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Abstract

Large language models (LLMs) have demonstrated remarkable potential in various
tasks, however, there remains a significant lack of open-source models and data
for specific domains. Previous work has primarily focused on manually specifying
resources and collecting high-quality data for specific domains, which is extremely
time-consuming and labor-intensive. To address this limitation, we introduce large
models into the data collection pipeline to guide the generation of domain-specific
information and retrieve relevant data from Common Crawl (CC), a large public
corpus. We called this method as Query of CC. It not only collects data related
to domain-specific knowledge but also mines the data with potential reasoning
procedures from the public corpus. By applying this method, we have collected a
knowledge domain-related dataset named KNOWLEDGE PILE, which covers four
main domains, including the sciences, humanities, and other categories. Through
the analysis of KNOWLEDGE PILE, Query of CC can effectively retrieve relevant
data from the covered knowledge domains and significantly enhance the perfor-
mance in tests of mathematical and knowledge-related reasoning abilities. We
have open-sourced our data on HuggingFace to promote academic progress in
knowledge reasoning capabilities.

1 Introduction

Large language models (LLMs) are becoming the new trend not only in natural language processing
but also in the entire AI community, pioneered by OpenAI ChatGPT and GPT-4 [OpenAI, 2023].
While commercial LLMs are close-sourced, open-source models such as LLaMA [Touvron et al.,
2023a] and Mistral [Jiang et al., 2023] are widely studied by the community since they serve as
general base models for building LLM applications. Based on these base models, domain-specific
models, show great potential in specific domains, such as medicine [Yang et al., 2022, Gao et al.,
2023], finance [Wu et al., 2023, Zhang and Yang, 2023], science [Taylor et al., 2022a, Wei et al.,
2023], and law [Nguyen, 2023, Cui et al., 2023]. These domain-specific enhanced models are based
on specific human-crafted data recipes [Azerbayev et al., 2023, Wang et al., 2023a].

However, crafting domain-specific data is very costly. As depicted in Figure 1a, traditional data
collection methods involve the selection of relevant resources by domain experts, followed by data
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(a) Manual Data Collection (b) Query and Retrieve Data Collection(our approach)

Figure 1: Comparation of traditional manual data collection methods with our approach.

collection and processing by engineers. On the one hand, such endeavors are highly labor-intensive,
requiring several months of collaboration between multiple domain experts and engineers for corpus
collection. On the other hand, some specific domain-related data distribution may be highly scattered,
which poses many challenges for large-scale domain-specific data collection. Therefore, in this
paper, we introduce an automatic strategy to retrieve data from public corpora for specific domain
knowledge bootstrapping, which we call Query of CC.

In Query of CC, we initially collected seed information in some specific domains, such as keywords,
frequently asked questions, and textbooks, to serve as inputs for the Query Bootstrapping stage.
Leveraging the great generalization capability of LLMs, we can effortlessly expand the initial seed
information and extend it to an amount of domain-relevant queries. Inspiration from Wang et al.
[2023b] and [Xu et al., 2023], we encompassed two stages of expansion, namely Question Extension
and Thought Generation, which respectively extend the queries in terms of breadth and depth, for
retrieving the domain-related data with a broader scope and deeper thought. Subsequently, based on
the queries, we retrieved relevant documents from public corpora, and after performing operations
such as duplicate data removal and filtering, we formed the final training dataset.

Otherwise, leveraging Query of CC, we collect a high-quality knowledge dataset KNOWLEDGE PILE,
which starts from some seed information of four major domains, including STEM, humanities, social
sciences, and medical sciences, as well as general knowledge. Utilizing KNOWLEDGE PILE, we
enhance the Llama and Mistral models through continuing learning. Experimental results indicate
that through the KNOWLEDGE PILE, both Llama and Mistral enhanced models achieved significant
performance improvements over baselines in benchmark tests related to mathematics, knowledge
assessments, professional examinations, and some complex reasoning tasks.

To sum up our contribution:

• We propose Query of CC, a data collection pipeline to retrieve domain-specific knowledge from
public corpora, which introduces LLMs to extend query and retrieve domain-related data from
public corpora.

• We collect and release a knowledge-related corpora KNOWLEDGE PILE based on Query of CC from
Common Crawl, a large-scale public corpora, which includes various categories such as STEM,
human science, and social science.

• We have analyzed for the quality and statistical of KNOWLEDGE PILE. we statistic the distribution
of web domain to show the performance of Query of CC in collecting scattered information, then,
we compared the educational value of KNOWLEDGE PILE with other open source knowledge-
related datasets, to show the high educational value of our dataset.

• We train several language models on KNOWLEDGE PILE, which demonstrate significant improve-
ments on several professional exams and reasoning datasets.

2 Related work

2.1 Large language model for knowledge-based reasoning

In recent years, significant progress has been made in the field of Natural Language Processing
(NLP), driven by the emergence of large language models [OpenAI, 2023, InternLM-Team, 2023, Bai
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Figure 2: The overview of Query of CC’s two major components: Query Bootstrapping and Data
Retrieval.

et al., 2023, Sun et al., 2023]. Particularly, in the domain of academic and professional examinations,
Some language models such as ChatGPT and GPT-4 [OpenAI, 2023] have demonstrated remarkable
success in solving complex tasks, achieving human-like performance through the utilization of the
capability of reasoning [Wei et al., 2022, Wang et al., 2023c]. However, open-source LLMs lag in
performance (Like Llama [Touvron et al., 2023a], Mistral [Jiang et al., 2023] etc.), possibly due to a
lack of data.

2.2 Manual Data Collection

Currently, extensive efforts are being dedicated to the manual collection of specific training data to
enhance the capabilities of Large Language Models (LLM) in knowledge-based reasoning. In the field
of mathematics, Lewkowycz et al. [2022] undertook the task of gathering approximately 40 billion
tokens of data from arXiv and web math pages. They developed a series of Minerva models based on
PaLM [Chowdhery et al., 2023] and observed that augmenting the model with more mathematical
data significantly enhances its proficiency in mathematical reasoning. Similarly, numerous works
[Azerbayev et al., 2023, Wang et al., 2023a, Paster et al., 2023] have undertaken the collection of
mathematics-related data, encompassing papers, web pages, and code, with considerable cost.

In the academic and technological domains, Taylor et al. [2022b] collected 106 billion academic
and technological data. They asserted that the resulting 120B Galactica model surpasses GPT-3
in various academic benchmarks. These works highlight the efficacy of manual data collection in
enhancing model performance. However, it is crucial to note that these data collection endeavors are
labor-intensive, and present challenges in scalability, thereby posing some constraints on the overall
improvement of model performance.

In contrast to these human-centric collection methods, our approach delves into an automated method
for bootstrapping and collecting domain-specific data from public corpora and aims to achieve
scalability, efficiency, and cost-effectiveness in data collection.

2.3 Retrieval-based Data Collection

Many works [Li et al., 2023, Li and Qiu, 2023] utilized retrieval methods to enhance their capabilities.
The majority of these focus on retrieving documents relevant to the questions to improve the model’s
prior knowledge, thereby enhancing the performance on knowledge-related tasks and reducing
hallucinations. Also, [Yue et al., 2024] retrieved related data for enhancing the instruction synthetic.
For data collection, some works [Yao et al., 2022] attempt to use retrieval during the training phase
for data collection to improve specified downstream tasks. However, Retrieving specified information
for specific downstream tasks relies on the data of those tasks, making it difficult to automate and
scale. In contrast, our method introduces LLMs to automatically extend domain-related queries,
which enhances the automation and scalability of data collection.
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3 Query of CC

3.1 Overview

The overview of Query of CC is illustrated in Figure 2. This framework encompasses two major
stages, namely Query Bootstrapping and Data Retrieval. During the Query Bootstrapping phase,
the Large Language Model constructs questions and answers centered around the given keywords
to retrieve relevant text from public corpora. Through this bootstrapping process, we construct
queries around the seed keywords in both depth and breadth, ensuring that the query encompasses
a wide range of knowledge and sufficient depth. In the Data Retrieval phase, we employed the
BM25 algorithm to retrieve text relevant to specific categories and obtained training data through
post-processing steps such as deduplication.

3.2 Query Bootstrapping

To efficiently and comprehensively retrieve high-quality data relevant to the given seed information,
we employed the Query Bootstrapping method, inspiration from Wang et al. [2023b]. During this
phase, we expanded queries around seed information such as category or some related questions, by
querying large language models and aims to extend the scope of retrieved data from both breadth and
depth perspectives.

Question Extension To broaden the scope of our queries, we leverage large language models to
generate questions relevant to the given seed words which we called Question Extension. Leveraging
the capabilities of large models for question generation is evident in expanding the conceptual
boundaries of the keywords. This process evolves a narrow category into a more comprehensive
representation, encompassing various concepts associated with the given words. Consequently, it
significantly enhances the breadth of the query set, ensuring a more comprehensive coverage of
various aspects within the target domain.

Thought Generation In addition to expanding the range of queries through Question Evolution, we
are dedicated to enhancing the depth of thought in generated queries through Thought Generation.
In this phase, we are inspired by the work of Wei et al. [2022], employing LLMs to generate the
cognitive processes necessary for answering questions. This enables us to acquire detailed and
insightful responses. This approach supports a more thorough exploration of concepts related to seed
information and generate the cognitive processes essential for answering questions. The generated
thoughts not only serve for retrieving seed information-related data but also, by expanding queries,
offer additional context and relevant knowledge, contributing to a more comprehensive understanding
of the subject matter.

Query post processing We conducted post-processing operations on queries, involving two main
stages: pre-cleaning before entering the seed information pool and cleaning and filtering before
entering the query pool. On one hand, the generated questions underwent a re-cleaning process
and were incorporated into the seed information pool for the next rounds of question bootstrapping
and thought generation. This cleaning step involved removing incompletely generated language
data to prevent the influence of non-natural language. On the other hand, before entering the query
pool, we employed Minhash-LSH [Broder, 1997] deduplication on queries to mitigate performance
inefficiencies resulting from redundant retrievals.

3.3 Data Retrieval

Based on the query bootstrapping stage, we get extensive and in-depth queries. During the data
retrieval stage, utilizing the enriched queries, we employ the BM25 [Robertson and Walker, 1994] al-
gorithm to retrieve data from general public corpora. BM25 is a widely adopted relevance calculation
method commonly used by search engines. It calculates the relevance score between the given query
and target documents by weighting and summing the matching degree of keywords in the query with
the target documents. Efficiency is the reason why we use BM25 to calculate the relevance. When
dealing with billion data, performing relevance calculations for each query against every document
becomes exceedingly challenging, while BM25 rapidly retrieves documents relevant to the target
query. Compared with Dense Retriever [Karpukhin et al., 2020], it may incur a potential loss in
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Datasets Target domain automatic methods source Data scale Open
Source

Proof of Pile Mathematics reasoning % human collection arXiv, Textbooks, Lib., Stack Exchange,
ProofWiki, MATH 8.3B !

OpenWebMath Mathematics reasoning % human collection Common Crawl 14.7B !

MATHPILE Mathematics reasoning % human collection arXiv, Textbooks, Lib., Stack Exchange,
ProofWiki, MATH,Web 9.5B !

AcademicGPT Academic % human collection
arXiv, Unpaywall,Top Universities,
Pubmed, Common Crawl, Semantic

Scholar, Wiki
370B %

Galactica Academic % human collection
Papers, Code, Reference Material,

Knowledge Bases, Common Crawl,
Prompts

106B %

KNOWLEDGE PILE (ours) Mathematics reasoning &
Knowledge !

automatic query and
retrieve Public Corpora 188B !

Table 1: Comparation of KNOWLEDGE PILEwith other specific domain knowledge dataset. In this
table, most data scales are derived from publicly released research papers, while the data scale for the
KNOWLEDGE PILE is obtained through tokenized data analysis using the Llama2 tokenizer.

retrieval accuracy, but the latter comes with an unbearable high computational cost. Exploring the
potential impact of retriever selection on the quality of collected data might be a valuable direction
for future research.

For each query qi, we conduct the relevance score against every document d in the public corpora
D. Followed by sorting the documents based on relevance, we retrieve top-k document set Si =

{d̃1, ..., d̃k} with the highest relevance with the query qi. In our experiments, the typical choice for k
is 1000. The retrieved data which related all the query qi ∈ Q is consolidated into training dataset
S = ∪iSi.

4 KNOWLEDGE PILE

Leveraging Query of CC, Based on queries of some knowledge categories, we retrieved several
knowledge-related data from processed public corpora. We call the collected datasets as KNOWLEDGE
PILE. In this section, we will introduce the analysis of queries (Section 4.1) and the analysis
of KNOWLEDGE PILE (Section 4.2). Also, we train several language models to show the improvement
of KNOWLEDGE PILE in some knowledge-related reasoning benchmarks (Section 4.3). Otherwise,
we discuss about the different when improving different language models using KNOWLEDGE
PILE (Section 4.4). See more implement details in Appendix.

4.1 Query Analysis

Humanities

20.2%

STEM

43.9%

Social-science24.7%

Misc

11.3%

Figure 3: The category distribution of the query
for KNOWLEDGE PILE.

The progress of query bootstrapping initiates
from some categories. Inspiration of the classifi-
cation of Hendrycks et al. [2021], we select mul-
tiple categories for our initial seed information
in the STEM (Science, technology, engineering,
and mathematics), Humanities sciences, Social
Sciences, and miscellaneous. The key keywords
for each category are as follows:

STEM: mathematics, physics, chemistry, biol-
ogy, computer science, engine;
Humanities: logical, history, law, philosophy,
religions;
Social science: econometrics, politics, psy-
chology, sexuality, public relations, psychol-
ogy, sociology;
Misc: medicine, virology, commonsense
knowledge and other miscellaneous.

After multiple rounds of iterative augmentation and deduplication, we obtain a total of 340,000 queries.
The distribution of queries across different domains is depicted in Figure 3. In our query pool, STEM-

5



[:-10000] [-10000:-1000] [-1000:-100] [-100:]
Index of Frequency

0

50

100

150

200

250

300

350

Co
un

t

2016 2017 2018 2019 2020 2021 2022 2023
Years

0

5%

10%

15%

20%

25%

Pr
op

or
tio

n

Figure 4: Left: The count distribution of index of web domain frequency. Query of CC not only
retrieve the data from high knowledge density websites like Wikipedia, but collect data from scatted
websites. Right: The timestamp statistics of KNOWLEDGE PILE, most data of KNOWLEDGE
PILE come from recent years.

related queries constitute the majority, while the proportion of queries similar to miscellaneous is
relatively small.

4.2 Data Analysis

Web Domain Count
en.wikipedia.org 398833
www.semanticscholar.org 141268
slideplayer.com 108177
www.ncbi.nlm.nih.gov 97009
link.springer.com 85357
www.ipl.org 84084
pubmed.ncbi.nlm.nih.gov 68934
www.reference.com 61658
www.bartleby.com 60097
quizlet.com 56752

Table 2: Top 10 most web domain of the data
in KNOWLEDGE PILE, most of these are aca-
demic institutions, high-value forums, and
authoritative website.

Overview Based on Query of CC, we have formed
a high-quality knowledge dataset KNOWLEDGE PILE,
which maintains about 735GB disk and 188B to-
kens (using Llama2 tokenizer). As shown in Fig-
ure 1, comparing with other datasets in academic
and mathematical reasoning domains, we have ac-
quired a large-scale, knowledge-related dataset at a
lower cost, without the need for manual interven-
tion. Through automated query bootstrapping, we
efficiently capture the information about the seed
query. KNOWLEDGE PILE not only covers mathe-
matical reasoning data but also encompasses rich
knowledge-oriented corpora spanning various fields
such as biology, physics, etc., enhancing its compre-
hensive research and application potential.

Web Domain composition of Query of CC Table
2 presents the top 10 web domains with the high-
est proportion in KNOWLEDGE PILE, which cover a
wide range of academic institutions, high-value fo-
rums, and authoritative websites in specific knowledge fields. These resources are closely related to
the knowledge domains we aim to collect, such as en.wikipedia.org and www.semanticscholar.org.
Many previous research [Touvron et al., 2023a, Gao et al., 2021, Taylor et al., 2022b] have specifi-
cally collected data from these domains to enrich the knowledge of the training dataset. To gain an
insight into the data distribution of KNOWLEDGE PILE, we randomly selected 100,000 examples and
conducted the statistical analysis of their domain frequency. Figure 4 left shows the distribution of
different frequency intervals classified by domain frequency. We observed that in the KNOWLEDGE
PILEdatabase, the vast majority of web domains are recorded only once, and these domains also con-
tain rich knowledge content. However, traditional manual data collection methods have limitations in
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systematically collecting these scattered data, and Query of CChas shown its excellent data collection
capabilities in this regard.
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Figure 5: The distribution of educational
value of different open source datasets, which
shows that the distribution of KNOWLEDGE
PILEon the x-axis is significantly right shifted
compare others, indicating that it has higher
educational value.

Datasets Educational Value (↑)
PubMed* [Cohan et al., 2018] 1.260
Guanaco* [Dettmers, 2023] 1.115
OpenWebMath* [Paster et al., 2023] 1.089
Arxiv* [Cohan et al., 2018]* 1.068
FineWeb* [Penedo et al., 2024] 1.056
Dolma v1.7* [Soldaini et al., 2024] 1.037
The Pile* [Gao et al., 2021] 1.01
MiniPile* [Kaddour, 2023] 0.998
RedPajama* [Computer, 2023] 0.985

KNOWLEDGE PILE (ours) 1.291

Table 3: The comparison of average educa-
tional value scores among different open-source
datasets. * denotes the results cited from Tsui
[2024], which selected the first 100,000 sam-
ples of the dataset, and others randomly selected
100,000 samples.

Furthermore, Table 4 right statistic the timestamps of data sources in KNOWLEDGE PILE by year. It is
evident that most of the data in KNOWLEDGE PILE originates from recent years, and the proportion
of earlier timestamps is gradually decreasing. This phenomenon can be attributed to the exponential
growth of internet data volume and the inherent timeliness characteristic of the knowledge pile.

Data Quality Analysis To evaluate the quality of KNOWLEDGE PILE, we employed an open-
source data quality classifier2, to rate the data within KNOWLEDGE PILE. Inspired by Gunasekar
et al. [2023], high-quality data should possess characteristics of high educational value, namely:
clarity, independence, instruction, and balance. To achieve the assessment of the educational value
of the data, Tsui [2024] collected a subset of high-quality raw data and trained a classifier for
evaluating the educational value of data based on fasttext 3. The educational value ranges from 0,
indicating low educational value, to 2, indicating high educational value. In Table 3, we present a
comparison between KNOWLEDGE PILE and other mainstream knowledge datasets. The results show
that KNOWLEDGE PILE has an average score of 1.29, significantly outperforming other open-source
knowledge-based real datasets.

Figure 5 further reveals the differences in the distribution of educational value among the KNOWL-
EDGE PILE, Pile, and OpenWebMath datasets. Through comparison, we can observe a distinct
rightward shift in the distribution of KNOWLEDGE PILE, indicating that KNOWLEDGE PILEcontains
a greater amount of data with high educational value, while the proportion of low-value data is
relatively lower.

4.3 The Improvement in Knowledge-Related Reasoning Benchmark

Based on KNOWLEDGE PILE, we further train two models: Llama2-QoC and Mistral-QoC, based on
Llama2 and Mistral.

2https://huggingface.co/kenhktsui/llm-data-textbook-quality-fasttext-classifier-v2
3https://fasttext.cc/
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MATH GSM8K MMLU AGIEval BIG-Bench Hard
Code-Llama 7B 3.88 14.4 40.39 21.47 42.78
Baichuan2-Base 7B 5.72 23.81 53.95 34.68 40.32
Minerva 8B 14.1 16.2 - - -
Llemma 7B 14.3 35.94 47.89 24.14 48.61
Qwen 2 7B 10.82 51.4 57.97 40.37 22.27

Llama 2 7B 3.32 16.68 46.79 21.37 38.19
Llama 2-QoC 7B 6.2 28.51 57.02 30.04 44.82

Mistral 7B 11.22 47.31 64.06 32.88 56.69
Mistral-QoC 7B 17.48 55.27 65.71 45.24 57.81

Table 4: Main results of our model and baselines in some mathematical reasoning tasks and knowledge
related reasoning tasks.

Training Details In our experiment, we employed the InternLM4 [InternLM-Team, 2023] library
for training all models on 256 A800 GPUs with bfloat16 mixed precision, and only utilized data
parallelism during the training process. To enhance throughput and reduce memory consumption, we
introduced the Flash attention 2 [Dao, 2023] module. Above these, both Llama-QoC and Mistral-QoC
achieve 4000 tokens per GPU per second(TGS). More training details will be described in Appendix.

Evaluation During the evaluation, we utilized the open-source library OpenCompass 5, which
serves as a platform for evaluating LLMs. Leveraging Opencompass, we compare the performance
with some open source pre-trained models: Llama2 [Touvron et al., 2023b], Code-Llama [Rozière
et al., 2023], Baichuan 2-Base [Yang et al., 2023], Mistral [Jiang et al., 2023], Qwen 2 [Bai et al.,
2023] and some language models for mathematical reasoning: Llemma [Azerbayev et al., 2023]
and Minerva [Lewkowycz et al., 2022]. For the selection of evaluation datasets, we opted for three
distinct capabilities to assess both Llama2-QoC and Mistral-QoC. These encompassed mathematical
reasoning datasets such as Math, GSM8K, knowledge-oriented language understanding datasets
including MMLU, AGIEval, and challenging reasoning tasks BIG-Bench hard. More details for
evaluation will be described in Appendix.

Main Results The main results of our two models trained on KNOWLEDGE PILE ( Llama2-QoC
and Mistral-QoC) and the baseline are compared in Table 4 across several general benchmarks.
Overall, both models exhibit significantly improved performance, particularly Mistral-QoC. In the
complex mathematical reasoning benchmark MATH dataset, Mistral-QoC demonstrates a notable
enhancement after QoC training, rising from 11.22 to 17.48, which surpasses professional models
such as LLEMMA and Minerva by 3 points (14.3 vs 17.48). Furthermore, Mistral-QoC achieves even
higher performance on the mathematical application problem GSM8K (47.31 vs 55.27). Turning
to various knowledge-based reasoning tasks, Mistral-QoC displays outstanding capabilities in both
MMLU and AGIEval. On the challenging BIG-Bench Hard evaluation set, the model also exhibits a
noteworthy improvement in handling complex reasoning tasks.

In comparison to the backbone model, LLAMA-QoC and Mistral-QoC show substantial improve-
ments in mathematical and knowledge-based reasoning tests. For instance, Mistral achieves a 6-points
improvement in the MATH dataset and a 5-point improvement in GSM8K. In knowledge-based
tests, MMLU shows a relatively modest improvement, within a 1.7 point. However, in AGIEval,
Mistral-QoC outperforms Mistral by an impressive 13 points.

Otherwise, an interesting observation is that when the baseline model performance is lower (e.g.,
LLAMA2), the enrichment of the dataset leads to higher improvements. Conversely, for baseline
models with better performance, achieving significant improvement becomes relatively challenging.
This difference may be attributed to variations in the model’s ability to fit the data.

4https://github.com/InternLM/InternLM
5https://github.com/open-compass/opencompass
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(b) Improving Mistral
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Figure 6: The performance curves of Llama2-QoC and Mistral-QoC, varying with the increase in the
number of training tokens.

4.4 Difference between Improve Llama and Mistral

As shown in Table 4, it is evident that Llama2 exhibits inferior performance relative to Mistral.
However, this also highlights a greater potential for performance improvement when training in
KNOWLEDGE PILE. Also, we observe a significant behavioral difference during the improvement
process, which is shown in Figure 6. We found that in certain tasks, Mistral’s performance undergoes
a certain degree of decline during the improvement process, followed by a subsequent ascent after
some time, eventually surpassing the previous performance levels. This phenomenon may come
from a conflict between the potential distribution of the model and the distribution of high-quality
datasets. Mistral’s potential distribution is superior but more unstable, whereas Llama’s performance
is relatively poorer but exhibits greater plasticity. On the other hand, the improvement achieved on
more powerful models (Mistral 7B) also demonstrates the high-quality of KNOWLEDGE PILE.

5 Hallucination Analysis

The output of LLMs generally exhibits significant hallucination issues. Previous work has shown
that LLMs are prone to hallucinations, and using their output directly in training without filtering
can exacerbate the model’s hallucinations for certain issues. However, in the data collection pipeline
of Query of CC, the model is only used to generate queries and is not directly applied in training.
Therefore, even if the synthesized queries from the LLMs contain incorrect information, the informa-
tion retrieved from the corpus based on these incorrect queries is correct. Hallucinatory queries do
not lead to the retrieval of incorrect information.

6 Conclusion

In this study, we propose an efficient method Query of CC, for the automated collection of specialized
domain data. Leveraging seed data from some specific domains, we employ a language model
for query bootstrapping. By optimizing the breadth and depth of queries, we expand the query
to retrieve data relevant to the specified domain. Ultimately, we collected and released an open
dataset comprising approximately 735GB of KNOWLEDGE PILE, equivalent to approximately 188
billion tokens, in the fields of mathematics and knowledge. Experimental results demonstrate
that the adoption of KNOWLEDGE PILE significantly enhances the model’s performance in some
reasoning tasks, such as math word problems and professional examinations. Our objective is not
only to establish a research foundation for community studies in mathematical and knowledge-related
reasoning but also to provide an efficient and cost-effective method for collecting high-quality data,
thereby facilitating the accumulation of more high-quality data.
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