptions and limitations, and we call on the community to be explicit
about what problems the proposed methods aim to solve. Our contributions are:

§2 We provide a unifying perspective on the fairness literature by organising relevant work into
three parallel streams, each representing different methodological and evaluation paradigms.

§3 We define causal structures representing realistic scenarios of dataset bias and discuss how
the bias mechanisms may affect the performance and fairness of predictive models.

§4 We prove fundamental limitations on the validity of FRL methods when applied in IID
settings and propose two hypotheses for the validity of FRL under distribution shift.

§5 We support our theoretical results and hypotheses with a comprehensive set of real-world
experiments and discuss the implications of our results for the field moving forward.

2 THREE PARADIGMS OF GROUP FAIRNESS ANALYSIS

We begin by introducing three distinct paradigms of group fairness analysis from the literature,
detailing how FRL methods have been applied in each one. Note that we do not make claims about
the legitimacy or appropriateness of each paradigm – such decisions must be made with ethical
knowledge of the application domain (Fazelpour et al., 2022; Mccradden et al., 2023). By organising
the relevant literature into these three paradigms, we aim to clarify the consequences of (mis)applying
FRL methods outside of the problems they were initially developed for.

Enforcing group parity Some of the earliest and most influential research in fair machine learning
focuses on enforcing equality of classifier properties across subgroups. This is the context in which
Zemel et al. (2013) introduced FRL, a training strategy which prevents models from encoding sensitive
information in their representations. In high-dimensional deep learning problems, FRL is typically
implemented through either adversarial training (Edwards & Storkey, 2016; Alvi et al., 2018) or by
applying disentanglement techniques (Creager et al., 2019; Sarhan et al., 2020). Variants of FRL
have been applied in both supervised and unsupervised (Louizos et al., 2017) settings to enforce
demographic parity on downstream predictive tasks (Madras et al., 2018). In the supervised case, FRL
may be class-conditional (Zhao et al., 2020), corresponding to the equalised odds criterion (Hardt
et al., 2016) instead. Beyond FRL, a large body of work in this paradigm focuses on understanding
tradeoffs between group fairness metrics such as equal opportunity, calibration, and demographic
parity (Kleinberg et al., 2016; Chouldechova, 2017; Kim et al., 2020; Friedler et al., 2021).

Maximising (subgroup-wise) IID performance A notable aspect of the group parity paradigm is
that equality is often achieved by worsening performance for some (or all) groups (‘levelling down’;
Wachter et al., 2021; Zietlow et al., 2022; Mittelstadt et al., 2023), which is likely unacceptable in
performance-sensitive domains, such as medical diagnosis (Petersen et al., 2023; Weng et al., 2024).
In such fields, we have seen a shift from considering fairness as a question of group parity to a goal of
maximising performance for all groups (Martinez et al., 2020; Diana et al., 2021). Considerable effort
has been made in applying FRL methods to this setting but with limited success. McNamara et al.
(2019), Zhao & Gordon (2019), and Zhao et al. (2022) derive various negative theoretical results for
the performance of FRL on IID tasks. While these results have been known for some time, there seems
to remain confusion on this point in the literature, and we have seen repeated attempts to apply FRL
in IID settings. Empirically, Pfohl et al. (2021), Zhang et al. (2022), Zietlow et al. (2022), and Zong
et al. (2023) benchmark various FRL methods under IID assumptions, finding that they consistently
underperform compared to ERM or alternative bias mitigation techniques.

Generalising to unbiased distributions In the IID setting, any bias present in the training must also
appear in the test set. Thus, maximising test-time performance may be undesirable, as it will likely
encourage models to reflect whatever bias we were initially trying to remove. The third paradigm of
research thus views fairness as a problem of generalising from a biased training dataset to an unbiased
deployment setting (Kim et al., 2019; Wang et al., 2020; Tartaglione et al., 2021). In this context,
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fairness and distribution shift are two sides of the same coin – a fair model, by definition, seeks to
maximise subgroup-wise performance when generalising to an unbiased test set. This branch of work
lends itself particularly well to causal analysis, which provides a unifying language for understanding
shifts across groups and settings (Pearl & Bareinboim, 2011; Castro et al., 2020). Wachter et al.
(2021), Anthis & Veitch (2024), and Jones et al. (2024) connect distribution shifts to assumed causal
and ethical properties of the underlying data-generating process, relating causal notions of fairness
(Kusner et al., 2017; Chiappa, 2019; Plečko & Bareinboim, 2024) to existing work in group fairness
and robustness. Singh et al. (2021) and Schrouff et al. (2022) further study properties of fair classifiers
under specific distribution shifts, with Makar & D’Amour (2022) demonstrating that fairness and
robustness may be in alignment under some assumptions on the causal structure of the data.

The group parity paradigm considers fairness as something that can be traded off for performance,
whereas the latter two paradigms consider fairness as aligned with maximising subgroup-wise
performance on a given test set (either IID or unbiased). For this reason, we will refer to the latter
paradigms as performance-sensitive. In this work, we ask a simple question: are FRL methods (which
were developed for the group parity paradigm) valid when applied in performance-sensitive settings?

3 CAUSAL STRUCTURES OF DATASET BIAS

We now take a moment to define what we mean when we say that a dataset is biased. We consider
classification problems where we have access to a training dataset of inputs X, targets Y , and sensitive
attributes A. The targets are a potentially noisy reflection of some unobserved underlying condition
Z (i.e. Y ..= Z when there is no label noise). Taking a causal interpretation, let Ctr be a structural
causal model (SCM) representing the generative processes in the training dataset. Similarly, Cte is the
SCM of the test dataset on which we want to make predictions. We focus on the task of learning a
probabilistic model approximating the conditional test distribution PCte(Y | X).

Fair representation learning is predicated on the idea that inputs may encode sensitive subgroup
information that may be spuriously correlated with the targets. To express this distinction between
task-specific and sensitive information, we need a richer description of our input vector. Following
Jiang & Veitch (2022), we consider X to be a random vector which may be partitioned into two
random variables: XZ , representing target-related features directly caused by Z; and XA, representing
features related to the sensitive attribute, directly caused by A.

By construction, XA is predictive of the sensitive attribute A, so we say it encodes sensitive informa-
tion. In high-dimensional problems, such as imaging, we may view {XZ , XA} as high-level latent
features that models may implicitly depend on when trained to predict Y from X. For instance,
consider a skin lesion classification task where self-reported race is the sensitive attribute. Here,
XZ may be the pixels representing the lesion, whereas XA may correspond to skin pigmentation.
Importantly, the amount of sensitive information encoded in the inputs may vary across application
domains due to differences in the A→ XA pathway. Jones et al. (2023) refer to the ease with which
A may be predicted from XA as subgroup separability, finding that performance degradation of ERM
models under dataset bias is strongly affected by subgroup separability.

When the mapping from inputs to targets is consistent across groups, sensitive information is irrelevant
for class prediction; we define such distributions as unbiased. In our skin lesion example, the dataset
would be unbiased if exploiting skin pigmentation information does not help performance on the
lesion classification task. We formalise this notion of dataset bias in Definition 3.1.

Definition 3.1 (Unbiased distribution). The distribution induced by a structural causal model C is
unbiased if, given XZ , sensitive information XA provides no information relevant to predicting Y 1:

Y ⊥⊥C XA | XZ ⇐⇒ PC(Y | XZ) = PC(Y | XZ , XA).

Applying the graphical d-separation criterion (Verma & Pearl, 1990), we may derive three fundamental
mechanisms of dataset bias that may violate Definition 3.1, causing sensitive information to become
spuriously correlated with the target (Jones et al., 2024). We illustrate the unbiased distribution in
Figure 1a and highlight each of the three potential shortcuts in Figure 1{b – d}.

1⊥⊥ represents statistical independence, see §A.1 for a table of notation.
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Figure 1: Causal structures of dataset bias in classification tasks. The input X is decomposed
into latent features XZ , XA based on their causal relationships with the sensitive attribute A and
(unobserved) underlying class Z. In the unbiased setting (a), sensitive information is irrelevant to
predicting the target Y . This condition may be violated by (b) feature entanglement of A and Z, (c)
differences in base rates across subgroups, or (d) differences in labelling policy across subgroups.

Figure 1b is a disparity in class presentation ∃ (a, a∗) : P (XZ | Z, a) ̸= P (XZ | Z, a∗), where
the same features encode sensitive and class-specific information. This is in contrast to dis-
parities in class prevalence ∃ (a, a∗) : P (Z | a) ̸= P (Z | a∗) illustrated in Figure 1c, where
base rates shift across groups. Finally, Figure 1d represents disparities in annotation
∃ (a, a∗) : P (Y | Z, a) ̸= P (Y | Z, a∗), where different groups are labelled with different policies.
These structures represent realistic sources of bias, with Jones et al. (2024) discussing extensively
how each may occur naturally in medical imaging scenarios. We provide further background and
discussion, with a brief worked example of each mechanism in Appendix §A.2.

We will assume in this paper that the disparities in Figure 1{b–d} are spurious and should be
mitigated. However, any of the mechanisms in Figure 1 may constitute fair or unfair situations in the
real world (Chiappa, 2019). For example, in medical imaging, disease prevalence and presentation
may legitimately vary across populations (Mccradden et al., 2023) due to known physiological
mechanisms. In practice, a domain expert would need to determine the fairness of each situation.

4 RETHINKING FAIR REPRESENTATIONS

Motivated by our causal formulation of dataset bias, we take a detailed look at the limits of fair
representations from the perspective of performance-sensitive fairness paradigms. Let’s begin by
recalling from Zemel et al. (2013) that the stated aim of fair representation learning is to

“lose any information that can identify whether the person belongs to the protected
subgroup, while retaining as much other information as possible”.

We will refer to the first part of this goal as effectiveness – is FRL effective at removing sensitive
information that would have been encoded by ERM? The second part will be called harmlessness –
does FRL avoid harming performance by retaining task-relevant information? We begin by proving
that fair representations cannot be both effective and harmless if test data is IID to training data.

Notably, our results follow from our causal setup in §3, showing how a causal approach helps to clarify
complex issues in bias and fairness. We do not presuppose any architecture or implementation for the
classifiers. Nor do we make assumptions about the functional mechanisms in the underlying SCM.
We scrutinise the objective of learning fair representations through the lens of implied conditional
independence relationships. By taking this approach, we focus on the underlying structure of the
distribution being approximated, as opposed to the training dynamics of any specific model. We
include a discussion of assumptions and proofs for all Lemmas in §A.3.

4.1 FUTILITY IN THE IID PERFORMANCE PARADIGM

Preliminaries We consider models of the following form: a feature extractor fθ mapping inputs to
representations R, and a classifier which maps representations to predictions. Both components are
typically implemented as (deep) neural networks. Fair representation learning imposes the train-time
constraint that fair representations RFRL must be (marginally) independent of the sensitive attribute,
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denoted as RFRL ⊥⊥Ctr A, leading to a predictor satisfying demographic parity. We contrast this
to the unconstrained ERM strategy (i.e. learning RERM). While fθ is always a function of X (i.e.
the feature extractor takes the whole of X as input), we will slightly abuse the notation fθ(X

∗) to
indicate that the feature extractor is only non-constant w.r.t. some subset X∗ of X.
Assumption 4.1. Unconstrained representations depend on input features X∗ ⊆ X iff they form a
Markov blanket over Y at train-time:

RERM = fθ(X
∗) ⇐⇒ Y ⊥⊥Ctr (X \X∗) | X∗. (1)

The Markov blanket contains all information sufficient to predict Y in an idealised (infinite-sample)
setting (Peters et al., 2017, Chapter 6). We may view X∗ as a sufficient statistic for predicting Y ;
hence Assumption 4.1 is closely related to the information bottleneck principle (Tishby et al., 2000),
which stipulates that representations should be minimal and sufficient for predicting Y . Intuitively
speaking, Assumption 4.1 states that a properly trained ERM model encodes relevant information in
its representations whilst ignoring irrelevant information.
Lemma 4.2. Fair representations must depend on XZ only:

RFRL ⊥⊥Ctr A =⇒ RFRL = fθ(XZ). (2)

Lemma 4.3. Unconstrained representations are fair iff the training distribution is unbiased:

RERM ⊥⊥Ctr A ⇐⇒ Y ⊥⊥Ctr XA | XZ . (3)

We now take an information-theoretic perspective to define our two desiderata for fair representations:
effectiveness (Definition 4.4), and harmlessness (Definition 4.5). While both properties are intuitive
and desirable, we show how they each imply constraints on the training and testing distributions
in Lemmas 4.6 and 4.7, respectively. By showing that these constraints are incompatible when the
distributions coincide, we derive our futility result for IID settings (Proposition 4.8). We denote
IC(·; ·) the mutual information between random variables in the distribution induced by C.
Definition 4.4 (Effectiveness). Fair representations are effective if, at train-time, they do not encode
sensitive information that unconstrained representations would encode:

ICtr(A;RERM) > ICtr(A;RFRL) = 0. (4)

Definition 4.5 (Harmlessness). Fair representations are harmless if, at test-time, they have equal in-
formation relevant to predicting the targets as the input (i.e. they do not discard relevant information).

ICte(Y ;RFRL) = ICte(Y ;XZ , XA). (5)

Lemma 4.6. Effectiveness (E) implies bias at train-time:

E =⇒ Y ⊥̸⊥Ctr XA | XZ . (6)

Intuitively, Lemma 4.3 implies that an unconstrained model will not encode sensitive information in
its representations when trained on a dataset where that information is irrelevant for task prediction
(i.e. unbiased according to Definition 3.1). However, effectiveness (Definition 4.4) requires that an
unconstrained model does encode sensitive information in its representations – else there would be
no point removing it with FRL! Thus, Lemma 4.6 follows, stating that FRL can only be effective if
the training data is biased.
Lemma 4.7. Harmlessness (H) implies no bias at test-time:

H =⇒ Y ⊥⊥Cte XA | XZ . (7)

Lemma 4.7 states that enforcing demographically invariant representations must lead to a performance
penalty when testing on a biased (according to Definition 3.1) dataset. This result is closely related
to Zhao & Gordon (2019), who relate the performance penalty under prevalence disparities to the
difference in base rates across groups. Our result in Lemma 4.7 does not attempt to derive any bounds
on the performance penalty, but is more general. We show that there is a performance penalty when
deploying FRL on any dataset violating the unbiasedness condition in Definition 3.1, including (but
not limited to) the causal structures in Figure 1{b–d}.
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Proposition 4.8 (Futility). Fair representations may not be effective (E) and harmless (H) if
the train and test datasets are identically distributed:

E ∧ H =⇒ PCtr ̸= PCte . (8)

Proof. Suppose, for the sake of contradiction, that we have IID training and testing distri-
butions PCtr = PCte and that effectiveness and harmlessness are satisfied. Substituting
Lemmas 4.6 and 4.7, we get that

E ∧ H =⇒ (Y ⊥̸⊥ XA | XZ) ∧ (Y ⊥⊥ XA | XZ),

which is a contradiction.

We emphasise the importance of Proposition 4.8, given that performance-oriented IID benchmarks
persist in the literature. Fair representation learning is futile for performance-sensitive IID tasks.
The strategy carries an implicit assumption that training data contains bias not present at test time.
Intuitively, preventing a model from using information can only worsen performance unless the
predictive power given by that information is entirely spurious and expected to disappear at test
time. Proposition 4.8 hence provides a theoretical explanation on why previous empirical studies
benchmarking FRL methods in IID settings did not find any consistent improvements over ERM
methods (Pfohl et al., 2021; Zhang et al., 2022; Zietlow et al., 2022; Zong et al., 2023).

4.2 POTENTIAL VALIDITY IN THE DISTRIBUTION SHIFT PARADIGM

Proposition 4.8 demonstrates that FRL methods cannot be motivated by performance in IID settings.
We now turn our attention to whether FRL may benefit performance under distribution shift. This
setting is more interesting, and today, contradictory empirical results exist in the literature. For
example, Kim et al. (2019) and Tartaglione et al. (2021) demonstrate successes of FRL on simple
colour-MNIST benchmarks. In contrast, Wang et al. (2020) find that FRL methods fail on the more
complex CIFAR-S benchmark. Such results seem to indicate that the underlying structure of the
dataset and the shift may affect the validity of FRL methods in the distribution shift paradigm.

To minimise test-time risk under distribution shift, we need some notion of what information is stable
across domains and what information is unstable or spurious (Peters et al., 2016; Arjovsky et al.,
2019). Revisiting Figure 1, notice that while the shortcut paths (red arrows) are unstable across
domains, the Z → XZ causal pathway is stable across all causal structures, and thus an encoder
which depends only on XZ is necessary to transport from a biased training setting to an unbiased
deployment setting (Jiang & Veitch, 2022; Makar & D’Amour, 2022). This is encouraging for FRL, as
Lemma 4.2 demonstrates that depending on XZ only is a necessary condition for fair representations.

Crucially, however, Lemma 4.2 is not a sufficient condition. There is no guarantee that enforcing
RFRL ⊥⊥Ctr A is sufficient to learn an encoder which can recover faithful representations of XZ in
all cases. Indeed, there is evidence in the existing literature that the validity of enforcing invariant
representations is dependent on the underlying causal structure of the problem, with Veitch et al.
(2021) and Makar & D’Amour (2022) each proving results for the robustness of closely related
methods under different causal structures of distribution shift.

From a representation learning perspective, proving the validity of FRL would involve proving causal
identifiability (Khemakhem et al., 2020) of the XZ feature, which is challenging in the general
case (Hyvärinen et al., 2024). Additionally, even if FRL cannot guarantee identifiability, FRL may
still provide a performance benefit over ERM, especially on datasets with a strong bias or high
subgroup separability. In such cases, ERM models are more likely to rely on the bias shortcut and may
suffer extreme performance degradation (Jones et al., 2023). Given these challenges with theoretical
analysis, we focus instead on a simpler and weaker concept of validity: does FRL practically attain
better performance than ERM? We propose two hypotheses, which we will explore in §5.
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Hypothesis 4.9. FRL validity under distribution shift depends on the underlying causal
structure of the bias present at train-time.

Hypothesis 4.10. FRL validity under distribution shift depends on the amount of sensitive
information initially present in the inputs (subgroup separability).

5 EXPERIMENTS AND RESULTS

We support our theoretical analysis with a large-scale set of experiments on medical image data.
We adapt the experimental setup from Jones et al. (2023), consisting of five datasets across the
modalities of chest X-ray (CheXpert, MIMIC; Irvin et al., 2019; Johnson et al., 2019), dermatoscopy
(HAM10000, Fitzpatrick17k; Tschandl et al., 2018; Groh et al., 2021; Groh et al., 2022), and fundus
imaging (PAPILA; Kovalyk et al., 2022). Each dataset is associated with a binary disease classification
task and binary sensitive attribute. Where datasets have multiple sensitive attributes available, they
are treated separately, giving eleven dataset-attribute combinations. We treat the unaltered datasets as
unbiased and generate biased variants of each dataset according to the mechanisms in Figure 1. In each
bias mechanism, we inject bias into one subgroup (‘Group 1’) by either dropping samples, corrupting
the image, or corrupting the label, whereas the other subgroup (‘Group 0’) is left uncorrupted. We
provide details on each dataset, including the procedures to generate each biased variant, in §A.4.

Our experiments compare subgroup-wise accuracy of ERM against a popular adversarial FRL method
(Kim et al., 2019) and we repeat our analysis with a class-conditional FRL method (Zhao et al.,
2020) in §A.6. Both methods are representative of state-of-the-art in FRL2. For each dataset-attribute
combination, we train each method on each dataset variant over five random seeds for a total of
660 training runs. We evaluate performance by considering the percentage-point difference in mean
accuracy between FRL and ERM (∆ Acc) for each subgroup. For subgroup separability, we use the
measurements reported for each dataset by Jones et al. (2023)3. Further hyperparameter, training, and
model details can be found in §A.5.

5.1 VERIFYING FUTILITY IN THE IID PERFORMANCE PARADIGM (PROPOSITION 4.8)

Figure 2 plots the performance gap between FRL and ERM in the IID case. The training and testing
datasets are generated by randomly splitting the unbiased variant of each dataset. For all dataset–
attribute combinations, ∆ Acc is negative or approximately zero for both subgroups, supporting the
finding in Proposition 4.8 that FRL can only maintain or worsen performance in IID settings.
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Figure 2: Percentage-point mean accuracy gap for FRL models compared to ERM models on IID
disease classification tasks (train/test unbiased). Positive ∆ Acc means FRL outperforms ERM.
Datasets are sorted by increasing subgroup separability on the x-axis.

2Benchmarking by (Zong et al., 2023) found no statistically meaningful differences between FRL methods.
3Jones et al. (2023) acquire subgroup separability measurements using test-time AUC of classifiers trained

to predict the sensitive attribute. Since we use the same model class – ResNet18 (He et al., 2016) – these
measurements are also appropriate for our experiments.
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Interestingly, the dataset–attribute combinations which suffered the most under FRL had the lowest
subgroup separability, whereas the settings with better FRL performance had higher subgroup separa-
bility. This seems to indicate that when inputs encode sensitive information more strongly, FRL is
better at removing it without affecting the primary task. Conversely, when sensitive information is
more difficult to extract from the inputs, features relevant to the primary task may be more tightly
entangled with those relevant to predicting sensitive attributes. In this case, attempting to remove
features predictive of the sensitive attribute may degrade primary task performance more.

5.2 TESTING POTENTIAL VALIDITY UNDER CAUSAL SHIFTS (HYPOTHESIS 4.9)

We now consider the performance of FRL under distribution shift, testing Hypothesis 4.9 that FRL
performance depends on the underlying causal structure of the shift. Figure 3 plots the performance
gap between FRL and ERM when trained on each bias mechanism and tested on an unbiased test set.
We find that FRL performs best relative to ERM under presentation disparities, where it can boost
performance for Group 1 (the disadvantaged group) in settings with high subgroup separability. In
the other two bias mechanisms, FRL provides little benefit, providing evidence that the underlying
causal structure of the bias matters for the practical validity of FRL.
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Figure 3: Percentage-point mean accuracy gap for FRL models compared to ERM models when
trained on each mechanism of dataset bias (test set is always unbiased). Positive ∆ Acc indicates that
FRL outperforms ERM on the unbiased test set.

5.3 TESTING POTENTIAL VALIDITY AS A FUNCTION OF SUBGROUP SEPARABILITY
(HYPOTHESIS 4.10)

Perhaps the most noticeable pattern in Figure 3 is how the performance gap varies strongly with
separability, supporting Hypothesis 4.10 that the practical validity of FRL depends on subgroup
separability. Across all bias mechanisms, FRL did not offer any improvements for datasets with low
subgroup separability, similar to what has been observed in the unbiased settings. We investigate this
further in Figure 4, which aggregates the results from Figure 3 over all three bias mechanisms, using

8



Published as a conference paper at ICLR 2025

the subgroup separability AUC from Jones et al. (2023) as the x-axis. Our results indicate that there
is clear correlation between subgroup separability and empirical validity of FRL.
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Figure 4: Percentage-point mean accuracy gap for FRL models compared to ERM models, aggregated
over all bias mechanisms and plotted against subgroup separability AUC, as reported by Jones et al.
(2023). Positive ∆ Acc indicates that FRL outperforms ERM on the unbiased test set. We use Kendall’s
τ statistic to test for a monotonic association between ∆ Acc and subgroup separability. y-axis error
bars represent standard deviations of the aggregated ∆ Acc measurements. x-axis error bars represent
standard deviations in subgroup separability measurements.

Figure 4 makes the dependence of FRL validity on subgroup separability clear, demonstrating a
statistically significant monotonic association between ∆ Acc and subgroup separability. On dataset-
attribute combinations with high subgroup separability, FRL improves performance relative to ERM
for the disadvantaged group (Group 1) whilst maintaining performance for other the group. In settings
with low separability, FRL substantially worsens performance for both groups.

6 DISCUSSION

By organising the related literature into three paradigms of fairness analysis in §2, our work helps to
untangle confusion across previous work stemming from multiple conflicting evaluation paradigms
and implicit assumptions about what is considered fair. Our causal treatment of dataset bias in §3
shines a light on how the structure of the underlying distribution is key to reasoning about fairness,
directly motivating our theoretical and empirical results in §4 and §5. We discuss three insights from
our work and potential directions for the field.

FRL is not a useful fairness strategy for performance-sensitive IID tasks Proposition 4.8 states
that if we are to apply fair representation learning on IID benchmarks, we must implicitly drop one of
the effectiveness or harmlessness criteria. Which criterion we lose depends on whether our data is
biased or unbiased according to Definition 3.1.

On unbiased data, Lemma 4.6 shows that we must drop the effectiveness criterion, so FRL provides
no fairness benefit over ERM, which would not encode sensitive information anyway (provided
Assumption 4.1 holds, as discussed in §A.3). Furthermore, there is no reason for one to implement
FRL (or indeed any bias mitigation method) if they were confident that they had an unbiased dataset.

On biased data, Lemma 4.7 shows how we lose the harmlessness criterion and should expect overall
test-time performance to degrade relative to ERM methods. One interpretation of this result is that
group fairness metrics such as demographic parity are not aligned with minimax fairness (Martinez
et al., 2020) under dataset bias; thus, Lemma 4.7 may be seen as a general impossibility result. It
is complementary to Pfohl et al. (2023), who investigate whether Bayes-optimal classifiers satisfy
equalised odds under causal structures of dataset bias. Note that Lemma 4.7 does not provide

9



Published as a conference paper at ICLR 2025

bounds for the amount of performance degradation; these may be derived for narrower settings with
assumptions on the bias mechanisms (Zhao & Gordon, 2019; Zhao et al., 2022).

In this light, recent results from real-world evaluations (e.g. Pfohl et al., 2021; Zhang et al., 2022;
Zietlow et al., 2022; Zong et al., 2023), showing that FRL methods worsen performance for all
groups, are unsurprising and may be viewed as fairness-performance tradeoffs. Real-world datasets
typically have some amount of pre-existing bias, and most evaluations are IID because the train/test
sets are generated via random splitting. We should not expect FRL methods to achieve state-of-the-art
performance in these cases, and we caution against enforcing invariant representations if evaluation
and deployment settings are expected to be IID to training. FRL methods should not be used ‘blindly’.

Statistical and causal considerations affect the validity of FRL under distribution shift By
taking a fine-grained approach, our work proposes – and provides empirical evidence for – two
statistical and causal factors that are rarely considered in fairness analysis (Hypotheses 4.9 & 4.10).

Our results in §5 demonstrate how the empirical validity of FRL in the distribution shift paradigm
depends on both the causal structure of the bias and the amount of sensitive information present to
begin with (subgroup separability). We found that FRL methods could only improve performance
on an unbiased test set relative to ERM when trained on datasets with presentation disparities and
high subgroup separability. When trained on other bias mechanisms or on data with lower subgroup
separability, FRL consistently degraded performance relative to ERM. Particularly notable was the
magnitude of the performance degradation as subgroup separability decreased.

We argue that further theoretical work to understand the precise relationship between dataset bias,
subgroup separability, and generalisation performance of ERM and FRL under distribution shift will
be a particularly productive area of study moving forward. We provide an extended discussion on
connections to domain generalisation and potential directions for future work in §A.2.

Real-world evaluation of FRL remains challenging Finally, we emphasise that real-world evalua-
tion of fairness methods under the distribution shift paradigm remains a challenge. Proper evaluation
of FRL under distribution shift requires training on a biased dataset and testing on an unbiased one,
but it is tough to find real-world data which satisfy these criteria; we rarely have full knowledge of the
biases, and if we had access to an unbiased dataset, we could use it for training without needing FRL.

To overcome this obstacle, some work (e.g. Kim et al., 2019; Tartaglione et al., 2021) leverages
synthetic data with known biases. Others (e.g. Wang et al., 2020, and our experiments in §5) take the
alternative approach of injecting bias into real-world data. However, both approaches are unlikely to
perfectly simulate the true complexity of real-world biases. Until we better understand the causal and
statistical nature of real-world bias, proper evaluation of fairness methods will remain difficult. Other
disciplines have a long history of using standardised research protocols and reporting guidelines (e.g.
for clinical trials). It may be time to consider similar strategies for planning and assessing research
advances on the frontiers of machine learning.
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A APPENDIX

A.1 ACRONYMS AND NOTATION

IID independent and identically distributed.
ERM empirical risk minimisation.
SCM structural causal model.
FRL fair representation learning.

X random variable.
X random vector.
x scalar realisation of random variable X .
x vector realisation of random vector X.
C structural causal model.
PC probability distribution induced by C.
X ⊥⊥C Y X , Y are statistically independent in the distribution induced by C.
IC(X;Y ) mutual information between X,Y in the distribution induced by C.

A.2 EXTENDED DISCUSSION

We provide an extended discussion, adding depth to areas that some readers – particularly those
interested in building on this work – may find interesting. Some elements of this section are adapted
from conversations during the review process. We thank the anonymous reviewers for spurring us to
think about these topics.

WORKED EXAMPLES OF BIAS MECHANISMS

To further illustrate the bias mechanisms in §3, consider a medical example where we wish to classify
some disease Y from chest X-ray images X , with biological sex as a sensitive attribute:

• A prevalence disparity may take the form of a shift in the marginal distribution of Y across
groups. For example, there may be a greater proportion of positive males in the dataset
than positive females due to some combination of physiological differences, demographic
differences, historical disparities in healthcare, etc.

• A presentation disparity may occur if there is a shift in the generative process P (X | Y );
for example, one group may be systematically diagnosed later in their disease progression,
leading to the same condition appearing more severe or with different pathological features.

• An annotation disparity is when there is a shift in the diagnostic mapping P (Y | Z). This
may occur if different groups are annotated with different policies, e.g. due to historical
healthcare disparities or diagnosis practices at different hospitals.

Each of these mechanisms would cause an ERM-trained classifier to rely on sensitive information
when trained to predict disease from chest X-rays. Importantly, for all cases, a domain expert would
need to examine the causes of each disparity. If the association is deemed spurious or unfair (as
we assume throughout this paper), then the disparity should be mitigated. If this association is not
spurious, then it may contain potentially useful information that a predictive model should leverage.

ON THE CHOICE OF CAUSAL STRUCTURES

The bias mechanisms in Figure 1 are derived by applying the d-separation criterion (Verma & Pearl,
1990) to find the simplest fundamental graphs which violate Definition 3.1. They are based on the
causal structures proposed by Jones et al. (2024), who also provide practical examples justifying their
applicability to real-world settings. Notably, when there is no possibility of label noise (i.e. Y ..= Z),
these structures collapse to the familiar anticausal setup (i.e. X← Z → Y becomes X← Y ).
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These structures may thus be seen as generalisations of previously studied anticausal bias mechanisms,
such as those from Singh et al. (2021) and Makar & D’Amour (2022), and so results that are valid for
our setup should be valid for the anticausal case in general. Similar structures have also been applied
in the robustness and distribution shift literature (Veitch et al., 2021; Jiang & Veitch, 2022).

We also note that, while we use the structures in Figure 1 in our setup and to motivate the biases in
§5, our futility result in Proposition 4.8 is more general. Proposition 4.8 relies only on Definition 3.1
and the causal decomposition of X into {XA, XZ}. We thus emphasise that the class of problems for
which FRL is futile is much larger than the causal structures explicitly enumerated in §3. See Figure 5
for two further relevant examples.

AXA

ZXZY

Y

A Z

XZXA XA∧Z

Figure 5: Two further examples of bias mechanisms for which Proposition 4.8 applies to. Left is
a causal structure (i.e. X → Y ), where different groups with the same XZ features are annotated
differently. Right includes an interaction feature XA∧Z , acting as a collider for A and Z. Any model
that implicitly conditions on the XA∧Z feature will see a spurious correlation between A and Z.

CONNECTIONS TO COUNTERFACTUAL FAIRNESS

Our work focuses on statistical notions of performance and fairness, as these are most commonly
evaluated by the community and are explicitly targeted by FRL methods. This is closely related
to causal notions of fairness such as counterfactual fairness (Rosenblatt & Witter, 2022; Anthis &
Veitch, 2024), however, there are some subtleties to this connection (Silva, 2024). In many cases –
but notably, not all (Silva, 2024) – counterfactual fairness implies demographic parity, and in such
situations, Proposition 4.8 also applies to counterfactually fair FRL predictors. Similarly, conditional
FRL enforces equal opportunity, which can be implied by extensions of counterfactual fairness such
as path-specific counterfactual fairness (Chiappa, 2019), allowing similar results to be derived.

CONNECTIONS TO DOMAIN GENERALISATION

On one level, FRL and domain generalisation/adaptation techniques (especially methods based on
adversarial training and disentanglement) share many similarities. Often, the problem setup in both of
these fields is very similar, with fairness using a ‘sensitive attribute’ and domain generalisation using
a ‘domain’ or ‘environment’ variable. This similarity gives us hope that our results may be insightful
in fields beyond fairness, however, we do not consider such claims within the scope of this paper.

A key point to note is that in our formulation, there are two simultaneous shifts: a disparity across
groups (e.g. prevalence, presentation, or annotation disparities, as enumerated in Figure 1) and a
potential shift across train/test domains (i.e. training on biased data and testing on unbiased data in
the distribution shift paradigm). We can thus relate our problem to the traditional distribution shift
setup by extending the framework of Federici et al. (2021) for instance.

To illustrate this, consider the joint distribution over training and testing datasets by using the binary
indicator variable T to distinguish between them. We can now decompose the shift across groups and
domains like so:

I(X, Y, A;T ) = I(X;T ) + I(Y ;T | X) + I(A;T | X, Y ). (9)

In this formulation, the LHS term represents the overall distribution shift, and the terms on the RHS
represent covariate shift, label shift, and attribute shift, respectively. If the selection yields no informa-
tion about the joint distribution then the training and test distributions are IID, i.e. I(X, Y, A;T ) = 0.
Different factorisations of this joint mutual information imply different data-generating processes
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and correspond to the various shifts shown in Figure 1. Furthermore, different selection effects can
be represented by the functional relation between (X, Y, A) and the selection variable T .

For instance, an attribute-based selection effect could be represented by the causal mechanism
T ..= f(A,N), where N is an exogenous noise variable. There are various other combinations
possible, including multivariate selection effects T ..= f(X, Y, A,N), or ones consisting only of
exogenous noise T ..= f(N), which would represent the unbiased setting.

Federici et al. (2021) derive some practical upper bounds on the (latent) concept shift quantity which,
under some reasonable assumptions, are guaranteed to minimise concept shift. In our view, deriving
practical bounds for other types of distribution shifts of the sort studied in the present work and
beyond constitutes fertile ground for future research.

A.3 PROOFS AND DISCUSSION OF ASSUMPTIONS

Lemma 4.2. Fair representations must depend on XZ only:

RFRL ⊥⊥Ctr A =⇒ RFRL = fθ(XZ). (2)

Proof. The result follows from the causal decomposition in §3, where XA ⊥̸⊥ A by definition. Now,
let X = {XZ , XA}, X∗ ⊆ X, and RFRL = fθ(X

∗):

RFRL ⊥⊥Ctr A =⇒ XA ̸∈ X∗ =⇒ X∗ ⊆ X\{XA} =⇒ RFRL = fθ(XZ).

Lemma 4.3. Unconstrained representations are fair iff the training distribution is unbiased:

RERM ⊥⊥Ctr A ⇐⇒ Y ⊥⊥Ctr XA | XZ . (3)

Proof. This result is a straightforward consequence of our causal decomposition in §3, combined
with Assumption 4.1. Let X = {XZ , XA}, and X∗ ⊆ X, s.t. Y ⊥⊥Ctr X\X∗ | X∗. Through simple
manipulation, we get that

Y ⊥⊥Ctr XA | XZ ⇐⇒ X∗ = {XZ}, X\X∗ = {XA};
⇐⇒ RERM = fθ(XZ) (Assumption 4.1);

⇐⇒ RERM ⊥⊥Ctr A.

Lemma 4.6. Effectiveness (E) implies bias at train-time:

E =⇒ Y ⊥̸⊥Ctr XA | XZ . (6)

Proof. This result follows from Definition 4.4 and Lemma 4.3. Begin by noticing that Equation (4)
implies the following independence statement:

E =⇒ ICtr(A;RERM) > 0 =⇒ RERM ⊥̸⊥Ctr A.

Since this is the logical negation of the LHS of Equation (3), it follows that the RHS must also be
negated when effectiveness is satisfied due to the logical equivalence of the sides ( ⇐⇒ ). Thus,
effectiveness implies bias at train time.

Lemma 4.7. Harmlessness (H) implies no bias at test-time:

H =⇒ Y ⊥⊥Cte XA | XZ . (7)

Proof. This result follows from Definition 4.5 and Lemma 4.2. Starting from the definition of
harmlessness, decompose the RHS expression using the chain rule of mutual information:

H ⇐⇒ ICte(Y ;RFRL) = ICte(Y ;XZ , XA),

⇐⇒ ICte(Y ;RFRL) = ICte(Y ;XZ) + ICte(Y ;XA | XZ).

From Lemma 4.2, recall that RFRL = fθ(XZ). Now we may apply the data processing inequality
ICte(Y ; fθ(XZ)) ≤ ICte(Y ;XZ) and nonnegativity of mutual information to see that an unbiased
test set is necessary (but not sufficient) for harmlessness:

H =⇒ ICte(Y ;XA | XZ) = 0 =⇒ Y ⊥⊥Cte XA | XZ .
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What if Assumption 4.1 is violated? Assumption 4.1 is needed to define what information a
properly trained ERM model relies on and is used in the proofs of Lemmas 4.3 and 4.6. If we reject
Assumption 4.1, we get the (rather unintuitive) result that an ERM model may rely on sensitive
information even when trained on an unbiased dataset where such information provides no predictive
power. In practice, this may occur if the model is underfit or has insufficient training data. In this case,
the FRL strategy may have some use for unbiased IID settings. By constraining the solution space,
it may be possible for FRL to improve sample efficiency during training, analogous to a regulariser
or inductive prior. It is unclear, however, whether this scenario is particularly relevant with today’s
practice of high-capacity models trained to convergence on large datasets (Zhang et al., 2016).

Why the strict inequality in Definition 4.4? Applying Assumption 4.1, we can derive that
ICtr(A;RERM) = 0 ⇐⇒ Y ⊥⊥Ctr XA | XZ , that is, unconstrained representations encode no sen-
sitive information if and only if the training data is unbiased. In this case, we define FRL as (trivially)
ineffective since it cannot provide any fairness benefit over ERM, which would not encode sensitive
information anyway. This case is unlikely to be particularly common since it is unclear why any
researcher would apply FRL methods to a dataset that they are confident is unbiased.

A.4 DATASET DETAILS

The datasets were all preprocessed and split using the same procedure as (Jones et al., 2023), who also
report summary statistics. For each dataset, the disease prediction task was constructed by binning
all available disease labels (e.g. pneumonia, glaucoma) into the positive class. Other labels (e.g.
no-finding) were binned into the negative class. Binary subgroup labels for ‘Group 0’ and ‘Group 1’
were constructed according to the following criteria:

• When the sensitive attribute is sex: ‘Male’ = ‘Group 0’, ‘Female’ = ‘Group 1’.
• For race: ‘White’ = ‘Group 0’, ‘Non-White’ (all other labels) = ‘Group 1’.
• For age: < 60 = ‘Group 0’, ≥ 60 = ‘Group 1’.
• For skin type (Fitzpatrick scale): I–III = ‘Group 0’, IV–VI = ‘Group 1’.

To generate the biased variants of each dataset, we implemented the following procedure:

• Presentation disparities: 50% of positive individuals in ‘Group 1’ have the image corrupted
by reducing sharpness4.

• Prevalence disparities: 50% of positive individuals in ‘Group 1’ are dropped from the
dataset.

• Prevalence disparities: 50% of positive individuals in ‘Group 1’ are mislabeled as negative.

A.5 TRAINING DETAILS

Training consisted of two phases: an initial hyperparameter tuning phase, followed by a final sweep
with fixed hyperparameters (the latter phase generated the results reported in §5). In the tuning
sweep, the methods were trained and evaluated across all datasets. The final hyperparameters were
selected by considering combinations for which training successfully converged across all datasets
and achieved the best performance. When selecting adversarial coefficients for the two FRL methods,
we ensured that the accuracy of the adversarial prediction head did not exceed the approximate
prevalence of the subgroups. This was to prevent the selection of hyperparameter values that would
result in the adversary being ignored. The final hyperparameters used are reported in Table 1.

A.6 CONDITIONAL FRL RESULTS

We include the results of our extended experiments using a conditional FRL implementation (Zhao
et al., 2020). Notice that the results demonstrate the same trends as the main results in §5.

4torchvision==0.18.1 adjust sharpness implementation, with sharpness factor = 0.5.
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Table 1: Hyperparameters used across all runs in §5.

Config Value

Architecture ResNet18 (He et al., 2016)
Optimiser AdamW (Loshchilov & Hutter, 2018) {lr: 1e− 4, β1: 0.9, β2: 0.999}
Adversarial coefficients {Marginal FRL: 1.0, Conditional FRL: 0.05}
LR Schedule Constant
Max Epochs 50

Early Stopping {Monitor: worst group AUC, Patience: 5 epochs}
Augmentation RandomResizedCrop, RandomRotation(15o)
Batch Size 256 (32 for PAPILA)
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Figure 6: Percentage-point mean accuracy gap for conditional FRL models compared to ERM models
on IID disease classification tasks (train/test unbiased). Positive ∆ Acc means FRL outperforms ERM.
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Figure 7: Percentage-point mean accuracy gap for conditional FRL models compared to ERM models
when trained on each mechanism of dataset bias (test set is always unbiased). Positive ∆ Acc
indicates that FRL outperforms ERM on the unbiased test set.
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Figure 8: Percentage-point mean accuracy gap for conditional FRL models compared to ERM models,
aggregated over all bias mechanisms and plotted against subgroup separability AUC, as reported by
Jones et al. (2023). Positive ∆ Acc indicates that FRL outperforms ERM on the unbiased test set. We
use Kendall’s τ statistic to test for a monotonic association between ∆ Acc and subgroup separability.
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