
000 HOW TO TEACH LARGE MULTIMODAL MODELS 001 002 NEW SKILLS?

003
004 **Anonymous authors**
005
006 Paper under double-blind review

007 008 ABSTRACT

011 How can we teach large multimodal models (LMMs) new skills without erasing
012 prior abilities? We study sequential fine-tuning on five target skills while monitor-
013 ing general ability on eight held-out benchmarks across three model families. We
014 observe that apparent “forgetting” on held-out tasks after narrow fine-tuning can
015 partly recover at later stages. We trace this behavior to a measurable shift in the
016 output token distribution, manifested through a simple counting-bias probe that
017 identifies the shift co-varies with forgetting. Guided by this picture, we identify two
018 simple, robust tuning recipes that learn strongly while limiting drift: (i) updating
019 only the self-attention projection layers, and (ii) updating only the MLP Gate&Up
020 while freezing the Down projection. Across models and tasks, these choices deliver
021 strong target gains while largely preserving held-out performance.

023 1 INTRODUCTION

036 **Figure 1: Surprising Forgetting Behavior in LMMs:** **Left:** When fine-tuning most components on one target
037 task, we see major improvement in that task (“Learning”) but a substantial drop in performance of other tasks
038 (“Forgetting”, total across tasks shown here), as expected. But if we only tune self-attention projection layers
039 (SA Proj.) in the language model, we still get substantial learning on the target task with minimal forgetting.
040 **Right:** Even fine-tuning SA Proj. for multiple tasks sequentially, we see no forgetting. For others, we see large
041 forgetting on the PixmoCount task, but the models somehow partly recover what they “forgot” in learning the
042 next specialized task. Our paper documents and analyzes these and other interesting phenomena of learning and
043 forgetting in LMMs, leading to simple and effective ways to teach LMMs new skills.

044 Large multimodal models (LMMs), such as LLaVA (Liu et al., 2023b) and Qwen2.5-VL (Bai et al.,
045 2025), are trained to generate natural language answers based on image(s) and natural language
046 instruction. As such, these models can perform a wide range of tasks. However, for many special
047 domains, such as medical images, or skills, such as counting, the models do not perform as desired.
048 How can we teach LMMs something new without degrading existing capabilities?

049 Training a new LMM can cost millions of dollars, weeks of time, and emit hundreds of tons of CO₂,
050 so finding ways to more efficiently and effectively update existing models is a pressing concern.

051 One option is to simply fine-tune the model on the new task. However, at least for simpler models,
052 fine-tuning is known to cause catastrophic forgetting, such that a model previously proficient on many
053 tasks becomes a narrow expert on the new one. A more reliable method is to completely retrain the
054 model with an expanded training set, but this becomes increasingly impractical as the scale of training

054 data continues to climb. Intuitively, an intelligent system should be able to add to its knowledge
055 without repeating all of its learning. LMMs are sometimes trained in a single epoch (Li et al., 2024c)
056 raising a pressing question: do LMMs suffer catastrophic forgetting? Recent works (Chen et al.,
057 2024a; Yu et al., 2024; Zhu et al., 2024a) conclude yes, but our findings are more nuanced.

058 We study continual learning in LMMs using a controlled evaluation program. The target suite contains
059 five practical skills that span different answer formats (fine-grained bird classification, counting,
060 medical VQA, OCR reading, and time reading). The held-out suite contains eight widely used
061 benchmarks for general vision-language ability. We evaluate *learning* as improvement on the target
062 tasks and *forgetting* as the average drop on held-out tasks.

063 Our first goal is to identify tunable parts that deliver high target performance with minimal forgetting.
064 We compare full-model fine-tuning to tuning each major component (vision encoder, projector, LLM)
065 and then open the LLM into its two essential blocks—self-attention projections (SA Proj.) and the
066 feed-forward network (MLP). Early experiments on LLaVA-OneVision (Fig. 1) reveal two surprising
067 results: 1) tuning SA Proj. learns with little or no measurable forgetting across a five-task sequence;
068 and 2) what appears forgotten after one stage can be recovered by tuning another specialized task.

069 These results lead us to ponder: why is SA Proj. so robust to forgetting, and how is forgotten
070 knowledge recovered without rehearsing? Consider the roles of the two essential components in
071 the transformer decoder: self-attention projection is data processing, applying an algorithm to the
072 inputs (Elhage et al., 2021; Olsson et al., 2022), while MLPs perform external memory look up and
073 produce the output distribution (Geva et al., 2021). We thus hypothesize that perhaps what looks
074 like forgetting or interference after fine-tuning on a narrow target task is actually bias in the output
075 distribution due to the task distribution shift. Through in-depth analysis when tuning the counting
076 task, we confirm this hypothesis: tuning the MLP increases target accuracy but also increases the
077 likelihood of outputting numeric tokens and a highly correlated drop in held-out task accuracy, while
078 tuning the self-attention achieves the target learning without much bias toward numeric tokens and
079 without losing held-out accuracy (Sec. 5.2).

080 Guided by this result, we explore tuning recipes that preserve learning while limiting output shift. To
081 avoid biasing the output distribution, we tune the MLP up/gating projections while keeping the down
082 projection frozen, and find that it achieves similar learning to full MLP tuning with little forgetting.
083 We experiment on LLaVA-OneVision (Li et al., 2024c) by training five target tasks sequentially,
084 averaging over three sequence orders, measuring the learning and forgetting in target tasks and
085 held-out tasks (Sec. 5.1). We then confirm that similar trends hold for LLaVA-NeXT (Li et al., 2024b)
086 and Qwen2.5-VL (Bai et al., 2025) (Sec. 5.3).

087 In summary, our work documents and analyzes several interesting phenomena of learning and
088 forgetting in LMMs, leading to simple and effective ways to teach LMMs new tricks. The findings
089 are:

- 091 • **Tuning the LLM (Δ learning +31.8/ Δ forgetting -23.3) is critical for learning new tasks**, while
092 tuning the vision encoder (+9.6/-10.8) brings little gain and harms general ability.
- 093 • **Tuning only the self-attention projection weights (+24.9/-0.6) or the up layers of the MLP**
094 **(+30.5/-2.1) provides excellent learning with limited forgetting**, evaluated on a five-target task
095 sequence, eight held-out benchmarks, and three model families.
- 096 • **Forgetting is largely a manifestation of output distribution shift.** We use a simple counting-
097 bias probe to show that the rise in number-token likelihood grows with MLP tuning and remains
098 near baseline for self-attention tuning; the magnitude of this shift co-varies with held-out drops.
099 Therefore, forgetting can be recovered when subsequent tuning shifts back the output distribution,
100 and methods that limit shift effectively mitigate forgetting, such as distillation to the previous
101 checkpoint or freezing the MLP down projection while tuning the up&gate.

102 2 RELATED WORK

103 **Continual learning for traditional vision.** Continual learning, also known as lifelong learning
104 (Aljundi et al., 2017; Chen & Liu, 2018; Chaudhry et al., 2019), aims to train models on a
105 sequence of tasks or data streams without forgetting previously acquired knowledge. Traditionally, it
106 is mainly explored in closed-vocabulary image classification, and can be categorized into three main

108 types: (1) *regularization-based* methods try to preserve the knowledge captured in a previous version
109 of the model by matching logits (Li & Hoiem, 2017; Rebuffi et al., 2017), feature maps (Douillard
110 et al., 2020), or other information (Tao et al., 2020; Wang et al., 2022; Simon et al., 2021; Joseph et al.,
111 2022; PourKeshavarzi et al., 2022; Liu et al., 2023c) in the new model; (2) *exemplar replay* methods
112 build a reservoir of samples from old training rounds (Prabhu et al., 2020; Liu et al., 2024b; Luo et al.,
113 2023b; Liu et al., 2020; Rebuffi et al., 2017; Shin et al., 2017; Bang et al., 2021) and replay them in
114 successive training phases as a way of recalling past knowledge; and (3) *network-architecture-based*
115 methods (Liu et al., 2021; Wang et al., 2022) expand the network capacity for new target data and
116 freeze some network parameters to retain original knowledge. Recently, several studies (Jin et al.,
117 2022; Khattak et al., 2023a;b; Smith et al., 2023) show prompt tuning as an effective strategy for
118 continual learning, which freezes all weights but adds learnable prompts to optimize for new tasks.
119

120 **Vision-text contrastive models**, such as CLIP (Radford et al., 2021), are trained to align images and
121 texts for open-vocabulary image classification and retrieval. Pretrained CLIP models may outperform
122 on fine-grained or specialized tasks (Radford et al., 2021; Zhu et al., 2024c), pressing the need for
123 reliable continual learning approaches. Zhu et al. (2024c;b) propose learning to blend predictions
124 from original and tuned image encoders, enabling fast online learning without forgetting for open
125 vocabulary classification. Yu et al. (2024) adds parameter-efficient adapters to a mixture-of-experts
126 on a frozen CLIP model to prevent forgetting. Zhou et al. (2025) design task-specific projection
127 layers and cross-modal fusion modules for vision-language models in class-incremental learning.
128 Liu et al. (2025) incorporate continual low-rank adaptation and knowledge consolidation to prevent
129 forgetting. Zheng et al. (2023) use knowledge distillation (Li & Hoiem, 2017) on CLIP to maintain
130 zero-shot performance.

131 **Large language models (LLMs)**. Studies of LLMs evaluate the learning-forgetting trade-off across
132 various fine-tuning strategies on LLMs with billions of parameters, including full-model tuning,
133 adapters, LoRA, and prompt tuning. Luo et al. (2023a) find that decoder-only models are more
134 robust than encoder-decoder models. Lin et al. (2024) observe that models fine-tuned for narrow
135 domains lose ability on general tasks, but method like weight interpolation (WiSE-FT) (Wortsman
136 et al., 2022) helps maintain balance. Biderman et al. (2024) show that LoRA reduces learning and
137 forgetting, compared to full fine-tuning. Li et al. (2025) propose a dual-memory replay framework
138 with interpolated LoRA. Huang et al. (2024) generate pseudo-data from the model itself to mitigate
139 forgetting without requiring original training data. Xiang et al. (2023) propose to use regularization
140 strategies such as Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and hierarchical
141 importance-based penalties to preserve general knowledge by constraining updates to important
142 parameters. Wang et al. (2023) propose learning orthogonal LoRA weights for new tasks to mitigate
143 forgetting.

144 **Roles of attention and FFN in LLMs**. Mechanistic studies of transformer blocks show a division of
145 labor. Attention heads act primarily as *routing* and retrieval mechanisms: they select *where* to read
146 from using query–key patterns and then mix the corresponding values; this view is formalized in the
147 Transformer Circuits framework and supported by analyses of “induction heads,” which implement
148 a simple copying algorithm and closely track the emergence of in-context learning during training
149 (Olsson et al., 2022). In contrast, feed-forward (FFN/MLP) blocks behave like *key–value memories*:
150 learned keys detect input patterns while values write features that align with groups of vocabulary
151 items, thereby shifting the model’s output preferences (Geva et al., 2021). Meng et al. (2022) show
152 that directly modifying MLP weights updates specific facts while preserving unrelated behavior,
153 implying FFN as a principal site where “what to say” is stored. Earlier analyses in BERT and NMT
154 also found that a minority of attention heads specialize into linguistically interpretable roles (e.g.,
155 syntax, coreference) while many heads are prunable with little loss, reinforcing the view of attention
156 as selective routing rather than the main repository of lexical knowledge (Clark et al., 2019; Voita
157 et al., 2019). This literature aligns with our empirical finding that self-attention updates tend to
158 preserve global behavior while MLP updates are the main driver of output-distribution shift.

159 **Large multimodal models (LMMs)**. Relatively little work has investigated continual learning in
160 LMMs, but there is growing interest. Chen et al. (2024a) find that LMMs suffer from catastrophic
161 forgetting when learning a sequence of new tasks. Most studies of LMMs more narrowly focus on
162 visual question answering (VQA) (Zhang et al., 2023; Nikandrou et al., 2024; Lin et al., 2025; Marouf
163 et al., 2025; Del Chiaro et al., 2020) or image captioning (Nguyen et al., 2019). Zhang et al. (2023)
164 leverage both sample-specific and sample-invariant features to learn representations that are both
165 discriminative and generalizable for VQA tasks. Nikandrou et al. (2024) propose to distill knowledge

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: Architecture of our evaluated LMMs. The input contains visual inputs such as images or videos, which are converted to visual tokens by the vision encoder, and text input is processed by a tokenizer containing a visual placeholder token `<image>`. Visual tokens are converted by the projector and concatenated with text tokens as input for the language model. We visualize the architecture of the transformer decoder layer of the language model. "LN", "MHA", "MLP" represent layer norm, multi-head attention, and multi-layer perceptron, respectively. $r^{(l)}$ is the final output of layer l .

separately for each modality, ensuring that both image features and question features retain their relevant information when new tasks arrive. Lin et al. (2025) combine selective memory replay and knowledge distillation for VQA. Marouf et al. (2025) store only past questions from previous tasks as memory for rehearsal. For older models, Nguyen et al. (2019) integrate continual learning techniques, such as finetuning schemas and regularization, into the captioning pipeline to combat forgetting, and Del Chiaro et al. (2020) introduce an attention-based LSTM architecture.

Our work complements these studies in several ways: (1) more diverse tasks, such as counting, clock reading, classification, OCR, and medical VQA, finding large differences in the extent of learning and forgetting in each and that what is “forgotten” by one task can be recovered by learning the next (see Figs. 1 and 4); (2) systematic analysis that forgetting is highly related to output token distribution shift and methods that prevents shifts mitigate forgetting (Sec. 5.2 and 5.4); (3) investigation into tuning different components, finding that tuning MLP Gate&Up and SA Proj. provide a good balance of learning and forgetting.

3 METHOD

Setting. We adapt a pretrained large multimodal model on either a *single-target* task or a *sequential* stream of tasks. In the single-target case, given a target dataset \mathcal{D}_T and a held-out suite \mathcal{D}_H , the goal is to improve performance on \mathcal{D}_T while preserving performance on \mathcal{D}_H . In the sequential case, tasks $\{\mathcal{D}_T^{(1)}, \dots, \mathcal{D}_T^{(K)}\}$ arrive in stages; unless noted we update at each stage without rehearsal (no mixing of earlier tasks) and assess both the current target and the aggregated held-out suite after every stage.

3.1 MODEL

Overview of the LMM. Our evaluated LMMs have three major parts (Fig. 2): a vision encoder that turns an image into visual tokens, a projector that maps those tokens to the language width d , and a decoder-only transformer language model that produces next-token logits given the visual and text tokens.

Vision encoder and projector. The vision encoder produces $v = f_{\text{vis}}(I) \in \mathbb{R}^{S_v \times d_v}$. The projector maps to the language representation width,

$$x_{\text{vis}} = g_{\psi}(v) \in \mathbb{R}^{S_v \times d},$$

where ψ are the projector’s trainable parameters.

Language model. The language model is a pre-norm, decoder-only transformer with L identical blocks. As illustrated in Fig. 2, the sublayer outputs and residual update at block l are

$$a^{(l)} = \text{MHA}^{(l)}(\text{LN}(r^{(l-1)})), \quad f^{(l)} = \text{MLP}^{(l)}(\text{LN}(r^{(l-1)} + a^{(l)})), \quad r^{(l)} = r^{(l-1)} + a^{(l)} + f^{(l)}, \quad (1)$$

where MHA and MLP denote the **multi-head self-attention** and **feed-forward network** and LN is layer normalization.

216 *Self-attention.* With input x and per-head key width d_k ,
 217
 218 $\{Q, K, V\} = x \{W_Q, W_K, W_V\} \xrightarrow{\text{attention}} A = \text{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right) \xrightarrow{\text{value mix} + W_O} \text{MHA}(x) = (AV)W_O \quad (2)$
 219

220 Here W_Q, W_K set where to attend (routing), W_V selects the content to mix, and W_O is the matrix
 221 that writes the attention result back into the residual stream at model width d .
 222

223 *Feed-forward.* With input x and gating nonlinearity $\phi = \text{SiLU}$,

$$224 \quad \text{MLP}(x) = W_{\text{down}}(\phi(xW_{\text{gate}}) \odot (xW_{\text{up}})), \quad (3)$$

226 where $W_{\text{gate}}, W_{\text{up}}$ detect features (key-like pattern match), and W_{down} writes those features back to
 227 the residual at width d . We use $U \in \mathbb{R}^{d \times |V|}$ for the LM head and denote the final block output as
 228 $r^{(L)}$, so logits are $z = U^\top r^{(L)}$.
 229

230 **Residual stream.** Let $x_{\text{text}} \in \mathbb{R}^{S_t \times d}$ be the text embeddings and $x_{\text{vis}} \in \mathbb{R}^{S_v \times d}$ the projected visual
 231 tokens. The transformer input stacks them along the sequence:
 232

$$233 \quad r^{(0)} = [x_{\text{text}}; x_{\text{vis}}].$$

235 Unrolling the pre-norm recurrence over $l=1:L$ yields the representation read by the LM head,
 236

$$237 \quad r^{(L)} = r^{(0)} + \sum_{l=1}^L a^{(l)} + \sum_{l=1}^L f^{(l)}. \quad (4)$$

240 Eq. 4 shows the additive influences of attention and MLP outputs, but it does not imply disentangled
 241 influences: each $a^{(l)}$ and $f^{(l)}$ is a function of the shared stream $r^{(l-1)}$, so changing self-attention
 242 alters the inputs that later MLPs receive (and vice versa). Combined with Eqs. 2–3, we can change
 243 what concepts are activated by modifying the self-attention (since it feeds into the MLP) or the MLP
 244 up/gate layers, and we can change what to write given the activated concepts by changing the down
 245 layers. W_O determines the output of the attention layers, but the change in final model output is most
 246 influenced by the outputs of the final MLP layers, whichever parameters are tuned (Appendix Fig. 9).
 247

248 3.2 WHICH PARTS TO TUNE?

249 At the system level, one can update the **vision encoder** and the **projector** (which change $r^{(0)}$), or
 250 the **language model** (which produces the layerwise increments that accumulate into $r^{(L)}$). Because
 251 $z = U^\top r^{(L)}$ and the sublayers are coupled through the residual, we focus on controlled updates
 252 inside the LM that probe *routing* versus *writing* without altering the readout: we keep the LM head
 253 U , token embeddings, and layer-norm parameters fixed by default.
 254

255 Guided by Eqs. 2–3, we consider:

- 256 • **SA Proj.:** Update W_Q, W_K, W_V, W_O in all blocks (routing + write-back for attention).
- 257 • **SA Proj. (QKV):** Freeze W_O to emphasize routing without directly modifying write-back.
- 258 • **MLP:** Update $W_{\text{gate}}, W_{\text{up}}, W_{\text{down}}$ (concept activation + write-back).
- 259 • **MLP (Gate & Up):** Update $W_{\text{gate}}, W_{\text{up}}$ while freezing W_{down} to regulate write-back.

263 3.3 TRAINING OBJECTIVE

264 **Target task loss.** We use next-token cross-entropy on the current target dataset with teacher forcing.
 265 For a batch $\mathcal{B} \subset \mathcal{D}_T^{(k)}$ at stage k ,
 266

$$267 \quad \mathcal{L}_{\text{task}}(\theta) = \mathbb{E}_{(I, y) \sim \mathcal{B}} \left[- \sum_{t=1}^{|y|} \log p_\theta(y_t \mid y_{<t}, x_{\text{vis}}) \right], \quad x_{\text{vis}} = g_\psi(f_{\text{vis}}(I)). \quad (5)$$

270 **Learning-without-Forgetting (optional).** To explicitly curb the output-distribution drift, we can
 271 enforce a KL-divergence constraint between the outputs of the current model at stage k with a frozen
 272 teacher model (checkpoint after stage $k-1$). Let θ_{k-1} be the frozen teacher and θ the current model
 273 tuned on $\mathcal{D}_T^{(k)}$. The objective is
 274

$$\mathcal{L}(\theta) = \mathcal{L}_{\text{task}}(\theta) + \lambda \mathcal{L}_{\text{distill}}(\theta; \theta_{k-1}), \quad (6)$$

275 with
 276

$$\mathcal{L}_{\text{distill}}(\theta; \theta_{k-1}) = \mathbb{E}_{(I, y) \sim \tilde{\mathcal{B}}} \left[\frac{\tau^2}{|\mathcal{S}(y)|} \sum_{j \in \mathcal{S}(y)} \text{KL}\left(\text{softmax}\left(\frac{z_{\theta_{k-1}, j}}{\tau}\right) \parallel \text{softmax}\left(\frac{z_{\theta, j}}{\tau}\right)\right) \right], \quad (7)$$

281 where $\tilde{\mathcal{B}} \subset \mathcal{D}_T^{(k)}$ is a target minibatch, τ is the distillation temperature, and $\mathcal{S}(y)$ is a uniformly
 282 random subset of positions with $|\mathcal{S}(y)| = \min(|y|, 1000)$ so we distill over many tokens while
 283 capping compute/memory. The coefficient λ balances fitting the new supervision against preserving
 284 the model’s earlier behavior.
 285

286 4 EXPERIMENT DESIGN

288 Our experiments are designed to answer four questions: (i) **Where to tune?**—which components
 289 of an LMM can be updated to learn new skills while preserving prior abilities (Sec. 5.1); **Why**
 290 **does forgetting occur?**—whether performance loss is tied to a shift in the model’s output distri-
 291 bution (Sec. 5.2); (iii) **How generalizable is our selective tuning strategy**—whether the same
 292 selective-tuning recipes (SA Proj., MLP Gate&Up) transfer across model families (Sec. 5.3); and
 293 (iv) **How does our selective tuning compare to other simple forgetting mitigation approaches?**
 294 (Sec. 5.4).

295 Due to space limits, we provide details of the tasks and implementation in Appendix A and B.
 296

297 4.1 SEQUENCE-LEVEL METRICS

299 We summarize performance over the five-stage curriculum with four metrics computed for every
 300 method.
 301

- 302 • **Target Learning.** At each stage, consider only the task being tuned and measure its improvement
 303 over the base model on that task. We then average these stage-wise gains across all stages. This
 304 captures how well a method learns the task it is currently trained on.
- 305 • **Target Forgetting.** To measure forgetting on target tasks trained earlier in the sequence, we
 306 report the average difference between their accuracy immediately after they were trained and their
 307 accuracy at the end of the sequence. More negative means more forgetting.
- 308 • **Target Overall.** After training the full sequence, we compute the average performance change vs.
 309 the base model across all target tasks. This yields the net end-of-sequence effect on the target suite,
 310 combining the learned task and the previously learned targets.
- 311 • **Held-out Forgetting.** After training the full sequence of target tasks, we measure the average
 312 performance across all eight held-out benchmarks, in comparison to the base model. Negative
 313 values indicate forgetting on general vision–language ability; positive values indicate positive
 314 transfer.

316 5 RESULTS

318 5.1 COMPONENT TUNING ON LLAVA-ONEVISION

320 Fig. 1 previews learning (single-task tuning, left) and forgetting (held-out along the default se-
 321 quence, right). Tab. 1 summarizes the four sequence-level metrics on LLava-OneVision for each
 322 component-tuning configuration, averaged over three five-task curricula. Entries are percentage-point
 323 deltas from the base model; the baseline row reports absolute scores. For each column, we run paired
 324 sample t-tests on the per-sequence/per-task averages to test whether tuning different components

Table 1: **Effect of tuning different components: learning, forgetting, and overall performance, averaged over three five-task sequences.** Cells are colored using a blue-orange colormap to show performance changes. Blue indicates a positive change, where a darker shade is better. Orange indicates a negative change, where a lighter shade is better. We underline numbers that do not reflect a significantly different task-average distribution from the best, based on a two-sided paired sample t-test.

Method	Target Learning	Target Forgetting	Target Overall	Held-out Forgetting
Baseline	43.9	0.0	43.9	76.4
Full	+29.9	-25.9	+9.2	-27.4
- Vision Encoder	+9.6	-12.7	-0.5	-10.8
- Projector	+2.3	-0.8	+1.7	-1.3
- LLM	+31.8	-23.5	+13.0	-23.3
- SA Proj.	+24.9	-2.3	+23.1	-0.6
- SA Proj. (QKV)	+14.9	-0.5	+14.5	+0.2
- MLP	+31.1	-19.5	+15.5	-15.7
- MLP (Gate&Up)	+30.5	-4.2	+27.1	-2.1

leads to significantly different per-task learning, forgetting, or overall performance. We underline numbers that are *not* significantly different ($p > 0.1$) than the best. Detailed single-task and sequential results, together with per-task performance tables, are provided in the Appendix.

From the table, we find the following patterns:

1) Full-model tuning attains large learning but maximizes forgetting: Target Learning +29.9 is coupled with the worst Target/Held-out Forgetting (-25.9/-27.4).

2) Vision-side updates are weak or near-neutral: the vision encoder yields a modest Target Learning +9.6 with negative Target Overall -0.5 and Held-out Forgetting -10.8; projector-only updates barely move any metric (smallest changes overall).

3) Language-model tuning has the best learning: LLM shows the strongest Target Learning +31.8 and a solid Target Overall +13.0, but also substantial Target/Held-out Forgetting (-23.5/-23.3), even better than the Full model.

4) Self-attention projection is the most stable among LLM choices: SA Proj. achieves high Target Overall +23.1 with minimal forgetting (Target -2.3, Held-out -0.6); the conservative variant without W_O further reduces forgetting (Target -0.5, Held-out +0.2) at the cost of learning (+14.5 Target Overall), indicating over-regularization when the attention write-back is frozen.

5) Regulating the MLP write-back offers the best balance: MLP (Gate&Up) delivers near-maximal Target Learning +30.5 and the highest Target Overall +27.1 while keeping forgetting small (Target -4.2, Held-out -2.1); by contrast, full-MLP pushes learning slightly higher on the current task +31.1 but increases forgetting (Target -19.5, Held-out -15.7).

Overall, methods that mainly reroute evidence such as SA Proj. and SA Proj. (QKV), or constrain how activated concepts are written back, such as MLP Gate&Up, provide the most favorable learning–stability trade-off on LLaVA-OneVision.

5.2 OUTPUT-DISTRIBUTION PROBE (COUNTING BIAS)

To test whether forgetting is tied to a global shift in token preferences, we track a simple *number-token bias* (NTB) during counting adaptation: as training proceeds, how does the likelihood of outputting a numeric token change for a task that does not require counting? Let C be a fixed subset of vocabulary items (digits and common spelled numerals). For a fixed held-out batch, at training step s we generate a caption with deterministic greedy decoding and, at each step j , read the next-token distribution and take the maximum probability over C . Averaging first over all positions and then over the batch \mathcal{B} yields

$$\text{NTB}_s = \mathbb{E}_{(I, y) \in \mathcal{B}} \left[\frac{1}{|y|} \sum_{j=1}^{|y|} \max_{v \in C} p_{\theta_s}(v \mid y_{<j}, x_{\text{vis}}) \right].$$

We plot absolute NTB_s on a log-spaced grid of steps (1, 10, 100, 1000) for SA Proj., MLP, MLP (Gate&Up), MLP (LwE), and full LJM. As seen in Fig. 3, full LJM/MLP sharply increase NTB_s and

Figure 3: **Learning-forgetting tracks output-distribution shift.** On LLaVA-OneVision tuned for counting, we plot five curves over log-spaced steps for LLM, SA Proj., MLP, MLP (Gate&Up) and MLP (LwF). The dashed line represents the base model. **Left:** PixmoCount accuracy rises for all methods. **Middle:** mean held-out performance drops sharply for LLM and MLP, remains nearly unchanged for SA Proj., and is preserved by MLP (LwF); **Right:** the expected likelihood of number tokens on non-counting captions (LCS-558K (Liu et al., 2023a)) surges for LLM and MLP, stays near baseline for SA Proj., and has little changes for MLP (LwF).

Table 2: Component-level tuning experiments with **LLaVA-NeXT** and **Qwen2.5-VL**. "T" represents "Target" and "H" is for "Held-out". Underlined text of each column denotes the best method.

Method	LLaVA-NeXT (LLaMA-3 8B)				Qwen2.5-VL (7B)			
	T. Learn	T. Forget	T. Overall	H. Forget	T. Learn	T. Forget	T. Overall	H. Forget
Baseline	31.5	0.0	31.5	59.9	52.1	0.0	52.1	77.9
Full	+31.7	-20.3	+15.4	-32.0	+17.3	-5.2	+13.1	-17.5
- Vision + Projector	+0.1	-1.8	-1.3	-13.4	+12.1	-9.1	+4.9	-6.2
- LLM	+36.2	-21.2	+19.3	-35.9	+16.8	-5.9	+12.1	-24.6
- SA Proj.	+28.3	-7.9	+21.9	-7.7	+16.1	-1.6	+14.9	+0.6
- MLP	+34.9	-10.3	+26.6	-16.3	+17.7	-4.8	+13.9	-10.9
- MLP ($W_{\text{gate}}, W_{\text{up}}$)	+28.0	-8.9	+20.9	-8.7	+16.8	+0.4	+17.1	-4.6

their held-out accuracy drops in tandem; SA Proj. keeps NTB_s near the baseline with an essentially flat held-out curve; constraining the MLP write-back (tuning only Gate&Up) or distilling to the baseline checkpoint (LwF) suppresses the rise in NTB_s and correspondingly preserves held-out performance. In our setting, forgetting rises and falls with the magnitude of this shift: updates that mainly *reroute* evidence (SA Proj.) or *regulate write-back* (Gate&Up, LwF) learn the new skill while keeping drift small and thus interference small. We also create an analysis of per-layer contribution of SA Proj. and MLP to the output distribution shift in the Appendix (Fig. 9), which shows MLP drives the major shift, regardless of what gets tuned.

5.3 BEYOND LLaVA-ONEVISION: GENERALIZATION TO OTHER BACKBONES

We repeat the default five-task curriculum on two additional backbones **LLaVA-NeXT (LLaMA-3 8B)** and **Qwen2.5-VL (7B)**, using the same training protocol and sequence-level metrics as for LLaVA-OneVision. For vision-side updates, we tune the vision encoder and projector jointly, since they form a single interface that produces the visual token sequence consumed by the language model.

Across both backbones, the broad picture echoes LLaVA-OneVision: updating the language model is consistently effective for learning new skills; full-model and full-LLM tuning achieve large target task gains but come with the largest drops on held-out. Within the LM, two settings stand out as robust: self-attention projections deliver meaningful target learning with small held-out change, and MLP (Gate&Up) preserves most of the learning of full-MLP while limiting forgetting. There are, however, model-specific nuances worth noting. On **LLaVA-NeXT**, MLP achieves the strongest target-overall improvement but incurs a noticeably larger held-out decrease than SA Proj. or Gate&Up, which remain the most stable choices. LLaVA-NeXT is much more susceptible to forgetting in general than the other models. On **Qwen2.5-VL**, SA Proj. is particularly stable: held-out performance is maintained or slightly improved; MLP (Gate&Up) attains the best target-overall score with near-zero target forgetting; vision + projector tuning also yields non-trivial target gains with moderate stability cost, in contrast to its weaker effect on LLaVA-NeXT. Though Qwen2.5-VL appears to learn less, it

432 is worth noting that its baseline performance is much higher than that of other models. Overall, taking
 433 LLaVA-OneVision, LLaVA-NeXT, and Qwen2.5-VL together, the clearest cross-model takeaway
 434 is to prefer SA Proj. when stability on held-out is paramount and MLP (Gate&Up) when seeking
 435 near-maximal target learning with limited forgetting; projector-only updates are generally weak, and
 436 full-model / full-MLP tuning maximizes short-term gains at a clear stability cost.

437 5.4 MITIGATING FORGETTING

451 Figure 4: Comparison of different continual learning techniques in the default sequential task curriculum. For
 452 LwF, WiSE-FT, only the MLP layers are tuned. LoRA adapters are wrapped only on the MLP layers. MoE is
 453 also applied to the MLP layers.

454 Figure 4 compares three selective tuning recipes, i.e. MLP, SA Proj. and MLP (Gate&Up), with
 455 common forgetting mitigation methods: Learning without Forgetting (LwF) (Li & Hoiem, 2017),
 456 LoRA, Mixture-of-Experts (MoE), and weight-space ensembling (WiSE-FT) (Wortsman et al., 2022).
 457 Refer to the Appendix (Sec. G) for details of these methods. Two patterns emerge. First, SA Proj. and
 458 MLP (Gate&Up) provide the best learning–stability trade-off: SA Proj. keeps held-out performance
 459 essentially flat while achieving meaningful target gains, and MLP (Gate&Up) delivers stronger target
 460 improvements with only a small held-out change, being substantially more stable than MLP. Second,
 461 among the compared methods, WiSE-FT can preserve held-out accuracy better than LwF but requires
 462 careful selection of task-dependent blending coefficients; LwF reliably curbs forgetting yet may
 463 impact target task gains; MoE and LoRA do not match the learning–stability balance of SA Proj. or
 464 MLP (Gate&Up), with LoRA often lagging behind on target performance. Overall, selectively tuning
 465 SA Proj. or the MLP Gate&Up pair matches or exceeds these mitigation methods while remaining
 466 simple (no extra modules, no replay, no per-stage weight blending).

467 6 CONCLUSION

469 We sought to answer how to teach large multimodal models new skills without erasing prior abilities,
 470 and studied this across five target skills, eight held-out benchmarks, and three backbones. Our results
 471 show that the apparent loss on held-out tasks after narrow fine-tuning is often *temporary*: performance
 472 that drops at one stage can recover later. We trace this behavior to a measurable shift in the next-token
 473 distribution rather than the loss of concepts. A simple counting-bias probe makes this drift visible,
 474 and a layer-wise residual-to-logit analysis shows that most of the shift is written by late MLP blocks,
 475 not by self-attention. Guided by this, we find that tuning only the self-attention projection layers or
 476 only the MLP Gate&Up layers limits the bias, leading to good learning with limited forgetting across
 477 model families.

478 Thus, our study helps to understand the learning and forgetting behavior of LMMs, and our recom-
 479 mendations, to limit which components are tuned, are broadly applicable. We hope this work leads
 480 to more stable and efficient continuous improvement of LMMs, reducing the environmental and
 481 financial cost of model adaptation.

482 **Limitations.** Due to limited resources, we must leave exploration of many interesting aspects to
 483 future work, such as alternative architectures and longer sequences. Also, testing with much larger
 484 models, and additional modalities, such as audio, requires further study. Broader issues, such as
 485 privacy leakage, safety, and societal impact, remain open for future investigation.

486 7 REPRODUCIBILITY STATEMENT 487

488 We aim to make our results fully reproducible. The paper specifies the model backbones and
489 checkpoints (LLaVA-OneVision (Qwen2 7B), LLaVA-NeXT (LLaMA-3 8B), Qwen2.5-VL 7B),
490 the five target tasks and eight held-out benchmarks (Sec. A.1), the sequential curricula, and the
491 training/evaluation settings (Sec. B). Our sequence-level metrics are defined in Sec. 4.1 and used
492 consistently across methods. We provide implementation details, per-task prompts, decoding settings,
493 and numeric token lists in the appendix; method details for the output-distribution probe (Sec. 5.2)
494 are included as supplementary materials. We provide some additional interesting analysis in the
495 appendix as auxiliary information for our discovery path including the layer-wise residual-to-logit
496 analysis, combination of tunable parts, etc. We also provide the detailed per-task performance for
497 both single-task fine-tuning and sequential fine-tuning of each method. We will release code and
498 instructions to fetch datasets and model weights to facilitate end-to-end replication.
499

500 REFERENCES

501 Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a
502 network of experts. In *CVPR*, pp. 3366–3375, 2017.
503

504 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
505 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
506 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
507 Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-VL Technical Report.
508 *arXiv preprint arXiv:2502.13923*, 2025.

509 Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow memory:
510 Continual learning with a memory of diverse samples. In *CVPR*, pp. 8218–8227, 2021.
511

512 Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
513 Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and
514 John Patrick Cunningham. LoRA learns less and forgets less. *TMLR*, 2024.

515 Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
516 lifelong learning with A-GEM. In *ICLR*, 2019.
517

518 Cheng Chen, Junchen Zhu, Xu Luo, Hengtao Shen, Jingkuan Song, and Lianli Gao. CoIN: A
519 Benchmark of Continual Instruction Tuning for Multimodel Large Language Models. In *NeurIPS*,
520 2024a.

521 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
522 Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large vision-
523 language models? In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich
524 Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *NIPS*, 2024b.
525

526 Zhiyuan Chen and Bing Liu. Lifelong machine learning. *Synthesis Lectures on Artificial Intelligence
527 and Machine Learning*, 12(3):1–207, 2018.
528

529 Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does bert look at?
530 an analysis of bert’s attention. *arXiv preprint arXiv:1906.04341*, 2019.
531

532 Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
533 madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, Jiasen Lu, Taira Anderson, Erin
534 Bransom, Kiana Ehsani, Huong Ngo, YenSung Chen, Ajay Patel, Mark Yatskar, Chris Callison-
535 Burch, Andrew Head, Rose Hendrix, Favyen Bastani, Eli VanderBilt, Nathan Lambert, Yvonne
536 Chou, Arnavi Chheda, Jenna Sparks, Sam Skjonsberg, Michael Schmitz, Aaron Sarnat, Byron
537 Bischoff, Pete Walsh, Chris Newell, Piper Wolters, Tanmay Gupta, Kuo-Hao Zeng, Jon Borchardt,
538 Dirk Groeneveld, Crystal Nam, Sophie Lebrecht, Caitlin Wittlif, Carissa Schoenick, Oscar Michel,
539 Ranjay Krishna, Luca Weihs, Noah A. Smith, Hannaneh Hajishirzi, Ross Girshick, Ali Farhadi,
and Aniruddha Kembhavi. Molmo and pixmo: Open weights and open data for state-of-the-art
vision-language models. In *CVPR*, pp. 91–104, 2025.

540 Riccardo Del Chiaro, Bartłomiej Twardowski, Andrew Bagdanov, and Joost Van de Weijer. Ratt:
541 Recurrent attention to transient tasks for continual image captioning. In *NeurIPS*, volume 33, pp.
542 16736–16748, 2020.

543 Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet: Pooled
544 outputs distillation for small-tasks incremental learning. In *ECCV*, pp. 86–102, 2020.

545 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
546 Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
547 circuits. *Transformer Circuits Thread*, 1(1):12, 2021.

548 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
549 key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
550 Yih (eds.), *EMNLP*, pp. 5484–5495, 2021.

551 Gpiosenka. TIME - Image Dataset-Classification. <https://www.kaggle.com/datasets/gpiosenka/time-image-datasetclassification>.

552 Xuehai He, Yichen Zhang, Luntian Mou, Eric P. Xing, and Pengtao Xie. Pathvqa: 30000+ questions
553 for medical visual question answering. *CoRR*, abs/2003.10286, 2020.

554 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
555 and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In *ICLR*, 2022.

556 Jianheng Huang, Leyang Cui, Ante Wang, Chengyi Yang, Xinting Liao, Linfeng Song, Junfeng Yao,
557 and Jinsong Su. Mitigating catastrophic forgetting in large language models with self-synthesized
558 rehearsal. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *ACL*, pp. 1416–1428, 2024.

559 Woojeong Jin, Yu Cheng, Yelong Shen, Weizhu Chen, and Xiang Ren. A good prompt is worth
560 millions of parameters: Low-resource prompt-based learning for vision-language models. In
561 Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *ACL*, pp. 2763–2775, 2022.

562 K. J. Joseph, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer, and Vineeth N Bala-
563 subramanian. Energy-based latent aligner for incremental learning. In *CVPR*, pp. 7452–7461,
564 2022.

565 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min Joon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
566 A diagram is worth a dozen images. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling
567 (eds.), *ECCV*, volume 9908, pp. 235–251. Springer, 2016.

568 Muhammad Uzair Khattak, Hanoona Abdul Rasheed, Muhammad Maaz, Salman H. Khan, and
569 Fahad Shahbaz Khan. Maple: Multi-modal prompt learning. In *CVPR*, 2023a.

570 Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan
571 Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation without
572 forgetting. In *ICCV*, 2023b.

573 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
574 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
575 catastrophic forgetting in neural networks. *PNAS*, 114(13):3521–3526, 2017.

576 Bo Li, Hao Zhang, Kaichen Zhang, Dong Guo, Yuanhan Zhang, Renrui Zhang, Feng
577 Li, Ziwei Liu, and Chunyuan Li. Llava-next: What else influences visual instruc-
578 tion tuning beyond data?, May 2024a. URL <https://llava-vl.github.io/blog/2024-05-25-llava-next-ablations/>.

579 Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui Zhang, Feng Li, Yuanhan Zhang,
580 Ziwei Liu, and Chunyuan Li. Llava-next: Stronger llms supercharge multimodal ca-
581 pabilities in the wild, May 2024b. URL <https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/>.

582 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
583 Li, Ziwei Liu, and Chunyuan Li. LLaVA-OneVision: Easy Visual Task Transfer. *arXiv preprint*
584 *arXiv:2408.03326*, 2024c.

594 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
595 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
596 2023.

597 Xinlong Li, Weijieying Ren, Wei Qin, Lei Wang, Tianxiang Zhao, and Richang Hong. Analyzing and
598 reducing catastrophic forgetting in parameter efficient tuning. In *ICASSP*, pp. 1–5. IEEE, 2025.

600 Zhizhong Li and Derek Hoiem. Learning without forgetting. *TPAMI*, 2017.

601

602 Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang
603 Wang, Wenbin Hu, Hanning Zhang, Hanze Dong, Renjie Pi, Han Zhao, Nan Jiang, Heng Ji, Yuan
604 Yao, and Tong Zhang. Mitigating the Alignment Tax of RLHF. In *EMNLP*, 2024.

605 Yuxin Lin, Mengshi Qi, Liang Liu, and Huadong Ma. Vlm-assisted continual learning for visual
606 question answering in self-driving. *arXiv preprint arXiv:2502.00843*, 2025.

607

608 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *NeurIPS*, 36:
609 34892–34916, 2023a.

610 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual Instruction Tuning. In *NeurIPS*,
611 2023b.

612

613 Huan Liu, Lingyu Xiao, Jiangjiang Liu, Xiaofan Li, Ze Feng, Sen Yang, and Jingdong Wang. Revisit-
614 ing mllms: An in-depth analysis of image classification abilities. *arXiv preprint arXiv:2412.16418*,
615 2024a.

616 Wenzhuo Liu, Fei Zhu, Longhui Wei, and Qi Tian. C-clip: Multimodal continual learning for
617 vision-language model. In *ICLR*, 2025.

618

619 Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training: Multi-class
620 incremental learning without forgetting. In *CVPR*, pp. 12245–12254, 2020.

621

622 Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive aggregation networks for class-incremental
623 learning. In *CVPR*, pp. 2544–2553, 2021.

624

625 Yaoyao Liu, Yingying Li, Bernt Schiele, and Qianru Sun. Online hyperparameter optimization for
626 class-incremental learning. In *AAAI*, 2023c.

627

628 Yaoyao Liu, Yingying Li, Bernt Schiele, and Qianru Sun. Wakening past concepts without past data:
629 Class-incremental learning from online placebos. In *WACV*, pp. 2226–2235, 2024b.

630

631 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
632 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains
633 for science question answering. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
634 K. Cho, and A. Oh (eds.), *NIPS*, 2022.

635

636 Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
637 catastrophic forgetting in large language models during continual fine-tuning. *arXiv preprint
arXiv:2308.08747*, 2023a.

638

639 Zilin Luo, Yaoyao Liu, Bernt Schiele, and Qianru Sun. Class-incremental exemplar compression for
640 class-incremental learning. In *CVPR*, pp. 11371–11380, 2023b.

641

642 Imad Eddine Marouf, Enzo Tartaglione, Stephane Lathuiliere, and Joost van de Weijer. No images,
643 no problem: Retaining knowledge in continual vqa with questions-only memory. *arXiv preprint
arXiv:2502.04469*, 2025.

644

645 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq R. Joty, and Enamul Hoque. Chartqa: A
646 benchmark for question answering about charts with visual and logical reasoning. In Smaranda
647 Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *ACL*, pp. 2263–2279, 2022.

648

649 Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for VQA on document
650 images. In *WACV*, pp. 2199–2208. IEEE, 2021.

648 Minesh Mathew, Viraj Bagal, Rubén Tito, Dimosthenis Karatzas, Ernest Valveny, and C. V. Jawahar.
649 Infographicvqa. In *WACV*, pp. 2582–2591. IEEE, 2022.
650

651 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
652 associations in GPT. *NeurIPS*, 36, 2022. arXiv:2202.05262, doi:10.48550/arXiv.2202.05262.

653 Giang Nguyen, Tae Joon Jun, Trung Tran, Tolcha Yalew, and Daeyoung Kim. Contcap: A scalable
654 framework for continual image captioning. *arXiv preprint arXiv:1909.08745*, 2019.
655

656 Malvina Nikandrou, Georgios Pantazopoulos, Ioannis Konstas, and Alessandro Soglia. Enhancing
657 continual learning in visual question answering with modality-aware feature distillation. *arXiv
658 preprint arXiv:2406.19297*, 2024.

659 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
660 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
661 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
662 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
663 and Chris Olah. In-context learning and induction heads. *arXiv preprint arXiv:2209.11895*, 2022.

664 Mozhgan PourKeshavarzi, Guoying Zhao, and Mohammad Sabokrou. Looking back on learned
665 experiences for class/task incremental learning. In *ICLR*, 2022.
666

667 Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. GDumb: A simple approach that questions
668 our progress in continual learning. In *ECCV*, pp. 524–540, 2020.

669 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
670 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
671 Learning transferable visual models from natural language supervision. In *ICML*, 2021.
672

673 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCARL:
674 Incremental classifier and representation learning. In *CVPR*, 2017.

675 Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. RL’s razor: Why online reinforcement learning
676 forgets less, 2025. URL <https://arxiv.org/abs/2509.04259>.
677

678 Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
679 replay. In *NeurIPS*, pp. 2990–2999, 2017.

680 Christian Simon, Piotr Koniusz, and Mehrtash Harandi. On learning the geodesic path for incremental
681 learning. In *CVPR*, pp. 1591–1600, 2021.

682 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
683 and Marcus Rohrbach. Towards VQA models that can read. In *CVPR*, pp. 8317–8326, 2019.

684 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
685 Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
686 attention-based prompting for rehearsal-free continual learning. In *CVPR*, 2023.

687 Xiaoyu Tao, Xinyuan Chang, Xiaopeng Hong, Xing Wei, and Yihong Gong. Topology-preserving
688 class-incremental learning. In *ECCV*, pp. 254–270, 2020.

689 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
690 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
691 *CVPR*, pp. 8769–8778, 2018.
692

693 visheratin. RealWorldQA: Benchmark for real-world spatial understanding, 2024.

694 Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-
695 attention: Specialized heads do the heavy lifting, the rest can be pruned. In *ACL*, pp. 5797–5808,
696 2019. doi: 10.18653/v1/P19-1580.

697 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
698 birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology,
699 2011.

700

702 Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and
703 compression for class-incremental learning. In *ECCV*, 2022.
704

705 Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
706 Xuanjing Huang. Orthogonal subspace learning for language model continual learning. In Houda
707 Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of EMNLP*, 2023.

708 Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao Zhang,
709 Xiaoyu Zhang, Liang Zeng, Xiaokun Wang, Yutuan Ma, Rui Hu, Shuicheng Yan, Han Fang, and
710 Yahui Zhou. Skywork-moe: A deep dive into training techniques for mixture-of-experts language
711 models. *arXiv preprint arXiv:2406.06563*, 2024.

712 Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
713 Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig
714 Schmidt. Robust fine-tuning of zero-shot models. In *CVPR*, 2022.
715

716 Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting Hu.
717 Language models meet world models: Embodied experiences enhance language models. In
718 *NeurIPS*, volume 36, pp. 75392–75412, 2023.

719 Jiazu Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
720 Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters. In *CVPR*, 2024.
721

722 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
723 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. LMMs-Eval: Reality Check on the
724 Evaluation of Large Multimodal Models. *arXiv preprint arXiv:2407.12772*, 2024.

725 Xi Zhang, Feifei Zhang, and Changsheng Xu. Vqacl: A novel visual question answering continual
726 learning setting. In *CVPR*, pp. 19102–19112, 2023.
727

728 Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
729 zero-shot transfer degradation in continual learning of vision-language models. In *CVPR*, pp.
730 19125–19136, 2023.

731 Da-Wei Zhou, Yuanhan Zhang, Yan Wang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu.
732 Learning without forgetting for vision-language models. *TPAMI*, 2025.
733

734 Didi Zhu, Zhongyi Sun, Zexi Li, Tao Shen, Ke Yan, Shouhong Ding, Chao Wu, and Kun Kuang.
735 Model tailor: Mitigating catastrophic forgetting in multi-modal large language models. In *ICML*,
736 2024a.

737 Zhen Zhu, Yiming Gong, and Derek Hoiem. Anytime Continual Learning for Open Vocabulary
738 Classification. In *ECCV*, volume 15064, 2024b.
739

740 Zhen Zhu, Weijie Lyu, Yao Xiao, and Derek Hoiem. Continual learning in open-vocabulary classifi-
741 cation with complementary memory systems. *Trans. Mach. Learn. Res.*, 2024, 2024c.
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 Appendix

757

758 CONTENTS

760

761	A Task design	16
762	A.1 Tasks and evaluation suites	16
763	A.2 On building target tasks	16
764	A.3 Task curriculum	17
765		
766	B Implementation details	17
767	B.1 Implementation details for LLaVA-OneVision	17
768	B.2 Parameter count for LLaVA-OneVision	17
769	B.3 Implementation details for Qwen2.5-VL and LLaVA-NeXT (LLaMA 3)	18
770	B.4 Implementation details for Sec. 5.2: Output-distribution probe (counting bias)	18
771	B.5 Numerical token list used for counting bias probe	18
772		
773	C Discovery Process	19
774		
775	D Use of Large Language Models (LLMs)	20
776		
777	E More results	20
778	E.1 Single task fine-tuning	20
779	E.2 Sequential fine-tuning	21
780		
781	F More analysis	22
782	F.1 Composing stable tuning strategies: SA Proj. + MLP Gate&Up	22
783	F.2 Layer-wise residual-to-logit contribution analysis	23
784	F.3 Effect of tuning different LLM layers	24
785	F.4 Qualitative results of MLP and SA Proj. tuning	25
786	F.5 Training efficiency comparison of different forgetting mitigation methods	25
787	F.6 Output Distribution Dynamics Across Forgetting and Recovery	26
788	F.7 Qualitative Analysis of Forgetting and Recovery	27
789		
790	G Forgetting mitigation approach descriptions	28
791		
792	H Detailed task performance	30
793	H.1 Forgetting mitigation methods sequential tuning tables	30
794	H.2 Sequential tuning detailed performance tables on LLaVA-OneVision	31
795	H.3 Sequential tuning detailed performance tables on LLaVA-NeXT (LLaMA 3)	32
796	H.4 Sequential tuning detailed performance tables on Qwen2.5-VL	33
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A TASK DESIGN
811

812 A.1 TASKS AND EVALUATION SUITES
813

814 **Target tasks.** Our criteria for target task selection are: (1) prefer tasks that occur in daily experience,
815 like counting and reading clocks preferred; (2) prefer tasks that LMMs are known to be typically
816 weak, such as fine-grained species classification (Liu et al., 2024a); and (3) exclude tasks used to
817 train the original LLaVA-OneVision model. Based on this, we select **5 target tasks** and create a
818 **default sequential-tuning task curriculum**:

819 1. **Bird classification** from the CUB dataset (Wah et al., 2011) which contains 5,994 training samples.
820 We reformat the dataset following the instructions of (Liu et al., 2024a) for training and evaluating
821 LMMs.
822 2. **Counting** from the PixmoCount dataset (Deitke et al., 2025) which contains 36,140 training
823 samples with object count labels.
824 3. **Medical VQA** from the PathVQA dataset (He et al., 2020) which contains 19,654 radiology
825 question answer pairs.
826 4. **OCR reading** from the TextVQA dataset (Singh et al., 2019) which has 34,602 training samples.
827 5. **Time reading** from the TimeClock dataset (Gpiosenka) containing 11,520 training images of
828 analogue clocks with ground truth times.
829

830 In total, the curriculum contains 107,910 training samples, providing a comprehensive stress test for
831 forgetting and knowledge transfer.
832

833 **Held-out suite.** To measure generalization beyond the training stream, we evaluate on eight held-out
834 benchmarks: AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022), DocVQA (Mathew et al.,
835 2021), InfoVQA (Mathew et al., 2022), RealWorldQA (visheratin, 2024), SeedBench (Li et al., 2023),
836 ScienceQA (Lu et al., 2022), and MMStar (Chen et al., 2024b). InfoVQA and DocVQA use ANLS;
837 since ANLS is in $[0, 1]$, we average it with accuracies from the other held-out tasks when reporting
838 the mean held-out score.
839

840 A.2 ON BUILDING TARGET TASKS
841

842 Our training and evaluation scripts are built on the `LLaVA-NeXT` and `lmms-eval` public GitHub
843 repositories. Since some of the target tasks are not supported by `lmms-eval`, we need to implement
844 support for evaluation of target tasks. Details are as follows.
845

846 **Bird classification.** We reformulate the bird classification dataset CUB200 (Wah et al., 2011) to
847 a multiple choice VQA task following (Liu et al., 2024a). Specifically, for a `<image>` and `<class
848 name>` pair, we mix the correct label with 31 randomly chosen labels from the whole dataset and
849 then compose a question like:

850 `<image> What species is the bird in this photo?`
851 Answer with the option's letter from the given choices directly.
852 `\n A.<class name A> \n B.<class name> \n ... Z.<class name Z>`
853

854 This task has 5,794 validation samples. The **instruction prompt** for this task is: “*Answer with the
855 option's letter from the given choices directly.*” And only exact match can be deemed as correct by
856 lowercasing model’s output and compared to lowercased ground-truth answer.
857

858 **Counting.** The original `PixmoCount` dataset provides download links rather than actual image files.
859 By the time of downloading, not all links are valid. In the end, besides 36,140 training samples, we
860 collected 535 and 536 validation and test samples. We use the validation set to report numbers in
861 the paper, as done in the technical report of Pixmo dataset (Deitke et al., 2025). The **instruction
862 prompt** for this task is “*Answer with integer and nothing else. For example, if the answer is 1, you
863 should output 1.*”. We convert the output by the model to digits and then use exact match to compute
accuracy.

864
865 **Table 3: Parameter groups and counts for LLaVA OneVision Qwen2-7B**
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880 **Medical VQA.** We use the test split of the [PathVQA dataset](#) for evaluation, containing 6,719
881 samples. The **instruction prompt** for this task is “*For questions that can be answered with a yes or*
882 *no, just answer yes or no. Otherwise, provide an answer in the medical domain.*” We use the exact
883 match score as the metric for this task, using the [official evaluation algorithm](#).
884
885 **OCR reading.** `1mms-eval` has support for TextVQA evaluation and we use the accuracy on the
886 validation set as the performance for this task.
887
888 **Time reading.** We evaluate on the validation split of the [TimeClock](#) dataset, which contains 1,440
889 samples. The instruction prompt is “*Answer with the time in HH:MM format. For example, if it is*
890 *3:45, output 3:45.*” To compute accuracy, we parse the model’s output to extract the hour and minute.
891 A prediction is marked correct only when both values match the ground truth.
892
893 **A.3 TASK CURRICULUM**
894
895 We provide three task sequences for sequential-tuning:
896 1. CUB200 → PixmoCount → PathVQA → TextVQA → TimeClock
897 2. PathVQA → CUB200 → TextVQA → TimeClock → PixmoCount
898 3. TimeClock → TextVQA → PathVQA → PixmoCount → CUB200
899
900 Unless otherwise stated, we use the first as the default sequential-tuning sequence.
901
902 **B IMPLEMENTATION DETAILS**
903
904 **B.1 IMPLEMENTATION DETAILS FOR LLaVA-ONEVISION**
905
906 We adopt the [7B Qwen2 language model checkpoint](#) for experiments on LLaVA-OneVision.
907 Experiments run primarily on 4×NVIDIA H100 GPUs with 1 sample per GPU. We use 8
908 gradient-accumulation steps (effective batch 32), a learning rate of 5×10^{-6} with cosine decay,
909 and a 3% warm-up. Following the practice from (Li et al., 2024a), we use a smaller learning rate at
910 2×10^{-6} when tuning the vision encoder and the projector. Evaluation uses `1mms-eval` (Zhang
911 et al., 2024) with added support for our targets. When we activate LwF, we set $\lambda=1$ and $\tau=2$. For
912 all the experiments, we perform single epoch training.
913
914 **B.2 PARAMETER COUNT FOR LLaVA-ONEVISION**
915
916 Tab. 3 lists the parameter groups and counts of each part in the LLaVA-OneVision model. It can be
917 seen that the language model takes a large part of the total capacity of the model. Within the language
model, MLP is the major consumer of parameters.

Group	Components	#Params
Θ_{VE}	SigLIP vision encoder	≈ 400 M
Θ_{Proj}	Multimodal projector	≈ 20 M
Θ_{SA}	All blocks: W_Q, W_K, W_V, W_O	≈ 822 M
Θ_{MLP}	All blocks: $W_{\text{gate}}, W_{\text{up}}, W_{\text{down}}$	$\approx 5,703$ M
Θ_{Emb}	Input token embeddings	≈ 545 M
Θ_{LM}	LM head U	≈ 545 M

^a SigLIP So400M vision backbone, about 400M parameters.

^b OneVision Stage 1 projector is about 20M parameters for the 7B class.

^c Per layer counts with $d=3584$, $d_{kv}=512$, $L=28$: SA 29,364,736, MLP up 135,790,592, MLP 203,685,888; totals multiply by L .

^d Vocab size 152,128 and width $d=3584$ give $152,128 \times 3584 = 545,226,752$ parameters for embeddings and for the LM head (untied).

Medical VQA. We use the test split of the [PathVQA dataset](#) for evaluation, containing 6,719 samples. The **instruction prompt** for this task is “*For questions that can be answered with a yes or no, just answer yes or no. Otherwise, provide an answer in the medical domain.*” We use the exact match score as the metric for this task, using the [official evaluation algorithm](#).

OCR reading. `1mms-eval` has support for TextVQA evaluation and we use the accuracy on the validation set as the performance for this task.

Time reading. We evaluate on the validation split of the [TimeClock](#) dataset, which contains 1,440 samples. The instruction prompt is “*Answer with the time in HH:MM format. For example, if it is 3:45, output 3:45.*” To compute accuracy, we parse the model’s output to extract the hour and minute. A prediction is marked correct only when both values match the ground truth.

A.3 TASK CURRICULUM

We provide three task sequences for sequential-tuning:

1. CUB200 → PixmoCount → PathVQA → TextVQA → TimeClock
2. PathVQA → CUB200 → TextVQA → TimeClock → PixmoCount
3. TimeClock → TextVQA → PathVQA → PixmoCount → CUB200

Unless otherwise stated, we use the first as the default sequential-tuning sequence.

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS FOR LLaVA-ONEVISION

We adopt the [7B Qwen2 language model checkpoint](#) for experiments on LLaVA-OneVision. Experiments run primarily on 4×NVIDIA H100 GPUs with 1 sample per GPU. We use 8 gradient-accumulation steps (effective batch 32), a learning rate of 5×10^{-6} with cosine decay, and a 3% warm-up. Following the practice from (Li et al., 2024a), we use a smaller learning rate at 2×10^{-6} when tuning the vision encoder and the projector. Evaluation uses `1mms-eval` (Zhang et al., 2024) with added support for our targets. When we activate LwF, we set $\lambda=1$ and $\tau=2$. For all the experiments, we perform single epoch training.

B.2 PARAMETER COUNT FOR LLaVA-ONEVISION

Tab. 3 lists the parameter groups and counts of each part in the LLaVA-OneVision model. It can be seen that the language model takes a large part of the total capacity of the model. Within the language model, MLP is the major consumer of parameters.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 4: Numeric token indices and their corresponding tokens.

Index / Token	Index / Token	Index / Token	Index / Token
15 0	16 1	17 2	18 3
19 4	20 5	21 6	22 7
23 8	24 9	603 one	1960 ten
3966 One	5225 ONE	11613 Two	14154 zero
17999 Zero	19641 Three	19789 two	26972 Four
27856 three	32687 Ten	34024 four	37020 Five
41460 Six	50364 six	52670 five	58313 million
59085 Eight	59528 Seven	67532 eight	73956 ZERO
75796 Twenty	80185 seven	83329 Nine	91602 Thirty
93223 nine	93965 twenty		

B.3 IMPLEMENTATION DETAILS FOR QWEN2.5-VL AND LLAVA-NEXT (LLAMA 3)

We adopt the [7B Qwen2.5 checkpoint](#) for experiments on Qwen2.5-VL. For all experiments on Qwen2.5-VL, we use 4 H100 GPUs and set learning rate at 2e-5 for all components in the model. Per-GPU batch size is set to 4, with 4 gradient accumulation steps. Therefore, the effective batch size is 64.

For experiments on LLava-NeXT (LLaMA-3), we use the [8B LLaMA-3 checkpoint](#). We adopt the same learning rate, warm-up ratio, batch size, gradient accumulation steps as tuning LLava-OneVision.

For all the relevant experiments, we perform single epoch training.

B.4 IMPLEMENTATION DETAILS FOR SEC. 5.2: OUTPUT-DISTRIBUTION PROBE (COUNTING BIAS)

Setup. Fix a token subset C (digits and common spelled numerals; exact list in the repo) and a held-out batch $\hat{\mathcal{B}} = \{(I, y)\}$ of $|\hat{\mathcal{B}}| = 100$ image–caption pairs sampled once from LCS-558K (reused for all checkpoints and methods). For each checkpoint s and each $(I, y) \in \hat{\mathcal{B}}$, generate a caption \hat{y} with deterministic greedy decoding using identical preprocessing and decoding settings across methods.

Per-position score. At generation step j , before committing the token, read the model’s next-token probabilities and compute the per-position number tendency

$$p_C^{\max}(\theta_s; I, \hat{y}, j) = \max_{v \in C} p_{\theta_s}(v \mid \hat{y}_{<j}, x_{\text{vis}}).$$

Per-example and batch aggregates. Summarize each example by the sequence average

$$\text{SeqAvg}_C(\theta_s; I) = \frac{1}{|\hat{y}|} \sum_{j=1}^{|\hat{y}|} p_C^{\max}(\theta_s; I, \hat{y}, j),$$

and aggregate over the batch to obtain the *number-token bias* at checkpoint s :

$$\text{NTB}_s = \frac{1}{|\hat{\mathcal{B}}|} \sum_{(I, y) \in \hat{\mathcal{B}}} \text{SeqAvg}_C(\theta_s; I).$$

B.5 NUMERICAL TOKEN LIST USED FOR COUNTING BIAS PROBE

In Tab. 4, we list the total 38 numeric tokens we used for counting bias probe, and their indices in the tokenizer. The numeric tokens include numeric digits and words such as "one", "ONE", etc.

972 C DISCOVERY PROCESS
973
974

975 In science, the ordering of observation, hypotheses, experimental results, and explanation is important
976 — to know whether claims are post-hoc rationalization of results or experiments are a confirmation of
977 hypotheses that were based on prior observations. Therefore, we wish to give a full accounting.

978 In beginning this research, we first sought to verify the problem of “catastrophic forgetting” in
979 LMMs. While prior works had largely confirmed the forgetting, these works tending to involve a
980 limited range of tasks, so we created a diverse set of target tasks, some of which we expected to
981 be very hard for the LLaVA-OneVision model (e.g. counting and telling time), and others to be
982 easy (e.g. bird identification and TextVQA). After confirming that typical tuning practices, such as
983 tuning the vision component, LLM, or full model, led to substantial forgetting, we thought we would
984 turn to mitigation strategies, such as experience replay, model expansion with mixture-of-experts,
985 knowledge distillation, and weight averaging. We also noticed a surprising result, that the model
986 performance would drop significantly in held out benchmarks after training on the counting task,
987 it would mostly recover on PathVQA, another specialized task that is not well represented in the
988 benchmarks. Meanwhile, while performing the forgetting mitigation experiments, we also tried
989 separately tuning only the self-attention projection (SA Proj) or MLP layers, motivated by the finding
990 that tuning only the LLM was generally better than tuning the full model. This led to another very
991 surprising result — that tuning only self-attention projection layers led to very good learning of the
992 target tasks with no drop in performance in held out tasks, even after training all five target tasks in
993 a sequence. This was surprising because we were not aware of other instances of strong learning
994 without forgetting behavior, in the absence of model expansion, rehearsal, or strong regularization. A
995 third interesting result was that knowledge distillation turned out to be the most effective method for
996 mitigating forgetting that we tried, outperforming e.g. replay of examples from earlier target tasks
997 and a mixture-of-experts scheme for model expansion.

998 Initially, we sought to stress test these results. Indeed, we found that if we keep training new tasks,
999 such as the large long-tailed task of iNaturalist (Van Horn et al., 2018) classification, we see a little
1000 bit of forgetting. Also, in tuning other models, LLaVA-NeXT and Qwen2.5-VL (Table 2), we do not
1001 see exactly the same numbers, of course, but the major trends hold. With Qwen2.5-VL, we actually
1002 get a little forward transfer on the held-out tasks when tuning SA Proj. With LLaVA-Next, we get a
1003 7.7 point drop in held out tasks, but less than half the forgetting of tuning MLP layers and less than
1004 one-quarter as much as tuning the full LLM. We also tried other sequences of target task training and
1005 found that the post-counting recovery of forgetting was not a fluke. For example, we see recovery
1006 from both PixmoCount and TimeClock when reversing the sequence order. By-and-large, the results
1007 held — fine-tuning self-attention is remarkably robust to forgetting, what was “forgotten” can be
1008 recovered without rehearsal, and regularizing the outputs with knowledge distillation also is highly
1009 effective in mitigating forgetting when tuning the MLP.

1010 We performed many other experiments, but our breakthrough in understanding came from reviewing
1011 the literature, particularly in work, such as Geva et al. (Geva et al., 2021) and Olsson et al. (Olsson
1012 et al., 2022), that experimentally explore the roles of transformer components. Their key results are
1013 that MLPs are responsible for storing and applying memories, with the up layer(s) looking up the
1014 memories (or activating concepts) and the down layers applying the activated concepts to modify the
1015 output token distribution. Attention, on the other hand, is responsible for processing and organizing
1016 the inputs. This led us to consider that a model can adapt to a task in many ways: acquiring skills to
1017 make better use of its inputs, acquiring new memories and concepts, better applying those concepts, or
1018 simply biasing toward the output distribution. We hypothesized that, when training the full LLM, the
1019 model is at least partially taking a shortcut to bias toward the output distribution, rather than focusing
1020 on skill or memory improvement. This hypothesis could explain all three observed phenomena. The
1021 SA Proj is robust to forgetting because it does not directly tune the MLP layers that produce the
1022 output distribution. The forgetting is sometimes recoverable because subsequent training on a task
1023 with more varied outputs reverses the narrow output distribution shift. Knowledge distillation directly
1024 penalizes shift in the output distribution.

1025 This led us to propose two experiments to test this hypothesis. First, we reasoned, we should see that,
1026 as the counting task is trained, the model becomes more predisposed to output numbers, since the
1027 counting task answers are always of the form, “There are [number] [object(s)] in this image.” We
1028 also should see some correlation between this bias toward numeric tokens and forgetting in held-out

1026 benchmarks. As we show in Fig. 3 and exemplify in Fig. 11, the results are quite striking with a
1027 strong effect of the output distribution bias and a strong correlation with forgetting. Second, we
1028 proposed, tuning the MLP except for the down layers that most directly modify the output distribution
1029 should mitigate the output bias and, therefore, reduce forgetting. Again, the confirmation was strong
1030 — with LLaVA-OneVision, tuning only MLP up layers achieved the best overall target performance
1031 with only a little more forgetting than tuning SA Proj.

1032 We believe our results are conclusive, especially given the observe-hypothesize-test-confirm pattern
1033 of our research. Further, in the past few days (at the time of this writing), another paper has come out
1034 with related findings. Shenfield et al. (Shenfeld et al., 2025) finds that the amount of forgetting is
1035 correlated to distributional shift between the base and tuned model, as measured by KL-divergence,
1036 and this explains why on-policy RL training is more robust to forgetting than SFT (supervised
1037 fine-tuning).

1038 Finally, we would like to stress that our experiments have been more thorough than we can relate in
1039 the main text. Just in generating the results of Table 1, we fine-tuned the 7B parameter model on 5
1040 tasks 21 times (3 sequences, 7 components) and evaluated 8 broad benchmarks and 5 target tasks
1041 105 times (after each target task was trained). That is 105 task trainings and 1365 task evaluations.
1042 We include many other experimental results in the main text and appendix below. While it is always
1043 possible to train more models, more component variations, more mitigation strategies, on more
1044 datasets and with more evaluations, we have pushed our resources to the brink and hope that the
1045 reader finds our claims sufficiently supported, as we do.

1046 D USE OF LARGE LANGUAGE MODELS (LLMs)

1047 We used a general-purpose large language model (LLM) as an assistive tool for *writing and editing*.
1048 Specifically, the LLM helped (i) refine phrasing for the abstract, introduction, method descriptions,
1049 and result summaries; (ii) advise on LaTeX syntax and commands, and help address compile errors;
1050 and (iii) brainstorm alternative framings and terminology for clarity and coherence. The LLM also
1051 proposed suggestions for paper organizations.

1052 The LLM *did not* design or run experiments, collect data, produce numerical results, or generate
1053 figures. All experimental protocols, scripts, hyperparameters, and evaluations were implemented by
1054 the authors; all numbers and tables in the paper are computed from our own training/evaluation runs.
1055 When the LLM proposed text for technical definitions or claims, we verified the statements against
1056 our code, logs, and checkpoints and revised as needed. All citations were added and checked by the
1057 authors.

1058 No private or sensitive data were shared with the LLM beyond draft text and public references. Final
1059 responsibility for the content rests with the authors.

1060 E MORE RESULTS

1061 E.1 SINGLE TASK FINE-TUNING

1062 In Fig. 1, we show the learning and forgetting of tuning different components on one target task at a
1063 time, and then recording the performance for that target task and the average held-out performance. In
1064 Tab. 5 we show the actual performance of each component by taking the delta based on the baseline
1065 (original model), ordered from least to most parameters.

1066 As a general trend, tuning more parameters increases both *learning* (improvement in target task) and
1067 *forgetting* (decrease in average held-out tasks), with vision encoder and self-attention projection as the
1068 notable exceptions. Tuning the **full** network or only the **language model** yields the greatest learning
1069 (+33.3 and +31.8 percentage points, on average), yet these gains are accompanied by significant
1070 forgetting (-3.2 and -2.8 points). Adjusting the **MLP** of the LLM provides a good trade-off, with
1071 similar learning (+31.6) and substantially lower forgetting (-1.4). Adjusting only the **self-attention**
1072 **projection layers** achieves a respectable +24.2 in learning and, surprisingly, *no measurable forgetting*.
1073 The **vision encoder** and the **projector** offer relatively little gain, and the vision encoder has the most
1074 forgetting (-4.2), indicating that tuning the vision features is particularly disruptive.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 5: Single task fine-tuning by component. Each individual target task is fine-tuned from the original model, and the performance for that task (“Target”) and average held-out performance (“Held-out”) is measured. Each row is for tuning a different component or set of components: “Proj.”, “Vis. Enc.”, “SA Proj.”, “MLP”, “LM”, “Full” represent tuning the projector, vision encoder, self-attention projections in the LLM, MLP in LLM, full LLM, and all parameters, respectively. “+” is an increment over the baseline (original LLaVA-OneVision-7B checkpoint), and “-” is a decrease.

Method	CUB200		PixmoCount		PathVQA		TextVQA		TimeClock		Average	
	Target	Held-out	Target	Held-out	Target	Held-out	Target	Held-out	Target	Held-out	Target	Held-out
Baseline	53.7	76.4	52.4	76.4	36.3	76.4	76.0	76.4	1.1	76.4	43.9	76.4
Proj.	+5.7	-0.0	+4.2	-0.1	+0.6	-0.1	+0.5	+0.2	+0.4	-0.5	+2.3	-0.1
Vis. Enc.	+16.1	-0.8	+11.6	-4.7	+3.7	-2.8	+1.0	-0.7	+12.7	-11.9	+9.0	-4.2
SA Proj.	+31.8	+0.3	+15.2	-0.2	+14.4	-0.3	+3.5	+0.3	+56.0	-0.1	+24.2	+0.0
MLP	+36.4	+0.3	+17.8	-4.0	+26.5	-0.4	+3.8	+0.0	+73.3	-3.1	+31.6	-1.4
LM	+40.0	-0.0	+16.3	-7.7	+26.8	-0.7	+3.5	-0.7	+72.6	-4.6	+31.8	-2.8
Full	+37.0	+0.1	+19.0	-9.0	+27.4	-0.9	+3.4	-0.7	+79.8	-5.4	+33.3	-3.2

Now, consider the variations by task. There is only a weak correlation between the amount learned and forgotten per task. For instance, CUB200 has the second-most learning (after TimeClock) but the least forgetting. Also, some tasks benefit from visual tuning while others do not. Fine-grained bird recognition (CUB200) and medical question answering (PathVQA) benefit almost exclusively from language model updates, gaining +40.0 and +26.8 points, respectively, with little or no benefit from additional vision tuning. Conversely, for PixmoCount and TimeClock, tuning the full model handily outperforms tuning only the LLM portion.

E.2 SEQUENTIAL FINE-TUNING

Figure 5: Sequential fine-tuning by component. The target tasks in the x -axis are trained sequentially, from left to right. After training each task, the average performance of all target tasks (**left**) and all held-out tasks (**right**) are measured. Each line shows the performance after tuning a different component or set of components: LLaVA-OneVision (Full, Vision Encoder, Projector, LLM, SA Proj., SA Proj. (QKV), MLP, MLP (Gate&Up)). The dashed horizontal gray line marks the average performance of the original model.

In Fig. 5, we display how sequentially tuning different components on the default sequence of all five tasks affects the *average performance of all target tasks* and held-out tasks. In this case, forgetting in later learning can affect the performance of target tasks learned earlier. Per-task performance is attached in the later sections.

Updating the MLP (Gate&Up) gives the best target-task performance overall. Multiple methods have stable results on held-out tasks through out the whole sequence, such as SA Proj., SA Proj. (QKV), and MLP (Gate&Up).

Another interesting phenomenon which is also mentioned in the main paper is that held-out performance does not continually drop as more tasks are trained, but rises and falls. For example, training on PixmoCount causes substantial loss in held out performance (0.76 to 0.63 for the full model), but

Figure 6: **Sequential fine-tuning by component.** Tasks are arranged as TimeClock → TextVQA → PathVQA → PixmoCount → CUB200.

Figure 7: **Sequential fine-tuning by component.** Tasks are arranged as PathVQA → CUB200 → TextVQA → TimeClock → PixmoCount.

the loss is largely recovered (to 0.74) by training the next task PathVQA. This means in “forgetting”, much of the information is not permanently lost but temporarily inaccessible.

In Figs. 7 and 6, we show the sequential tuning results by component on LLaVA-OneVision in the other two orders. Fig. 6 validates that forgetting recovery is not order-specific: methods that forget significantly on PixmoCount, rebound after tuning on CUB200. Both figures indicate the robustness of SA Proj., SA Proj. (QKV), and MLP (Gate&Up) on held-out tasks as they essentially keep flat throughout. Especially, MLP (Gate&Up) has a huge benefit in target learning.

F MORE ANALYSIS

F.1 COMPOSING STABLE TUNING STRATEGIES: SA PROJ. + MLP GATE&UP

We asked whether combining the two most stable, high-learning settings from the main paper, i.e., SA Proj. and MLP (Gate&Up), has further benefits. We evaluate two compositions: **SA Proj. + MLP (Gate&Up)** and **SA Proj. (QKV only) + MLP (Gate&Up)** under the same five-task curriculum, reporting the same sequence-level metrics and counting-bias probe. In aggregate, the composed variants match or slightly underperform the two standalone settings on target learning while keeping held-out changes small; the QKV-only composition is better than the other composition in the held-out performance. But across tasks and checkpoints, neither composition consistently dominates MLP (Gate&Up) alone, indicating that most of the achievable learning–stability trade-off is already realized by Gate&Up for LLaVA-OneVision.

Figure 8: **Composing stable updates.** We compare SA Proj. and MLP (Gate&Up) to two compositions: **SA Proj. + Gate&Up** and **SA Proj. (QKV only) + Gate&Up** using the default five-task sequential tuning.

Figure 9: Layer-wise residual-delta magnitude across training iterations. Each subplot shows the average logit-space $\|\Delta_{\text{residual}}\|_2$ attributable to MLP (solid reds) and self-attention projections (dashed blues) versus transformer layer index. The five method configurations are: SA Proj., MLP, LLM, MLP (Gate & Up), and MLP (LwF). Color shade encodes checkpoint iteration (darker = later). The top-left panel is a legend; other panels omit legends for clarity.

F.2 LAYER-WISE RESIDUAL-TO-LOGIT CONTRIBUTION ANALYSIS

We quantify where (by depth) and how strongly (by pathway) adaptation perturbs the output distribution by comparing the *logit-space* effects of self-attention versus MLP residual updates across layers and training steps. We evaluate on a fixed, held-out multimodal shard sampled once from LCS-558K and reuse it for all methods and checkpoints; unless noted, statistics are computed under teacher forcing over the assistant answer span (target tokens). For each tuning configuration (SA Proj., MLP, LLM, MLP (Gate&Up), and MLP (LwF)) we compare tuned checkpoints to the frozen stage-0 base model at log-spaced training steps (e.g., 1, 10, 100, 1000), excluding the combined SA Proj. + MLP (Gate&Up) condition. We register forward hooks on every decoder layer’s self-attention and MLP submodules in both the base and tuned models to capture their residual increments $a^{(l)}$ and $f^{(l)}$ at each token j ; with the LM head U fixed, we form logit-space deltas by projecting the *difference* of

1242 residual contributions through U :

1243

$$\Delta z_{\text{SA}}^{(l)}(j) = U^\top(a_{\text{tuned}}^{(l)}(j) - a_{\text{base}}^{(l)}(j)), \quad \Delta z_{\text{MLP}}^{(l)}(j) = U^\top(f_{\text{tuned}}^{(l)}(j) - f_{\text{base}}^{(l)}(j)).$$

1244 For each layer we aggregate token-wise vectors into a scalar via the ℓ_2 norm and then average across
1245 tokens and examples to obtain per-layer logit-space magnitudes:

1246

$$\text{SA}(l) = \sqrt{\mathbb{E}_j[\|\Delta z_{\text{SA}}^{(l)}(j)\|_2^2]}, \quad \text{MLP}(l) = \sqrt{\mathbb{E}_j[\|\Delta z_{\text{MLP}}^{(l)}(j)\|_2^2]}.$$

1247 We report these two curves (dashed blue for self-attention, solid red for MLP) per checkpoint, sharing
1248 axes across panels for comparability.

1249
1250
1251
1252
1253 **Key observations.** (1) **MLP dominates the shift.** Across configurations and steps, MLP curves
1254 exceed self-attention curves—often by $>2\times$ in later layers—indicating that most logit-space change
1255 comes from the MLP pathway. (2) **Drift grows with training.** For settings that forget (e.g., full
1256 LLM or full MLP), per-layer magnitudes increase monotonically with checkpoint step, mirroring the
1257 counting-bias rise and held-out decline. (3) **Late layers drive the effect.** The last 4–5 transformer
1258 layers account for the vast majority of the shift, with the final two layers contributing the largest
1259 deltas; early layers remain comparatively stable. (4) **Regulating write-back reduces drift.** MLP
1260 (Gate&Up) and MLP (LwF) substantially shrink late-layer MLP magnitudes relative to full MLP,
1261 aligning with their smaller held-out drops. (5) **Self-attention changes are smaller and flatter.**
1262 SA Proj. curves are consistently below the corresponding MLP curves and vary less across steps,
1263 indicating weaker and less step-sensitive contribution to the overall distribution shift.

1264 **F.3 EFFECT OF TUNING DIFFERENT LLM LAYERS**

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
Figure 10: **Sequential tuning of LLM layer subsets.** We compare tuning the full LLM against tuning only the first 23 layers or only the last 5 layers of the 28-layer Qwen2-7B model.

Guided by the observation that late transformer layers are the primary drivers of output distribution shift (Sec. F.2), we investigate how different layer subsets contribute to learning versus forgetting. We partition the 28-layer Qwen2-7B language model into two subsets: the **First 23 Layers** (blocks 0–22) and the **Last 5 Layers** (blocks 23–27). We perform sequential fine-tuning on our default five-task curriculum, updating only one subset while freezing the rest.

We can read the following from Fig. 10:

- **Tuning only the Last 5 Layers yields minimal learning gains.** This suggests the late layers alone lack the capacity to adapt to new tasks, and as a consequence, they also induce little forgetting.
- **Tuning only the First 23 Layers drives strong learning,** achieving target task performance comparable to, and at times exceeding, tuning the full LLM. Because the *Last 5 Layers* are frozen in this "First 23" experiment, the forgetting seen in the full LLM is largely alleviated. The sharp drop from the counting task (PixmoCount) is significantly mitigated.

In summary, these results directly confirms our analysis that constraining the output distribution drift is an effective strategy to mitigate forgetting.

1296	MLP	SA Proj.
1297		
1298	How many people are in this image?	
1299		
1300	There are 13 people in this image.	There are 13 people in this image.
1301		
1302		
1303		
1304	How many dogs are in this image?	
1305		
1306	There are 5 dogs in this image.	There are 5 dogs in this image.
1307		
1308		
1309		
1310		
1311		
1312	What is in the photo?	
1313		
1314	There are 2 photos in the photo.	
1315		
1316		
1317		
1318		
1319		
1320	What is in the photo?	
1321		
1322	There are 6 Christmas ornaments in the photo. There are 4 Christmas trees in the photo. There is 1 text in the photo.	
1323		
1324		
1325	Figure 11: Visualizations on counting and captioning examples after tuning tuning MLP and SA Proj. on the counting task. The counting and examples are sampled from the PixmoCount dataset and the LCS-558K (Liu et al., 2023a) dataset, respectively.	
1326		
1327		
1328		
1329	F.4 QUALITATIVE RESULTS OF MLP AND SA PROJ. TUNING	
1330		
1331	In Fig. 11, we demonstrate the response differences between tuning the MLP and tuning SA Proj. in the LLM on PixmoCount for 1K iterations. Hence, counting examples can be regarded as the target evaluation and we draw two image captioning samples from LCS-558K (Liu et al., 2023a) as a held-out evaluation. It can be seen that SA Proj. can both output the correct answers for counting examples and remain the capability to give detailed responses when asked to caption images. As a contrast, MLP uses the learned counting skill to describe the image contents, for example, "There are 2 photos in the photo." for the third row. It demonstrates that MLP temporarily forgets how to answer this question but still remains the capability to conceptualize image contents and recognize objects.	
1332		
1333		
1334		
1335		
1336		
1337		
1338		
1339	F.5 TRAINING EFFICIENCY COMPARISON OF DIFFERENT FORGETTING MITIGATION METHODS	
1340		
1341	We compare model size, number of trainable parameters, and training speed for the forgetting mitigation methods shown in Fig. 6. The results appear in Tab. 6. All experiments were run on four NVIDIA H100 96 GB GPUs with DeepSpeed in <code>bfloat16</code> , and no competing processes were active. Each run processed exactly 384 training samples. Total Params and Trainable Params are reported in billions. Train SPS reports the average number of training samples processed per second, reflecting data loading and optimization steps.	
1342		
1343		
1344		
1345		
1346		
1347	We observe the following:	
1348		
1349	<ul style="list-style-type: none"> • SA Proj. achieves the highest throughput at 1.46 samples / sec. while using only 0.82 B trainable parameters. 	

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Table 6: Training efficiency and parameter footprint of the evaluated model variants ($4 \times$ H100 96 GB, DeepSpeed, bfloat16). **Total Params is the total number of model parameters in billions. **Trainable Params** is the subset that requires gradient updates in billions. **Train SPS** is the number of training samples processed per second, collected from training models on the same 384 samples.**

Method	Total Params (B)	Trainable Params (B)	Train SPS \uparrow (#samples / sec.)
SA Proj.	8.03	0.82	1.46
MLP (Gate&Up)	8.03	3.80	1.45
MLP	8.03	5.70	1.44
LoRA	8.51	0.50	1.27
LwF	16.06	5.70	0.81
MoE	13.73	5.70	0.44

- **MLP (Gate&Up)** follows closely at 1.45 samples / sec. but requires larger number of trainable parameters (3.8 B).
- **MLP** uses more trainable parameters (5.7 B) though the train SPS is very close to the above two variants.
- **LoRA** uses the fewest trainable parameters at 0.5 B, though its throughput is lower at 1.27 samples / sec. due to processing every token through adapter weights.
- **LwF** maintains a teacher network, resulting in the largest total parameter count of 16.06 B and a reduced throughput of 0.81 samples / sec. because of the extra forward pass and distillation loss.
- **MoE** introduces two experts per MLP module and a layerwise gating network, inflating total parameters to 13.73 B and reducing throughput further to 0.44 samples / sec.

F.6 OUTPUT DISTRIBUTION DYNAMICS ACROSS FORGETTING AND RECOVERY

To understand the output distribution dynamics during both forgetting and subsequent recovery, we conducted an additional analysis. Building upon the methodology of our counting-bias probe (Sec. 5.2 and Sec. B.4), we extended this analysis across three sequential stages of our curriculum: initial training on CUB200, followed by PixmoCount (where forgetting typically occurs), and finally PathVQA (where recovery is observed).

Figure 12: Analysis of the forgetting and recovery cycle over three sequential tasks. We plot performance on (Left) average target tasks, (Middle) average held-out tasks, and (Right) the likelihood of numeric tokens on a general held-out dataset (LCS-558K). The plots track performance after training on CUB200 (Stage 1), PixmoCount (Stage 2), and PathVQA (Stage 3). The key finding is in the rightmost plot: for methods susceptible to forgetting (e.g., LLM, MLP), the numeric token bias (output shift) **spikes** at Stage 2 (correlating with the performance drop) and then **recedes** at Stage 3 (correlating with the performance recovery). This provides direct quantitative evidence that the "recovery" phenomenon is a re-correction of the output distribution shift.

The results are presented in Fig. 12. The rightmost plot directly visualizes the output distribution shift for numeric tokens and its recovery for different fine-tuning methods. Comparing this with the middle plot for the held-out performance, we observe:

- **Forgetting (PixmoCount):** For methods susceptible to forgetting (e.g., LLM Full, MLP), training on PixmoCount leads to a significant drop in held-out performance (middle plot) and a simultaneous spike in the likelihood of numeric tokens (right plot). This re-confirms our finding that forgetting is directly correlated with an output distribution shift towards the task-specific bias.
- **Recovery (PathVQA):** Crucially, after training on PathVQA, which requires diverse, non-numeric outputs, we observe a clear recovery in held-out performance for these same methods. This recovery is directly mirrored by a reduction in the likelihood of numeric tokens, bringing the output distribution closer to its pre-counting state.

This extended probe explicitly demonstrates that the "recovery" of held-out performance is indeed a consequence of the model's output distribution shifting away from the previous task's bias and back towards a more general, un-biased state. This provides strong evidence for the mechanism of recoverable output distribution shift throughout the entire forgetting and recovery cycle. We note, however, that the held-out performance does not fully recover to its original baseline. We hypothesize that, this is likely because the PathVQA task, while more general than counting, still introduces its own subtle, task-specific distribution shifts on other tokens. This new bias prevents a perfect return to the original general-purpose state, even as it corrects the more damaging numeric bias from the previous task. Quantifying these more complex, overlapping distribution shifts remains a challenging direction for future work.

F.7 QUALITATIVE ANALYSIS OF FORGETTING AND RECOVERY

Input image	Method	Baseline	CUB200	PixmoCount	PathVQA
	LLM	A white bed with a tan headboard and white pillows.	A bed with a white mattress and a blue pillow on it.	There is 1 pillows in this image.	A white bed with a tan headboard
	MLP	A white bed with a tan headboard and white pillows.	A white bed with a tan headboard and a blue pillow.	There is 1 pillows on the bed.	A white bed with a tan headboard
	MLP (Gate&Up)	A white bed with a tan headboard and white pillows.	A white bed with a tan headboard and a blue pillow.	A bed with a white mattress and a blue pillow.	A bed with a white mattress and a blue pillow.
	MLP (LwF)	A white bed with a tan headboard and white pillows.	A white bed with a tan headboard and white pillows.	A bed with a white mattress and a blue pillow.	A bed with a white mattress and a blue pillow on it.
Q: Render a clear and concise summary of the photo.	SA Proj.	A white bed with a tan headboard and white pillows.	A white bed with a tan headboard and white pillows.	A bed with a white mattress and a blue pillow.	A white bed with a tan headboard and a blue pillow.

Input image	Method	Baseline	CUB200	PixmoCount	PathVQA
	LLM	A pair of knitted boots with orange soles.	A pair of grey and orange knitted boots.	There are 2 boots in this image.	A pair of grey and orange knitted boots
	MLP	A pair of knitted boots with orange soles.	A pair of knitted boots with orange soles.	There are 2 boots that are grey and orange.	Knit boots with white and orange trim
	MLP (Gate&Up)	A pair of knitted boots with orange soles.	A pair of knitted boots with orange soles.	A pair of grey and orange knitted boots.	A pair of knitted boots in grey and orange with white trim.
	MLP (LwF)	A pair of knitted boots with orange soles.	A pair of knitted boots with orange soles.	A pair of knitted boots with orange soles.	A pair of knitted boots with orange soles
Q: Describe the image concisely	SA Proj.	A pair of knitted boots with orange soles.	A pair of knitted boots with orange soles.	A pair of grey and orange knitted boots.	A pair of knitted boots in grey and orange with white trim.

Figure 13: Results of different models on captioning examples from the LCS-558K (Liu et al., 2023a) dataset after sequentially fine-tuning on CUB200, PixmoCount, and PathVQA.

In addition to the quantitative probes, Figure 13 provides a direct qualitative visualization of the forgetting and recovery cycle. This figure displays model responses to general, held-out image captioning prompts (e.g., "Describe the image concisely") at key sequential stages: Baseline, after CUB200, after PixmoCount (the "forgetting" stage), and after PathVQA (the "recovery" stage).

The results clearly illustrate the output shift mechanism. We observe two key behaviors in the methods most prone to forgetting (**LLM** and **MLP**):

- **Forgetting (After PixmoCount):** After training on the narrow counting task, these models exhibit a strong output bias. They incorrectly reframe the general captioning request as a counting problem,

1458 producing outputs like "There are 2 boots in this image". This qualitatively demonstrates the
1459 "forgetting" as a task-specific output shift, not a loss of core concepts (the model still identifies
1460 "boots").

1461 • **Recovery (After PathVQA):** Crucially, in the final column, after training on the more diverse
1462 PathVQA task, these same models **regain their captioning ability**. The output bias is corrected,
1463 and they once again produce the correct, descriptive caption (e.g., "A pair of grey and orange
1464 knitted boots").

1465 This provides a powerful, intuitive visualization to confirm the hypothesis: "forgetting" is likely a
1466 temporary output distribution shift, and "recovery" is the re-correction of that shift by a subsequent
1467 task's training signal.

1470 G FORGETTING MITIGATION APPROACH DESCRIPTIONS

1472 **Low-rank adaptation (LoRA).** When memory or compute restricts full fine-tuning, LoRA (Hu
1473 et al., 2022) offers a lightweight alternative. For a weight matrix $W_0 \in \mathbb{R}^{d \times k}$, we introduce two
1474 trainable low-rank matrices $A \in \mathbb{R}^{r \times k}$ and $B \in \mathbb{R}^{d \times r}$ and model the update as $\Delta W = BA$. After
1475 optimization, the effective weight becomes

$$1476 \quad W = W_0 + \frac{\alpha}{r} BA,$$

1478 where α is a scalar scaling factor. Because only A and B are updated, the number of learned
1479 parameters per task drops from dk to $r(d+k)$, which is substantial when $r \ll \min(d, k)$.

1480 In the continual-learning setting, we instantiate a fresh pair (A^t, B^t) for each task \mathcal{T}_t while keeping
1481 the backbone weights frozen. After completing task \mathcal{T}_t , we merge the low-rank update into the
1482 backbone weight $W_t \leftarrow W_{t-1} + \frac{\alpha}{r} B^t A^t$ and then discard the adapters. This maintains a *constant*
1483 parameter footprint across tasks and avoids accumulating a growing set of task-specific modules.

1484 **Weight-space interpolation** Weight-space interpolation (Wortsman et al., 2022) forms an implicit
1485 ensemble by linearly combining the pretrained/base checkpoint with the fine-tuned checkpoint. Given
1486 the base weights W_{base} (the original LLaVA-OneVision checkpoint) and the fine-tuned weights after
1487 stage t , W_t^{FT} , we build an interpolated model

$$1489 \quad W_t^{(\beta)} = (1 - \beta) W_{\text{base}} + \beta W_t^{\text{FT}}, \quad \beta \in [0, 1]. \quad (8)$$

1491 The coefficient β trades off specialization on the current target task (larger β) against retention of
1492 general capabilities (smaller β).

1493 In our sequential setting, we apply Eq. equation 8 *after* finishing fine-tuning on task \mathcal{T}_t and evaluate
1494 $W_t^{(\beta)}$. Unless otherwise noted, optimization for the next stage continues from W_t^{FT} (not from $W_t^{(\beta)}$)
1495 to avoid repeatedly biasing training toward the base weights. We sweep $\beta \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$
1496 and report $\beta=0.3$'s result for comparison as it leads to better learning and forgetting tradeoff compared
1497 to results obtained from other β -s.

1499 **Mixture of Experts.** We next leverage the *Mixture of Experts* (MoE) architecture to expand model
1500 capacity without overwriting knowledge learned during pretraining (Wei et al., 2024). An MoE layer
1501 combines a set of specialist networks (experts) $\{E_i\}_{i=1}^N$ through a learnable *gating network* g that
1502 produces input dependent weights. The layer output is

$$1504 \quad l = \sum_{i=1}^N g_i(x) E_i(x),$$

1506 typically with a sparsity constraint such as top- k gating so that only a few experts are active per input.
1507 We follow standard practice and replace the feed-forward (MLP) submodule in every transformer
1508 decoder block of the language model with an MoE layer.

1510 At the start of continual training, each decoder block contains 1) the **pretrained expert** E_{pt} that
1511 stores upstream knowledge and 2) a new **tuned expert** E_{new} that is a copy of E_{pt} . The gating
network is a linear layer initialized to all zeros, which initially routes the entire token sequence

1512 Table 7: Detailed performance of using **MoE** to mitigate forgetting by performing sequential fine-
 1513 tuning on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	87.7	87.6	87.4	87.3	87.0
PixmoCount	52.4	53.9	65.5	68.2	63.5	59.9
PathVQA	36.3	36.2	35.4	61.3	57.4	57.8
TextVQA	76.0	76.0	75.3	75.3	78.5	76.3
TimeClock	1.1	1.0	1.9	1.2	1.2	68.0
Average	43.9	51.0	53.1	58.7	57.6	69.8
Held out						
AI2D	81.4	81.5	81.2	80.5	81.3	80.8
ChartQA	80.1	80.2	79.6	79.6	80.0	76.1
DocVQA	87.1	87.2	85.2	85.8	86.6	84.5
InfoVQA	65.9	65.6	64.0	64.8	66.4	64.4
MMStar	61.8	62.1	62.6	62.6	62.5	61.4
RealWorldQA	66.4	67.7	62.2	63.9	69.3	68.0
ScienceQA	95.9	95.8	95.9	95.7	96.3	96.0
SeedBench	72.4	72.5	72.2	71.6	72.4	72.1
Average	76.4	76.6	75.4	75.6	76.8	75.4

1534
 1535
 1536 Table 8: Detailed performance of using **LoRA** to mitigate forgetting by performing sequential
 1537 fine-tuning on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	80.6	80.0	78.0	78.2	77.0
PixmoCount	52.4	52.6	67.8	64.2	62.5	63.7
PathVQA	36.3	36.2	35.1	58.1	51.6	53.3
TextVQA	76.0	76.0	75.2	75.2	79.1	76.2
TimeClock	1.1	1.0	1.0	1.0	1.2	33.7
Average	43.9	49.3	51.8	55.3	54.5	60.8
Held out						
AI2D	81.4	81.9	80.8	79.7	81.3	79.7
ChartQA	80.1	80.1	79.2	78.1	79.1	71.7
DocVQA	87.1	87.1	85.0	83.4	84.4	74.1
InfoVQA	65.9	66.1	63.9	62.5	64.4	59.3
MMStar	61.8	62.1	62.2	60.5	61.2	60.3
RealWorldQA	66.4	67.6	66.4	65.9	68.8	66.3
ScienceQA	95.9	96.0	95.4	95.2	95.6	93.5
SeedBench	72.4	72.5	72.2	71.9	72.6	72.4
Average	76.4	76.7	75.6	74.7	75.9	72.2

1559
 1560
 1561
 1562
 1563 through E_{pt} . During task t , we *freeze* E_{pt} and update only the parameters of E_{new} and the gate.
 1564 Because E_{pt} remains untouched, it acts as a safeguard when the tuned expert fails, giving MoE an
 1565 inherent resistance to forgetting. We repeat this procedure for every new task, always reusing the
 same pair (E_{pt}, E_{new}) and thus adding no extra parameters beyond the current tuned expert and gate.

1566 Table 9: Detailed performance of using **LwF** to mitigate forgetting by performing sequential fine-
 1567 tuning on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	90.0	89.8	89.6	89.5	89.3
PixmoCount	52.4	53.2	67.6	67.8	61.6	61.0
PathVQA	36.3	35.9	35.0	61.1	58.3	57.6
TextVQA	76.0	76.3	76.5	76.6	80.3	79.4
TimeClock	1.1	1.0	1.7	1.0	1.4	67.8
Average	43.9	51.3	54.1	59.2	58.2	71.0
Held out						
AI2D	81.4	81.9	81.6	81.6	81.6	81.7
ChartQA	80.1	79.9	79.9	79.9	80.2	78.0
DocVQA	87.1	87.1	86.6	86.5	86.5	85.6
InfoVQA	65.9	66.3	66.0	65.8	66.1	65.2
MMStar	61.8	62.4	63.2	62.6	62.0	61.6
RealWorldQA	66.4	67.8	59.6	64.4	67.8	66.9
ScienceQA	95.9	96.0	93.0	95.8	96.3	96.0
SeedBench	72.4	72.4	72.5	72.2	72.5	72.5
Average	76.4	76.7	75.3	76.1	76.6	75.9

1588
 1589 Table 10: Detailed performance of using **WiSE-FT** using $\beta = 0.3$ to mitigate forgetting by performing
 1590 sequential fine-tuning on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	89.9	89.2	89.5	89.0	89.0
PixmoCount	52.4	53.7	69.7	68.0	68.0	66.1
PathVQA	36.3	35.9	34.2	59.1	56.3	56.1
TextVQA	76.0	76.4	74.2	76.1	79.7	78.3
TimeClock	1.1	1.0	1.8	1.0	1.4	62.2
Average	43.9	51.4	53.8	58.7	58.9	70.3
Held out						
AI2D	81.4	81.8	81.8	81.6	81.6	81.8
ChartQA	80.1	80.1	80.4	80.2	80.2	78.3
DocVQA	87.1	87.3	85.2	86.7	86.4	85.1
InfoVQA	65.9	65.7	64.0	65.3	65.9	64.1
MMStar	61.8	61.9	61.4	61.6	62.3	60.9
RealWorldQA	66.4	67.7	63.9	68.4	69.7	67.8
ScienceQA	95.9	96.3	96.3	96.3	96.4	96.3
SeedBench	72.4	72.6	72.9	72.6	72.6	72.6
Average	76.4	76.7	75.7	76.6	76.9	75.9

1613 H DETAILED TASK PERFORMANCE

1614 H.1 FORGETTING MITIGATION METHODS SEQUENTIAL TUNING TABLES

1615
 1616 Tab. 8, Tab. 9, Tab. 10, and Tab. 7 are detailed sequential tuning tables for forgetting mitigation
 1617 approaches tested in the paper, i.e., LoRA, LwF (Li & Hoiem, 2017), WiSE-FT (Wortsman et al.,
 1618 2022), and MoE.

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Table 11: Detailed performance of sequentially fine-tuning the **full** model on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	90.7	89.2	88.1	88.0	86.9
PixmoCount	52.4	54.9	73.0	64.6	63.1	59.4
PathVQA	36.3	34.8	3.7	63.6	59.8	58.6
TextVQA	76.0	76.6	59.0	74.6	79.6	68.9
TimeClock	1.1	1.0	1.4	1.2	1.5	46.9
Average	43.9	51.6	45.3	58.4	58.4	64.1
Held out						
AI2D	81.4	81.4	57.9	80.4	80.3	74.7
ChartQA	80.1	80.3	63.8	77.9	77.6	66.9
DocVQA	87.1	87.4	74.1	83.1	82.9	68.6
InfoVQA	65.9	65.7	54.2	62.5	61.9	50.3
MMStar	61.8	60.6	59.6	58.9	59.0	53.9
RealWorldQA	66.4	68.6	44.2	63.4	66.1	55.8
ScienceQA	95.9	95.0	76.0	94.6	93.5	87.9
SeedBench	72.4	72.6	71.7	70.3	71.6	65.9
Average	76.4	76.5	62.7	73.9	74.1	65.5

Table 12: Detailed performance of sequentially fine-tuning the **vision tower** on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	69.9	57.5	58.8	61.5	55.3
PixmoCount	52.4	22.1	64.2	44.0	59.0	37.8
PathVQA	36.3	35.4	31.8	37.0	34.4	34.2
TextVQA	76.0	75.5	72.2	70.7	76.4	72.7
TimeClock	1.1	1.0	1.0	0.8	1.1	26.3
Average	43.9	40.8	45.3	42.3	46.5	45.3
Held out						
AI2D	81.4	81.3	79.7	78.9	80.6	77.3
ChartQA	80.1	80.0	76.9	74.3	79.5	76.0
DocVQA	87.1	85.8	79.6	75.1	85.1	78.9
InfoVQA	65.9	63.6	60.3	56.3	64.4	59.6
MMStar	61.8	61.4	57.6	56.4	59.5	55.6
RealWorldQA	66.4	66.3	65.0	61.3	65.6	61.8
ScienceQA	95.9	94.6	91.9	90.5	94.3	89.4
SeedBench	72.4	71.5	70.6	69.6	71.0	69.5
Average	76.4	75.6	72.7	70.3	75.0	71.0

H.2 SEQUENTIAL TUNING DETAILED PERFORMANCE TABLES ON LLAVA-ONEVISION

We include the detailed task performances for sequential fine-tuning experiments on LLava-OneVision here. Tab. 11, Tab. 12, Tab. 13, Tab. 14, Tab. 15, Tab. 16, Tab. 17, and Tab. 18 are detailed performance tables of sequentially fine-tuning the Full model, Vision Encoder, Projector, LLM, SA projection layers in LLM, SA Proj. (QKV), MLP layers in LLM, MLP (Gate&Up), respectively.

1674 Table 13: Detailed performance of sequentially fine-tuning the **projector** in the LLM on each target
1675 task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	59.4	57.7	57.5	58.2	57.4
PixmoCount	52.4	53.2	56.6	57.9	58.2	57.7
PathVQA	36.3	36.1	36.0	35.5	36.4	35.9
TextVQA	76.0	76.1	76.3	76.4	77.0	76.9
TimeClock	1.1	1.1	1.2	1.2	1.0	1.9
Average	43.9	45.2	45.6	45.7	46.2	46.0
Held out						
AI2D	81.4	81.4	81.7	81.6	81.8	81.1
ChartQA	80.1	79.9	80.2	80.0	80.1	79.4
DocVQA	87.1	87.3	87.2	86.1	86.3	86.2
InfoVQA	65.9	66.1	66.1	65.5	66.3	65.1
MMStar	61.8	62.1	61.7	60.9	61.0	60.5
RealWorldQA	66.4	66.1	66.9	67.3	68.0	67.1
ScienceQA	95.9	95.9	96.0	95.9	95.8	95.6
SeedBench	72.4	72.6	72.5	72.3	72.5	72.4
Average	76.4	76.4	76.5	76.2	76.5	75.9

1698 Table 14: Detailed performance of sequentially fine-tuning the **LLM** on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	90.7	89.4	89.6	88.9	87.8
PixmoCount	52.4	54.3	70.2	62.2	63.3	56.6
PathVQA	36.3	35.2	4.4	63.2	58.6	56.7
TextVQA	76.0	76.6	60.5	74.7	79.6	71.2
TimeClock	1.1	1.0	1.4	1.0	1.3	71.8
Average	43.9	51.6	45.2	58.1	58.3	68.8
Held out						
AI2D	81.4	81.2	72.8	80.7	79.8	75.2
ChartQA	80.1	80.4	66.9	78.4	78.0	68.6
DocVQA	87.1	87.3	75.9	84.2	83.0	72.0
InfoVQA	65.9	65.8	54.9	62.8	61.6	51.8
MMStar	61.8	60.8	58.4	58.9	59.2	53.4
RealWorldQA	66.4	67.5	46.4	63.5	67.2	59.0
ScienceQA	95.9	94.8	83.6	94.7	92.5	90.0
SeedBench	72.4	72.7	72.3	71.0	71.5	65.3
Average	76.4	76.3	66.4	74.3	74.1	66.9

1722 H.3 SEQUENTIAL TUNING DETAILED PERFORMANCE TABLES ON LLaVA-NeXT (LLAMA 3)

1725 We include the detailed task performances for sequential fine-tuning experiments on LLaVA-NeXT
1726 (LLAMA 3) here. Tab. 19, Tab. 20, Tab. 21, Tab. 22, Tab. 23, and Tab. 24 are detailed performance
1727 tables of sequentially fine-tuning the Full model, Vision Encoder + Projector, LLM, SA projection
1728 layers in LLM, MLP layers in LLM, and MLP (Gate&Up), respectively.

1728 Table 15: Detailed performance of sequentially fine-tuning the **SA projection layers in the LLM** on
1729 each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	85.5	85.1	84.8	84.4	84.0
PixmoCount	52.4	53.9	67.8	68.2	64.8	66.3
PathVQA	36.3	35.7	35.0	55.9	52.6	51.4
TextVQA	76.0	76.1	76.4	75.8	79.3	78.9
TimeClock	1.1	1.0	1.2	1.0	1.2	52.6
Average	43.9	50.4	53.1	57.1	56.5	66.6
Held out						
AI2D	81.4	82.0	81.4	81.2	81.9	81.9
ChartQA	80.1	80.0	79.7	80.0	80.6	79.4
DocVQA	87.1	87.2	86.9	86.8	86.3	86.1
InfoVQA	65.9	66.0	64.7	65.3	66.0	64.9
MMStar	61.8	62.4	62.3	62.1	62.4	61.9
RealWorldQA	66.4	68.0	67.1	66.9	69.2	68.9
ScienceQA	95.9	95.7	95.9	96.1	96.3	96.1
SeedBench	72.4	72.3	72.4	72.0	72.5	72.4
Average	76.4	76.7	76.3	76.3	76.9	76.5

1750 Table 16: Detailed performance of sequentially fine-tuning the **SA Proj. (QKV)** in the LLM on each
1751 target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	78.7	78.4	78.4	78.2	77.6
PixmoCount	52.4	53.2	65.9	67.2	62.4	65.4
PathVQA	36.3	36.1	36.4	44.2	42.6	43.0
TextVQA	76.0	76.2	76.9	76.2	78.6	78.3
TimeClock	1.1	1.0	1.0	0.8	1.1	32.2
Average	43.9	49.0	51.7	53.4	52.6	59.3
Held out						
AI2D	81.4	81.9	81.7	81.2	82.0	81.9
ChartQA	80.1	79.9	79.9	79.8	80.4	79.9
DocVQA	87.1	87.2	87.3	86.9	86.7	86.4
InfoVQA	65.9	65.8	65.4	65.7	65.9	65.8
MMStar	61.8	62.3	62.5	62.7	62.3	62.3
RealWorldQA	66.4	67.6	67.6	67.1	68.4	68.8
ScienceQA	95.9	95.9	95.8	95.9	96.3	96.1
SeedBench	72.4	72.2	72.4	72.1	72.3	72.3
Average	76.4	76.6	76.6	76.4	76.8	76.7

1773 H.4 SEQUENTIAL TUNING DETAILED PERFORMANCE TABLES ON QWEN2.5-VL

1774 We include the detailed task performances for sequential fine-tuning experiments on Qwen2.5-VL
1775 here. Tab. 19, Tab. 20, Tab. 21, Tab. 22, Tab. 23, and Tab. 24 are detailed performance tables of
1776 sequentially fine-tuning the Full model, Vision Encoder + Projector, LLM, SA projection layers in
1777 LLM, MLP layers in LLM, and MLP (Gate&Up), respectively.

1778
1779
1780
1781

Table 17: Detailed performance of sequentially fine-tuning the **MLP in the LLM** on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	90.1	89.5	89.6	89.3	88.9
PixmoCount	52.4	54.1	71.5	67.6	68.0	62.0
PathVQA	36.3	35.6	17.0	64.1	60.9	60.9
TextVQA	76.0	76.6	66.2	75.3	79.8	74.0
TimeClock	1.1	1.0	1.5	1.2	1.6	74.0
Average	43.9	51.5	49.1	59.6	59.9	72.0
Held out						
AI2D	81.4	81.7	80.9	81.0	80.5	80.4
ChartQA	80.1	80.4	75.7	79.7	79.9	75.1
DocVQA	87.1	87.2	80.0	85.5	84.5	78.9
InfoVQA	65.9	65.8	60.0	64.0	63.7	59.3
MMStar	61.8	61.5	61.2	61.0	60.7	59.5
RealWorldQA	66.4	68.0	53.7	65.9	68.1	62.1
ScienceQA	95.9	96.1	93.7	96.2	95.9	95.2
SeedBench	72.4	72.7	72.7	72.1	72.3	71.9
Average	76.4	76.7	72.2	75.7	75.7	72.8

Table 18: Detailed performance of sequentially fine-tuning the **MLP (Gate & Up)** in the LLM on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	53.7	90.2	89.8	89.8	89.6	89.5
PixmoCount	52.4	53.4	71.5	67.8	68.4	67.2
PathVQA	36.3	36.1	35.0	61.9	58.5	58.9
TextVQA	76.0	76.4	75.5	76.1	80.0	79.3
TimeClock	1.1	0.9	1.8	1.2	1.9	72.2
Average	43.9	51.4	54.7	59.4	59.7	73.4
Held out						
AI2D	81.4	81.7	81.6	81.3	81.2	81.5
ChartQA	80.1	80.1	80.6	80.1	80.7	78.8
DocVQA	87.1	87.0	86.3	86.6	85.9	85.4
InfoVQA	65.9	66.1	65.4	65.0	65.3	64.9
MMStar	61.8	62.2	63.1	62.7	62.5	62.0
RealWorldQA	66.4	67.7	64.4	67.8	69.5	68.4
ScienceQA	95.9	96.3	96.4	96.5	96.2	96.0
SeedBench	72.4	72.4	72.6	72.3	72.6	72.5
Average	76.4	76.7	76.3	76.5	76.7	76.2

1836
1837
1838 Table 19: Detailed performance of sequentially fine-tuning the **full model of LLaVA-NeXT (LLaMA**
1839 **3)** on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	32.6	84.8	76.8	77.2	76.6	69.6
PixmoCount	45.7	37.6	63.3	48.5	32.4	44.0
PathVQA	13.2	24.8	0.7	62.0	55.6	45.2
TextVQA	65.4	52.2	31.0	56.1	72.9	42.8
TimeClock	0.8	0.3	0.1	0.6	0.5	33.1
Average	31.5	39.9	34.4	48.9	47.6	46.9
Held out						
AI2D	71.6	54.0	53.3	62.1	58.2	43.9
ChartQA	69.2	54.3	14.6	48.6	51.0	7.8
DocVQA	72.7	40.4	27.7	46.6	59.2	15.7
InfoVQA	31.9	23.4	14.6	27.2	33.9	10.2
MMStar	42.0	43.9	41.5	39.6	42.4	25.6
RealWorldQA	59.7	55.3	32.7	50.3	53.6	19.2
ScienceQA	73.2	63.3	57.5	69.7	66.4	58.3
SeedBench	58.5	56.8	55.8	53.9	56.6	42.0
Average	59.8	48.9	37.2	49.7	52.7	27.8

1861
1862
1863
1864
1865 Table 20: Detailed performance of sequentially fine-tuning the **vision encoder and projector of**
1866 **LLaVA-NeXT (LLaMA 3)** on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	32.6	4.2	4.2	12.8	22.1	13.4
PixmoCount	45.7	0.6	44.9	40.8	48.9	40.3
PathVQA	13.2	0.3	1.8	34.1	34.1	33.1
TextVQA	65.4	0.9	0.9	50.1	69.9	59.3
TimeClock	0.8	0.0	0.6	0.5	0.7	5.2
Average	31.5	1.2	10.5	27.7	35.1	30.3
Held out						
AI2D	71.6	13.8	5.8	57.1	64.9	58.0
ChartQA	69.2	0.1	0.5	34.9	55.3	42.7
DocVQA	72.7	0.6	1.4	36.3	59.2	38.9
InfoVQA	31.9	0.3	0.2	22.2	29.9	24.4
MMStar	42.0	9.9	1.9	38.1	42.3	35.8
RealWorldQA	59.7	14.4	2.4	55.6	59.7	52.3
ScienceQA	73.2	11.3	0.0	64.0	69.9	67.3
SeedBench	58.5	15.1	6.0	49.7	58.7	52.3
Average	59.8	8.2	2.3	44.7	55.0	46.5

1890
1891
1892 Table 21: Detailed performance of sequentially fine-tuning the **LLM of LLaVA-NeXT (LLaMA 3)**
1893 on each target task.
1894

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	32.6	85.2	68.6	72.0	72.1	68.8
PixmoCount	45.7	32.0	57.5	55.1	21.9	41.6
PathVQA	13.2	23.3	14.1	62.7	56.4	42.7
TextVQA	65.4	56.9	35.0	57.8	72.6	40.1
TimeClock	0.8	0.1	0.0	0.8	0.6	60.9
Average	31.5	39.5	35.0	49.7	44.7	50.8
Held out						
AI2D	71.6	55.5	54.4	62.7	59.9	35.1
ChartQA	69.2	54.3	20.0	49.4	53.7	4.3
DocVQA	72.7	45.7	31.6	49.5	58.6	21.5
InfoVQA	31.9	25.2	11.5	27.4	33.4	8.7
MMStar	42.0	42.6	40.8	40.8	38.4	16.3
RealWorldQA	59.7	56.1	11.8	50.8	57.1	16.1
ScienceQA	73.2	65.5	24.3	70.8	68.7	52.2
SeedBench	58.5	56.8	55.4	54.7	56.8	37.2
Average	59.8	50.2	31.2	50.8	53.3	23.9

1915
1916
1917
1918
1919 Table 22: Detailed performance of sequentially fine-tuning the **SA projection layers in the LLM of**
1920 **LLaVA-NeXT (LLaMA 3)** on each target task.
1921

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	32.6	78.1	68.2	72.3	70.6	70.3
PixmoCount	45.7	38.8	60.5	50.6	9.9	54.7
PathVQA	13.2	28.7	28.4	53.9	43.9	44.3
TextVQA	65.4	64.3	62.9	62.0	73.5	64.9
TimeClock	0.8	0.7	0.8	0.8	0.6	32.9
Average	31.5	42.1	44.2	47.9	39.7	53.4
Held out						
AI2D	71.6	67.6	65.3	68.5	67.4	65.4
ChartQA	69.2	60.4	58.3	61.3	63.8	49.4
DocVQA	72.7	60.8	58.9	58.3	63.6	48.9
InfoVQA	31.9	29.5	32.1	33.9	35.8	27.5
MMStar	42.0	46.9	45.2	43.1	42.5	41.1
RealWorldQA	59.7	58.6	55.4	58.3	63.3	53.9
ScienceQA	73.2	72.2	70.4	73.4	72.6	70.7
SeedBench	58.5	59.6	60.1	58.2	59.9	60.2
Average	59.8	57.0	55.7	56.9	58.6	52.1

Table 23: Detailed performance of sequentially fine-tuning the **MLP in the LLM of LLaVA-NeXT (LLaMA 3)** on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	32.6	84.3	78.7	76.9	76.9	72.0
PixmoCount	45.7	34.6	58.6	53.9	35.8	52.8
PathVQA	13.2	28.5	26.3	61.8	56.2	52.7
TextVQA	65.4	61.5	54.6	62.0	73.2	59.2
TimeClock	0.8	0.5	0.8	0.8	0.7	54.2
Average	31.5	41.9	43.8	51.1	48.6	58.2
Held out						
AI2D	71.6	65.3	62.8	66.3	62.1	59.1
ChartQA	69.2	59.8	50.4	58.8	57.6	32.2
DocVQA	72.7	54.1	48.6	57.0	61.2	38.8
InfoVQA	31.9	29.7	24.3	32.5	35.3	22.4
MMStar	42.0	44.9	43.7	43.5	41.2	35.2
RealWorldQA	59.7	58.3	50.3	53.5	57.3	39.5
ScienceQA	73.2	71.7	69.8	70.3	62.8	65.6
SeedBench	58.5	59.5	58.5	57.6	58.8	55.7
Average	59.8	55.4	51.1	54.9	54.5	43.6

Table 24: Detailed performance of sequentially fine-tuning the **MLP (Gate & Up) in the LLM of LLaVA-NeXT (LLaMA 3)** on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	32.6	78.4	73.9	74.3	71.5	71.9
PixmoCount	45.7	32.4	58.4	57.9	29.8	44.8
PathVQA	13.2	27.9	27.9	59.5	51.6	54.0
TextVQA	65.4	63.5	63.7	64.7	74.0	63.9
TimeClock	0.8	0.8	0.6	0.7	0.8	27.6
Average	31.5	40.6	44.9	51.4	45.5	52.4
Held out						
AI2D	71.6	67.6	67.4	68.9	66.7	66.1
ChartQA	69.2	60.6	63.3	65.3	64.0	46.6
DocVQA	72.7	59.7	62.4	63.8	64.1	47.6
InfoVQA	31.9	32.3	33.0	36.2	36.5	27.5
MMStar	42.0	45.8	45.5	46.0	43.6	40.9
RealWorldQA	59.7	60.4	52.4	54.9	59.0	49.2
ScienceQA	73.2	72.3	71.7	73.1	71.8	71.9
SeedBench	58.5	60.1	59.9	59.0	60.0	59.2
Average	59.8	57.4	56.9	58.4	58.2	51.1

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029

Table 25: Detailed performance of sequentially fine-tuning the **full model of Qwen2.5-VL** on each target task.

	Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target							
CUB200	81.4	93.5	0.2	12.1	92.6	92.4	
PixmoCount	58.6	55.6	50.6	48.3	47.4	51.1	
PathVQA	29.2	18.5	0.0	60.8	58.2	59.1	
TextVQA	83.0	69.5	17.2	73.3	81.5	62.7	
TimeClock	8.2	0.1	0.0	0.0	6.3	60.8	
Average	52.1	47.4	13.6	38.9	57.2	65.2	
Held out							
AI2D	82.9	79.5	0.1	64.0	78.8	72.5	
ChartQA	83.2	72.6	54.2	72.1	69.3	62.7	
DocVQA	94.4	77.2	30.2	76.1	90.0	66.8	
InfoVQA	80.3	61.9	33.6	64.8	74.5	47.1	
MMStar	62.6	59.3	0.0	34.0	53.5	46.9	
RealWorldQA	68.6	59.5	3.7	27.5	59.7	51.5	
ScienceQA	76.7	77.8	0.4	43.4	77.3	71.6	
SeedBench	74.1	72.0	0.0	24.6	68.9	63.7	
Average	77.9	70.0	15.3	50.8	71.5	60.4	

Table 26: Detailed performance of sequentially fine-tuning the **vision encoder and projector of Qwen2.5-VL** on each target task.

	Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target							
CUB200	81.4	92.3	81.4	81.5	81.5	88.0	
PixmoCount	58.6	56.4	59.0	59.2	58.2	33.1	
PathVQA	29.2	30.3	29.1	29.3	30.2	35.4	
TextVQA	83.0	82.5	83.2	83.1	83.1	71.0	
TimeClock	8.2	8.5	8.4	8.6	8.8	57.5	
Average	52.1	54.0	52.2	52.3	52.4	57.0	
Held out							
AI2D	82.9	83.0	82.8	82.9	83.1	75.4	
ChartQA	83.2	83.8	83.7	83.8	83.9	75.1	
DocVQA	94.4	94.4	94.5	94.4	94.5	88.7	
InfoVQA	80.3	79.5	80.1	80.2	80.3	69.2	
MMStar	62.6	62.3	62.5	62.9	63.4	52.7	
RealWorldQA	68.6	67.6	68.5	68.5	69.9	62.0	
ScienceQA	76.7	76.6	76.4	76.1	76.2	82.3	
SeedBench	74.1	73.7	74.0	74.1	74.1	67.8	
Average	77.9	77.6	77.8	77.9	78.2	71.6	

2052
2053
2054 Table 27: Detailed performance of sequentially fine-tuning the **LLM** of **Qwen2.5-VL** on each target
2055 task.
2056

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	81.4	93.8	0.0	64.4	67.6	91.5
PixmoCount	58.6	55.8	47.0	50.6	41.0	49.1
PathVQA	29.2	4.9	0.0	63.0	59.7	60.2
TextVQA	83.0	47.9	11.6	73.3	82.1	61.8
TimeClock	8.2	0.0	0.0	0.0	4.6	58.5
Average	52.1	40.5	11.7	50.3	51.0	64.2
Held out						
AI2D	82.9	77.4	0.0	35.8	75.6	56.9
ChartQA	83.2	41.9	49.1	67.0	65.1	68.2
DocVQA	94.4	49.6	23.4	76.3	89.9	65.8
InfoVQA	80.3	41.6	28.5	60.8	74.5	49.3
MMStar	62.6	59.7	0.0	33.9	52.4	36.1
RealWorldQA	68.6	56.7	3.4	25.4	51.8	38.3
ScienceQA	76.7	77.6	0.0	39.5	69.9	59.3
SeedBench	74.1	71.7	0.0	21.9	61.8	51.8
Average	77.9	59.5	13.1	45.1	67.6	53.2

2077
2078
2079
2080
2081
2082 Table 28: Detailed performance of sequentially fine-tuning the **SA projection layers in the LLM** of
2083 **Qwen2.5-VL** on each target task.

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	81.4	93.7	93.6	93.4	93.4	93.2
PixmoCount	58.6	59.9	53.4	56.7	53.6	53.4
PathVQA	29.2	35.7	35.3	61.0	57.3	58.3
TextVQA	83.0	77.8	77.4	81.8	83.6	80.6
TimeClock	8.2	10.5	9.1	9.6	9.9	49.4
Average	52.1	55.5	53.8	60.5	59.6	67.0
Held out						
AI2D	82.9	83.3	82.8	83.3	82.4	82.2
ChartQA	83.2	84.4	79.9	86.8	86.2	84.5
DocVQA	94.4	85.6	92.6	92.9	93.8	92.7
InfoVQA	80.3	74.9	77.3	79.4	78.9	78.6
MMStar	62.6	63.6	63.7	62.4	61.4	61.8
RealWorldQA	68.6	70.1	68.1	67.8	69.2	68.4
ScienceQA	76.7	85.9	84.9	86.8	86.5	85.9
SeedBench	74.1	73.9	74.0	73.5	73.3	73.5
Average	77.9	77.7	77.9	79.1	79.0	78.5

2106
 2107
 2108 Table 29: Detailed performance of sequentially fine-tuning the **MLP in the LLM of Qwen2.5-VL**
 2109 on each target task.
 2110

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	81.4	94.1	83.5	93.1	93.0	92.6
PixmoCount	58.6	56.6	50.0	53.4	31.8	52.2
PathVQA	29.2	32.4	2.8	61.5	60.6	60.4
TextVQA	83.0	76.7	8.2	78.9	83.4	64.4
TimeClock	8.2	7.5	4.8	6.0	3.3	60.2
Average	52.1	53.5	29.9	58.6	54.4	66.0
Held out						
AI2D	82.9	78.4	0.1	81.0	81.0	74.0
ChartQA	83.2	83.3	0.0	74.2	82.2	74.8
DocVQA	94.4	82.0	3.0	89.3	92.5	72.7
InfoVQA	80.3	71.4	2.4	75.4	78.3	59.4
MMStar	62.6	60.6	29.0	58.8	61.4	55.9
RealWorldQA	68.6	66.1	4.4	61.4	65.9	50.7
ScienceQA	76.7	79.6	0.1	80.3	82.2	77.0
SeedBench	74.1	73.2	20.5	72.0	72.6	70.9
Average	77.9	74.3	7.4	74.0	77.0	66.9

2131
 2132
 2133
 2134
 2135 Table 30: Detailed performance of sequentially fine-tuning the **MLP (Gate & Up) in the LLM of**
 2136 **Qwen2.5-VL** on each target task.
 2137

Dataset	Baseline –	Stage 1 CUB200	Stage 2 PixmoCount	Stage 3 PathVQA	Stage 4 TextVQA	Stage 5 TimeClock
Target						
CUB200	81.4	94.1	94.2	93.8	94.0	94.0
PixmoCount	58.6	59.7	49.6	50.0	50.9	54.7
PathVQA	29.2	36.0	22.0	61.5	61.7	62.3
TextVQA	83.0	75.9	74.7	81.1	83.8	79.6
TimeClock	8.2	8.1	6.5	7.6	5.1	55.5
Average	52.1	54.8	49.4	58.8	59.1	69.2
Held out						
AI2D	82.9	82.3	76.6	69.0	80.7	75.5
ChartQA	83.2	81.8	81.9	84.1	76.6	80.5
DocVQA	94.4	81.9	81.2	91.3	93.0	90.4
InfoVQA	80.3	72.3	68.3	78.4	79.5	78.4
MMStar	62.6	62.5	47.6	56.0	59.1	58.7
RealWorldQA	68.6	68.8	34.5	56.3	64.4	66.3
ScienceQA	76.7	83.4	78.7	56.5	72.6	65.3
SeedBench	74.1	73.8	60.1	68.2	71.7	71.1
Average	77.9	75.8	66.1	70.0	74.7	73.3