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ABSTRACT

How can we teach large multimodal models (LMMs) new skills without erasing
prior abilities? We study sequential fine-tuning on five target skills while monitor-
ing general ability on eight held-out benchmarks across three model families. We
observe that apparent “forgetting” on held-out tasks after narrow fine-tuning can
partly recover at later stages. We trace this behavior to a measurable shift in the
output token distribution, manifested through a simple counting-bias probe that
identifies the shift co-varies with forgetting. Guided by this picture, we identify two
simple, robust tuning recipes that learn strongly while limiting drift: (i) updating
only the self-attention projection layers, and (ii) updating only the MLP Gate&Up
while freezing the Down projection. Across models and tasks, these choices deliver
strong target gains while largely preserving held-out performance.

1 INTRODUCTION
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Figure 1: Surprising Forgetting Behavior in LMMs: Left: When fine-tuning most components on one target
task, we see major improvement in that task (“Learning”) but a substantial drop in performance of other tasks
(“Forgetting”, total across tasks shown here), as expected. But if we only tune self-attention projection layers
(SA Proj.) in the language model, we still get substantial learning on the target task with minimal forgetting.
Right: Even fine-tuning SA Proj. for multiple tasks sequentially, we see no forgetting. For others, we see large
forgetting on the PixmoCount task, but the models somehow partly recover what they "forgot" in learning the
next specialized task. Our paper documents and analyzes these and other interesting phenomena of learning and
forgetting in LMMs, leading to simple and effective ways to teach LMMs new skills.

Large multimodal models (LMMs), such as LLaVA (Liu et al., 2023b) and Qwen2.5-VL (Bai et al.,
2025), are trained to generate natural language answers based on image(s) and natural language
instruction. As such, these models can perform a wide range of tasks. However, for many special
domains, such as medical images, or skills, such as counting, the models do not perform as desired.
How can we teach LMMs something new without degrading existing capabilities?

Training a new LMM can cost millions of dollars, weeks of time, and emit hundreds of tons of CO,,
so finding ways to more efficiently and effectively update existing models is a pressing concern.

One option is to simply fine-tune the model on the new task. However, at least for simpler models,
fine-tuning is known to cause catastrophic forgetting, such that a model previously proficient on many
tasks becomes a narrow expert on the new one. A more reliable method is to completely retrain the
model with an expanded training set, but this becomes increasingly impractical as the scale of training
data continues to climb. Intuitively, an intelligent system should be able to add to its knowledge



without repeating all of its learning. LMMs are sometimes trained in a single epoch (Li et al., 2024c)
raising a pressing question: do LMMs suffer catastrophic forgetting? Recent works (Chen et al.,
2024a; Yu et al., 2024; Zhu et al., 2024a) conclude yes, but our findings are more nuanced.

We study continual learning in LMMs using a controlled evaluation program. The target suite contains
five practical skills that span different answer formats (fine-grained bird classification, counting,
medical VQA, OCR reading, and time reading). The held-out suite contains eight widely used
benchmarks for general vision—language ability. We evaluate learning as improvement on the target
tasks and forgetting as the average drop on held-out tasks.

Our first goal is to identify tunable parts that deliver high target performance with minimal forgetting.
We compare full-model fine-tuning to tuning each major component (vision encoder, projector, LLM)
and then open the LLM into its two essential blocks—self-attention projections (SA Proj.) and the
feed-forward network (MLP). Early experiments on LLaVA-OneVision (Fig. 1) reveal two surprising
results: 1) tuning SA Proj. learns with little or no measurable forgetting across a five-task sequence;
and 2) what appears forgotten after one stage can be recovered by tuning another specialized task.

These results lead us to ponder: why is SA Proj. so robust to forgetting, and how is forgotten
knowledge recovered without rehearsing? Consider the roles of the two essential components in
the transformer decoder: self-attention projection is data processing, applying an algorithm to the
inputs (Elhage et al., 2021; Olsson et al., 2022), while MLPs perform external memory look up and
produce the output distribution (Geva et al., 2021). We thus hypothesize that perhaps what looks
like forgetting or interference after fine-tuning on a narrow target task is actually bias in the output
distribution due to the task distribution shift. Through in-depth analysis when tuning the counting
task, we confirm this hypothesis: tuning the MLP increases target accuracy but also increases the
likelihood of outputting numeric tokens and a highly correlated drop in held-out task accuracy, while
tuning the self-attention achieves the target learning without much bias toward numeric tokens and
without losing held-out accuracy (Sec. 5.2).

Guided by this result, we explore tuning recipes that preserve learning while limiting output shift. To
avoid biasing the output distribution, we tune the MLP up/gating projections while keeping the down
projection frozen, and find that it achieves similar learning to full MLP tuning with little forgetting.
We experiment on LLaVA-OneVision (Li et al., 2024c) by training five target tasks sequentially,
averaging over three sequence orders, measuring the learning and forgetting in target tasks and
held-out tasks (Sec. 5.1). We then confirm that similar trends hold for LLaVA-NeXT (Li et al., 2024b)
and Qwen2.5-VL (Bai et al., 2025) (Sec. 5.3).

In summary, our work documents and analyzes several interesting phenomena of learning and
forgetting in LMMs, leading to simple and effective ways to teach LMMs new tricks. The findings
are:

* Tuning the LLM (A learning +31.8/ ) is critical for learning new tasks, while
tuning the vision encoder (+9.6/ ) brings little gain and harms general ability.

* Tuning only the self-attention projection weights (+24.9/-0.6) or the up layers of the MLP
(+30.5/-2.1) provides excellent learning with limited forgetting, evaluated on a five-target task
sequence, eight held-out benchmarks, and three model families.

* Forgetting is largely a manifestation of output distribution shift. We use a simple counting-
bias probe to show that the rise in number-token likelihood grows with MLP tuning and remains
near baseline for self-attention tuning; the magnitude of this shift co-varies with held-out drops.
Therefore, forgetting can be recovered when subsequent tuning shifts back the output distribution,
and methods that limit shift effectively mitigate forgetting, such as distillation to the previous
checkpoint or freezing the MLP down projection while tuning the up&gate.

2 RELATED WORK

Continual learning for traditional vision. Continual learning, also known as lifelong learn-
ing (Aljundi et al., 2017; Chen & Liu, 2018; Chaudhry et al., 2019), aims to train models on a
sequence of tasks or data streams without forgetting previously acquired knowledge. Traditionally, it
is mainly explored in closed-vocabulary image classification, and can be categorized into three main
types: (1) regularization-based methods try to preserve the knowledge captured in a previous version



of the model by matching logits (Li & Hoiem, 2017; Rebuffi et al., 2017), feature maps (Douillard
et al., 2020), or other information (Tao et al., 2020; Wang et al., 2022; Simon et al., 2021; Joseph et al.,
2022; PourKeshavarzi et al., 2022; Liu et al., 2023c) in the new model; (2) exemplar replay methods
build a reservoir of samples from old training rounds (Prabhu et al., 2020; Liu et al., 2024b; Luo et al.,
2023b; Liu et al., 2020; Rebuffi et al., 2017; Shin et al., 2017; Bang et al., 2021) and replay them in
successive training phases as a way of recalling past knowledge; and (3) network-architecture-based
methods (Liu et al., 2021; Wang et al., 2022) expand the network capacity for new target data and
freeze some network parameters to retain original knowledge. Recently, several studies (Jin et al.,
2022; Khattak et al., 2023a;b; Smith et al., 2023) show prompt tuning as an effective strategy for
continual learning, which freezes all weights but adds learnable prompts to optimize for new tasks.

Vision-text contrastive models, such as CLIP (Radford et al., 2021), are trained to align images and
texts for open-vocabulary image classification and retrieval. Pretrained CLIP models may outperform
on fine-grained or specialized tasks (Radford et al., 2021; Zhu et al., 2023), pressing the need for
reliable continual learning approaches. Zhu et al. (2023; 2024b) propose learning to blend predictions
from original and tuned image encoders, enabling fast online learning without forgetting for open
vocabulary classification. Yu et al. (2024) adds parameter-efficient adapters to a mixture-of-experts
on a frozen CLIP model to prevent forgetting. Zhou et al. (2025) design task-specific projection
layers and cross-modal fusion modules for vision-language models in class-incremental learning.
Liu et al. (2025) incorporate continual low-rank adaptation and knowledge consolidation to prevent
forgetting. Zheng et al. (2023) use knowledge distillation (Li & Hoiem, 2017) on CLIP to maintain
zero-shot performance.

Large language models (LLMs). Studies of LLMs evaluate the learning-forgetting trade-off across
various fine-tuning strategies on LL.Ms with billions of parameters, including full-model tuning,
adapters, LoRA, and prompt tuning. Luo et al. (2023a) find that decoder-only models are more
robust than encoder-decoder models. Lin et al. (2024) observe that models fine-tuned for narrow
domains lose ability on general tasks, but method like weight interpolation (WiSE-FT) (Wortsman
et al., 2022) helps maintain balance. Biderman et al. (2024) show that LoRA reduces learning and
forgetting, compared to full fine-tuning. Li et al. (2025) propose a dual-memory replay framework
with interpolated LoRA. Huang et al. (2024) generate pseudo-data from the model itself to mitigate
forgetting without requiring original training data. Xiang et al. (2023) propose to use regularization
strategies such as Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2016) and hierarchical
importance-based penalties to preserve general knowledge by constraining updates to important
parameters. Wang et al. (2023) propose learning orthogonal LoRA weights for new tasks to mitigate
forgetting.

Roles of attention and FFN in LLMs. Mechanistic studies of transformer blocks show a division of
labor. Attention heads act primarily as routing and retrieval mechanisms: they select where to read
from using query—key patterns and then mix the corresponding values; this view is formalized in the
Transformer Circuits framework and supported by analyses of “induction heads,” which implement
a simple copying algorithm and closely track the emergence of in-context learning during training
(Olsson et al., 2022). In contrast, feed-forward (FFN/MLP) blocks behave like key—value memories:
learned keys detect input patterns while values write features that align with groups of vocabulary
items, thereby shifting the model’s output preferences (Geva et al., 2021). Meng et al. (2022) show
that directly modifying MLP weights updates specific facts while preserving unrelated behavior,
implying FFN as a principal site where “what to say” is stored. Earlier analyses in BERT and NMT
also found that a minority of attention heads specialize into linguistically interpretable roles (e.g.,
syntax, coreference) while many heads are prunable with little loss, reinforcing the view of attention
as selective routing rather than the main repository of lexical knowledge (Clark et al., 2019; Voita
et al., 2019). This literature aligns with our empirical finding that self-attention updates tend to
preserve global behavior while MLP updates are the main driver of output-distribution shift.

Large multimodal models (LMMs). Relatively little work has investigated continual learning in
LMMs, but there is growing interest. Chen et al. (2024a) find that LMMs suffer from catastrophic
forgetting when learning a sequence of new tasks. Most studies of LMMs more narrowly focus on
visual question answering (VQA) (Zhang et al., 2023; Nikandrou et al., 2024; Lin et al., 2025; Marouf
et al., 2025; Del Chiaro et al., 2020) or image captioning (Nguyen et al., 2019). Zhang et al. (2023)
leverage both sample-specific and sample-invariant features to learn representations that are both
discriminative and generalizable for VQA tasks. Nikandrou et al. (2024) propose to distill knowledge
separately for each modality, ensuring that both image features and question features retain their
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Figure 2: Architecture of our evaluated LMMs. The input contains visual inputs such as images or videos,
which are converted to visual tokens by the vision encoder, and text input is processed by a tokenizer containing
a visual placeholder token <image>. Visual tokens are converted by the projector and concatenated with text
tokens as input for the language model. We visualize the architecture of the transformer decoder layer of the
language model. "LN", "MHA", "MLP" represent layer norm, multi-head attention, and multi-layer perceptron,

respectively. () is the final output of layer [.

relevant information when new tasks arrive. Lin et al. (2025) combine selective memory replay and
knowledge distillation for VQA. Marouf et al. (2025) store only past questions from previous tasks as
memory for rehearsal. For older models, Nguyen et al. (2019) integrate continual learning techniques,
such as finetuning schemas and regularization, into the captioning pipeline to combat forgetting, and
Del Chiaro et al. (2020) introduce an attention-based LSTM architecture.

Our work complements these studies in several ways: (1) more diverse tasks, such as counting, clock
reading, classification, OCR, and medical VQA, finding large differences in the extent of learning
and forgetting in each and that what is “forgotten” by one task can be recovered by learning the next
(see Figs. 1 and 4); (2) systematic analysis that forgetting is highly related to output token distribution
shift and methods that prevents shifts mitigate forgetting (Sec. 5.2 and 5.4); (3) investigation into
tuning different components, finding that tuning MLP Gate&Up and SA Proj. provide a good balance
of learning and forgetting.

3 METHOD

Setting. We adapt a pretrained large multimodal model on either a single-target task or a sequential
stream of tasks. In the single-target case, given a target dataset Dt and a held-out suite Dy, the goal
is to improve performance on Dt while preserving performance on Dy. In the sequential case, tasks

{D(Tl ), ceey D(TK)} arrive in stages; unless noted we update at each stage without rehearsal (no mixing
of earlier tasks) and assess both the current target and the aggregated held-out suite after every stage.

3.1 MODEL

Overview of the LMM. Our evaluated LMMs have three major parts (Fig. 2): a vision encoder
that turns an image into visual tokens, a projector that maps those tokens to the language width d,
and a decoder-only transformer language model that produces next-token logits given the visual and
text tokens.

Vision encoder and projector. The vision encoder produces v = f.is(I) € RS *9_ The projector
maps to the language representation width,

Tyis = gw("l}) S Rstd>

where 1) are the projector’s trainable parameters.

Language model. The language model is a pre-norm, decoder-only transformer with L identical
blocks. As illustrated in Fig. 2, the sublayer outputs and residual update at block [ are
a® = MHAV(LN(C-D)), O = MLPOLN(r(=D 4+ a®)),  7+O =00 4O 4 fO (1)

where MHA and MLP denote the multi-head self-attention and feed-forward network and LN is
layer normalization.



Self-attention. With input = and per-head key width dy,

(Q. K.V} =z {Wo, Wi, Wy} ention, A:softmax(%) paemix + Wo,  NHA(z) = (AV)Wo  (2)

Here W¢, Wi set where to attend (routing), Wy, selects the content to mix, and W is the matrix
that writes the attention result back into the residual stream at model width d.

Feed-forward. With input x and gating nonlinearity ¢ = SiLLU,
MLP(z) = Waown (#(2Wgate) © (2Wyp)) , 3)

where Wate, Wiy detect features (key-like pattern match), and Wyown writes those features back to
the residual at width d. We use U € R%*IVI for the LM head and denote the final block output as
(1), so logits are z = U " (1),

Residual stream. Let 2y € RS %4 be the text embeddings and x5 € RSv*d the projected visual
tokens. The transformer input stacks them along the sequence:

7"(0) = I:thext; Lvis ] :

Unrolling the pre-norm recurrence over [=1:L yields the representation read by the LM head,

L L
R I IS iU} “@
=1 =1

Eq. 4 shows the additive influences of attention and MLP outputs, but it does not imply disentangled
influences: each a(Y) and £ is a function of the shared stream r(!~1), so changing self-attention
alters the inputs that later MLPs receive (and vice versa). Combined with Egs. 2-3, we can change
what concepts are activated by modifying the self-attention (since it feeds into the MLP) or the MLP
up/gate layers, and we can change what to write given the activated concepts by changing the down
layers. W determines the output of the attention layers, but the change in final model output is most
influenced by the outputs of the final MLP layers, whichever parameters are tuned (Appendix Fig. 9).

3.2 WHICH PARTS TO TUNE?

At the system level, one can update the vision encoder and the projector (which change (%)), or
the language model (which produces the layerwise increments that accumulate into (%)), Because
z = U"r(F) and the sublayers are coupled through the residual, we focus on controlled updates
inside the LM that probe routing versus writing without altering the readout: we keep the LM head
U, token embeddings, and layer-norm parameters fixed by default.

Guided by Egs. 2-3, we consider:

* SA Proj.: Update Wq, Wi, Wy, Wo in all blocks (routing + write-back for attention).

* SA Proj. (QKYV): Freeze Wy to emphasize routing without directly modifying write-back.
* MLP: Update Wgate, Wup, Waown (concept activation + write-back).

* MLP (Gate & Up): Update Wi, Wyp While freezing Wown to regulate write-back.

3.3 TRAINING OBJECTIVE

Target task loss. We use next-token cross-entropy on the current target dataset with teacher forcing.
For abatch B C D(Tk) at stage k,

lyl
‘Ctask(e) = E(I,y)NB - Z Inge (yt | Y<t,s xvis) 5 Tyis = gw(fVIS(I» . (5)

t=1



Learning-without-Forgetting (optional). To explicitly curb the output-distribution drift, we can
enforce a KL-divergence constraint between the outputs of the current model at stage k with a frozen
teacher model (checkpoint after stage k—1). Let 8;_; be the frozen teacher and € the current model

tuned on D(Tk). The objective is

L(0) = Liask(0) + A Laisein(0; 0x—1), (6)
with
2 20 _1.d 2g,j
Laistin (05 0x—1) = E (7 o5 SOl Z KL(softmaX<%) H softmaX(T‘J)) , (D
JjeS(y)

where B C D(Tk) is a target minibatch, 7 is the distillation temperature, and S(y) is a uniformly
random subset of positions with |S(y)| = min(|y|, 1000) so we distill over many tokens while
capping compute/memory. The coefficient A balances fitting the new supervision against preserving
the model’s earlier behavior.

4 EXPERIMENT DESIGN

Our experiments are designed to answer four questions: (i) Where to tune?—which components
of an LMM can be updated to learn new skills while preserving prior abilities (Sec. 5.1); Why
does forgetting occur?—whether performance loss is tied to a shift in the model’s output distri-
bution (Sec. 5.2); (iii) How generalizable is our selective tuning strategy—whether the same
selective-tuning recipes (SA Proj., MLP Gate&Up) transfer across model families (Sec. 5.3); and
(iv) How does our selective tuning compare to other simple forgetting mitigation approaches?
(Sec. 5.4).

Due to space limits, we provide details of the tasks and implementation in Appendix A and B.

4.1 SEQUENCE-LEVEL METRICS

We summarize performance over the five-stage curriculum with four metrics computed for every
method.

» Target Learning. At each stage, consider only the task being tuned and measure its improvement
over the base model on that task. We then average these stage-wise gains across all stages. This
captures how well a method learns the task it is currently trained on.

» Target Forgetting. To measure forgetting on target tasks trained earlier in the sequence, we
report the average difference between their accuracy immediately after they were trained and their
accuracy at the end of the sequence. More negative means more forgetting.

» Target Overall. After training the full sequence, we compute the average performance change vs.
the base model across all target tasks. This yields the net end-of-sequence effect on the target suite,
combining the learned task and the previously learned targets.

* Held-out Forgetting. After training the full sequence of target tasks, we measure the average
performance across all eight held-out benchmarks, in comparison to the base model. Negative
values indicate forgetting on general vision—language ability; positive values indicate positive
transfer.

5 RESULTS

5.1 COMPONENT TUNING ON LLAVA-ONEVISION

Fig. 1 previews learning (single—task tuning, left) and forgetting (held-out along the default se-
quence, right). Tab. 1 summarizes the four sequence-level metrics on LLaVA-OneVision for each
component-tuning configuration, averaged over three five-task curricula. Entries are percentage-point
deltas from the base model; the baseline row reports absolute scores. Detailed single-task and
sequential results, together with per-task performance tables, are provided in the Appendix.



Table 1: Component-level summary across the five-task curriculum averaged over three different task
curriculum. Cells are colored using a diverging blue-orange colormap to show performance changes. -
indicates a positive change, where a darker shade is better. | Orange | indicates a negative change, where a lighter
shade is better. We use underscored texts to represent the best approach for each metric.

Method Target Learning  Target Forgetting  Target Overall Held-out Forgetting
Baseline 43.9 0.0 43.9 76.4
Full +29.9 —25.9 +9.2 —27.4
| = Vision Encoder +9.6 —12.7 -0.5 —10.8
| — Projector +2.3 —0.8 +1.7 —-1.3
|- LLM +31.8 —23.5 +13.0 —23.3
| = SA Proj. +24.9 —-2.3 +23.1 —0.6
| - SA Proj. (QKV) +14.9 —0.5 +14.5 +0.2
| - MLP +31.1 —19.5 +15.5 —15.7
| - MLP (Gate&Up) +30.5 —4.2 +27.1 —2.1

From the table, we find the following patterns:

1) Full-model tuning attains large learning but maximizes forgetting: Target Learning +29.9 is
coupled with the worst Target/Held-out Forgetting (—25.9/—27.4).

2) Vision-side updates are weak or near-neutral: the vision encoder yields a modest Target
Learning +9.6 with negative Target Overall —0.5 and Held-out Forgetting —10.8; projector-only
updates barely move any metric (smallest changes overall).

3) Language-model tuning has the best learning: LLM shows the strongest Target Learning +31.8
and a solid Target Overall +13.0, but also substantial Target/Held-out Forgetting (—23.5/—23.3),
even better than the Full model.

4) Self-attention projection is the most stable among LLM choices: SA Proj. achieves high
Target Overall +23.1 with minimal forgetting (Target —2.3, Held-out —0.6); the conservative variant
without Wy, further reduces forgetting (Target —0.5, Held-out +0.2) at the cost of learning (+14.5
Target Overall), indicating over-regularization when the attention write-back is frozen.

5) Regulating the MLP write-back offers the best balance: MLP (Gate&Up) delivers near-maximal
Target Learning 4-30.5 and the highest Target Overall +27.1 while keeping forgetting small (Target
—4.2, Held-out —2.1); by contrast, full-MLP pushes learning slightly higher on the current task
+31.1 but increases forgetting (Target —19.5, Held-out —15.7).

Overall, methods that mainly reroute evidence (SA Proj.) or constrain how activated concepts are
written back (MLP Gate&Up) provide the most favorable learning—stability trade-off on LLaVA-
OneVision.

5.2 OUTPUT-DISTRIBUTION PROBE (COUNTING BIAS)

To test whether forgetting is tied to a global shift in token preferences, we track a simple number-token
bias (NTB) during counting adaptation: as training proceeds, how does the likelihood of outputting a
numeric token change for a task that does not require counting? Let C' be a fixed subset of vocabulary
items (digits and common spelled numerals). For a fixed held-out batch, at training step s we generate
a caption with deterministic greedy decoding and, at each step j, read the next-token distribution and
take the maximum probability over C'. Averaging first over all positions and then over the batch B
yields
|yl

NTB, = E(Ly)EB m;gleagpes (v] Y<ijs Tyis)

We plot absolute NTB; on a log-spaced grid of steps (1, 10,100, 1000) for SA Proj., MLP, MLP
(Gate&Up), MLP (LwF), and full LLM. As seen in Fig. 3, full LLM/MLP sharply increase NTB and
their held-out accuracy drops in tandem; SA Proj. keeps NTB; near the baseline with an essentially
flat held-out curve; constraining the MLP write-back (tuning only Gate&Up) or distilling to the
baseline checkpoint (LwF) suppresses the rise in NTB; and correspondingly preserves held-out
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Figure 3: Learning—forgetting tracks output—distribution shift. On LLaVA-OneVision tuned for counting,
we plot five curves over log-spaced steps for LLM, SA Proj., MLP, MLP (Gate&Up) and MLP (LwF). The
dashed line represents the base model. Left: PixmoCount accuracy rises for all methods. Middle: mean held-out
performance drops sharply for LLM and MLP, remains nearly unchanged for SA Proj., and is preserved by
MLP (LwF); Right: the expected likelihood of number tokens on non-counting captions (LCS-558K (Liu et al.,
2023a)) surges for LLM and MLP, stays near baseline for SA Proj., and has little changes for MLP (LwF).

Table 2: Component-level tuning experiments with LLaVA-NeXT and Qwen2.5-VL. "T" represents "Target"
and "H" is for "Held-out".

Method | LLaVA-NeXT (LLaMA-3 8B) | Qwen2.5-VL (7B)
‘T. Learn T. Forget T. Overall H. Forget‘T. Learn T. Forget T. Overall H. Forget
Baseline | 315 0.0 31.5 59.9 | 521 0.0 52.1 71.9
Full +31.7 —-203 +154 | —32.0 | +173 52 +13.1 —-17.5
| - Vision + Projector | +0.1 —-1.8 —-1.3 —134 | +12.1 -9.1 +4.9 —6.2
|- LLM +36.2 —-21.2 4193 —-35.9 | +16.8 —5.9 +12.1 —24.6
| - SA Proj. +28.3 —7.9 +21.9 —7.7 | +16.1 —-1.6 +14.9 +0.6
| - MLP +349 —-10.3 +26.6 —16.3 | £17.7 —4.8 +13.9 —10.9
| - MLP (Gate&Up)| +28.0 —8.9 +20.9 —8.7 | +16.8 +0.4 +17.1 —4.6

performance. In our setting, forgetting rises and falls with the magnitude of this shift: updates that
mainly reroute evidence (SA Proj.) or regulate write-back (Gate&Up, LwF) learn the new skill while
keeping drift small and thus interference small. We also create an analysis of per-layer contribution
of SA Proj. and MLP to the output distribution shift in the Appendix ( Fig. 9), which shows MLP
drives the major shift, regardless of what gets tuned.

5.3 BEYOND LLAVA-ONEVISION: GENERALIZATION TO OTHER BACKBONES

We repeat the default five-task curriculum on two additional backbones LLaVA-NeXT (LLaMA-3
8B) and Qwen2.5-VL (7B), using the same training protocol and sequence-level metrics as for
LLaVA-OneVision. For vision-side updates, we tune the vision encoder and projector jointly, since
they form a single interface that produces the visual token sequence consumed by the language model.

Across both backbones, the broad picture echoes LLaVA-OneVision: updating the language model is
consistently effective for learning new skills; full-model and full-LLM tuning achieve large target task
gains but come with the largest drops on held-out. Within the LM, two settings stand out as robust:
self-attention projections deliver meaningful target learning with small held-out change, and MLP
(Gate&Up) preserves most of the learning of full-MLP while limiting forgetting. There are, however,
model-specific nuances worth noting. On LLaVA-NeXT, MLP achieves the strongest target-overall
improvement but incurs a noticeably larger held-out decrease than SA Proj. or Gate&Up, which
remain the most stable choices. LLaVA-NeXT is much more susceptible to forgetting in general
than the other models. On Qwen2.5-VL, SA Proj. is particularly stable: held-out performance is
maintained or slightly improved; MLP (Gate&Up) attains the best target-overall score with near-zero
target forgetting; vision + projector tuning also yields non-trivial target gains with moderate stability
cost, in contrast to its weaker effect on LLaVA-NeXT. Though Qwen2.5-VL appears to learn less, it
is worth noting that its baseline performance is much higher than that of other models. Overall, taking
LLaVA-OneVision, LLaVA-NeXT, and Qwen2.5-VL together, the clearest cross-model takeaway



is to prefer SA Proj. when stability on held-out is paramount and MLP (Gate&Up) when seeking
near-maximal target learning with limited forgetting; projector-only updates are generally weak, and
full-model / full-MLP tuning maximizes short-term gains at a clear stability cost.

5.4 MITIGATING FORGETTING

Evaluation on Target Tasks 28 Evaluation on Held Out Tasks
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Figure 4: Comparison of different continual learning techniques in the default sequential task curriculum. For
LwF, WiSE-FT, only the MLP layers are tuned. LoRA adapters are wrapped only on the MLP layers. MoE is
also applied to the MLP layers.

Figure 4 compares three selective tuning recipes, i.e. MLP, SA Proj. and MLP (Gate&Up), with
common forgetting mitigation methods: Learning without Forgetting (LwF) (Li & Hoiem, 2017),
LoRA, Mixture-of-Experts (MoE), and weight-space ensembling (WiSE-FT) (Wortsman et al., 2022).
Refer to the Appendix (Sec. G) for details of these methods. Two patterns emerge. First, SA Proj. and
MLP (Gate&Up) provide the best learning—stability trade-off: SA Proj. keeps held-out performance
essentially flat while achieving meaningful target gains, and MLP (Gate&Up) delivers stronger target
improvements with only a small held-out change, being substantially more stable than MLP. Second,
among the compared methods, WiSE-FT can preserve held-out accuracy better than LwF but requires
careful selection of task-dependent blending coefficients; LwF reliably curbs forgetting yet may
impact target task gains; MoE and LoRA do not match the learning—stability balance of SA Proj. or
MLP (Gate&Up), with LoRA often lagging behind on target performance. Overall, selectively tuning
SA Proj. or the MLP Gate&Up pair matches or exceeds these mitigation methods while remaining
simple (no extra modules, no replay, no per-stage weight blending).

6 CONCLUSION

We sought to answer how to teach large multimodal models new skills without erasing prior abilities,
and studied this across five target skills, eight held-out benchmarks, and three backbones. Our results
show that the apparent loss on held-out tasks after narrow fine-tuning is often temporary: performance
that drops at one stage can recover later. We trace this behavior to a measurable shift in the next-token
distribution rather than the loss of concepts. A simple counting-bias probe makes this drift visible,
and a layer-wise residual-to-logit analysis shows that most of the shift is written by late MLP blocks,
not by self-attention. Guided by this, we discover two practical recipes emerge that learn strongly
while keeping forgetting small: updating only the self-attention projection layers (which reroute
evidence) and updating only the MLP Gate&Up while freezing Down (which regulates write-back
to the residual stream). These choices consistently deliver large target gains with minimal held-out
change across model families.

Limitations. Due to limited resources, we must leave exploration of many interesting aspects to
future work, such as alternative architectures and longer sequences. Also, testing with much larger
models, and additional modalities, such as audio, requires further study. Broader issues, such as
privacy leakage, safety, and societal impact, remain open for future investigation.



7 REPRODUCIBILITY STATEMENT

We aim to make our results fully reproducible. The paper specifies the model backbones and
checkpoints (LLaVA-OneVision (Qwen2 7B), LLaVA-NeXT (LLaMA-3 8B), Qwen2.5-VL 7B),
the five target tasks and eight held-out benchmarks (Sec. A.1), the sequential curricula, and the
training/evaluation settings (Sec. B). Our sequence-level metrics are defined in Sec. 4.1 and used
consistently across methods. We provide implementation details, per-task prompts, decoding settings,
and numeric token lists in the appendix; method details for the output-distribution probe (Sec. 5.2)
are included as supplementary materials. We provide some additional interesting analysis in the
appendix as auxiliary information for our discovery path including the layer-wise residual-to—logit
analysis, combination of tunable parts, etc. We also provide the detailed per-task performance for
both single-task fine-tuning and sequential fine-tuning of each method. We will release code and
instructions to fetch datasets and model weights to facilitate end-to-end replication.
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A TASK DESIGN

A.1 TASKS AND EVALUATION SUITES

Target tasks. Our criteria for target task selection are: (1) prefer tasks that occur in daily experience,
like counting and reading clocks preferred; (2) prefer tasks that LMMs are known to be typically
weak, such as fine-grained species classification (Liu et al., 2024a); and (3) exclude tasks used to
train the original LLaVA-OneVision model. Based on this, we select 5 target tasks and create a
default sequential-tuning task curriculum:

1. Bird classification from the CUB dataset (Wah et al., 2011) which contains 5,994 training samples.
We reformat the dataset following the instructions of (Liu et al., 2024a) for training and evaluating
LMMs.

2. Counting from the PixmoCount dataset (Deitke et al., 2024) which contains 36,140 training
samples with object count labels.

3. Medical VQA from the PathVQA dataset (He et al., 2020) which contains 19,654 radiology
question answer pairs.

4. OCR reading from the TextVQA dataset (Singh et al., 2019) which has 34,602 training samples.

5. Time reading from the TimeClock dataset (gpiosenka, 2021) containing 11,520 training images
of analogue clocks with ground truth times.

In total, the curriculum contains 107,910 training samples, providing a comprehensive stress test for
forgetting and knowledge transfer.

Held-out suite. To measure generalization beyond the training stream, we evaluate on eight held-out
benchmarks: AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022), DocVQA (Mathew et al.,
2021), InfoVQA (Mathew et al., 2022), RealWorldQA (visheratin, 2024), SeedBench (Li et al., 2023),
ScienceQA (Lu et al., 2022), and MMStar (Chen et al., 2024b). InfoVQA and DocVQA use ANLS;
since ANLS is in [0, 1], we average it with accuracies from the other held-out tasks when reporting
the mean held-out score.

A.2  ON BUILDING TARGET TASKS
Our training and evaluation scripts are built on the LLaVA-NeXT and 1mms—-eval public GitHub

repositories. Since some of the target tasks are not supported by 1mms—eval, we need to implement
support for evaluation of target tasks. Details are as follows.
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Bird classification. We reformulate the bird classification dataset CUB200 (Wah et al., 2011) to
a multiple choice VQA task following (Liu et al., 2024a). Specifically, for a <image> and <class
name> pair, we mix the correct label with 31 randomly chosen labels from the whole dataset and
then compose a question like:

<image> What species is the bird in this photo?
Answer with the option’s letter from the given choices directly.
\n A.<class name A> \n B.<class name> \n --- Z.<class name 7>

This task has 5,794 validation samples. The instruction prompt for this task is: “Answer with the
option’s letter from the given choices directly.” And only exact match can be deemed as correct by
lowercasing model’s output and compared to lowercased ground-truth answer.

Counting. The original PixmoCount dataset provides download links rather than actual image files.
By the time of downloading, not all links are valid. In the end, besides 36,140 training samples, we
collected 535 and 536 validation and test samples. We use the validation set to report numbers in
the paper, as done in the technical report of Pixmo dataset (Deitke et al., 2024). The instruction
prompt for this task is “Answer with integer and nothing else. For example, if the answer is 1, you
should output 1.”. We convert the output by the model to digits and then use exact match to compute
accuracy.

Medical VQA. We use the test split of the PathVQA dataset for evaluation, containing 6,719
samples. The instruction prompt for this task is “For questions that can be answered with a yes or
no, just answer yes or no. Otherwise, provide an answer in the medical domain.” We use the exact
match score as the metric for this task, using the official evaluation algorithm.

OCRreading. I1mms-eval has support for TextVQA evaluation and we use the accuracy on the
validation set as the performance for this task.

Time reading. We evaluate on the validation split of the TimeClock dataset, which contains 1,440
samples. The instruction prompt is “Answer with the time in HH:MM format. For example, if it is
3:45, output 3:45.” To compute accuracy, we parse the model’s output to extract the hour and minute.
A prediction is marked correct only when both values match the ground truth.

A.3 TASK CURRICULUM
We provide three task sequences for sequential-tuning:

1. CUB200 — PixmoCount — PathVQA — TextVQA — TimeClock
2. PathVQA — CUB200 — TextVQA — TimeClock — PixmoCount
3. TimeClock — TextVQA — PathVQA — PixmoCount — CUB200

Unless otherwise stated, we use the first as the default sequential-tuning sequence.

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS FOR LLAVA-ONEVISION

We adopt the 7B Qwen2 language model checkpoint for experiments on LLaVA-OneVision.
Experiments run primarily on 4xNVIDIA H100 GPUs with 1 sample per GPU. We use 8§
gradient-accumulation steps (effective batch 32), a learning rate of 5 x 106 with cosine decay,
and a 3% warm-up. Following the practice from (Li et al., 2024a), we use a smaller learning rate at
2 x 1076 when tuning the vision encoder and the projector. Evaluation uses 1mms—eval (Zhang
et al., 2024) with added support for our targets. When we activate LWF, we set A=1 and 7 = 2. For
all the experiments, we perform single epoch training.
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Table 3: Parameter groups and counts for LLaVA OneVision Qwen2-7B

Group Components #Params
Ove SigLIP vision encoder ~ 400M
Oproj  Multimodal projector ~ 20M
Osa All blocks: Wq, Wk, Wy, Wo ~ 822M
Omrp  All blocks: Wgate, Wup, Waown = 5,703M
OEmb  Input token embeddings ~ 545M
@LM LM head U ~ 545 M

* SigLIP So400M vision backbone, about 400M parameters.

® OneVision Stage 1 projector is about 20M parameters for the 7B class.

¢ Per layer counts with d=3584, di, =512, L=28: SA 29,364,736, MLP up 135,790,592, MLP 203,685,888;
totals multiply by L.

4 Vocab size 152,128 and width d=3584 give 152,128 x 3584 = 545,226,752 parameters for embeddings and
for the LM head (untied).

B.2 PARAMETER COUNT FOR LLAVA-ONEVISION

Tab. 3 lists the parameter groups and counts of each part in the LLaVA-OneVisionmodel. It can be
seen that the language model takes a large part of the total capacity of the model. Within the language
model, MLP is the major consumer of parameters.

B.3 IMPLEMENTATION DETAILS FOR QWEN2.5-VL AND LLAVA-NEXT (LLAMA 3)

We adopt the 7B Qwen2.5 checkpoint for experiments on Qwen2.5-VL. For all experiments on
Qwen2.5-VL, we use 4 H100 GPUs and set learning rate at 2e-5 for all components in the model.
Per-GPU batch size is set to 4, with 4 gradient accumulation steps. Therefore, the effective batch size
is 64.

For experiments on LLaVA-NeXT (LLaMA-3), we use the 8B LLaMA-3 checkpoint. We adopt
the same learning rate, warm-up ratio, batch size, gradient accumulation steps as tuning LLaVA-
OneVision.

For all the relevant experiments, we perform single epoch training.

B.4 IMPLEMENTATION DETAILS FOR SEC. 5.2: OUTPUT-DISTRIBUTION PROBE (COUNTING
BIAS)

Setup. Fix a token subset C' (digits and common spelled numerals; exact list in the repo) and
a held-out batch B = {(I,y)} of |B| = 100 image—caption pairs sampled once from LCS-558K
(reused for all checkpoints and methods). For each checkpoint s and each (I,y) € B, generate a
caption y with deterministic greedy decoding using identical preprocessing and decoding settings
across methods.

Per-position score. At generation step j, before committing the token, read the model’s next-token
probabilities and compute the per-position number tendency

max

Pbc (95;I7g1j) = Iglea'c),( p@s(v | g<j7 (Evis)-

Per-example and batch aggregates. Summarize each example by the sequence average

19|

> pE™ (01,9, 4),

Jj=1

1
9]
and aggregate over the batch to obtain the number-token bias at checkpoint s:

1
=& > SeqAvge (s ).
| (I,y)el’;’

SeqAvg(0s; 1) =

NTB,
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Table 4: Numeric token indices and their corresponding tokens.

Index / Token Index / Token Index / Token Index / Token

15 0 16 1 17 2 18 3

19 4 20 5 21 6 22 7

23 8 24 9 603  one 1960 ten
3966 One 5225 ONE 11613 Two 14154  zero

17999  Zero 19641 Three 19789 two 26972  Four
27856  three 32687 Ten 34024  four 37020 Five
41460  Six 50364  six 52670 five 58313  million
59085 Eight 59528 Seven | 67532 eight | 73956 ZERO
75796  Twenty | 80185 seven 83329 Nine | 91602  Thirty
93223  nine 93965 twenty

B.5 NUMERICAL TOKEN LIST USED FOR COUNTING BIAS PROBE

In Tab. 4, we list the total 38 numeric tokens we used for counting bias probe, and their indices in the
tokenizer. The numeric tokens include numeric digits and words such as "one", "ONE", etc.

C DISCOVERY PROCESS

In science, the ordering of observation, hypotheses, experimental results, and explanation is important
— to know whether claims are post-hoc rationalization of results or experiments are a confirmation of
hypotheses that were based on prior observations. Therefore, we wish to give a full accounting.

In beginning this research, we first sought to verify the problem of “catastrophic forgetting” in
LMMs. While prior works had largely confirmed the forgetting, these works tending to involve a
limited range of tasks, so we created a diverse set of target tasks, some of which we expected to
be very hard for the LLaVA-OneVision model (e.g. counting and telling time), and others to be
easy (e.g. bird identification and TextVQA). After confirming that typical tuning practices, such as
tuning the vision component, LLM, or full model, led to substantial forgetting, we thought we would
turn to mitigation strategies, such as experience replay, model expansion with mixture-of-experts,
knowledge distillation, and weight averaging. We also noticed a surprising result, that the model
performance would drop significantly in held out benchmarks after training on the counting task,
it would mostly recover on PathVQA, another specialized task that is not well represented in the
benchmarks. Meanwhile, while performing the forgetting mitigation experiments, we also tried
separately tuning only the self-attention projection (SA Proj) or MLP layers, motivated by the finding
that tuning only the LLM was generally better than tuning the full model. This led to another very
surprising result — that tuning only self-attention projection layers led to very good learning of the
target tasks with no drop in performance in held out tasks, even after training all five target tasks in
a sequence. This was surprising because we were not aware of other instances of strong learning
without forgetting behavior, in the absence of model expansion, rehearsal, or strong regularization. A
third interesting result was that knowledge distillation turned out to be the most effective method for
mitigating forgetting that we tried, outperforming e.g. replay of examples from earlier target tasks
and a mixture-of-experts scheme for model expansion.

Initially, we sought to stress test these results. Indeed, we found that if we keep training new tasks,
such as the large long-tailed task of iNaturalist (Van Horn et al., 2018) classification, we see a little
bit of forgetting. Also, in tuning other models, LLaVA-NeXT and Qwen2.5-VL (Table 2), we do not
see exactly the same numbers, of course, but the major trends hold. With Qwen2.5-VL, we actually
get a little forward transfer on the held-out tasks when tuning SA Proj. With LLaVA-Next, we get a
7.7 point drop in held out tasks, but less than half the forgetting of tuning MLP layers and less than
one-quarter as much as tuning the full LLM. We also tried other sequences of target task training and
found that the post-counting recovery of forgetting was not a fluke. For example, we see recovery
from both PixmoCount and TimeClock when reversing the sequence order. By-and-large, the results
held — fine-tuning self-attention is remarkably robust to forgetting, what was “forgotten” can be
recovered without rehearsal, and regularizing the outputs with knowledge distillation also is highly
effective in mitigating forgetting when tuning the MLP.
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We performed many other experiments, but our breakthrough in understanding came from reviewing
the literature, particularly in work, such as Geva et al. (Geva et al., 2021) and Olsson et al. (Olsson
et al., 2022), that experimentally explore the roles of transformer components. Their key results are
that MLPs are responsible for storing and applying memories, with the up layer(s) looking up the
memories (or activating concepts) and the down layers applying the activated concepts to modify the
output token distribution. Attention, on the other hand, is responsible for processing and organizing
the inputs. This led us to consider that a model can adapt to a task in many ways: acquiring skills to
make better use of its inputs, acquiring new memories and concepts, better applying those concepts, or
simply biasing toward the output distribution. We hypothesized that, when training the full LLM, the
model is at least partially taking a shortcut to bias toward the output distribution, rather than focusing
on skill or memory improvement. This hypothesis could explain all three observed phenomena. The
SA Proj is robust to forgetting because it does not directly tune the MLP layers that produce the
output distribution. The forgetting is sometimes recoverable because subsequent training on a task
with more varied outputs reverses the narrow output distribution shift. Knowledge distillation directly
penalizes shift in the output distribution.

This led us to propose two experiments to test this hypothesis. First, we reasoned, we should see that,
as the counting task is trained, the model becomes more predisposed to output numbers, since the
counting task answers are always of the form, “There are [number] [object(s)] in this image.” We
also should see some correlation between this bias toward numeric tokens and forgetting in held-out
benchmarks. As we show in Fig. 3 and exemplify in Fig. 10, the results are quite striking with a
strong effect of the output distribution bias and a strong correlation with forgetting. Second, we
proposed, tuning the MLP except for the down layers that most directly modify the output distribution
should mitigate the output bias and, therefore, reduce forgetting. Again, the confirmation was strong
— with LLaVA-OneVision, tuning only MLP up layers achieved the best overall target performance
with only a little more forgetting than tuning SA Proj.

We believe our results are conclusive, especially given the observe-hypothesize-test-confirm pattern
of our research. Further, in the past few days (at the time of this writing), another paper has come out
with related findings. Shenfield et al. (Shenfeld et al., 2025) finds that the amount of forgetting is
correlated to distributional shift between the base and tuned model, as measured by KL-divergence,
and this explains why on-policy RL training is more robust to forgetting than SFT (supervised
fine-tuning).

Finally, we would like to stress that our experiments have been more thorough than we can relate in
the main text. Just in generating the results of Table 1, we fine-tuned the 7B parameter model on 5
tasks 21 times (3 sequences, 7 components) and evaluated 8 broad benchmarks and 5 target tasks
105 times (after each target task was trained). That is 105 task trainings and 1365 task evaluations.
We include many other experimental results in the main text and appendix below. While it is always
possible to train more models, more component variations, more mitigation strategies, on more
datasets and with more evaluations, we have pushed our resources to the brink and hope that the
reader finds our claims sufficiently supported, as we do.

D USE OF LARGE LANGUAGE MODELS (LLMS)

We used a general-purpose large language model (LLM) as an assistive tool for writing and editing.
Specifically, the LLM helped (i) refine phrasing for the abstract, introduction, method descriptions,
and result summaries; (ii) advise on LaTeX syntax and commands, and help address compile errors;
and (iii) brainstorm alternative framings and terminology for clarity and coherence. The LLM also
proposed suggestions for paper organizations.

The LLM did not design or run experiments, collect data, produce numerical results, or generate
figures. All experimental protocols, scripts, hyperparameters, and evaluations were implemented by
the authors; all numbers and tables in the paper are computed from our own training/evaluation runs.
When the LLM proposed text for technical definitions or claims, we verified the statements against
our code, logs, and checkpoints and revised as needed. All citations were added and checked by the
authors.

No private or sensitive data were shared with the LLM beyond draft text and public references. Final
responsibility for the content rests with the authors.
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E MORE RESULTS

E.1 SINGLE TASK FINE-TUNING

Table 5: Single task fine-tuning by component. Each individual target task is fine-tuned from
the original model, and the performance for that task (“Target”) and average held-out performance
(“Held-out”) is measured. Each row is for tuning a different component or set of components:
“Proj.”, “Vis. Enc.”, “SA Proj.”, “MLP”, “LM”, “Full” represent tuning the projector, vision encoder,
self-attention projections in the LLM, MLP in LLM, full LLM, and all parameters, respectively. “+”
is an increment over the baseline (original LLaVA-OneVision-7B checkpoint), and “-” is a decrease.

| CUB200 | PixmoCount | PathVQA | TextVQA |  TimeClock | Average
| Target Held-out | Target Held-out | Target Held-out | Target Held-out | Target Held-out | Target Held-out
Baseline | 537 764 | 524 764 | 363 764 | 760 764 | L1 764 | 439 764

Method

Proj. +5.7 -0.0 +4.2 -0.1 +0.6 -0.1 +0.5 +0.2 +0.4 -0.5 +2.3 -0.1
Vis. Enc. | +16.1 -0.8 +11.6 -4.7 +3.7 -2.8 +1.0 -0.7 +12.7 -11.9 +9.0 -4.2
SA Proj. | +31.8 +0.3 +15.2 -0.2 +14.4 -0.3 +3.5 +0.3 +56.0 -0.1 +24.2 +0.0
MLP +36.4 +0.3 +17.8 -4.0 +26.5 -0.4 +3.8 +0.0 +73.3 -3.1 +31.6 -1.4
LM +40.0 -0.0 +16.3 -1.7 +26.8 -0.7 +3.5 -0.7 +72.6 -4.6 +31.8 -2.8
Full +37.0 +0.1 +19.0 -9.0 +27.4 -0.9 +3.4 -0.7 +79.8 -5.4 +33.3 -3.2

In Fig. 1, we show the learning and forgetting of tuning different components on one target task at a
time, and then recording the performance for that target task and the average held-out performance. In
Tab. 5 we show the actual performance of each component by taking the delta based on the baseline
(original model), ordered from least to most parameters.

As a general trend, tuning more parameters increases both learning (improvement in target task) and
forgetting (decrease in average held-out tasks), with vision encoder and self-attention projection as the
notable exceptions. Tuning the full network or only the language model yields the greatest learning
(+33.3 and +31.8 percentage points, on average), yet these gains are accompanied by significant
forgetting (-3.2 and -2.8 points). Adjusting the MLP of the LLM provides a good trade-off, with
similar learning (+31.6) and substantially lower forgetting (-1.4). Adjusting only the self-attention
projection layers achieves a respectable +24.2 in learning and, surprisingly, no measurable forgetting.
The vision encoder and the projector offer relatively little gain, and the vision encoder has the most
forgetting (-4.2), indicating that tuning the vision features is particularly disruptive.

Now, consider the variations by task. There is only a weak correlation between the amount learned
and forgotten per task. For instance, CUB200 has the second-most learning (after TimeClock) but the
least forgetting. Also, some tasks benefit from visual tuning while others do not. Fine-grained bird
recognition (CUB200) and medical question answering (PathVQA) benefit almost exclusively from
language model updates, gaining +40.0 and +26.8 points, respectively, with little or no benefit from
additional vision tuning. Conversely, for PixmoCount and TimeClock, tuning the full model handily
outperforms tuning only the LLM portion.

E.2 SEQUENTIAL FINE-TUNING

In Fig. 5, we display how sequentially tuning different components on the default sequence of all five
tasks affects the average performance of all target tasks and held-out tasks. In this case, forgetting
in later learning can affect the performance of target tasks learned earlier. Per-task performance is
attached in the later sections.

Updating the MLP (Gate&Up) gives the best target-task performance overall. Multiple methods have
stable results on held-out tasks through out the whole sequence, such as SA Proj., SA Proj. (QKV),
and MLP (Gate&Up).

Another interesting phenomenon which is also mentioned in the main paper is that held-out perfor-
mance does not continually drop as more tasks are trained, but rises and falls. For example, training
on PixmoCount causes substantial loss in held out performance (0.76 to 0.63 for the full model), but
the loss is largely recovered (to 0.74) by training the next task PathVQA. This means in “forgetting”,
much of the information is not permanently lost but temporarily inaccessible.
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Figure 5: Sequential fine-tuning by component. The target tasks in the z-axis are trained sequen-
tially, from left to right. After training each task, the average performance of all target tasks (left)
and all held-out tasks (right) are measured. Each line shows the performance after tuning a different
component or set of components: LLaVA-OneVision (Full, Vision Encoder, Projector, LLM, SA
Proj., SA Proj. (QKV),, MLP, MLP (Gate&Up)). The dashed horizontal gray line marks the average
performance of the original model.
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Figure 6: Sequential fine-tuning by component. Tasks are arranged as TimeClock — TextVQA —
PathVQA — PixmoCount — CUB200.

In Figs. 7 and 6, we show the sequential tuning results by component on LLaVA-OneVisionin the
other two orders. Fig. 6 validates that forgetting recovery is not order-specific: methods that forget
significantly on PixmoCount, rebound after tuning on CUB200. Both figures indicate the robustness
of SA Proj., SA Proj. (QKV), and MLP (Gate&Up) on held-out tasks as they essentially keep flat
throughout. Especially, MLP (Gate&Up) has a huge benefit in target learning.

F MORE ANALYSIS

F.1 COMPOSING STABLE TUNING STRATEGIES: SA PROJ. + MLP GATE&UP

We asked whether combining the two most stable, high-learning settings from the main paper, i.e.,
SA Proj. and MLP (Gate&Up), has further benefits. We evaluate two compositions: SA Proj. + MLP
(Gate&Up) and SA Proj. (QKYV only) + MLP (Gate&Up) under the same five-task curriculum,
reporting the same sequence-level metrics and counting-bias probe. In aggregate, the composed
variants match or slightly underperform the two standalone settings on target learning while keeping
held-out changes small; the QKV-only composition is better than the other composition in the
held-out performance. But across tasks and checkpoints, neither composition consistently dominates
MLP (Gate&Up) alone, indicating that most of the achievable learning—stability trade-off is already
realized by Gate&Up for LLaVA-OneVision.
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Figure 8: Composing stable updates. We compare SA Proj. and MLP (Gate&Up) to two compositions: SA
Proj. + Gate&Up and SA Proj. (QKYV only) + Gate&Up using the default five-task sequential tuning.

F.2 LAYER-WISE RESIDUAL—TO—-LOGIT CONTRIBUTION ANALYSIS

We quantify where (by depth) and how strongly (by pathway) adaptation perturbs the output distribu-
tion by comparing the logit-space effects of self-attention versus MLP residual updates across layers
and training steps. We evaluate on a fixed, held-out multimodal shard sampled once from LCS-558K
and reuse it for all methods and checkpoints; unless noted, statistics are computed under teacher
forcing over the assistant answer span (target tokens). For each tuning configuration (SA Proj., MLP,
LLM, MLP (Gate&Up), and MLP (LwF)) we compare tuned checkpoints to the frozen stage-0 base
model at log-spaced training steps (e.g., 1, 10, 100, 1000), excluding the combined SA Proj. + MLP
(Gate&Up) condition. We register forward hooks on every decoder layer’s self-attention and MLP
submodules in both the base and tuned models to capture their residual increments a(") and f® at
each token j; with the LM head U fixed, we form logit-space deltas by projecting the difference of
residual contributions through U':

). l . l . l . l . l .
AZéA) (.7) = UT(at(ur)led(j) - CLI()ste(-]))7 AZIE/I{P(.]) = UT( tEn?ed(-]) - b(aze(-j))'

For each layer we aggregate token-wise vectors into a scalar via the £, norm and then average across
tokens and examples to obtain per-layer logit-space magnitudes:

SA() = VE[1a:00)13],  MLP() = /B[ a=0,(7)13].

We report these two curves (dashed blue for self-attention, solid red for MLP) per checkpoint, sharing
axes across panels for comparability.

Key observations. (1) MLP dominates the shift. Across configurations and steps, MLP curves
exceed self-attention curves—often by >2x in later layers—indicating that most logit-space change
comes from the MLP pathway. (2) Drift grows with training. For settings that forget (e.g., full
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Figure 9: Layer-wise residual-delta magnitude across training iterations. Each subplot shows the
average logit-space ||Aresiduall| attributable to MLP (solid reds) and self-attention projections
(dashed blues) versus transformer layer index. The five method configurations are: SA Proj., MLP,
LLM, MLP (Gate & Up), and MLP (LwF). Color shade encodes checkpoint iteration (darker = later).
The top-left panel is a legend; other panels omit legends for clarity.

LLM or full MLP), per-layer magnitudes increase monotonically with checkpoint step, mirroring the
counting-bias rise and held-out decline. (3) Late layers drive the effect. The last 4-5 transformer
layers account for the vast majority of the shift, with the final two layers contributing the largest
deltas; early layers remain comparatively stable. (4) Regulating write-back reduces drift. MLP
(Gate&Up) and MLP (LwF) substantially shrink late-layer MLP magnitudes relative to full MLP,
aligning with their smaller held-out drops. (5) Self-attention changes are smaller and flatter.
SA Proj. curves are consistently below the corresponding MLP curves and vary less across steps,
indicating weaker and less step-sensitive contribution to the overall distribution shift.

F.3 QUALITATIVE RESULTS OF MLP AND SA PROJ. TUNING

In Fig. 10, we demonstrate the response differences between tuning the MLP and tuning SA Proj.
in the LLM on PixmoCount for 1K iterations. Hence, counting examples can be regarded as the
target evaluation and we draw two image captioning samples from LCS-558K (Liu et al., 2023a) as a
held-out evaluation. It can be seen that SA Proj. can both output the correct answers for counting
examples and remain the capability to give detailed responses when asked to caption images. As a
contrast, MLP uses the learned counting skill to describe the image contents, for example, "There are
2 photos in the photo." for the third row. It demonstrates that MLP temporarily forgets how to answer
this question but still remains the capability to conceptualize image contents and recognize objects.

G FORGETTING MITIGATION APPROACH DESCRIPTIONS

Low-rank adaptation (LoRA). When memory or compute restricts full fine-tuning, LoORA (Hu
et al., 2022) offers a lightweight alternative. For a weight matrix W, € R%**, we introduce two
trainable low-rank matrices A € R"** and B € R?*" and model the update as AW = BA. After
optimization, the effective weight becomes

W =W + 2BA,
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MLP SA Proj.

How many people are in this image?

There are 13 people in this image. There are 13 people in this image.

There are 5 dogs in this image. There are 5 dogs in this image.

The photo is a screenshot of a presentation slide. The slide has a title at the top that reads
"Augmented Reality using Aruco Markers in OpenCV (C++/Python)". Below the title, there
are two images side by side.

The image on the left shows a painting of a field with yellow flowers. There are three black
and white QR codes superimposed on the painting. These QR codes are likely used for
augmented reality purposes, as indicated by the title.

¥ There are 2 photos in the photo.
- The image on the right shows a real-life photograph of a green field with a dirt path leading

Augmented Reality using AruCo
Markers in OpenCV (C++/Python)

into the distance. The sky is blue with some clouds. This image appears to be the result of
using the AR technology described in the title, as it seems to have been enhanced or
manipulated in some way.

Overall, the slide is demonstrating the use of Aruco markers in OpenCV for creating
augmented reality effects, where digital information is overlaid onto real-world images.

The image is a festive holiday greeting card. The background is white, and

There are 6 Christmas

SKHAN ts in th there are green pine branches with red baubles scattered around the edges. In
) e et a4 the center, there's a bold red text that reads "SRETAN BOZIC!" which
" BOZI[' P o_to, ere are_ translates to "Merry Christmas" in Croatian. Below it, in smaller black text, it
- =98 Christmas trees in the

says "NOVA GODINA," meaning "New Year." There's also a small smiley face
at the bottom right corner. The overall theme of the image is Christmas and
New Year celebrations.

photo. There is 1 text
in the photo.

I
]
GO0INA

)

Figure 10: Visualizations on counting and captioning examples after tuning tuning MLP and SA Proj.
on the counting task.

where « is a scalar scaling factor. Because only A and B are updated, the number of learned
parameters per task drops from dk to r(d + k), which is substantial when r < min(d, k).

In the continual-learning setting, we instantiate a fresh pair (A?, BY) for each task 7; while keeping
the backbone weights frozen. After completing task 7;, we merge the low-rank update into the
backbone weight W; < W,_1 + %BtAt and then discard the adapters. This maintains a constant
parameter footprint across tasks and avoids accumulating a growing set of task-specific modules.

Weight-space interpolation Weight-space interpolation (Wortsman et al., 2022) forms an implicit
ensemble by linearly combining the pretrained/base checkpoint with the fine-tuned checkpoint. Given
the base weights W4, ,¢ (the original LLaVA-OneVision checkpoint) and the fine-tuned weights after
stage t, WFT, we build an interpolated model

W = (1= 8) Whae + BWET, B e0,1]. ®)

The coefficient 5 trades off specialization on the current target task (larger /3) against retention of
general capabilities (smaller 3).

In our sequential setting, we apply Eq. equation 8 after finishing fine-tuning on task 7; and evaluate

Wt(ﬁ ). Unless otherwise noted, optimization for the next stage continues from W™ (not from Wt(ﬁ ))
to avoid repeatedly biasing training toward the base weights. We sweep 8 € {0.1,0.3,0.5,0.7,0.9}
and report 5=0.3’s result for comparison as it leads to better learning and forgetting tradeoff compared
to results obtained from other (-s.

Mixture of Experts. We next leverage the Mixture of Experts (MoE) architecture to expand model
capacity without overwriting knowledge learned during pretraining (Wei et al., 2024). An MoE layer
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Table 6: Detailed performance of using MoE to mitigate forgetting by performing sequential fine-
tuning on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 87.7 87.6 87.4 87.3 87.0
PixmoCount 52.4 53.9 65.5 68.2 63.5 59.9
PathVQA 36.3 36.2 354 61.3 57.4 57.8
TextVQA 76.0 76.0 75.3 75.3 78.5 76.3
TimeClock 1.1 1.0 1.9 1.2 1.2 68.0
Average 439 51.0 53.1 58.7 57.6 69.8
Held out

AI2D 81.4 81.5 81.2 80.5 81.3 80.8
ChartQA 80.1 80.2 79.6 79.6 80.0 76.1
DocVQA 87.1 87.2 85.2 85.8 86.6 84.5
InfoVQA 65.9 65.6 64.0 64.8 66.4 64.4
MMStar 61.8 62.1 62.6 62.6 62.5 61.4
RealWorldQA 66.4 67.7 62.2 63.9 69.3 68.0
ScienceQA 95.9 95.8 95.9 95.7 96.3 96.0
SeedBench 72.4 72.5 72.2 71.6 72.4 72.1
Average 76.4 76.6 75.4 75.6 76.8 75.4

combines a set of specialist networks (experts) {E; } ¥ ; through a learnable gating network g that
produces input dependent weights. The layer output is

l = Zgl(x) E;(z),

typically with a sparsity constraint such as top-k gating so that only a few experts are active per input.
We follow standard practice and replace the feed-forward (MLP) submodule in every transformer
decoder block of the language model with an MoE layer.

At the start of continual training, each decoder block contains 1) the pretrained expert £, that
stores upstream knowledge and 2) a new tuned expert E,.,, that is a copy of E;. The gating
network is a linear layer initialized to all zeros, which initially routes the entire token sequence
through E. During task ¢, we freeze E},; and update only the parameters of F\, and the gate.
Because E,; remains untouched, it acts as a safeguard when the tuned expert fails, giving MoE an
inherent resistance to forgetting. We repeat this procedure for every new task, always reusing the
same pair (Ep, Erew) and thus adding no extra parameters beyond the current tuned expert and gate.

H DETAILED TASK PERFORMANCE

H.1 FORGETTING MITIGATION METHODS SEQUENTIAL TUNING TABLES

Tab. 7, Tab. 8, Tab. 9, and Tab. 6 are detailed sequential tuning tables for forgetting mitigation
approaches tested in the paper, i.e., LORA, LwF (Li & Hoiem, 2017), WiSE-FT (Wortsman et al.,
2022), and MoE.

H.2 SEQUENTIAL TUNING DETAILED PERFORMANCE TABLES ON LLAVA-ONEVISION

We include the detailed task performances for sequential fine-tuning experiments on LLaVA-
OneVisionhere. Tab. 10, Tab. 11, Tab. 12, Tab. 13, Tab. 14, Tab. 15, Tab. 16, and Tab. 17 are
detailed performance tables of sequentially fine-tuning the Full model, Vision Encoder, Projector,
LLM, SA projection layers in LLM, SA Proj. (QKV), MLP layers in LLM, MLP (Gate&Up),
respectively.
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Table 7: Detailed performance of using LoRA to mitigate forgetting by performing sequential
fine-tuning on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 80.6 80.0 78.0 78.2 77.0
PixmoCount 52.4 52.6 67.8 64.2 62.5 63.7
PathVQA 36.3 36.2 35.1 58.1 51.6 53.3
TextVQA 76.0 76.0 75.2 75.2 79.1 76.2
TimeClock 1.1 1.0 1.0 1.0 1.2 33.7
Average 43.9 49.3 51.8 55.3 54.5 60.8
Held out

AI2D 81.4 81.9 80.8 79.7 81.3 79.7
ChartQA 80.1 80.1 79.2 78.1 79.1 71.7
DocVQA 87.1 87.1 85.0 83.4 84.4 74.1
InfoVQA 65.9 66.1 63.9 62.5 64.4 59.3
MMStar 61.8 62.1 62.2 60.5 61.2 60.3
RealWorldQA 66.4 67.6 66.4 65.9 68.8 66.3
ScienceQA 95.9 96.0 95.4 95.2 95.6 93.5
SeedBench 72.4 72.5 72.2 71.9 72.6 72.4
Average 76.4 76.7 75.6 74.7 75.9 72.2

Table 8: Detailed performance of using LWF to mitigate forgetting by performing sequential fine-
tuning on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 90.0 89.8 89.6 89.5 89.3
PixmoCount 52.4 53.2 67.6 67.8 61.6 61.0
PathVQA 36.3 35.9 35.0 61.1 58.3 57.6
TextVQA 76.0 76.3 76.5 76.6 80.3 79.4
TimeClock 1.1 1.0 1.7 1.0 14 67.8
Average 43.9 51.3 54.1 59.2 58.2 71.0
Held out

AI2D 81.4 81.9 81.6 81.6 81.6 81.7
ChartQA 80.1 79.9 79.9 79.9 80.2 78.0
DocVQA 87.1 87.1 86.6 86.5 86.5 85.6
InfoVQA 65.9 66.3 66.0 65.8 66.1 65.2
MMStar 61.8 62.4 63.2 62.6 62.0 61.6
RealWorldQA 66.4 67.8 59.6 64.4 67.8 66.9
ScienceQA 95.9 96.0 93.0 95.8 96.3 96.0
SeedBench 72.4 72.4 72.5 72.2 72.5 72.5
Average 76.4 76.7 75.3 76.1 76.6 75.9

H.3 SEQUENTIAL TUNING DETAILED PERFORMANCE TABLES ON LLAVA-NEXT (LLAMA 3)

We include the detailed task performances for sequential fine-tuning experiments on LLaVA-NeXT
(LLaMA 3) here. Tab. 18, Tab. 19, Tab. 20, Tab. 21, Tab. 22, and Tab. 23 are detailed performance
tables of sequentially fine-tuning the Full model, Vision Encoder + Projector, LLM, SA projection
layers in LLM, MLP layers in LLM, and MLP (Gate&Up), respectively.
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Table 9: Detailed performance of using WiSE-FT using 5 = 0.3 to mitigate forgetting by performing
sequential fine-tuning on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 89.9 89.2 89.5 89.0 89.0
PixmoCount 52.4 53.7 69.7 68.0 68.0 66.1
PathVQA 36.3 359 342 59.1 56.3 56.1
TextVQA 76.0 76.4 74.2 76.1 79.7 78.3
TimeClock 1.1 1.0 1.8 1.0 1.4 62.2
Average 439 514 53.8 58.7 58.9 70.3
Held out

AI2D 81.4 81.8 81.8 81.6 81.6 81.8
ChartQA 80.1 80.1 80.4 80.2 80.2 78.3
DocVQA 87.1 87.3 85.2 86.7 86.4 85.1
InfoVQA 65.9 65.7 64.0 65.3 65.9 64.1
MMStar 61.8 61.9 61.4 61.6 62.3 60.9
RealWorldQA 66.4 67.7 63.9 68.4 69.7 67.8
ScienceQA 95.9 96.3 96.3 96.3 96.4 96.3
SeedBench 72.4 72.6 72.9 72.6 72.6 72.6
Average 76.4 76.7 75.7 76.6 76.9 75.9

Table 10: Detailed performance of sequentially fine-tuning the full model on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 90.7 89.2 88.1 88.0 86.9
PixmoCount 52.4 54.9 73.0 64.6 63.1 59.4
PathVQA 36.3 34.8 3.7 63.6 59.8 58.6
TextVQA 76.0 76.6 59.0 74.6 79.6 68.9
TimeClock 1.1 1.0 1.4 1.2 1.5 46.9
Average 439 51.6 45.3 58.4 58.4 64.1
Held out

AI2D 81.4 81.4 57.9 80.4 80.3 74.7
ChartQA 80.1 80.3 63.8 77.9 77.6 66.9
DocVQA 87.1 87.4 74.1 83.1 82.9 68.6
InfoVQA 65.9 65.7 54.2 62.5 61.9 50.3
MMStar 61.8 60.6 59.6 58.9 59.0 53.9
RealWorldQA 66.4 68.6 442 634 66.1 55.8
ScienceQA 95.9 95.0 76.0 94.6 93.5 87.9
SeedBench 72.4 72.6 71.7 70.3 71.6 65.9
Average 76.4 76.5 62.7 73.9 74.1 65.5

H.4 SEQUENTIAL TUNING DETAILED PERFORMANCE TABLES ON QWEN2.5-VL

We include the detailed task performances for sequential fine-tuning experiments on Qwen2.5-VL
here. Tab. 18, Tab. 19, Tab. 20, Tab. 21, Tab. 22, and Tab. 23 are detailed performance tables of
sequentially fine-tuning the Full model, Vision Encoder + Projector, LLM, SA projection layers in
LLM, MLP layers in LLM, and MLP (Gate&Up), respectively.
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Table 11: Detailed performance of sequentially fine-tuning the vision tower on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 69.9 57.5 58.8 61.5 55.3
PixmoCount 52.4 22.1 64.2 44.0 59.0 37.8
PathVQA 36.3 354 31.8 37.0 344 342
TextVQA 76.0 75.5 72.2 70.7 76.4 72.7
TimeClock 1.1 1.0 1.0 0.8 1.1 26.3
Average 43.9 40.8 453 423 46.5 45.3
Held out

AI2D 81.4 81.3 79.7 78.9 80.6 77.3
ChartQA 80.1 80.0 76.9 74.3 79.5 76.0
DocVQA 87.1 85.8 79.6 75.1 85.1 78.9
InfoVQA 65.9 63.6 60.3 56.3 64.4 59.6
MMStar 61.8 61.4 57.6 56.4 59.5 55.6
RealWorldQA 66.4 66.3 65.0 61.3 65.6 61.8
ScienceQA 95.9 94.6 91.9 90.5 94.3 89.4
SeedBench 72.4 71.5 70.6 69.6 71.0 69.5
Average 76.4 75.6 72.7 70.3 75.0 71.0

Table 12: Detailed performance of sequentially fine-tuning the projector in the LLM on each target
task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 59.4 57.7 57.5 58.2 57.4
PixmoCount 524 53.2 56.6 57.9 58.2 57.7
PathVQA 36.3 36.1 36.0 35.5 36.4 35.9
TextVQA 76.0 76.1 76.3 76.4 77.0 76.9
TimeClock 1.1 1.1 1.2 1.2 1.0 1.9
Average 43.9 45.2 45.6 45.7 46.2 46.0
Held out

AI2D 81.4 81.4 81.7 81.6 81.8 81.1
ChartQA 80.1 79.9 80.2 80.0 80.1 79.4
DocVQA 87.1 87.3 87.2 86.1 86.3 86.2
InfoVQA 65.9 66.1 66.1 65.5 66.3 65.1
MMStar 61.8 62.1 61.7 60.9 61.0 60.5
RealWorldQA 66.4 66.1 66.9 67.3 68.0 67.1
ScienceQA 95.9 95.9 96.0 95.9 95.8 95.6
SeedBench 72.4 72.6 72.5 72.3 72.5 72.4
Average 76.4 76.4 76.5 76.2 76.5 75.9
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Table 13: Detailed performance of sequentially fine-tuning the LLM on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 90.7 89.4 89.6 88.9 87.8
PixmoCount 52.4 543 70.2 62.2 63.3 56.6
PathVQA 36.3 35.2 4.4 63.2 58.6 56.7
TextVQA 76.0 76.6 60.5 74.7 79.6 71.2
TimeClock 1.1 1.0 1.4 1.0 1.3 71.8
Average 43.9 51.6 452 58.1 58.3 68.8
Held out

AI2D 81.4 81.2 72.8 80.7 79.8 75.2
ChartQA 80.1 80.4 66.9 78.4 78.0 68.6
DocVQA 87.1 87.3 75.9 84.2 83.0 72.0
InfoVQA 65.9 65.8 54.9 62.8 61.6 51.8
MMStar 61.8 60.8 58.4 58.9 59.2 53.4
RealWorldQA 66.4 67.5 46.4 63.5 67.2 59.0
ScienceQA 95.9 94.8 83.6 94.7 92.5 90.0
SeedBench 72.4 72.7 72.3 71.0 71.5 65.3
Average 76.4 76.3 66.4 74.3 74.1 66.9

Table 14: Detailed performance of sequentially fine-tuning the SA projection layers in the LLM on
each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 85.5 85.1 84.8 84.4 84.0
PixmoCount 524 53.9 67.8 68.2 64.8 66.3
PathVQA 36.3 35.7 35.0 55.9 52.6 51.4
TextVQA 76.0 76.1 76.4 75.8 79.3 78.9
TimeClock 1.1 1.0 1.2 1.0 1.2 52.6
Average 43.9 50.4 53.1 57.1 56.5 66.6
Held out

AI2D 81.4 82.0 81.4 81.2 81.9 81.9
ChartQA 80.1 80.0 79.7 80.0 80.6 79.4
DocVQA 87.1 87.2 86.9 86.8 86.3 86.1
InfoVQA 65.9 66.0 64.7 65.3 66.0 64.9
MMStar 61.8 62.4 62.3 62.1 62.4 61.9
RealWorldQA 66.4 68.0 67.1 66.9 69.2 68.9
ScienceQA 95.9 95.7 95.9 96.1 96.3 96.1
SeedBench 72.4 72.3 72.4 72.0 72.5 72.4
Average 76.4 76.7 76.3 76.3 76.9 76.5
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Table 15: Detailed performance of sequentially fine-tuning the SA Proj. (QKYV) in the LLM on each
target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 78.7 78.4 78.4 78.2 77.6
PixmoCount 52.4 53.2 65.9 67.2 62.4 65.4
PathVQA 36.3 36.1 36.4 44.2 42.6 43.0
TextVQA 76.0 76.2 76.9 76.2 78.6 78.3
TimeClock 1.1 1.0 1.0 0.8 1.1 32.2
Average 439 49.0 51.7 53.4 52.6 59.3
Held out

AI2D 81.4 81.9 81.7 81.2 82.0 81.9
ChartQA 80.1 79.9 79.9 79.8 80.4 79.9
DocVQA 87.1 87.2 87.3 86.9 86.7 86.4
InfoVQA 65.9 65.8 65.4 65.7 65.9 65.8
MMStar 61.8 62.3 62.5 62.7 62.3 62.3
RealWorldQA 66.4 67.6 67.6 67.1 68.4 68.8
ScienceQA 95.9 95.9 95.8 95.9 96.3 96.1
SeedBench 72.4 72.2 72.4 72.1 72.3 72.3
Average 76.4 76.6 76.6 76.4 76.8 76.7

Table 16: Detailed performance of sequentially fine-tuning the MLP in the LLM on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 90.1 89.5 89.6 89.3 88.9
PixmoCount 524 54.1 71.5 67.6 68.0 62.0
PathVQA 36.3 35.6 17.0 64.1 60.9 60.9
TextVQA 76.0 76.6 66.2 75.3 79.8 74.0
TimeClock 1.1 1.0 1.5 1.2 1.6 74.0
Average 43.9 51.5 49.1 59.6 59.9 72.0
Held out

AI2D 81.4 81.7 80.9 81.0 80.5 80.4
ChartQA 80.1 80.4 75.7 79.7 79.9 75.1
DocVQA 87.1 87.2 80.0 85.5 84.5 78.9
InfoVQA 65.9 65.8 60.0 64.0 63.7 59.3
MMStar 61.8 61.5 61.2 61.0 60.7 59.5
RealWorldQA 66.4 68.0 53.7 65.9 68.1 62.1
ScienceQA 95.9 96.1 93.7 96.2 95.9 95.2
SeedBench 72.4 72.7 72.7 72.1 72.3 71.9
Average 76.4 76.7 72.2 75.7 75.7 72.8
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Table 17: Detailed performance of sequentially fine-tuning the MLP (Gate & Up) in the LLM on
each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 53.7 90.2 89.8 89.8 89.6 89.5
PixmoCount 524 534 71.5 67.8 68.4 67.2
PathVQA 36.3 36.1 35.0 61.9 58.5 58.9
TextVQA 76.0 76.4 75.5 76.1 80.0 79.3
TimeClock 1.1 0.9 1.8 1.2 1.9 72.2
Average 43.9 514 54.7 59.4 59.7 73.4
Held out

AI2D 81.4 81.7 81.6 81.3 81.2 81.5
ChartQA 80.1 80.1 80.6 80.1 80.7 78.8
DocVQA 87.1 87.0 86.3 86.6 85.9 854
InfoVQA 65.9 66.1 65.4 65.0 65.3 64.9
MMStar 61.8 62.2 63.1 62.7 62.5 62.0
RealWorldQA 66.4 67.7 64.4 67.8 69.5 68.4
ScienceQA 95.9 96.3 96.4 96.5 96.2 96.0
SeedBench 72.4 72.4 72.6 72.3 72.6 72.5
Average 76.4 76.7 76.3 76.5 76.7 76.2

Table 18: Detailed performance of sequentially fine-tuning the full model of LLaVA-NeXT (LLaMA
3) on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 32.6 84.8 76.8 77.2 76.6 69.6
PixmoCount 45.7 37.6 63.3 48.5 324 44.0
PathVQA 13.2 24.8 0.7 62.0 55.6 45.2
TextVQA 65.4 52.2 31.0 56.1 72.9 42.8
TimeClock 0.8 0.3 0.1 0.6 0.5 33.1
Average 31.5 39.9 344 48.9 47.6 46.9
Held out

AI2D 71.6 54.0 53.3 62.1 58.2 439
ChartQA 69.2 543 14.6 48.6 51.0 7.8
DocVQA 72.7 40.4 27.7 46.6 59.2 15.7
InfoVQA 31.9 23.4 14.6 27.2 33.9 10.2
MMStar 42.0 43.9 41.5 39.6 424 25.6
RealWorldQA 59.7 55.3 32.7 50.3 53.6 19.2
ScienceQA 73.2 63.3 57.5 69.7 66.4 58.3
SeedBench 58.5 56.8 55.8 53.9 56.6 42.0
Average 59.8 48.9 37.2 49.7 52.7 27.8
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Table 19: Detailed performance of sequentially fine-tuning the vision encoder and projector of
LLaVA-NeXT (LLaMA 3) on each target task.

Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Dataset _  CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 32.6 4.2 4.2 12.8 22.1 13.4
PixmoCount 45.7 0.6 449 40.8 48.9 40.3
PathVQA 13.2 03 1.8 34.1 34.1 33.1
TextVQA 65.4 0.9 0.9 50.1 69.9 59.3
TimeClock 0.8 0.0 0.6 0.5 0.7 52
Average 31.5 1.2 10.5 27.7 35.1 30.3
Held out

AI2D 71.6 13.8 5.8 57.1 64.9 58.0
ChartQA 69.2 0.1 0.5 34.9 55.3 427
DocVQA 72.7 0.6 14 36.3 59.2 38.9
InfoVQA 31.9 0.3 0.2 22.2 29.9 24.4
MMStar 42.0 9.9 1.9 38.1 423 35.8
RealWorldQA 59.7 14.4 2.4 55.6 59.7 523
ScienceQA 73.2 11.3 0.0 64.0 69.9 67.3
SeedBench 58.5 15.1 6.0 49.7 58.7 52.3
Average 59.8 8.2 2.3 44.7 55.0 46.5

Table 20: Detailed performance of sequentially fine-tuning the LLM of LLaVA-NeXT (LLaMA 3)
on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 32.6 85.2 68.6 72.0 72.1 68.8
PixmoCount 45.7 32.0 57.5 55.1 21.9 41.6
PathVQA 13.2 23.3 14.1 62.7 56.4 42.7
TextVQA 65.4 56.9 35.0 57.8 72.6 40.1
TimeClock 0.8 0.1 0.0 0.8 0.6 60.9
Average 31.5 39.5 35.0 49.7 44.7 50.8
Held out

AI2D 71.6 55.5 54.4 62.7 59.9 35.1
ChartQA 69.2 543 20.0 49.4 53.7 4.3
DocVQA 72.7 45.7 31.6 49.5 58.6 21.5
InfoVQA 31.9 25.2 11.5 274 334 8.7
MMStar 42.0 42.6 40.8 40.8 384 16.3
RealWorldQA 59.7 56.1 11.8 50.8 57.1 16.1
ScienceQA 73.2 65.5 24.3 70.8 68.7 52.2
SeedBench 58.5 56.8 55.4 54.7 56.8 37.2
Average 59.8 50.2 31.2 50.8 533 23.9
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Table 21: Detailed performance of sequentially fine-tuning the SA projection layers in the LLM of
LLaVA-NeXT (LLaMA 3) on each target task.

Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Dataset _  CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 32.6 78.1 68.2 72.3 70.6 70.3
PixmoCount 45.7 38.8 60.5 50.6 9.9 54.7
PathVQA 13.2 28.7 28.4 53.9 43.9 44.3
TextVQA 65.4 64.3 62.9 62.0 73.5 64.9
TimeClock 0.8 0.7 0.8 0.8 0.6 32.9
Average 31.5 42.1 44.2 47.9 39.7 53.4
Held out

AI2D 71.6 67.6 65.3 68.5 67.4 65.4
ChartQA 69.2 60.4 58.3 61.3 63.8 49.4
DocVQA 72.7 60.8 58.9 583 63.6 48.9
InfoVQA 31.9 29.5 32.1 33.9 35.8 27.5
MMStar 42.0 46.9 45.2 43.1 42.5 41.1
RealWorldQA 59.7 58.6 55.4 583 63.3 53.9
ScienceQA 73.2 72.2 70.4 73.4 72.6 70.7
SeedBench 58.5 59.6 60.1 58.2 59.9 60.2
Average 59.8 57.0 55.7 56.9 58.6 52.1

Table 22: Detailed performance of sequentially fine-tuning the MLP in the LLM of LLaVA-NeXT
(LLaMA 3) on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 32.6 84.3 78.7 76.9 76.9 72.0
PixmoCount 45.7 34.6 58.6 53.9 35.8 52.8
PathVQA 13.2 28.5 26.3 61.8 56.2 52.7
TextVQA 65.4 61.5 54.6 62.0 73.2 59.2
TimeClock 0.8 0.5 0.8 0.8 0.7 54.2
Average 31.5 41.9 43.8 51.1 48.6 58.2
Held out

AI2D 71.6 65.3 62.8 66.3 62.1 59.1
ChartQA 69.2 59.8 50.4 58.8 57.6 322
DocVQA 72.7 54.1 48.6 57.0 61.2 38.8
InfoVQA 31.9 29.7 24.3 32.5 353 22.4
MMStar 42.0 44.9 43.7 43.5 41.2 35.2
RealWorldQA 59.7 58.3 50.3 535 57.3 39.5
ScienceQA 73.2 71.7 69.8 70.3 62.8 65.6
SeedBench 58.5 59.5 58.5 57.6 58.8 55.7
Average 59.8 55.4 51.1 54.9 54.5 43.6
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Table 23: Detailed performance of sequentially fine-tuning the MLP (Gate & Up) in the LLM of
LLaVA-NeXT (LLaMA 3) on each target task.

Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Dataset _  CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 32.6 78.4 73.9 74.3 71.5 71.9
PixmoCount 45.7 32.4 58.4 57.9 29.8 44.8
PathVQA 13.2 27.9 27.9 59.5 51.6 54.0
TextVQA 65.4 63.5 63.7 64.7 74.0 63.9
TimeClock 0.8 0.8 0.6 0.7 0.8 27.6
Average 31.5 40.6 44.9 51.4 45.5 52.4
Held out

AI2D 71.6 67.6 67.4 68.9 66.7 66.1
ChartQA 69.2 60.6 63.3 65.3 64.0 46.6
DocVQA 72.7 59.7 62.4 63.8 64.1 47.6
InfoVQA 31.9 32.3 33.0 36.2 36.5 27.5
MMStar 42.0 45.8 45.5 46.0 43.6 40.9
RealWorldQA 59.7 60.4 52.4 54.9 59.0 49.2
ScienceQA 73.2 72.3 71.7 73.1 71.8 71.9
SeedBench 58.5 60.1 59.9 59.0 60.0 59.2
Average 59.8 57.4 56.9 58.4 58.2 51.1

Table 24: Detailed performance of sequentially fine-tuning the full model of Qwen2.5-VL on each
target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 81.4 93.5 0.2 12.1 92.6 92.4
PixmoCount 58.6 55.6 50.6 48.3 474 51.1
PathVQA 29.2 18.5 0.0 60.8 58.2 59.1
TextVQA 83.0 69.5 17.2 73.3 81.5 62.7
TimeClock 8.2 0.1 0.0 0.0 6.3 60.8
Average 52.1 47.4 13.6 38.9 57.2 65.2
Held out

AI2D 82.9 79.5 0.1 64.0 78.8 72.5
ChartQA 83.2 72.6 54.2 72.1 69.3 62.7
DocVQA 94.4 77.2 30.2 76.1 90.0 66.8
InfoVQA 80.3 61.9 33.6 64.8 74.5 47.1
MMStar 62.6 59.3 0.0 34.0 53.5 46.9
RealWorldQA 68.6 59.5 3.7 27.5 59.7 51.5
ScienceQA 76.7 77.8 0.4 43.4 71.3 71.6
SeedBench 74.1 72.0 0.0 24.6 68.9 63.7
Average 77.9 70.0 15.3 50.8 71.5 60.4
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Table 25: Detailed performance of sequentially fine-tuning the vision encoder and projector of
Qwen2.5-VL on each target task.

Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Dataset _  CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 81.4 92.3 814 81.5 81.5 88.0
PixmoCount 58.6 56.4 59.0 59.2 58.2 33.1
PathVQA 29.2 30.3 29.1 29.3 30.2 354
TextVQA 83.0 82.5 83.2 83.1 83.1 71.0
TimeClock 8.2 8.5 8.4 8.6 8.8 57.5
Average 52.1 54.0 52.2 523 52.4 57.0
Held out

AI2D 82.9 83.0 82.8 82.9 83.1 75.4
ChartQA 83.2 83.8 83.7 83.8 83.9 75.1
DocVQA 94.4 94.4 94.5 94.4 94.5 88.7
InfoVQA 80.3 79.5 80.1 80.2 80.3 69.2
MMStar 62.6 62.3 62.5 62.9 63.4 52.7
RealWorldQA 68.6 67.6 68.5 68.5 69.9 62.0
ScienceQA 76.7 76.6 76.4 76.1 76.2 82.3
SeedBench 74.1 73.7 74.0 74.1 74.1 67.8
Average 77.9 77.6 77.8 77.9 78.2 71.6

Table 26: Detailed performance of sequentially fine-tuning the LLM of Qwen2.5-VL on each target
task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 81.4 93.8 0.0 64.4 67.6 91.5
PixmoCount 58.6 55.8 47.0 50.6 41.0 49.1
PathVQA 29.2 4.9 0.0 63.0 59.7 60.2
TextVQA 83.0 479 11.6 73.3 82.1 61.8
TimeClock 8.2 0.0 0.0 0.0 4.6 58.5
Average 52.1 40.5 11.7 50.3 51.0 64.2
Held out

AI2D 82.9 77.4 0.0 35.8 75.6 56.9
ChartQA 83.2 41.9 49.1 67.0 65.1 68.2
DocVQA 94.4 49.6 23.4 76.3 89.9 65.8
InfoVQA 80.3 41.6 28.5 60.8 74.5 49.3
MMStar 62.6 59.7 0.0 33.9 52.4 36.1
RealWorldQA 68.6 56.7 34 254 51.8 38.3
ScienceQA 76.7 77.6 0.0 39.5 69.9 59.3
SeedBench 74.1 71.7 0.0 21.9 61.8 51.8
Average 77.9 59.5 13.1 45.1 67.6 53.2
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Table 27: Detailed performance of sequentially fine-tuning the SA projection layers in the LLM of
Qwen2.5-VL on each target task.

Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Dataset ~ CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 81.4 93.7 93.6 934 934 93.2
PixmoCount 58.6 59.9 534 56.7 53.6 53.4
PathVQA 29.2 35.7 353 61.0 57.3 583
TextVQA 83.0 77.8 77.4 81.8 83.6 80.6
TimeClock 8.2 10.5 9.1 9.6 9.9 494
Average 52.1 55.5 53.8 60.5 59.6 67.0
Held out

AI2D 82.9 83.3 82.8 83.3 82.4 82.2
ChartQA 83.2 84.4 79.9 86.8 86.2 84.5
DocVQA 944 85.6 92.6 92.9 93.8 92.7
InfoVQA 80.3 74.9 77.3 79.4 78.9 78.6
MMStar 62.6 63.6 63.7 62.4 61.4 61.8
RealWorldQA 68.6 70.1 68.1 67.8 69.2 68.4
ScienceQA 76.7 85.9 84.9 86.8 86.5 85.9
SeedBench 74.1 73.9 74.0 73.5 73.3 73.5
Average 77.9 77.7 77.9 79.1 79.0 78.5

Table 28: Detailed performance of sequentially fine-tuning the MLP in the LLM of Qwen2.5-VL
on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 81.4 94.1 83.5 93.1 93.0 92.6
PixmoCount 58.6 56.6 50.0 534 31.8 52.2
PathVQA 29.2 324 2.8 61.5 60.6 60.4
TextVQA 83.0 76.7 8.2 78.9 83.4 64.4
TimeClock 8.2 7.5 4.8 6.0 33 60.2
Average 52.1 53.5 29.9 58.6 54.4 66.0
Held out

AI2D 82.9 78.4 0.1 81.0 81.0 74.0
ChartQA 83.2 83.3 0.0 74.2 82.2 74.8
DocVQA 94.4 82.0 3.0 89.3 92.5 72.7
InfoVQA 80.3 71.4 24 75.4 78.3 59.4
MMStar 62.6 60.6 29.0 58.8 61.4 55.9
RealWorldQA 68.6 66.1 4.4 61.4 65.9 50.7
ScienceQA 76.7 79.6 0.1 80.3 82.2 77.0
SeedBench 74.1 73.2 20.5 72.0 72.6 70.9
Average 77.9 74.3 7.4 74.0 77.0 66.9
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Table 29: Detailed performance of sequentially fine-tuning the MLP (Gate & Up) in the LLM of
Qwen2.5-VL on each target task.

Dataset Baseline  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
- CUB200 PixmoCount PathVQA TextVQA TimeClock

Target

CUB200 81.4 94.1 94.2 93.8 94.0 94.0
PixmoCount 58.6 59.7 49.6 50.0 50.9 54.7
PathVQA 29.2 36.0 22.0 61.5 61.7 62.3
TextVQA 83.0 75.9 74.7 81.1 83.8 79.6
TimeClock 8.2 8.1 6.5 7.6 5.1 55.5
Average 52.1 54.8 494 58.8 59.1 69.2
Held out

AI2D 82.9 82.3 76.6 69.0 80.7 75.5
ChartQA 83.2 81.8 81.9 84.1 76.6 80.5
DocVQA 94.4 81.9 81.2 91.3 93.0 90.4
InfoVQA 80.3 72.3 68.3 78.4 79.5 78.4
MMStar 62.6 62.5 47.6 56.0 59.1 58.7
RealWorldQA 68.6 68.8 34.5 56.3 64.4 66.3
ScienceQA 76.7 83.4 78.7 56.5 72.6 65.3
SeedBench 74.1 73.8 60.1 68.2 71.7 71.1
Average 779 75.8 66.1 70.0 74.7 73.3
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