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ABSTRACT

Topological data analysis (TDA) has become increasingly popular in a broad
range of machine learning tasks, ranging from anomaly detection and manifold
learning to graph classification. Persistent homology being the key approach
in TDA provides a unique topological fingerprint of the data by assessing the
evolution of various hidden patterns in the data as we vary a scale parameter.
Current PH tools are limited to analyze the data by filtering with single parameter
while in many applications, several relevant parameters are equally important to
get a much finer information on the data. In this paper, we overcome this problem
by introducing Effective Multidimensional Persistence (EMP) framework which
enables to investigate the data by varying multiple scale parameters simultaneously.
EMP framework provides a highly expressive summary of the data by integrating
the multiple descriptor functions to the process successfully. EMP naturally adapts
to many known single PH summaries and converts them into multidimensional
summaries, for example, EMP Landscapes, EMP Silhouettes, EMP Images, and
EMP Surfaces. These summaries deliver a multidimensional fingerprint of the data
as matrices and arrays which are suitable for various machine learning models.
We apply EMP framework in graph classification tasks and observe that EMP
boosts the performances of various single PH descriptors, and outperforms the
most state-of-the-art methods on benchmark datasets. We further derive theoretical
guarantees of the proposed EMP summary and prove the stability properties.

1 INTRODUCTION

In the past decade, topological data analysis (TDA) proved to be a powerful machinery to discover
many hidden patterns in various forms of data which are otherwise inaccessible with more traditional
methods. In particular, for graph machine learning tasks, while many traditional methods fail, TDA
and, specifically, tools of persistent homology (PH), have demonstrated a high potential to detect local
and global patterns and to produce a unique topological fingerprint to be used in various machine
learning tasks. This makes PH particularly attractive for capturing various characteristics of the
complex data which may play the key role behind the learning task performance.

In turn, multiparameter persistence, or multipersistence (MP) is a novel idea to further advance the
PH machinery by analysing the data in much finer way simultaneously along multiple dimensions.
However, because of the technical problems related to commutative algebra because of its multidi-
mensional structure, it has not been defined for general settings yet (See Section 2.1). In this paper,
we develop an alternative approach to utilize multipersistence idea very efficiently for various types
of data, with main focus on graph representation. In particular, we bypass technical issues with the
MP by obtaining a very practical summaries by utilizing slicing idea in a structured way. In turn, we
obtain suitable multidimensional topological fingerprints of the data as matrices and arrays where
ML models can easily detect the hidden patterns developed in the complex data.

Our contributions can be summarized as follows:

• We develop a new computationally efficient and highly expressive EMP framework which
provides multidimensional topological fingerprints of the data. EMP expands many pop-
ular summaries of single persistence to multidimensions by adapting an effective slicing
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direction. As such, our EMP framework provides a practical way to utilize the promising
multipersistence approach in real-life applications.

• We illustrate the utility of EMP summaries in various settings and compare our results to
state-of-the-art methods. Our numerical experiments demonstrate that EMP summaries
outperforms SOTA in several benchmark datasets for graph classification tasks.

• We derive theoretical stability guarantees of the new topological summaries.

2 RELATED WORK

2.1 MULTIPARAMETER PERSISTENCE

Persistent homology (PH), being a key tool in topological data analysis (TDA), delivers invaluable and
complementary information on the intrinsic properties of data that are inaccessible with conventional
methods (Chazal & Michel, 2021; Hensel et al., 2021). In the past decade, PH has become quite
popular in various ML tasks, ranging from manifold learning to medical image analysis, material
science to finance (TDA applications library (Giunti, 2022)). One of the key benefits of PH is that it
allows us to extract the evolution of subtler patterns in the data shape dynamics at multiple resolution
scales which are not accessible with more conventional, non-topological methods (Wasserman, 2018).

Multipersistence (MP) is a highly promising approach to significantly improve the success of single
parameter persistence (SP) in applied topological data analysis, but there are some issues to convert
this novel idea into an effective feature extraction method as desired (See Appendix D.3). Except for
some special cases, MP theory suffers from the problem of the nonexistence of barcode decomposition
because of the partially ordered structure of the index set {(αi, βj)} (Botnan & Lesnick, 2022).
Lesnick & Wright (2015) suggested to bypass this issue via slicing technique by studying one-
dimensional fibers of the multiparameter domain where one restricts the multidimensional persistence
module to a single direction (slice) and to use single persistence on this one dimensional slice. Later,
by using this novel idea, Carrière & Blumberg (2020) combined several slicing directions (vineyards)
and obtained a vectorization by summarizing the persistence diagrams (PDs) in these directions.
There are several promising recent studies in this direction (Botnan et al., 2021; Vipond, 2020), but
these approaches are not computationally feasible, and cannot provide the expected effectiveness of
MP approach in real life applications. Here we develop a highly efficient way to use MP approach for
various forms of data, and provide a multidimensional topological vectorization with EMP summaries.

2.2 GRAPH REPRESENTATION LEARNING

After the success of convolutional neural networks (CNN) on image-based tasks, graph neural
networks (GNNs) have emerged as a powerful tool for graph-level classification and representation
learning. A wide variety of models are developed based on numerous theories (see Appendix A
for further details). However, to our best knowledge, most of existing approaches do not account
for the important topological information on the shapes of the node neighborhoods. While GNNs
produce great performances in many graph learning tasks, they tend to suffer from over-smoothing
problems and are vulnerable to graph perturbations. To address these challenges, TDA provides a
computationally efficient alternative to GNNs, and can be used as an effective feature extractor to
be combined with the deep learning methods Hofer et al. (2020); Bodnar et al. (2022); Horn et al.
(2021). Recently, this direction has been explored in many works, and single persistent homology
give highly competitive results with kernel-based methods Togninalli et al. (2019); Rieck et al. (2019);
Le & Yamada (2018); Zhao & Wang (2019); Kyriakis et al. (2021) and neural networks Hofer et al.
(2019); Carrière et al. (2020) in graph classification tasks. In this work, we apply MP approach for the
first time in this setting, and our EMP model outperforms most deep learning models in benchmark
datasets.

3 BACKGROUND

We start from providing the basic background for our framework. Since we mainly focus on graph
representation learning in this paper, we explain our construction on graph setting. Note that
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our techniques can easily be adapted to other types of data, e.g., point clouds and images (See
Appendix D.1).

3.1 PERSISTENT HOMOLOGY

Persistent Homology (PH) is a mathematical machinery to capture the hidden shape patterns in the
data by using algebraic topology tools. PH extracts this information by keeping track of evolution
of the topological features (components, loops, cavities) created in the data while looking at it in
different resolutions Dey & Wang (2022). Appendix B provides additional background on classic PH
for the avid reader.

For a given graph G, consider a nested sequence of subgraphs G1 ⊆ . . . ⊆ GN = G. For each
Gi, define an abstract simplicial complex Ĝi, 1 ≤ i ≤ N , yielding a filtration of complexes Ĝ1 ⊆
. . . ⊆ ĜN . Here, clique complexes are among the most common ones, i.e., a clique complex Ĝ is
obtained by assigning (filling with) a k-simplex to each complete (k + 1)-complete subgraph in G,
e.g., a 3-clique, a complete 3-subgraph, in G will be filled with a 2-simplex (triangle). Then, in this
sequence of simplicial complexes, one can systematically keep track of the evolution of topological
patterns mentioned above. A k-dimensional topological feature (or k-hole) may represent connected
components (0-hole), loops (1-hole) and cavities (2-hole). For each k-hole σ, PH records its first
appeareance in the filtration sequence, say Ĝbσ , and first disappearence in later complexes, Ĝdσ
with a unique pair (bσ, dσ), where 1 ≤ bσ < dσ ≤ N . We call bσ the birth time of σ and dσ the
death time of σ. We call dσ − bσ the life span of σ. PH records all these birth and death times
of the topological features in persistence diagrams (PD). Let 0 ≤ k ≤ D where D is the highest
dimension in the simplicial complex ĜN . Then the kth persistence diagram PDk(G) = {(bσ, dσ) |
σ ∈ Hk(Ĝi) for bσ ≤ i < dσ}. Here, Hk(Ĝi) represents the kth homology group of Ĝi which
keeps the information of the k-holes in the simplicial complex Ĝi. For sake of notation, we skip the
dimension (subscript k). With the intuition that the topological features with long life span (persistent
features) describe the hidden shape patterns in the data, these PDs provide a unique topological
fingerprint of G.

As one can easily notice, the most important step in the PH machinery is the construction of the
nested sequence of subgraphs G1 ⊆ . . . ⊆ GN = G. For a given unweighted graph G = (V, E)
with V = {v1, . . . , vN } the set of nodes and E ⊂ {{vi, vj} ∈ V × V, i 6= j} the set of edges,
the most common technique is to use a filtration function f : V → R with a choice of thresholds
I = {αi} where α1 = minv∈V f(v) < α2 < . . . < αN = maxv∈V f(v). For αi ∈ I, let
Vi = {vr ∈ V | f(vr) ≤ αi}. Let Gi be the induced subgraph of G by Vi, i.e., Gi = (Vi, Ei) where
Ei = {ers ∈ E | vr, vs ∈ Vi}. This process yields a nested sequence of subgraphs G1 ⊂ G2 ⊂ . . . ⊂
GN = G, called the sublevel filtration induced by the filtration function f . We denote PDs obtained
via sublevel filtration for a filtration function f as PD(G, f). The choice of f is crucial here, and
in most cases, f is either an important function from the domain of the data, e.g., atomic number
in protein or a function defined from intrinsic properties of the graph, e.g., degree and betweenness.
Similarly, for a weighted graph, one can use sublevel filtration on the weights of the edges and obtain
a suitable filtration reflecting the domain information stored in the edge weights. (For further details
on different filtrations see Aktas et al. (2019); Hofer et al. (2020).)

3.2 SINGLE PERSISTENCE VECTORIZATIONS

While PH extracts hidden shape patterns from data as persistence diagrams (PD), PDs being col-
lection of points in R2 by itself are not very practical for statistical and machine learning purposes.
Instead, the common techniques are by faithfully representing PDs as kernels Kriege et al. (2020) or
vectorizations Hensel et al. (2021). This provides a practical way to use the outputs of PH in real
life applications. Single Persistence Vectorizations transform obtained PH information (PDs) into a
function or a feature vector form which are much more suitable for machine learning tools than PDs.
Common single persistence (SP) vectorization methods are Persistence Images Adams et al. (2017),
Persistence Landscapes Bubenik (2015), Silhouettes Chazal et al. (2014), and various Persistence
Curves Chung & Lawson (2019). These vectorizations defines a single variable or multivariable
functions out of PDs, which can be used as fixed size 1D or 2D vectors in applications, i.e 1 × n
vectors or m×n vectors. For example, a Betti curve for a PD with n thresholds can also be expressed
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as 1 × n size vectors. Similarly, Persistence Images is an example of 2D vectors with the chosen
resolution (grid) size. See the examples given in Section 4.2 for further details.

3.3 MULTIDIMENSIONAL PERSISTENCE

MultiPersistence (MP) is a novel idea to significantly boost the performance of the single parameter
persistence technique described above. The reason for the term “single” is that we are filtering the
data in only one direction G1 ⊂ · · · ⊂ GN = G. The construction of the filtration is the key to get
fine analysis of the data to find the hidden patterns. If one uses one function f : V → R which
has very valuable domain information (e.g., amount for blockchain networks, atomic number for
protein networks), then this induces a single parameter filtration as above. However, various data
have more than one very natural domain functions to analyze the data, and using them simultaneously
would give a much better understanding of the hidden patterns. With this intuition, multiparameter
persistence (MP) theory is suggested as natural generalization of single persistence (SP).

In simple terms, if one uses only one filtration function, sublevel sets induces a single parameter
filtration Ĝ1 ⊂ · · · ⊂ ĜN = Ĝ. Instead, if one uses two or more functions, then it would give a way
to study the data in much finer resolution. For example, if we have two functions f : V → R and
g : V → R with very valuable complementary information of the network, MP idea is presumed to
produce a unique topological fingerprint combining the information from both functions. These pair
of functions f, g induces a multivariate filtration function F : V → R2 with F (v) = (f(v), g(v)).
Again, one can define a set of nondecreasing thresholds {αi}m1 and {βj}n1 for f and g respectively.
Then, Vij = {vr ∈ V | f(vr) ≤ αi, g(vr) ≤ βj}, i.e., Vij = F−1((−∞, αi] × (−∞, βj ]). Then,
let Gij be the induced subgraph of G by Vij , i.e., the smallest subgraph of G generated by Vij .
Then, instead of a single filtration of complexes, we get a bifiltration of complexes {Ĝij | 1 ≤ i ≤
m, 1 ≤ j ≤ n}. One can imagine {Ĝij} as a rectangular grid of size m × n such that for each
1 ≤ i0 ≤ m, {Ĝi0j}nj=1 gives a nested (horizontal) sequence of simplicial complexes. Similarly, for
each 1 ≤ j0 ≤ n, {Ĝij0}mi=1 gives a nested (vertical) sequence of simplicial complexes (See Figure 2
in the Appendix).

By computing the homology groups of these complexes, {Hk(Ĝij)}, we obtain the induced bigraded
persistence module (a rectangular grid of size m × n). Again, the idea is to keep track of the
k-dimensional topological features via the homology groups {Hk(Ĝij)} in this grid. As explained in
Appendix D.3, because of the technical issues related to commutative algebra, there are still issues
to define a mathematical output like "Multipersistence Diagram", and hence, to obtain an effective
vectorization of the MP module (Section 3). These technical issues prevent this promising approach
to reach its full potential in real life applications.

In this paper, we overcome this problem by producing very practical vectorizations by utilizing
slicing idea in the multipersistence grid in a structured way. The key point in our approach is that
we produce multidimensional vectors (matrices and arrays) as unique topological multidimensional
fingerprints of the data. In other words, by using MP approach, we extract multidimensional features
of the data as same size matrices and arrays which are quite suitable for various machine learning
models, and we can facilitate the appropriate ML method to analyze these unique fingerprints and
detect the patterns developing in these multi-resolution view of the data.

4 EFFECTIVE MULTIDIMENSIONAL PERSISTENCE SUMMARIES

We now introduce our Effective MultiPersistence (EMP) framework which describes a way to expand
most single persistence vectorizations (Section 3.2) as multidimensional vectorizations by utilizing
MP approach. In particular, by using the existing single parameter persistence vectorizations, we
produce multidimensional vectorization by effectively using the one of the filtering direction as
“slicing direction” in the multipersistence module.

4.1 EMP FRAMEWORK

In simple terms, for d = 2, for a given two filtration functions f, g, the main idea is to use first
filtration function f to get a single parameter filtering of the data, i.e., G1 ⊆ . . . ⊆ Gm = G. Then,
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use the second function in each subgraph to obtain persistence diagram PD(Gi, g) for 1 ≤ i ≤ m.
In particular, we obtain m persistence diagrams {PD(Gi, g)}mi=1. Then, by applying the chosen
SP vectorization ϕ to each PD, we obtain m different same length vector ~ϕ(PD(Gi, g)), say 1× k
vector. Then, by combining all m 1D-vectors, we obtain EMP vectorization Mϕ such that Mi

ϕ =

~ϕ(PD(Gi, g)) where Mi
ϕ represents the ith row of Mϕ which is a 2D-vector (matrix) of size m× k

(See Figure 3 in Appendix). For d > 2, the construction is similar and given below.

Here, we give the details for sublevel filtration for two filtration functions. In Appendix D.2, we
explain how to modify the construction for weight filtrations or power filtrations. Let G = (V, E) be
a graph, and let f, g : V → R be two filtration functions with threshold sets {αi}mi=1 and {βj}nj=1

respectively. Let Vi = {vr ∈ V | f(vr) ≤ αi}. Let Gi be the induced subgraph of G by Vi. This gives
a filtering of the graph (nested subgraphs) as G1 ⊆ . . . ⊆ Gm = G. Recall that g : V → R is another
filtration function for G. Now, we fix 1 ≤ i0 ≤ m, and consider Gi0 . By restricting g on Gi0 , we get
persistence diagram PD(Gi0 , g) as follows. Let Vi0j = {vr ∈ Vi0 | f(vr) ≤ βj}, and let Gi0j be the
induced subgraph of Gi0 by Vi0j . This defines a finer filtering of the graph Gi0 as Gi01 ⊆ Gi02 . . . ⊆
Gi0n = Gi0 . Corresponding clique complexes defines a filtration Ĝi01 ⊆ Ĝi02 . . . ⊆ Ĝi0n = Ĝi0 .
This filtration gives the persistence diagram PD(Gi0 , g). Hence, for each 1 ≤ i ≤ m, we obtain a
persistence diagram PD(Gi, g).

The next step is to use the vectorization on thesem persistence diagrams. Let ϕ be a single persistence
vectorization, e.g., Persistence Landscape, Silhouette, Entropy, Betti, Persistence Image. By applying
the chosen SP vectorization ϕ to each PD, we obtain a function ϕi = ϕ(PD(Gi, g)) where in most
cases it is a single variable function on the threshold domain [β1, βn], i.e., ϕi : [β1, βn] → R. For
the multivariable case (e.g., Persistence Image), we give explicit description in the examples section
below. Most such vectorizations being induced from a discrete set of points PD(G), they naturally
can be expressed as a 1D vector of length k. In the examples below, we explain this conversion in
detail. Then, let ~ϕi be the corresponding 1 × k vector for the function ϕi. Now, we are ready to
define our EMP summary Mϕ which is a 2D-vector (a matrix)

Mi
ϕ = ~ϕi for 1 ≤ i ≤ m,

where Mi
ϕ is the ith-row of Mϕ. Hence, Mϕ is a 2D-vector of size m × k. Each row Mi

ϕ is the
vectorization of the persistence diagram PD(Gi, g) via the SP vectorization method ϕ. We use the
first filtration function f to get a finer look at the graph as G1 ⊆ . . . ⊆ Gm = G. Then, we use the
second filtration function g to obtain the persistence diagrams PD(Gi, g) of these finer pieces. In
a way, we look at G with a two dimensional resolution {Gij} and we keep track of the evolution of
topological features in the induced bifiltration {Ĝij}. The main advantage of this technique is that
the outputs are fixed size matrices (or arrays) for each dataset which is highly suitable for various
machine learning models.

Order of the Filtration Functions. We need to note that for given two filtration functions f, g, the
order is quite important for our algorithm. In particular, let Mϕ(f, g) represent the above construction
where we first apply f to get filtering {Gi}mi=1, and then we obtain m different PD(Gi, g). Hence,
Mϕ(f, g) would be a m× k matrix. On the other hand, if we apply g first, we would get a filtering
{Gj}nj=1. Then, by using sublevel filtration with g for each Gj , we would get n persistence diagrams
PD(Gj , f). Assuming the produced vectors ~ϕj for [α1, αm] domain has length k′, then Mϕ(g, f)
would give us n×k′ size matrices. In particular, in the first one Mϕ(f, g) we use “horizontal” slicing
in the bipersistence module, while in the latter Mϕ(g, f), we use “vertical” slicing.

For the question “Which function should be used first”, the answer is that the function with more
important domain information should be used as second function (g in the original construction), as
we get much finer information via persistence diagram PD(Gi, g) for the second function.

Higher Dimensional Multipersistence. Similarly, for d = 3, let f, g, h be filtration functions and
let {Gij} be the bifiltering of the data, e.g., sublevel filtration for two functions f, g. Then, again by
using the third function h, we find m · n persistence diagrams {PD(Gij , h)}m,ni,j=1. Similarly, for a
given SP vectorization ϕ, one obtains a 1D-vector ~ϕ(PD(Gij , g)) of size 1× k for each i, j. This
produces a 3D-vector (array) Mϕ of size m× n× k where Mij

ϕ = ~ϕ(PD(Gij , g)). For d > 3, one
could follow a similar route.
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Figure 1: For the same network and the same filtration functions, EMP Betti Summary (left), EMP Silhouette
(center), and EMP Entropy Summary (right) can produce highly different topological summaries emphasizing
different information in persistence diagrams.

4.2 EXAMPLES OF EMP SUMMARIES

Here, we discuss explicit constructions of EMP summaries for most common SP vectorizations. As
noted above, the framework is very general and it can be applied to most SP vectorization methods. In
all the examples below, we use the following setup: Let G = (V, E) be a graph, and let f, g : V → R
be two filtration functions with threshold sets {αi}mi=1 and {βj}nj=1 respectively. As explained above,
we first apply sublevel filtering with f to get a sequence of nested subgraphs, G1 ⊆ . . . ⊆ Gm = G.
Then, for each Gi, we apply sublevel filtration with g to get persistence diagram PD(Gi, g). Therefore,
we will have m PDs. In the examples below, for a given SP vectorization ϕ, we explain how to obtain
a vector ~ϕ(PD(Gi, g)), and define the corresponding EMP Mϕ. Note that we skip the homology
dimension (subscript k for PDk(G)) in the discussion. In particular, for each dimension k = 0, 1, . . . ,
we will have one EMP Mϕ(G) (a matrix or array) corresponding to {~ϕ(PDk(Gi, g))}. The most
common dimensions are k = 0 and k = 1 in applications.

EMP Landscapes. Persistence Landscapes λ are one of the most common SP vectorizations
introduced by Bubenik (2015). For a given persistence diagram PD(G) = {(bi, di)}, λ produces a
function λ(G) by using generating functions Λi for each (bi, di) ∈ PD(G), i.e., Λi : [bi, di]→ R is
a piecewise linear function obtained by two line segments starting from (bi, 0) and (di, 0) connecting
to the same point ( bi+di2 , bi−di2 ). Then, the Persistence Landscape function λ(G) : [ε1, εq]→ R for
t ∈ [ε1, εq] is defined as

λ(G)(t) = maxi Λi(t),

where {εk}q1 are thresholds for the filtration used.

Considering the piecewise linear structure of the function, λ(G) is completely determined by its
values at 2q − 1 points, i.e., bi±di2 ∈ {ε1, ε1.5, ε2, ε2.5, . . . , εq} where εk.5 = (εk + εk+1)/2. Hence,
a vector of size 1× (2q − 1) whose entries the values of this function would suffice to capture all the
information needed, i.e. ~λ = [λ(ε1) λ(ε1.5) λ(ε2) λ(ε2.5) λ(ε3) . . . λ(εq)]

Considering we have threshold set {βj}nj=1 for the second filtration function g, ~λi = ~λ(PD(Gi, g))

will be a vector of size 1× 2n− 1. Then, as Mi
λ = ~λi for each 1 ≤ i ≤ m, EMP Landscape Mλ(G)

would be a 2D-vector (matrix) of size m× (2n− 1).

EMP Silhouettes. Silhouette Chazal et al. (2014) is another very popular SP vectorizations method
in machine learning applications. The idea is similar to Persistence Landscapes, but this vectorization
uses the life span of the topological features more effectively. For PD(G) = {(bi, di)}Ni=1, let Λi be
the generating function for (bi, di) as defined in Landscapes above. Then, Silhouette function ψ is
defined as

ψ(G) =

∑N
i=1 wiΛi(t)∑m

i=1 wi
, t ∈ [ε1, εq],

where the weight wi is mostly chosen as the life span di − bi, and {εk}qk=1 represents the thresholds
for the filtration used. Again such a Silhouette function ψ(G) produces a 1D-vector ~ψ(G) of size
1×(2q−1) as in Persistence Landscapes case. Similar to the EMP Landscapes, with the threshold set
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{βj}nj=1 for the second filtration function g, ~ψi = ~ψ(PD(Gi, g) will be a vector of size 1× 2n− 1.
Then, as Mi

ψ = ~ψi for each 1 ≤ i ≤ m, EMP Landscape Mψ(G) would be again a 2D-vector
(matrix) of size m× (2n− 1) (Figure 1).

EMP Persistence Images. Next SP vectorization in our list is Persistence Images Adams et al.
(2017). Different than the most SP vectorizations, Persistence Images produces 2D-vectors. The idea
is to capture the location of the points in the persistence diagrams with a multivariable function by
using the 2D Gaussian functions centered at these points. For PD(G) = {(bi, di)}, let φi represent
a 2D-Gaussian centered at the point (bi, di) ∈ R2. Then, one defines a multivariable function,
Persistence Surface, µ̃ =

∑
i wiφi where wi is the weight, mostly a function of the life span di − bi.

To represent this multivariable function as a 2D-vector, one defines a k× l grid (resolution size) on the
domain of µ̃, i.e., threshold domain of PD(G). Then, one obtains the Persistence Image, a 2D-vector
(matrix) ~µ = [µrs] of size k × l where µrs =

∫
∆rs

µ̃(x, y) dxdy and ∆rs is the corresponding pixel
(rectangle) in the k × l grid.

This time, the resolution size k × l is independent of the number of thresholds used in the filtering,
the choice of k and l is completely up to the user. Recall that by applying the first function f , we
have the nested subgraphs {Gi}mi=1. For each Gi, the persistence diagram PD(Gi, g) obtained by
sublevel filtration with g induces a 2D vector ~µi = ~µ(PD(Gi, g)) of size k × l. Then, define EMP
Persistence Image as Mi

µ = ~µi, where Mi
µ is the ith-floor of the array Mµ. Hence, Mµ(G) would

be a 3D-vector (array) of size m× k × l where m is the number of thresholds for the first function f
and k × l is the chosen resolution size for the Persistence Image ~µ.

EMP Surfaces and EMP Betti Summaries. Next, we give an important family of SP vectoriza-
tions, Persistence Curves Chung & Lawson (2019). This is an umbrella term for several different
SP vectorizations, i.e., Betti Curves, Life Entropy, Landscapes, et al. Our EMP framework naturally
adapts to all Persistence Curves to produce multidimensional vectorizations. As Persistence Curves
produce a single variable function in general, they all can be represented as 1D-vectors by choosing
a suitable mesh size depending on the number of thresholds used. Here, we describe one of the
most common Persistence Curves in detail, i.e., Betti Curves. It is straightforward to generalize the
construction to other Persistence Curves.

Betti curves are one of the simplest SP vectorization as it gives the count of topological feature
at a given threshold interval. In particular, βk(∆) is the total count of k-dimensional topological
feature in the simplicial complex ∆, i.e., βk(∆) = rank(Hk(∆)) (See Figure 2 in the Appendix). In
particular, βk(G) : [ε1, εq+1]→ R is a step function defined as

βk(G)(t) = rank(Hk(Ĝi))
for t ∈ [εi, εi+1), where {εi}q1 represents the thresholds for the filtration used. Considering this is a
step function where the function is constant for each interval [εi, εi+1), it can be perfectly represented
by a vector of size 1× q as ~β(G) = [β(1) β(2) β(3) . . . β(q)].

Then, with the threshold set {βj}nj=1 for the second filtration function g, ~βi = ~β(PD(Gi, g)) will be
a vector of size 1× n. Then, as Mi

β = ~βi for each 1 ≤ i ≤ m, EMP Betti Summary Mβ(G) would
be a 2D-vector (matrix) of size m× n (Figure 1). In particular, each entry Mβ = [mij ] is just the
Betti number of the corresponding clique complex in the bifiltration {Ĝij}, i.e., mij = β(Ĝij). This
matrix Mβ is also called bigraded Betti numbers in the literature, and computationally much faster
than other vectorizations Lesnick & Wright (2022).

4.3 STABILITY OF EMP SUMMARIES

We now show that when the source single parameter vectorization ϕ is stable, then so is its induced
EMP vectorization Mϕ. (We give the details of stability notion in persistence theory and examples of
stable SP vectorizations in Appendix C.1.)

Let G+ = (V+, E+) and G− = (V−, E−) be two graphs. Let ϕ be a stable SP vectorization with the
stability equation

d(ϕ(G+), ϕ(G−)) ≤ Cϕ · Wpϕ(PD(G+), PD(G−)) (1)
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for some 1 ≤ pϕ ≤ ∞. Here, ϕ(G±) represent the corresponding vectorizations for PD(G±) and
Wp represents Wasserstein-p distance as defined in Appendix C.1.

Now, by taking d = 2 for EMP construction, let f, g : V± → R be two filtration functions with
threshold sets {αi}mi=1 and {βj}nj=1 respectively. Then, by defining V±i = {vr ∈ V± | f(vr) ≤ αi},
their induced subgraphs {G±i } give the filtration Ĝ1 ⊂ Ĝ2 ⊂ . . . Ĝm as before. For each 1 ≤ i ≤ m,
we will have persistence diagram PD(Gi, g) as detailed in Section 4.1. We define the induced
matching distance between the multiple persistence diagrams as

Dp({PD(G+i )}, {PD(G−i )}) =
m∑
i=1

Wp(PD(G+i , g), PD(G−i , g)). (2)

Now, we define the distance between induced EMP Summaries as

D(Mϕ(G+),Mϕ(G−)) =

m∑
i=1

d(ϕ(G+
i ), ϕ(G−i )) (3)

Theorem 4.1. Let ϕ be a stable SP vectorization. Then, the induced EMP Vectorization Mϕ is also
stable, i.e., with the notation above, there exists Ĉϕ > 0 such that for any pair of graphs G+ and G−,
we have the following inequality.

D(Mϕ(G+),Mϕ(G−)) ≤ Ĉϕ ·Dpϕ({PD(G+)}, {PD(G−)})

The proof is given in Appendix C.2.

5 EXPERIMENTS

5.1 DATASETS

To verify our EMP summaries on graph representation learning, we evaluate EMP summaries with
random forest on nine widely used benchmark datasets, i.e., (i) three molecule graphs (Sutherland
et al., 2003): BZR_MD, COX2_MD, and DHFR_MD; (ii) two biological graphs (Kriege & Mutzel,
2012; Borgwardt et al., 2005): MUTAG and PROTEINS; and (iii) four social graphs: IMDB-
Binary (IMDB-B), IMDB-Multi (IMDB-M), REDDIT-Binary (REDDIT-B), and REDDIT-Multi-5K
(REDDIT-M-5K). We also calculate (i) average node-level centrality measures: average degree
centrality, average betweenness centrality, average closeness centrality, average clustering centrality,
average eigenvector centrality, and average Katz centrality; and (ii) average edge-level centrality
measures: average betweenness centrality, average Ricci curvature, and average Ricci positive
curvature, and feed these node-/edge-level measures into random forest model. Furthermore, it is
worth noting that COX2_MD and DHFR_MD all have three node features, whereas PROTEINS has
one node feature. We use all these available features as input to a random forest model. Further
details on the datasets and experimental setup are provided in Appendix E.1.

5.2 EXPERIMENTAL SETUP

We vectorize our proposed EMP representations and use random forest (RF) for the graph classifica-
tion task. For RF, we set the number of trees in the forest as 1000, the minimum number of samples
as 2, and the function to measure the split quality as Gini impurity. We apply filtrations based on the
available information of each dataset, either using their graph structure or their provided node/edge
features. Our pool of filtration functions include, but is not limited to: type of atom, closeness,
edge-betweenness, weighted degree, katz centrality, ricci curvature, and distance between atoms. In
this experiments, first we apply a sublevel filtration on nodes, and secondly a power filtration over
edges. To test our EMP framework we use three vectorizations: Betti curves, silhouette functions,
and entropy summary functions, thus producing EMP matrix representations which can be embedded
in classic and modern machine learning algorithms.

We compare EMP summary with two types of state-of-the-art baselines, covering six graph kernels,
one graph neural networks, and one topological method. Graph kernels: (i) comprised of the

8
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Table 1: Classification accuracy (in % ± standard deviation) of EMP summary on nine benchmark datasets.
The best results are in bold font and the second best results are marked underlined.

Model BZR_MD COX2_MD DHFR_MD MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B REDDIT-5K
CSM 77.63±1.29 OOT OOT 87.29±1.25 OOT OOT OOT OOT OOT
HGK-SP 60.08±0.88 59.92±0.66 67.95±0.00 80.90±0.48 74.53±0.35 73.34±0.47 51.58±0.42 OOM OOM
HGK-WL 52.64±1.20 57.15±1.20 66.08±1.02 75.51±1.34 74.53±0.35 72.75±1.02 50.73±0.63 OOM OOM
MLG 51.46±0.61 51.15±0.00 67.95±0.00 78.53±2.25 75.55±0.71 52.56±0.42 34.27±0.33 OOM OOM
WL 67.45±1.40 60.07±2.22 62.56±1.51 85.75±1.96 73.06±0.47 71.15±0.47 50.25±0.72 77.95±0.60 51.63±0.37
WL-OA 68.19±1.09 62.37±2.11 64.10±1.70 86.10±1.95 73.50±0.87 74.01±0.66 49.95±0.46 87.60±0.33 OOM
GNNs 69.87±1.29 66.05±3.16 73.11±1.59 80.42±2.07 70.31±1.93 66.53±2.33 48.93±0.88 89.90±1.90 56.10±1.60
FC-V 75.61±1.13 73.41±0.79 76.78±0.69 87.31±0.66 74.54±0.48 73.84±0.36 46.80±0.37 89.41±0.24 52.36±0.37

EMP 77.77±0.95 70.48±1.38 80.50±1.07 88.79±0.63 72.78±0.54 75.34±0.29 48.75±0.22 91.03±0.22 54.41±0.32

subgraph matching kernel (CSM) Kriege & Mutzel (2012), (ii) Shortest Path Hash Graph Kernel
(HGK-SP) Morris et al. (2016), (iii) Weisfeiler–Lehman Hash Graph Kernel (HGK-WL) Morris
et al. (2016), (iv) Multiscale Laplacian Graph Kernel (MLG) Kondor & Pan (2016), (v) Weisfeiler–
Lehman (WL) Shervashidze et al. (2011), and (vi) Weisfeiler-Lehman Optimal Assignment (WL-
OA) Kriege et al. (2016); graph neural networks: graph neural networks (GNN) Kipf & Welling
(2017); topological method: filtration curves (FC-V) O’Bray et al. (2021). For all methods, we report
the average accuracy of 10 runs of 10-fold CV along with standard deviation, and running time for
computation of each EMP representation. The source code is freely available1.

5.3 EXPERIMENTAL RESULTS

Table 1 shows the results of different methods on nine graph datasets. Out-of-time (OOT) results
indicate that a method could not complete the classification task within 12 hours, and OOM means
“out-of-memory” (from an allocation of 128 GB RAM). We observe the following phenomena:

• Compared with all baselines, out of 9 benchmark datasets, the proposed EMP summaries
achieve the best performance on 5 datasets (BZR_MD, DFHR_MD, MUTAG, IMDB-B,
REDDIT-B), and second best in 2 datasets (COX2_MD, REDDIT-5K).

• EMP summary consistently outperforms Filtration Curves on all datasets except COX2_MD
and PROTEINS, indicating that multiparameter structure of the EMP summaries can better
capture the complex structural properties and local topological information in heterogeneous
graphs.

• Moreover, EMP Summaries consistently delivers the competitive results with GNNs in all
benchmark datasets. This indicates that EMP summary introduces powerful topological and
geometric schemes for node features and graph representation learning.

To further investigate the effectiveness of the EMP vectorization function in graph representation
learning, we have conducted ablation studies of various EMP summaries on the benchmark datasets,
see Appendix G. Furthermore, Appendix F includes an analysis of computational complexity.

6 DISCUSSION

We have proposed a new computationally efficient summary for multidimensional persistence for
various forms of data, and include focus-cases on graph machine learning. The new Effective
Multidimensional Persistence (EMP) framework provides a practical way to employ the promising
multidimensional persistence idea in real-life applications. As such, EMP summaries are highly
compatible with machine learning models and can boost the performances of popular single persistent
summaries in a unified manner. In a graph classification task, EMP summaries outperform state-of-the-
art methods in several benchmark datasets. Furthermore, we have shown that EMP maintain important
stability guarantees. Therefore, EMP makes an important step toward bringing the theoretical concepts
of multipersistence to the machine learning community and advances the use of persistent homology

1https://www.dropbox.com/sh/o9ter2umpus04fi/AABj40YYB0JTFVeENt2qfAKXa?
dl=0
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in various settings. In future work, we aim to enhance the EMP framework by using more than one
slicing direction in the multipersistence grid and, thus, effectively combining the outputs of multiple
slicing directions with deep learning approaches.
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Appendix

A ADDITIONAL LITERATURE ON GRAPH REPRESENTATION LEARNING

After the success of convolutional neural networks (CNN) on image-based tasks, graph neural
networks (GNNs) have emerged as a powerful tool for graph classification and representation learning.
Based on the spectral graph theory, Bruna et al. (2014) introduced a graph-based convolution in
Fourier domain. However, complexity of this model is very high since all Laplacian eigenvectors are
needed. To tackle this problem, ChebNet Defferrard et al. (2016) integrated spectral graph convolution
with Chebyshev polynomials. Then, Graph Convolutional Networks (GCNs) of Kipf & Welling
(2017) simplified the graph convolution with a localized first-order approximation. More recently,
there have been proposed various approaches based on accumulation of the graph information from
a wider neighborhood, using diffusion aggregation and random walks. Such higher-order methods
include approximate personalized propagation of neural predictions (APPNP) Klicpera et al. (2019),
higher-order graph convolutional architectures (MixHop) Abu-El-Haija et al. (2019), multi-scale
graph convolution (N-GCN) Abu-El-Haija et al. (2020), and Lévy Flights Graph Convolutional
Networks (LFGCN) Chen et al. (2020). In addition to random walks, other recent approaches
include GNNs on directed graphs (MotifNet) Monti et al. (2018), graph convolutional networks
with attention mechanism (GAT, SPAGAN) Veličković et al. (2018); Yang et al. (2019), and graph
Markov neural network (GMNN) Qu et al. (2019). Most recently, Liu et al. Liu et al. (2020) consider
utilizing information on the node neighbors’ features in GNN, proposing Deep Adaptive Graph
Neural Network (DAGNN). However, DAGNN, and other state-of-the-art approaches, does not
account for the important information on the shapes of the node neighborhoods.

B FURTHER BACKGROUND ON SINGLE PERSISTENT HOMOLOGY

Here, we give further details on single parameter persistent homology. To sum up, PH machinery is a
3-step process. The first step is the filtration step, where one can integrate the domain information into
the process. The second step is the persistence diagrams, where the machinery records the evolution
of topological features (birth/death times) in the filtration sequence of the simplicial complexes. The
final step is the vectorization (fingerprinting), where one can convert these records to a function or
vector to be used in suitable ML models.

i. Constructing Filtrations: As PH is the machinery to keep track of the evolution of topological
features in a sequence, the most important step is inducing this nested sequence of simplicial
complexes, ∆0 ⊂ ∆1 ⊂ · · · ⊂ ∆m. This is the key step where one can inject valuable domain
information into the PH process by using important domain functions. Two most common methods
are Sublevel/superlevel filtration and Vietoris-Rips (VR) filtration. We already described sublevel
filtration in Section 3.1.

VR filtration is another common method especially used for point clouds, where coarse geometry
of the data set X play key role (Chazal & Michel, 2021). Let X = {x1, x2, ..., xN} be the given
data set. For a given threshold εi, one forms a Vietoris-Rips complex ∆i by adding a k-simplex
to X for any subset {xn0 , xn1 , ..., xnk}, where the pairwise distances are all d(xnr , xns) < εi. In
particular, if a pair of points xn0

, xn1
has distance < εi, then in the induced simplicial complex

∆i, we add an edge en0n1
between the corresponding vertices xn0

and xn1
. If three such points

xn0
, xn1

, xn2
have pairwise distances < εi, then we fill the triangle en0n1

∪ en1n2
∪ en2n0

with a
2-simplex, and so on. For each εi, one obtains a simplicial complex ∆i by using this procedure.
Changing threshold values ε1 < ε2 < . . . < εm results in a hierarchical nested sequence of simplicial
complexes ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆m that is termed the Vietoris-Rips filtration of the data set X . Note
that VR filtration can also be considered as a sublevel filtration for the distance function to X from
the ambient space Rd, i.e., f : Rd → R with f(y) = d(y,X ) where X ⊂ Rd.

ii. Persistence Diagrams: The second step in PH process is to obtain persistence diagrams (PD)
for the filtration ∆0 ⊂ ∆1 ⊂ · · · ⊂ ∆m. As explained in Section 3.1, PDs are collection of
2-tuples, marking the birth and death times of the topological features appearing in the filtration, i.e.
PDk(X ) = {(bσ, dσ) | σ ∈ Hk(∆i) for bσ ≤ i < dσ}. Current algorithmic advancements make
possible to efficiently compute persistence diagrams via modern software libraries (Otter et al., 2017).
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iii. Vectorizations: While PH extracts hidden shape patterns from data as persistence diagrams (PD),
PDs, a collection of points in R2 by itself, are not very practical for statistical and ML purposes.
Instead, the common techniques are faithfully representing PDs as kernels (Kriege et al., 2020) or
vectorizations (Hensel et al., 2021). One can consider this step as converting PDs into a useful format
to be used in the ML process as fingerprints of the dataset. This provides a practical way to use
the outputs of PH in real-life applications. Single Persistence Vectorizations transform obtained PH
information (PDs) into a function or a feature vector form which is much more suitable for ML tools
than PDs. Common single persistence (SP) vectorization methods are Persistence Images (Adams
et al., 2017), Persistence Landscapes (Bubenik, 2015), Silhouettes (Chazal et al., 2014), Betti Curves
and various Persistence Curves (Chung & Lawson, 2019). These vectorizations define a single
variable or multivariable function out of PDs, which can be used as fixed-size 1D or 2D vectors
in applications, i.e., 1 × n vectors or m × n vectors. For example, a Betti curve for a PD with n
thresholds can also be expressed as 1×n size vectors. Similarly, Persistence Images is an example of
2D vectors with the chosen resolution (grid) size. See the examples given in Section 4.2 for further
details.

C STABILITY

C.1 STABILITY OF SINGLE PERSISTENCE SUMMARIES

For a given PD vectorization, the stability is one of the most important properties for statistical
purposes. Intuitively, stability question is whether a small perturbation in PD cause a big change
in the vectorization or not. To make this question meaningful, one needs to define what "small"
and “big" means in this context. Therefore, we need to define distance notion, i.e., metric in the
space of persistence diagrams. The most common such metric is called Wasserstein distance (or
matching distance) which is defined as follows. Let PD(X+) and PD(X−) be persistence diagrams
two datasets X+ and X− (We omit the dimensions in PDs). Let PD(X+) = {q+

j } ∪ ∆+ and
PD(X−) = {q−l } ∪∆− where ∆± represents the diagonal (representing trivial cycles) with infinite
multiplicity. Here, q+

j = (b+j , d
+
j ) ∈ PD(X+) represents the birth and death times of a hole σj

in X+. Let φ : PD(X+)→ PD(X−) represent a bijection (matching). With the existence of the
diagonal ∆± in both sides, we make sure the existence of these bijections even if the cardinalities
|{q+

j }| and |{q−l }| are different. Then, the pth Wasserstein distanceWp defined as

Wp(PD(X+), PD(X−)) = min
φ

(∑
j

‖q+
j − φ(q+

j )‖p∞
) 1
p

, p ∈ Z+.

Then, a vectorization (function) ϕ(PD(X )) is called stable if d(ϕ+, ϕ−) ≤ C ·
Wp(PD(X+), PD(X−)) where ϕ± = ϕ(PD(X±)) and d(., .) is a suitable metric on the space
of vectorizations used. Here, the constant C > 0 is independent of X±. This stability inequality
interprets as the changes in the vectorizations are bounded by the changes in PDs. Two nearby
persistence diagrams are represented by nearby vectorizations. If a given vectorization ϕ satisfies
such a stability inequality for some d andWp, we call ϕ a stable vectorization Atienza et al. (2020).
Persistence Landscapes Bubenik (2015), Persistence Images Adams et al. (2017), Stabilized Betti
Curves Johnson & Jung (2021) and several Persistence curves Chung & Lawson (2019) are among
well-known examples of stable vectorizations.

C.2 PROOF OF THEOREM 4.1: STABILITY OF EMP SUMMARIES

Proof. As ϕ is a stable SP vectorization, for any 1 ≤ i ≤ m, we have d(ϕ(G+
i ), ϕ(G−i )) ≤

Cϕ · Wpϕ(PD(G+
i ), PD(G−i )) for some Cϕ > 0 by Equation (1), where Wpϕ is Wasserstein-p
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distance. Notice that the constant Cϕ > 0 is independent of i. Hence,

D(Mϕ(G+),Mϕ(G−)) =

m∑
i=1

d(ϕ(G+
i ), ϕ(G−i ))

≤
m∑
i=1

Cϕ · Wpϕ(PD(G+
i ), PD(G−i ))

= Cϕ

m∑
i=1

Wpϕ(PD(G+
i ), PD(G−i ))

= Cϕ ·Dpϕ({PD(G+
i )}, {PD(G−i )})

where the first and last equalities are due to Equation (2) and Equation (3), while the inequality
follows from Equation (1) which is true for any i. This concludes the proof of the theorem.

D EMP FRAMEWORK

D.1 EMP FOR OTHER TYPES OF DATA

So far, to keep the exposition simple, we described our construction in the graph setup. However,
our framework is suitable for various types of data. Let X be a an image data or a point cloud. Let
f : X → R and g : X → R be two filtration functions on X . For example, it can be grayscale
function for image data, or density function on point cloud data.

Let f : X → R be the filtration function with threshold set {αi}m1 . Let Xi = f−1((−∞, αi]).
Then, we get a filtering of X as nested subspaces X1 ⊂ X2 ⊂ · · · ⊂ Xm = X . By using the
second filtration function, we obtain finer filtrations for each subspace Xi where 1 ≤ i ≤ m. In
particular, fix 1 ≤ i0 ≤ m and let {βj}nj=1 be the threshold set for the second filtration function
g. Then, by restricting g to Xi0 , we get a filtration function on Xi0 , i.e., g : Xi0 → R which
produces filtering Xi01 ⊂ Xi02 ⊂ · · · ⊂ Xi0n = Xi0 . By inducing a simplicial complex X̂i0j
for each Xi0j , we get a filtration X̂i01 ⊂ X̂i02 ⊂ · · · ⊂ X̂i0n = X̂i0 . This filtration results in a
persistence diagram (PD) PD(Xi0 , g). For each 1 ≤ i ≤ m, we obtain PD(Xi, g). Note that after
getting {Xi}mi=1 via f , instead of using second filtration function g, one can apply power filtration
or Vietoris-Rips construction based on distance for each Xi0 in order to get a different filtration
X̂i01 ⊂ X̂i02 ⊂ · · · ⊂ X̂i0n = X̂i0 .

By using m PDs, we follow a similar route to define our EMP summaries. Let ϕ be a single
persistence vectorization. By applying the chosen SP vectorization ϕ to each PD, we obtain a
function ϕi = ϕ(PD(Xi, g)) on the threshold domain [β1, βn], which can be expresses as a 1D (or
2D) vector in most cases (Section 4.2). Let ~ϕi be the corresponding 1× k vector for the function ϕi.
Define the corresponding EMP Mϕ as Mi

ϕ = ~ϕi where Mi
ϕ is the ith row of Mϕ. In particular, Mϕ

is a 2D-vector (a matrix) of size m× k where m is the number of thresholds for the first filtration
function f , and k is the length of the vector ~ϕ.

D.2 EMP WITH OTHER FILTRATIONS

Weight filtration For a given weighted graph G = (V, E ,W), it is common to use edge weights
W = {ωrs ∈ R+ | εrs ∈ E} to describe filtration. By choosing the threshold set similarly
I = {αi}m1 with α1 = min{ωrs ∈ W} < α2 < . . . < αm = max{ωrs ∈ W}. For αi ∈ I, let
Ei = {ers ∈ V | ωrs ≤ αi}. Let Gi be a subgraph of G induced by Vi. This induces a nested
sequence of subgraphs G1 ⊂ G2 ⊂ · · · ⊂ Gm = G (See top row in Figure 2).

In the case of weighted graphs, one can apply the EMP framework just by replacing the first filtering
(via f ) with weight filtering. In particular, let g : V → R be a filtration function with threshold set
{βj}nj=1. Then, one can first apply weight filtering to get G1 ⊂ · · · ⊂ Gm = G as above, and then
apply f to each Gi to get a bilfiltration {Gij} (m× n resolution). One gets m PDs as PD(Gi, g) and
induce the corresponding Mϕ. Alternatively, one can change the order by applying g first, and get
a different filtering G1 ⊂ G2 ⊂ · · · ⊂ Gn = G induced by g. Then, apply to edge weight filtration
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1 Comparison with other multiparameter descrip-
tors

Bk(C) is the kth Betti number of C
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In our final set of experiments, we test our MPGF method in time series
classification problems and compare results with other new multiparameter per-
sistence approaches. Here, we focus on 17 time series datasets from the UCR
archive [1], using training/testing sizes as described in table 1. We choose such
benchmark problems because we aim to contrast our MPGF versus newly state-
of-the-art results of multiparameter persistence approaches, as described in [2].

To keep all experiments under same conditions, we parallelize the MPGF
method and run on a AWS machine with Xeon Platinum 8175M. Similarly, we
apply Taken’s embeddings on time series, filter based on distance to the point
cloud and density estimates, train using a XGBoost classifier, and perform 5-fold
cross validation; see further and other details in [2].

Table 2 shows the accuracy of other 6 methods along with our proposed
MPGF: Multiparameter Persistence Image (MP-I) [2], Multiparameter Persis-
tence Kernel (MP-K) [3], Multiparameter Persistence Landscape (MP-L) [REF],
1D Persistence Landscape (P-L) [4], 1D Persistence Image (P-I) [5], Persistence
Space Scale Kernel (PSS-K) [6]. Here, we focus on contrasting the amount of
significant information, for a machine learning method, contained in the topo-
logical summaries.

The classification results are consistent with our hypothesis that MPGF cap-
tures significant multidimensional information produced by filtration functions.
We notice that the proposed method outperforms current state-of-the-art ap-
proaches on 23.5% of benchmark problems. Furthermore, most of best results
are split among MP-K, MP-L and MPGF, leading us to conclude that these
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Figure 2: Multidimensional persistence on a graph network (original graph: left). Black numbers denote the
degree values of each node whilst red numbers show the edge weights of the network. Hence, shape properties
are computed on two filtration functions (i.e., degree and edge weight). While each row filters by degree, each
column filters the corresponding subgraph using its edge weights. For each cell, lower left corners represent the
corresponding threshold values. For each cell, B0 and B1 represent the corresponding Betti numbers.

to any Gj , one gets a bifiltration {Ĝji} (n ×m resolution) this time. As a result, one gets n PDs
as PD(Gi, ω) and induce the corresponding Mϕ. The difference is that in the first case (first apply
weights, then g), the filtration function plays more important role as Mϕ uses PD(Gi, g) while in the
second case (first apply g, then apply weights) weights have more important role as Mϕ is induced by
PD(Gj , ω). Note also that there is a very different filtration method for weighted graphs by applying
the following the following VR-complexes method.

Power (Vietoris-Rips) Filtration There is a highly different filtration technique using distances
between the data points in the dataset. The technique is called power filtration for unweighted
graphs Aktas et al. (2019), while it is called Vietoris-Rips filtration for other types of data Edelsbrunner
& Harer (2010). The idea is for a point cloud X = {x1, x2, . . . , xN}, one uses the pairwise distances
d(xr, xs) to construct the simplicial complexes in the filtration. In particular, for a threshold set
ε1 < ε2 < · · · < εn = diam(X ), one forms a Vietoris-Rips complex ∆j by adding a k-simplex to
X for any subset {xr0 , xr1 , . . . , xrk}, where the pairwise distances are all < εj . If a pair of points
xr1 , xr2 has distance < εj , then in the induced simplicial complex ∆j , we add an edge between the
corresponding vertices xr and xs. If three such points xr1 , xr2 , xr3 have pairwise distances < εj ,
then we fill the triangle er1r2 ∪ er2r3 ∪ er3r1 with a 2-simplex, and so on. This procedure induces
in a hierarchical nested sequence of simplicial complexes ∆1 ⊂ ∆2 ⊂ . . . ⊂ ∆m that is termed
Vietoris-Rips filtration induced by the point cloud X . For unweighted graphs, one takes the vertex set
V as the point cloud, and defines the distances d(vi, vj) as the shortest distance in the graph where
each edge has length 1. For weighted graphs, one can do the same by defining edge lengths induced
by the weights.

One can adapt Vietoris-Rips filtrations to our EMP setting as follows. Start with a filtration function
f : X → R with threshold set {αi}m1 and obtain X1 ⊂ X2 ⊂ · · · ⊂ Xm = X where Xi =
f−1((−∞, αi]). Then, apply Vietoris-Rips filtration to each Xi0 for threshold set {εj}nj=1 which
produces a filtration X̂i01 ⊂ X̂i02 ⊂ · · · ⊂ X̂i0n where X̂i0j is the Vietoris-Rips complex of Xi0
for threshold εj . Construct PD(Xi, V R) of these filtrations for each 1 ≤ i ≤ m. The following
steps are same Section 4.2. For a given SP vectorization ϕ, let ~ϕi be the corresponding 1× k vector
induced by ϕ(PD(Xi, V R)) with domain [ε1, εn]. Then, define EMP Mϕ as Mi

ϕ = ~ϕi where Mi
ϕ

is the ith row of Mϕ. Again, Mϕ is a 2D-vector (a matrix) of size m× k where m is the number of
thresholds for the filtration function f , and k is the length of the vector ~ϕ.
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D.3 MULTIPARAMETER PERSISTENCE THEORY

Multipersistence theory is under intense research because of its promise to significantly improve the
performance and robustness properties of single persistence theory. While single persistence theory
obtains the topological fingerprint of single filtration, a multidimensional filtration with more than
one parameter should deliver a much finer summary of the data to be used with ML models. However,
because of the technical issues in the theory, multipersistence has not reached to its potential yet
and remains largely unexplored by the ML community. Here, we provide a short summary of these
technical issues. For further details, Botnan & Lesnick (2022) gives a nice outline of current state of
the theory and major obstacles.

In single persistence, the threshold space {αi} being a subset of R, is totally ordered, i.e., birth
time < death time for any topological feature appearing in the filtration sequence {∆i}. By using
this property, it was shown that “barcode decomposition” is well-defined in single persistence
theory in 1950s [Krull-Schmidt-Azumaya Theorem Botnan & Lesnick (2022)–Theorem 4.2]. This
decomposition makes the persistence module M = {Hk(∆i)}Ni=1 uniquely decomposable into
barcodes. This barcode decomposition is exactly what we call a Persistence Diagram.

However, when one goes to higher dimensions, i.e. d = 2, then the threshold set {(αi, βj)} is
no longer totally ordered, but becomes partially ordered (Poset). In other words, some indices
have ordering relation (1, 2) < (4, 7), while some do not, e.g., (2,3) vs. (1,5). Hence, if one
has a multipersistence grid {∆ij}, we no longer can talk about birth time or death time as there
is no ordering anymore. Furthermore, Krull-Schmidt-Azumaya Theorem is no longer true for
upper dimensions Botnan & Lesnick (2022)–Section 4.2. Hence, for general multipersistence
modules barcode decomposition is not possible, and the direct generalization of single persistence to
multipersistence fails. On the other hand, even if the multipersistence module has a good barcode
decomposition, because of partial ordering, representing these barcodes faithfully is another major
problem. Multipersistence modules are an important subject in commutative algebra, where one can
find the details of the topic in Eisenbud (2013).

While complete generalization is out of reach for now, several attempts have been tried to utilize
MP idea (Lesnick, 2015). One of the first such novel idea came from Lesnick & Wright (2015)
where they suggest to use one dimensional slices in the MP grid, and to get the signature of the
most dominant features. Later, Carrière & Blumberg (2020) combined several slicing directions
(vineyards) and obtained a vectorization by summarizing several persistence diagrams (PDs) in these
directions. Slicing techniques use the persistence diagrams of predetermined one-dimensional slices
in the multipersistence grid, and then combine (compress) them as one dimensional output Botnan &
Lesnick (2022). In that respect, one major issue is that the topological summary highly depends on
the predetermined slicing directions in this approach, and how to decide this direction. The other
problem is the loss of information when compressing the information in various persistence diagrams.

As explained above, MP approach has still technical problems to reach its full potential, and there are
several attempts to utilize this idea. In this paper, we do not claim to solve theoretical problems of
multipersistence homology, but offer a novel, highly practical multidimensional topological summary
by advancing the existing methods. We use the grid directions in the multipersistence module as
natural slicing directions and produce mutidimensional topological summary of the data. As a
result, these multidimensional topological fingerprints are capable of capturing very fine topological
information hidden in the data. Furthermore, in the case the data provides more than two very
important filtration functions, our framework easily accommodates these functions and induces
corresponding substructures. Then, our EMP model capture the evolving topological patterns of these
substructures and summarize them in matrices and arrays which are highly practical output format to
be used with various ML models.

Our model is highly different from previous work mostly because of its practicality and computational
efficiency. Among these, the closest method to ours is Carrière & Blumberg (2020) which employs
slicing techniques a different way. Like us, they have predetermined slicing options (vineyards),
and they compute the single persistence diagrams on these slices and combine them in a unique
way by using weight functions induced from lifespans of the topological features in this collection
of persistence diagram. In our approach, we use only horizontal slices and do not compress the
information. First, choosing horizontal slices computationally very feasible to obtain persistence
diagrams. Second, we offer a variety of options on how to vectorize these persistence diagrams.
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Interview Questions
Ignacio Segovia-Dominguez

The University of Texas at Dallas / NASA Jet Propulsion Lab, Caltech

Second filtration:
V1

V2

V3

V4

V9�1

V9

V 9+1

V=�1

V=
...

First filtration:
U1

U2

U3

U4

U8�1

U8
U8+1

U<�1

U<

...

Kindly find below the list of questions I expect to hear during job interviews, and some point I may
mention during the interview.

1. What’s your reason for coming to the Carlos Alvarez College of Business in the University
of Texas at San Antonio?

(a) UTSA is a vibrant and supportive environment for researcher and the commercialization
of research discoveries. Thus, generating positive impact in the diverse communities and
society as a whole. UTSA is in the top of hispanic serving institutions in the nation.

(b) "Forty-five percent of UTSA students will be the first in their families to earn a degree.
Sixty-five percent are minorities."
I relate with the student population because I was a first-generation to college student to
the extend where neither parents nor grandparents went to college.

(c) UTSA is a minority-serving institution, thus when applying to research grants I may have
access to other resources and call for proposals.

(d) I am interested in a place where I can make a bigger impact, not only from my own work
but also through forming students that can improve social and economic development,
and The Carlos Alvarez College of Business has means to reach that goal. For instance
taking advantage of their connections with accounting firms, Amazon, Microsoft, H-E-B,
among others.

2. What’s your single greatest research achievement? And why is this your greatest?
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Figure 3: Illustration of the EMP framework for networks. Using the pair of filtration functions f ,
g we define non-decreasing thresholds {αi}m1 and {βj}n1 , respectively, based on node features, red,
and edge features, blue. Both, filtrations and vectorizations run in parallel to better use computational
resources and produce EMP representations in a timely manner.

Hence, depending on the dataset, one can use vectorization methods which emphasize long barcodes
(Silhouette with p > 1, Entropy, Persistence Image) or the ones which considers all signals equally
(Betti). Our experiments proved that these variety of options can be quite useful as some EMP
vectorizations give much better result than others in different datasets (Appendix G).

E FURTHER DETAILS ON EXPERIMENTS

E.1 BENCHMARK DATASETS AND EXPERIMENTAL SETUP

In our experiments, we use 11 benchmark datasets for graph classification tasks (see Table 2). We
have run our models for graph classification tasks on an 8-core DO droplet machine with Intel Xeon
Scalable processors at a base frequency of 2.5 Ghz. Table 2 summarize the statistics of the datasets in
our experiments.

Table 2: Summary statistics of the datasets.

Dataset # Graphs Avg. |V| Avg. |E| # Class Node Attr. (Dim.) Edge Attr. (Dim.)
BZR_MD 306 21.30 225.06 2 3 -
COX2_MD 303 26.28 335.12 2 3 -
DHFR_MD 393 23.87 283.02 2 - 1
MUTAG 188 17.93 19.79 2 - -
PROTEINS 1113 39.06 72.82 2 1 -
IMDB-B 1000 19.77 96.53 2 - -
IMDB-M 1500 13.00 65.94 3 - -
REDDIT-B 2000 429.63 497.75 2 - -
REDDIT-M-5K 4999 508.82 594.87 2 - -

The resolution of vectorization is the most significant parameter, which may impact the computational
performance and results. As such, we use a fixed resolution to get consistent results in all experiments
and consider time constraints on server usage. We use resolution size of 50×50 for each summary
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function, and the standard parameters set by the Gudhi library in Python 2. The order of landscape
summary function is set to 1 (max), whilst the power of weights is set to 1 for silhouette summaries.

Results in Table 1 comes from computing MP using filtration functions as follows. BZR_MD,
COX2_MD, and DHFR_MD use weighted node-degree and edge-power filtrations. PROTEINS
uses node-closeness and edge-betweenness power filtrations. MUTAG, IMDB-BINARY, and IMDB-
MULTI use node-katz centrality and edge-ricci curvature power filtrations. REDDIT-BINARY, and
REDDIT-MULTI-5K use node-katz centrality and edge-ricci curvature filtrations. We performed an
empirical analysis to select previous filter functions for each graph network. We use three types of
vectorizations: Betti curves, silhouette functions and entropy summary functions. For each case we
compute both 0-dim and 1-dim MP topological features.

F COMPUTATIONAL COMPLEXITY

Computational complexity (CC) of persistence diagram PDk(∆) is O(N 3), where N is the number
of k-simplices in ∆ (Otter et al., 2017). CC of EMP summary Md

ϕ depends on the vectorization
ϕ used and the number d of the filtration functions one uses. If r is the resolution size of the
multipersistence grid, then one needs r(d−1) single persistence diagrams to obtain Md

ϕ. Therefore,
CC(Md

ϕ) = O(r(d−1) · N 3 · Cϕ(m)) where Cϕ(m) is CC for ϕ and m is the number of barcodes
in PDk, e.g., if ϕ is persistence landscape, then Cϕ(m) = m2 and hence CC for EMP Landscape
with d = 2 is O(r · N 3 ·m2). In practice, r is a constant and m is small compared to N , hence the
complexity is again reduced to O(N 3). On the other hand, as Betti numbers do not need PDk to be
computed, it is possible to obtain much faster algorithms for EMP Betti Summary (Edelsbrunner &
Parsa, 2014). Recently, Lesnick & Wright (2022) introduced a quite fast algorithm for EMP Betti
summaries with O(M3) time whereM is the rank of the multipersistence module with minimal
representation.

G ABLATION STUDY

G.1 DIFFERENT TYPES OF EMP SUMMARIES

Furthermore, to evaluate the performance of different types of EMP summaries (i.e., EMP Silhouette
(EMP-S), EMP Entropy (EMP-E), and EMP Betti (EMP-B) with different dimensions (i.e., H0:
0-dimensional topology, and H1: 1-dimensional topology) and graph-based features (i.e., fV : node
features, and fE : edge features; see more details in Section 5.2 and Appendix E.1). We include
comparative statistics using all combinations of input variables, i.e. ablation study, for 3 datasets in
our analysis: BZR-MD (Table 3), DHFR-MD (Table 4), and REDDIT-BINARY (Table 5).

Each cell shows the classification accuracy (in % ± standard deviation) when using different combi-
nations of variables. The best accuracy result is highlighted using bold font. A row/column named as
’none’ means that either graph-based features, or EMP summaries where not used to compute the
experiments. As such, the top row shows all the accuracy results without using any EMP topological
features. The first/left column shows the results only using EMP topological features. The cell in the
bottom right corner, of each EMP group, contains the accuracy results using all graph-extracted/EMP
features available.

We can observe that: (i) best results contains 1-dimensional EMP summaries, demonstrating the
necessity of capturing higher-order structures (e.g., triangles/cycles), (ii) the choice of the EMP
summary can significantly affect the performance, and (iii) the addition of EMP topological features
generally improves accuracy of versions without EMP summaries, thus, demonstrating the importance
of modeling global and topological graph structures.

G.2 ORDER OF FILTRATION

With our novel approach, especially sublevel/superlevel filtration, we give a computationally very
efficient way to extract information of substructures of the data induced by multiple functions. Since

2https://gudhi.inria.fr/python/latest/
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Table 3: Ablation Study on BZR_MD dataset.

none fV fE fV + fE

none - 67.124 ± 1.959 58.714 ± 0.520 67.642 ± 1.724

EMP-B H0 67.870 ± 1.677 68.499 ± 1.962 67.514 ± 1.868 68.037 ± 2.035
EMP-B H1 69.205 ± 1.239 69.157 ± 1.220 68.935 ± 0.818 69.223 ± 1.058
EMP-B H0 + H1 68.100 ± 1.171 68.492 ± 1.245 68.335 ± 1.445 69.077 ± 1.470

EMP-E H0 65.190 ± 1.484 64.930 ± 2.045 64.962 ± 1.682 65.288 ± 1.754
EMP-E H1 77.469 ± 1.144 77.438 ± 0.727 77.441 ± 0.830 77.766 ± 0.952
EMP-E H0 + H1 73.023 ± 0.818 72.963 ± 1.014 73.057 ± 1.284 73.324 ± 1.086

EMP-S H0 68.135 ± 1.294 68.525 ± 0.865 68.426 ± 1.235 68.232 ± 0.969
EMP-S H1 71.068 ± 1.417 71.071 ± 1.167 70.906 ± 1.416 70.743 ± 1.275
EMP-S H0 + H1 72.282 ± 1.012 72.246 ± 0.883 72.682 ± 0.913 72.904 ± 0.901

Table 4: Ablation Study on DHFR_MD dataset.

none fV fE fV + fE

none - 68.333 ± 0.874 60.707 ± 1.455 68.058 ± 1.159

EMP-B H0 71.872 ± 0.804 72.097 ± 0.876 71.794 ± 0.541 72.121 ± 0.943
EMP-B H1 66.638 ± 0.690 68.190 ± 0.933 67.072 ± 0.705 68.774 ± 1.028
EMP-B H0 + H1 73.959 ± 0.746 74.087 ± 0.820 74.085 ± 0.671 74.213 ± 0.905

EMP-E H0 74.906 ± 0.968 74.550 ± 0.867 74.521 ± 1.066 74.523 ± 1.027
EMP-E H1 66.218 ± 1.499 66.424 ± 1.304 66.067 ± 1.152 66.397 ± 0.899
EMP-E H0 + H1 74.947 ± 0.663 74.849 ± 0.819 74.667 ± 0.922 74.796 ± 0.960

EMP-S H0 78.434 ± 0.344 78.028 ± 0.597 78.537 ± 0.677 78.309 ± 0.681
EMP-S H1 75.053 ± 0.909 74.953 ± 0.930 75.056 ± 0.785 75.259 ± 1.051
EMP-S H0 + H1 80.174 ± 1.081 80.503 ± 1.066 80.174 ± 0.864 80.126 ± 0.939

Table 5: Ablation Study on REDDIT-B dataset.

none fV fE fV + fE

none - 89.680 ± 0.300 79.590 ± 0.394 90.125 ± 0.277

EMP-B H0 88.925 ± 0.168 90.400 ± 0.145 89.145 ± 0.193 90.520 ± 0.204
EMP-B H1 80.715 ± 0.235 87.090 ± 0.217 84.620 ± 0.160 88.225 ± 0.280
EMP-B H0 + H1 89.970 ± 0.309 90.945 ± 0.184 90.025 ± 0.234 91.025 ± 0.221
EMP-E H0 88.140 ± 0.265 89.875 ± 0.185 88.400 ± 0.210 89.945 ± 0.177
EMP-E H1 79.850 ± 0.365 87.670 ± 0.303 84.600 ± 0.214 88.640 ± 0.156
EMP-E H0 + H1 89.285 ± 0.234 90.010 ± 0.234 89.240 ± 0.202 90.045 ± 0.221

EMP-S H0 86.150 ± 0.261 87.925 ± 0.162 86.940 ± 0.206 88.415 ± 0.241
EMP-S H1 77.580 ± 0.186 85.435 ± 0.332 81.580 ± 0.222 86.960 ± 0.346
EMP-S H0 + H1 86.790 ± 0.385 88.250 ± 0.266 87.410 ± 0.315 88.590 ± 0.377

we only use horizontal slices, the first function is only used for finer filtration, and the second function
gives the persistence diagrams. This makes our method a-symmetric (the order is important). Hence,
one can change the order and get different performance results for the model. This asymmetry
enriches our method as one can combine both feature vectors obtained by different order as they do
not contain the same information about the multipersistence grid. To observe the effect of changing
the order of the filtering functions, we run experiments on two benchmark datasets, BZR_MD and
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REDDIT-BINARY. Our experiments show that in some datasets, the order can be highly important,
while in others, it has negligible effect on the performance.

Table 6 (BZR_MD) shows significant changes in the performance for all our vectorizations (EMP-
Betti, EMP-Silhouette and EMP-Entropy). In Figure 4a, we also see in half of the models, one order
is better than the other, while in the other half of the models, the opposite is true. On the other hand,
we observe that for the REDDIT-BINARY dataset, the order is not as important for these functions
(Table 7 & Figure 4b) as the change in performance is not as significant as in BZR_MD.

Table 6: Graph Dataset BZR_MD. Impact on classification accuracy when modifying the filtration
ordering. SV and WE denotes sublevel filtration on nodes and weight fltration on edges, respectively.
The statistical significance, when one order is better that the other, is shown at three levels (0.1, 0.05,
0.01) and the best overall result of each order filtration is in bold font.

Order none fV fE fV + fE

none - - 67.124 ± 1.959 58.714 ± 0.520 67.642 ± 1.724
none - - 67.124 ± 1.959 58.714 ± 0.520 67.642 ± 1.724

EMP-B SV  WE 71.414 ± 1.638 71.446 ± 1.166 71.351 ± 1.107 71.610 ± 1.125
H0 WE  SV 76.192 ± 1.188∗∗∗ 76.363 ± 0.861∗∗∗ 75.804 ± 1.025∗∗∗ 75.809 ± 0.989∗∗∗

EMP-B SV  WE 69.047 ± 1.092 69.337 ± 0.833 69.114 ± 0.711 69.798 ± 0.845
H1 WE  SV 69.094 ± 1.231 70.196 ± 0.860∗∗ 69.648 ± 0.894 70.296 ± 0.973

EMP-B SV  WE 72.789 ± 1.544 72.946 ± 1.502 72.848 ± 1.286 73.204 ± 1.568
H0 + H1 WE  SV 75.156 ± 0.647∗∗∗ 74.996 ± 0.667∗∗∗ 75.160 ± 0.821∗∗∗ 75.055 ± 0.926∗∗∗

EMP-E SV  WE 71.967 ± 1.091 72.129 ± 1.335 71.803 ± 1.253 72.198 ± 1.280
H0 WE  SV 73.274 ± 0.963∗∗ 74.285 ± 1.206∗∗∗ 73.314 ± 1.258∗∗ 74.812 ± 1.419∗∗∗

EMP-E SV  WE 72.485 ± 1.209∗∗∗ 72.452 ± 1.121∗∗∗ 72.326 ± 0.725∗∗∗ 72.230 ± 1.330∗∗∗
H1 WE  SV 67.097 ± 1.364 65.853 ± 1.457 66.274 ± 1.370 66.246 ± 1.273

EMP-E SV  WE 75.498 ± 1.338 75.819 ± 1.209∗∗∗ 75.133 ± 1.357∗∗ 75.303 ± 1.303∗∗∗
H0 + H1 WE  SV 74.985 ± 1.112 73.410 ± 1.378 73.841 ± 1.200 73.053 ± 1.227

EMP-S SV  WE 69.191 ± 1.138 69.717 ± 0.859 69.224 ± 0.960 69.417 ± 1.036
H0 WE  SV 75.926 ± 1.051∗∗∗ 76.320 ± 0.952∗∗∗ 75.927 ± 0.597∗∗∗ 76.187 ± 0.713∗∗∗

EMP-S SV  WE 74.067 ± 0.534∗∗∗ 74.428 ± 0.723∗∗∗ 74.432 ± 1.003∗∗∗ 74.659 ± 0.919∗∗∗
H1 WE  SV 70.232 ± 1.211 69.903 ± 1.481 70.065 ± 1.347 70.068 ± 1.141

EMP-S SV  WE 77.658 ± 0.692∗∗∗ 78.025 ± 0.656∗∗∗ 77.794 ± 0.496∗∗∗ 77.861 ± 0.802∗∗∗
H0 + H1 WE  SV 74.760 ± 1.394 75.286 ± 1.054 75.028 ± 1.116 75.128 ± 1.099
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Table 7: Graph Dataset REDDIT-BINARY. Impact on classification accuracy when modifying the
filtration ordering. SV and WE denotes sublevel filtration on nodes and weight fltration on edges,
respectively. The statistical significance, when one order is better that the other, is shown at three
levels (0.1, 0.05, 0.01) and the best overall result of each order filtration is in bold font.

Order none fV fE fV + fE

none - - 89.680 ± 0.300 79.590 ± 0.394 90.125 ± 0.277
none - - 89.680 ± 0.300 79.590 ± 0.394 90.125 ± 0.277

EMP-B SV  WE 88.925 ± 0.168 90.400 ± 0.145 89.145 ± 0.193 90.520 ± 0.204
H0 WE  SV 90.005 ± 0.196∗∗∗ 90.825 ± 0.136∗∗∗ 90.135 ± 0.161∗∗∗ 90.925 ± 0.133∗∗∗

EMP-B SV  WE 80.715 ± 0.235 87.090 ± 0.217 84.620 ± 0.160 88.225 ± 0.280
H1 WE  SV 80.880 ± 0.335 88.300 ± 0.334∗∗∗ 85.030 ± 0.363∗∗∗ 88.895 ± 0.323∗∗∗

EMP-B SV  WE 89.970 ± 0.309 90.945 ± 0.184∗∗ 90.025 ± 0.234 91.025 ± 0.221∗∗
H0 + H1 WE  SV 90.020 ± 0.200 90.650 ± 0.270 90.125 ± 0.154 90.770 ± 0.198

EMP-E SV  WE 88.140 ± 0.265 89.875 ± 0.185 88.400 ± 0.210 89.945 ± 0.177
H0 WE  SV 89.695 ± 0.157∗∗∗ 90.245 ± 0.147∗∗∗ 89.850 ± 0.199∗∗∗ 90.450 ± 0.186∗∗∗

EMP-E SV  WE 79.850 ± 0.365∗∗∗ 87.670 ± 0.303 84.600 ± 0.214∗∗∗ 88.640 ± 0.156∗∗∗
H1 WE  SV 74.560 ± 0.308 87.545 ± 0.196 83.755 ± 0.239 88.350 ± 0.196

EMP-E SV  WE 89.285 ± 0.234 90.010 ± 0.234 89.240 ± 0.202 90.045 ± 0.221
H0 + H1 WE  SV 90.015 ± 0.192∗∗∗ 90.235 ± 0.243∗ 90.130 ± 0.200∗∗∗ 90.275 ± 0.171∗∗

EMP-S SV  WE 86.150 ± 0.261 87.925 ± 0.162 86.940 ± 0.206 88.415 ± 0.241
H0 WE  SV 89.380 ± 0.117∗∗∗ 90.345 ± 0.205∗∗∗ 89.545 ± 0.207∗∗∗ 90.455 ± 0.156∗∗∗

EMP-S SV  WE 77.580 ± 0.186∗∗∗ 85.435 ± 0.332 81.580 ± 0.222 86.960 ± 0.346
H1 WE  SV 75.165 ± 0.367 86.775 ± 0.292∗∗∗ 83.125 ± 0.415∗∗∗ 87.295 ± 0.325∗∗

EMP-S SV  WE 86.790 ± 0.385 88.250 ± 0.266 87.410 ± 0.315 88.590 ± 0.377
H0 + H1 WE  SV 89.715 ± 0.279∗∗∗ 90.495 ± 0.248∗∗∗ 89.780 ± 0.337∗∗∗ 90.580 ± 0.217∗∗∗

(a) (b)

Figure 4: Visual summary of the impact on classification accuracy when modifying the filtration
ordering, for each combination of features and EMP summaries. Whenever statistical hypothesis
support a winner, the corresponding cell is coloured either as blue (SV  WE ), or red (WE  SV ).
(a) BZR_MD. (b) REDDIT-BINARY.
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