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Abstract

Modern medical community seeks precise, mul-
timodal interpretability. People want to ex-
plicitly connect image regions to diagnostic
outcomes and reason using natural language.
Large Multimodal Models (LMMs ) are rapidly
advancing open domain vision-language rea-
soning, yet progress in medical visual ques-
tion answering (Med-VQA ) remains limited
by two persistent bottlenecks: the scarcity of
large-scale region-grounded supervision and
the high cost of continuous radiologist over-
sight. We present an automated Chest X-ray
Med-VQA generation-validation pipeline and
a grounded Chest X-ray (CXR) dataset GIV-
CXR built on top of the Chest ImaGenome
dataset. The automated pipeline incorporates
LMMs based question-answers generation and
validation scaling grounded data generation
while preserving clinical reliability. Prompts
incorporating domain experts insights regu-
late question-answer generation ensuring clin-
ical regulation and Large language Models
(LLMs) evaluators bring in the reliability from
model generated Question-answers. GIV-CXR
is a large scale dataset embibing 20,534 im-
ages from Chest ImaGenome , annotated over
81,257 bounding boxes, resulting in 354,293
question-answer pairs. The prompts used to
generate the QA pairs are designed strategi-
cally to imbibe in-depth reasoning for efficient
grounding. Standard MLMs underperformed
on a sampled test set highlighting the lack of
grounding capabilities of the models. On fine-
tuning the LMMSs on our dataset, the models
demonstrate significantly better reasoning and
grounding enhancing their interpretability. We
will release the resources along with a detailed
instructions and ethical use guidelines upon ac-
ceptance.

1 Introduction

Image-based methods have become a reliable ap-
proach in medical diagnostics, offering clinicians
an accurate and non-invasive window into disease

Figure 1: An overview of what GIV-CXR provides
to the multimodal interpretability research community.
Built upon the Chest ImaGenome dataset, GIV-CXR
provides region level deep reasoning question answer
pairs along with visual grounding.

progression and treatment response (Bae et al.,
2023). Recent advancements in text-image aligned
spaces (Radford et al., 2021; Wu et al., 2021) have
led to the development of powerful LMMs (Li
et al., 2022b; Kim et al., 2021; Ramesh et al., 2021;
Radford et al., 2021; Li et al., 2023; Driess et al.,
2023; Yang et al., 2023; Ye et al., 2023; Chen
et al., 2023a,b). These LMMs have demonstrated
remarkable capabilities, facilitating the develop-
ment of multimodal applications across various
domains (Wang et al., 2024). The medical domain
has also leveraged the incredible capabilities of
LMMs to develop interpretable diagnostic appli-
cations such as the generation of medical reports
and the visual medical question answer (Med-VQA
) (Lin et al., 2023). Despite their remarkable ca-
pabilities, LMMs are not entirely reliable for the
development of clinically trustworthy multimodal
medical applications (Sonicki, 2024) due to two
major bottlenecks.

Critical regions in medical images are often not
uniformly distributed; they concentrate essential
information at specific spatial locations (Tascon-
Morales et al., 2024). This fine-grained under-
standing is vital for report generation (Zou et al.,
2024) and interactive question answering (Tascon-
Morales et al., 2023), and interest in region-specific
analysis is rising (Bai et al., 2025a; Zhang et al.,
2024b; Peng et al., 2024; Yung et al., 2024;



Dataset # Images Properties Annotations Primary Task Groundable Region-specific
VQA-RAD (Antol et al., 2015) 35K Radiology VQA (X-ray, CT, MRI) QA VQA X X
SLAKE (Liu et al., 2021) 140K Multi-modality VQA QA VQA X X
PathVQA (He et al., 2020) 33K Histopathology VQA QA VQA X X
Chest ImaGenome (Wu et al., 2021) 242K Region findings BBox Report Gen. v v
ChestX-ray8 (Wang et al., 2017) 112K 14 diseases, partial boxes BBox Classification v X
EHRXQA (Bae et al., 2023) 46 K Image + structured queries QA QA/VQA v X
VinDr-CXR (Nguyen et al., 2022) 18K Thoracic findings BBox Classification v X
Diff-VQA (Cho et al., 2024) 700K Paired-image diff questions QA VQA X X
CXL-Seg (Li et al., 2022a) 243K Segmentation masks Mask Segmentation X X
CheXmask DB (Gaggion et al.) 657K Anatomical masks (10242) Mask Segmentation v X
GIV-CXR++ (Ours) 21.6K Dense grounding + QA BBox + QA VQA v v

Table 1: Comparison of major medical-imaging datasets. v' denotes the presence of region-level information
suitable for grounding; x denotes its absence. Existing Med-VQA corpora do not jointly provide bounding boxes

and region-specific QA pairs at scale.

Tascon-Morales et al., 2024). However, most Med-
VQA datasets provide either grounding annotations
or question—answer pairs but not both (Table 1)
and existing QAs seldom include open-ended,
region-focused queries. Given the need for excep-
tional precision in medicine (Bélisle-Pipon, 2024),
incorporating region-specific information improves
interpretability, mitigates hallucinations, and en-
ables rigorous model probing. While recent ef-
forts pursue region-aware comprehension (Chen
et al., 2023c; Liu et al., 2024b; Zou et al., 2024),
a comprehensive resource that couples QAs with
explicit spatial grounding at scale remains lack-
ing. Given this level of precision, large-scale su-
pervision relies on expert radiologists to annotate
and validate data via iterative review, multi-reader
adjudication, standardized protocols, and quality
checks. Such fine-grained work is time, coordi-
nation, and cost-intensive, demanding specialized
expertise and institutional resources. As a result,
high-quality datasets are scarce and model devel-
opment remains bottlenecked. Curating densely
grounded datasets therefore imposes a prohibitive
annotation burden on already resource-constrained
healthcare systems, limiting both the pace and the
breadth of progress.

To address these limitations, we move from
exhaustive per-example annotation to an auto-
mated, self-evaluating generation pipeline. The
proposed pipeline synthesizes region-specific ques-
tion—answer (QA) pairs mirroring expert radiolo-
gists’ reasoning. Because LMM-assisted gener-
ation is vulnerable to hallucinations, generation
is coupled with LLM driven filtering and valida-
tion that enforces factuality, semantic consistency,
and answer—region coherence. We build on Chest
ImaGenome (Wu et al., 2021), a large-scale mul-

timodal Chest X-ray dataset (Fig. 1) which con-
tains clinically meaningful findings and anatomy.
We manually curate a seed set of critical descrip-
tors and feed them to an instruction-tuned Grok
via radiologist-informed prompts. These prompts
distilled by expert feedback and refined iterative
regulate generation of open-ended, clinically spe-
cific questions anchored to particular image regions
and require correspondingly grounded answers.

To regulate biases and spurious generations, we
integrate an evaluation module comprising filter-
ing and a DeepSeek (Liu et al., 2024a) based
judge to score factuality, semantic alignment, and
box—answer coherence, alongside linguistic quality
and reasoning depth (Liu et al., 2023a). We addi-
tionally compute standard NLG metrics (BLEU,
ROUGE-1, ROUGE-L, METEOR, BERTScore)
and localization scores (mloU) to provide comple-
mentary, reproducible diagnostics. The generated
GIV-CXR dataset using this pipeline comprises
892,364 QA pairs across 191,654 critical regions
drawn from 21,680 images. Curation is ongoing,
with the goal of scaling to all 242,072 images in the
base corpus, thereby creating a comprehensive re-
source for grounded reasoning in medical imaging.
We evaluated seven standard LMMs on a curated
test set derived from our proposed dataset. The
models exhibited low performance, highlighting
their limited capability for region-specific reason-
ing. we fine-tuned two of these models on a smaller
subset of our dataset, carefully balancing resource
constraints. Despite being trained on a fraction
of the full dataset, the fine-tuned models showed
notable improvements across standard answer gen-
eration (BLEU, ROUGE-1, ROUGE-L, METEOR,
BERTScore) and grounding metrics (mloU). The
generated answers are well-reasoned, and the mod-



els successfully aligned their responses with rele-
vant image regions. These findings lay the foun-
dation for further research into the development
of interpretable LMMs for medical imaging. We
provide a dedicated section discussing the impact
of our dataset, potential future directions, and the
types of datasets that could be built upon it. Our
contributions can be summarised as follows:

* We introduce a  radiologist-informed,
LMM-driven self validating pipeline that
generates region-specific QAs reducing domain
experts.

* We release a large-scale, densely grounded Med-
VQA resource with 20,534 images, 354,293
bounding boxes, and 81,257 region-anchored QA
pairs, with ongoing curation toward full Chest
ImaGenome coverage (Wu et al., 2021).

* Across seven LMMs, we demonstrate low perfor-
mance and demonstrate that modest fine-tuning
on GIV-CXR significantly improves reasoning
and grounding, as measured by G-Eval, standard
NLG metrics, and mloU.

2 Related Works

2.1 Medical Visual Question Answering
Datasets

In recent years, several datasets have been devel-
oped to advance Medical Visual Question Answer-
ing (Med-VQA ), each addressing specific chal-
lenges across clinical domains. VQA-RAD (An-
tol et al., 2015) is a foundational resource with
over 3,000 QA pairs focused on radiology im-
ages, particularly Chest X-ray , SLAKE (Liu et al.,
2021) extends beyond X-rays to CT and MRI
with 14,000+ manually curated QA pairs, enabling
models to integrate visual and textual reasoning,
and VQA-Med has been widely used in Med-
VQA competitions, providing 4,500 radiology im-
ages paired with structured question—answer sets
across training, validation, and testing. Expanding
on these, OmniMedV QA introduces multi-modal
imaging data covering the entire body to en-
courage generalization, while PMC-VQA (Zhang
et al., 2023) extracts VQA pairs from biomedi-
cal figure captions for more knowledge-driven in-
terpretations, PathVQA (He et al., 2020) targets
fine-grained pathology analysis with 32,000+ QA
pairs for histopathological images. However, de-
spite this diversity, these resources collectively
contain fewer than 40K X-ray-related QA pairs,
limiting their effectiveness for training LMMs.

Complementing these datasets, RadGenome-Chest
CT (Zhang et al., 2024a) offers structured annota-
tions for model training, MIMIC-Diff-VQA (Hu
et al., 2023) addresses differential diagnosis rea-
soning by comparing two X-ray images; and
MIMIC-CXR-VQA (Bae et al., 2024), built on
MIMIC-CXR (Johnson et al., 2019), introduces
diverse question templates tailored for thoracic ra-
diology to aid chest abnormality detection.

2.2 Maedical Visual Grounding Datasets

Beyond VQA, several datasets focus on ground-
ing and segmentation tasks, contributing to broader
Al applications in medical imaging. Chest Im-
aGenome is one of the largest grounding datasets,
covering 242K images with region-specific medi-
cal findings, making it invaluable for structured
reasoning tasks. Chest X-ray 8 (Wang et al.,
2017), which includes 112K images, provides
1,600 bounding boxes across 14 disease categories,
making it a significant dataset for classification
tasks. EHRXQA (Bae et al., 2023), a dataset
that integrates image-based and structured data
queries, enhances multi-modal learning in QA and
VQA applications. Another crucial dataset, VinDr-
CXR (Nguyen et al., 2022), offers 18K images an-
notated for thoracic diseases and critical findings,
supporting classification and anomaly detection.
Diff-VQA (Hu et al., 2023), a large dataset with
700K images, focuses on difference-based reason-
ing, helping models compare main and reference
images effectively. For segmentation and classifi-
cation tasks, CXLSeg (Nimalsiri et al., 2023) and
CheXmask DB (Gaggion et al., 2024) contribute
by providing labeled segmentation masks, with the
latter offering 657K images with high-resolution
anatomical segmentation masks. These datasets
collectively enhance model performance in detec-
tion, segmentation.

2.3 LLM-as-a-Judge Metrics for Medical
VQA Evaluation

Evaluation of open-ended generative VQA
especially in medicine has shifted towards
reference-free, human-aligned metrics. Traditional
metrics like BLEU/ROUGE correlate poorly with
human judgments on tasks requiring creativity
or factual precision. G-Eval (Liu et al., 2023b)
instantiates an LLM-as-a-judge (GPT-4) with
structured chain-of-thought and form-filling.
Evaluators are given explicit criteria, the LLM
reasons step-by-step, and then scores outputs for
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Figure 2: Curation pipeline for GIV-CXR.

correctness, coherence, context alignment, and
fluency.

3 GIV-CXR Curation pipeline

In this section, we expand upon the automated cu-
ration pipeline for the proposed GIV-CXR dataset.
A visual schema of the entire pipeline is pro-
vided in Figure 2. The dataset is built upon the
Chest ImaGenome dataset (Wu et al., 2021). The
dataset construction process mainly consists of
three phases. In the first phase as explained in
sec 3.1, we preprocess and generate the question-
answer-bbox triplets from the base dataset. the
next two phases involves extensive filtering on the
curated data and removal of hallucinated sampled,
ensuring consistent and high quality data samples.
The prompt design strategy is covered in sec 3.2.
The final phase comprising post-processing and
the details to reach the final stage of GIV-CXR is
discussed in the section.

3.1 Phase 1: VQA generation

3.1.1 Extracting critical keywords from
Chest ImaGenome

The Chest ImaGenome dataset (Wu et al., 2021)
represents each frontal Chest X-ray as a scene
graph. We iteratively parse each graph to extract
reason_for_exam, objects, and attributes JSON
fields sufficient to generate semantically meaning-
ful QA pairs. In the current version of the dataset
release, we restrict supervision to single regions
and omit inter-regional relations, which we plan
to incorporate in future versions to enable con-
nectivity reasoning. Texture cues and anatomical

findings supply rich visual descriptors, while dis-
ease/abnormality phrases derived from reports pre-
serve clinical semantics.

Curation and filtering were conducted under
close radiologist supervision as illustrated in Fig 1
with multiple iterations to ensure clinical fidelity.
Our pipeline mirrors radiologists’ region-first read-
ing, emphasizing fine-grained localization and evi-
dence attribution, thereby improving the dataset’s
reliability and alignment with real-world radiologi-
cal practice.

3.1.2 Generating Question-Answer Pairs
using XAI’s Grok-2

Leveraging bounding box-specific data, we sys-
tematically generate clinically relevant question-
answer (QA) pairs that align with radiologists’ rea-
soning process in Chest X-ray analysis. To achieve
this, we designed structured prompts that incor-
porate anatomical regions, attributes, texture cues,
and descriptive phrases, ensuring that each ques-
tion is contextually grounded and medically rele-
vant. These prompts guide the LMMs in generating
precise and meaningful questions that focus on ab-
normalities, locations, causes, and textures while
explicitly avoiding speculative interpretations or
temporal assumptions.

Once the questions are generated, the LLM
is strategically prompted again to produce corre-
sponding answers. This process involves condi-
tioning the LLM on the generated questions and
contextual information associated with the specific
anatomical region. By infusing domain-specific
medical knowledge into the response generation
process, the model ensures that all answers remain



concise, clinically precise, and strictly aligned with
the provided data. Each QA pair is then systemati-
cally linked to its respective bounding box, image
ID, and associated attributes, maintaining traceabil-
ity, contextual integrity, and relevance for down-
stream clinical and research applications.

3.2 Prompt design for data generation

LLMs play a crucial role in enhancing contex-
tual information by refining and expanding ex-
tracted keywords and provide contextual under-
standing for improving data consistency. We se-
lected XAI’s Grok-2 due to its better performance
on the MedQA (VALS Al 2025) benchmark con-
ducted by Vals Al, demonstrating its advanced med-
ical context comprehension. Key parameters were
identified and incorporated into prompt designing
to ensure their alignment with the core goals: 1)
Enhancing in-depth perceptual reasoning through
well-grounded QA pairs. The generated QA pairs
are designed with consistent alignment to corre-
sponding anatomical region. This approach enables
the model trained on this data to learn structured
medical reasoning beyond what is achievable with
conventional Visual Question Answering (VQA)
datasets, and 2) By incorporating feedback from
radiologists, we iteratively refined our prompts to
eliminate assumptions about underlying conditions
and maintained the dataset’s integrity. The prompts
used are given in the apendix.

1. Clinical Relevance: The prompt asks the
model to frame questions that: Identify ab-
normalities visible in the region. Explore the
location, cause, and significance of the find-
ings. Focus on texture information if available.
This aligns the questions with the diagnostic
process that radiologists follow when inter-
preting X-rays.

2. Avoidance of ambiguity: The question gener-
ation prompt explicitly restricts speculative
or overly generic questions, such as “Can
you explain what this means?"; “Should I be
concerned about this finding?", and “Why is
this happening?". Instead, the questions are
designed to be specific, factual information
that can be derived directly from the given
attributes and phrases. For the answers gen-
eration, we hinder the llm from referencing
the reports directly, instead the model is ad-
vised strictly to answer each question from

a visual point of view, given the observa-
tions at that specific zone. We also discour-
age the model from assuming or giving self-
explanatory questions or answers.

3. Exclusion of temporal comparisons for
questions: Temporal comparisons (e.g.,
changes from previous exams) are deliberately
avoided in the questions. This ensures that the
QA pairs focus solely on the current findings,
which is crucial for standalone diagnostic in-
sights.

3.3 Phase 2: Data Quality Enhancement
Through Question-Answer Pair Filtering

We implemented a rigorous filtering mechanism to
enhance the quality of question-answer pairs.

This specifically targeted QA pairs that refer-
enced report text rather than direct visual observa-
tions from the X-ray images, as well as questions
that were generically specific about spatial loca-
tion in the entire X-ray, rather than focusing on a
specific region.

Our filtering approach utilized regular expres-
sion pattern to remove these references. These
patterns included phrases like “as per the report”,
“mentioned in the report,”, “according to the report”,
“Where exactly in the X-ray”, and “In which part
of the X-ray”. Hence, we filtered 15403 QA pairs
and 369, 696 reduced to 354,293 pairs. Notably,
while the filtering process affected many entries,
it did not eliminate any complete entries from the
dataset, as evidenced by the unchanged count of
81, 257 entries.

3.4 Phase 3: Self Evaluating Hallucinated
question-answers filtering

The generated question-answer (QA) pairs may
contain hallucinations. These include factual incon-
sistencies, contradictions, or clinically irrelevant
reasoning, such as speculative explanations for nor-
mal findings. To identify and remove such hallu-
cinated pairs, we employed an Deep-Seek based
verification system that evaluates each QA against
the corresponding report data.

We provided the model with structured report
metadata: anatomical attributes, texture cues, and
descriptive phrases associated with the region of
interest. The prompt incorporated insights from
radiologists to flag hallucinated QA pairs based
on three primary criteria: (i) unsupported factual
claims, (ii) contradictions with the report, and (iii)



clinically unhelpful reasoning (e.g., justifying nor-
mality). QA pairs were assigned a hallucination
flag (is hallucination: 1 or 0), a confidence score
(0.0-1.0), and an explanation for the classification.
Out of 393,425 QA pairs across 78,593 entries,
71,723 (18.2%) were classified as hallucinated. No-
tably, hallucination rates varied across anatomi-
cal regions. The regions with the highest rates
included:

Table 2: Hallucination Rates by Anatomical Region

Region Hallucination Rate
Right clavicle 60.0%
Left clavicle 47.8%
Abdomen 29.9%
Right hemidiaphragm 28.6%
Left apical zone 27.9%
Right apical zone 27.0%
Left hemidiaphragm 25.4%
Left costophrenic angle 22.9%
Left hilar structures 22.4%
Right costophrenic angle 21.8%
Right hilar structures 21.0%

Common patterns observed in hallucinations in-
cluded: 1) Negation hallucinations: 9.9% of cases
involved inappropriate reasoning about the absence
of findings (e.g., "reason for no pneumothorax").
2) Normality-based hallucinations: 58.9% of hallu-
cinated pairs were linked to answers or questions
referencing normal findings without supportive di-
agnostic context. 3) Left-right confusion: Present
in 1.0% of hallucinated cases.

Frequently used terms in hallucinated answers
included: normal, lung, left, absence, and pleural,
suggesting a pattern of overgeneralization or un-
supported negations. Post filtering, the dataset was
left with high-quality, clinically relevant QA pairs.

4 Dataset overview

The curated dataset comprises of 20,534 Chest X-
ray images from the MIMIC-CXR dataset, result-
ing in a total of 354,293 question-answer-bounding
box pairs after post-processing. More analysis and
statistics about dataset are shared in apendix.

Split #QAs #Imgs #BBoxes
Original 354,293 20,534 81,257
Train 150,000 19,194 66,615
Test 7,500 1000 3,916

Table 3: Dataset statistics.

5 Experiments and Results

5.1 Sampling training and test sets from
GIV-CXR

The training set was sampled by region-level QA
counts Fig 3 and filtered by mean bounding box
area, selecting regions up to the aortic arch to bal-
ance anatomical diversity with spatial consistency.
Train/test splits were then matched for anatomical
distribution to support generalization across com-
parable regions

Figure 3: Sampling distribution of train-test splits

5.2 Evaluation Metrics

To evaluate grounded question—answer generation,
we adopt G-Eval as our primary criterion. Geval
uses LLM-as-a-judge framework that scores cor-
rectness, coherence, context alignment, and flu-
ency, chosen for its alignment with our goal of
assessing relevance to ground-truth answers (Liu
et al., 2023b). Complementing this, and follow-
ing grounded text-generation practice (Liu et al.,
2024b), we report standard NLG metrics: BLEU
(Papineni et al., 2002), ROUGEI1/L (Ganesan,
2018), BERTScore (Zhang et al., 2019) and local-
ization performance via mloU for box alignment
with ground truth (Rezatofighi et al., 2019).

5.3 Baselines

To evaluate the effectiveness of our proposed
pipeline and dataset in improving region-specific
medical reasoning, we conduct multiple experi-
ments using both pre-trained and fine-tuned mod-
els. The models in our evaluation can be cate-
gorized into two groups: (1) Unfine-tuned mod-
els, which are directly used for inference with-
out adaptation, and (2) Fine-tuned models, which



Model BLEU ROUGE-L ROUGE-1 BERTScore mloU
CheXagent 10.59 27.05 28.43 28.20 -
MedGemma 14.24 36.84 41.07 55.20 -
GPT-40-mini 18.65 47.53 50.37 65.35 19.33
LLaMA-3.2-11B* 48.87 70.71 73.93 80.05 -
Qwen-2.5VL-7B (Bbox output)*  42.56 66.40 69.78 77.57 68.12
Qwen-2.5VL-7B (Bbox input)* 28.04 51.22 55.33 66.04 -

Table 4: Model performance on language generation metrics. All values are F1 scores in percentages. * indicates

fine-tuned models.

Model GIV-CXR
Qwen-2.5VL (Bbox output)* 3.86
LLaMA 3.2 11B* 3.83
Qwen-2.5VL (Bbox input)* 3.67
MedGemma (Sellergren et al., 2025) 3.47
CheXagent (Chen et al., 2024) 3.22
GPT-40-mini (Achiam et al., 2023) 3.13

Table 5: G-Eval results of different models on the GIV-
CXR dataset. * indicates models fine-tuned on task-
specific data.

are finetuned using our dataset to improve both
question-answering (QA) and grounding capabili-
ties. We evaluate medical domain-pretrained multi-
modal models: CheXagent (Chen et al., 2024) and
MedGemma-4B (multi-modal) (Sellergren et al.,
2025) for visual question answering, and use
GPT-40-mini (Achiam et al., 2023) separately for
grounding. These systems perform strongly on
generic multimodal benchmarks but lack supervi-
sion targeted at fine-grained, region-level reasoning
in medical images.

We fine-tune LLLaMA-3.2-11B (Touvron et al.,
2023) on a 50k QA subset to predict answers
from image—question pairs (no grounding). For
Qwen-2.5 VL-7B (Bai et al., 2025b), we train
two variants on [/50k QA pairs: (i) answer
+ bounding-box generation; and (ii) the same,
with explicit box supervision using <box_start>
and <box_end> tokens to reinforce region-specific
learning.

5.4 Discussion

Table 4 and 5 highlights the impact of fine-tuning
on region-specific reasoning.

Pretrained performance: Despite strong gen-
eral multimodal capability, domain-pretrained base-

lines underperform on our benchmark: CheXagent
(Chen et al., 2024) attains 3.22 G-Eval (Liu et al.,
2023b) and 27.05 ROUGE-L (Ganesan, 2018),
while MedGemma-4B (Sellergren et al., 2025) im-
proves to 3.47 G-Eval and 36.84 ROUGE-L, yet
still fails to reason effectively at fine-grained, re-
gion level. This supports our hypothesis that lack
of region-specific supervision limits both answer
quality and localization.

Effect of fine-tuning (QA): Fine-tuning
LLaMA-3.2-11B (Touvron et al., 2023) on 50k
curated QA pairs yields substantial gains: 3.83
G-Eval (Liu et al., 2023b) and 70.71 ROUGE-L
(Ganesan, 2018) surpassing all un-fine-tuned mod-
els and indicating that even modest, high-quality
supervision improves medical QA.

Impact of bounding-box supervision: For
Qwen-2.5-VL-7B (Bai et al., 2025b), adding
explicit box supervision with <box_start> /
<box_end> further boosts performance: G-Eval
rises to 3.67 (Liu et al., 2023b) and ROUGE-L
to 51.22 (Ganesan, 2018), showing that structured
spatial cues benefit both generation and grounding.

Performance on Visual grounding: The
fine-tuned Qwen-2.5-VL-7B outperforms
GPT-40-mini (Achiam et al., 2023) on localization
with an mloU of 68.12 (Rezatofighi et al., 2019),
demonstrating strong grounding capacity even
with limited training data.

Generalization over other benchmarks: Ta-
ble 7 reports G-Eval scores for models trained
only on our GIV-CXR and evaluated on two
benchmarks (VQA-RAD and MIMIC-CXR). The
fine-tuned LLaMA-3.2-11B attains 2.98/2.98,
matching or exceeding CheXagent on VQA-RAD
(2.91) and approaching it on MIMIC-CXR
(3.02); MedGemma-4B remains strongest overall
(3.49/3.06). Our grounding-oriented Qwen-2.5-VL



CASE1

CASE 11

CASE III

Question

‘What could be the cause of the atelec-|
tasis visible in the right lung?

‘What might explain the absence of
acute osseous abnormalities in the
left clavicle area on the X-ray?

What abnormality is visible in the
cardiac silhouette area of the Chest
X-ray ?

Ground Truth

The atelectasis in the right lung could
be due to obstruction of the airways.

The absence of acute osseous abnor-
malities indicates that there are no
recent bone injuries or diseases af-
fecting the left clavicle.

The lung opacity in the left lower
lung zone could be due to atelecta-
sis or pulmonary edema.

GPT-40-
mini
et al., 2023)

(Achiam

The atelectasis in the right lung could
be due to several causes, including
mucus plugging, foreign body aspira-
tion, pleural effusion, or compression
from a mass. Other potential causes
include postoperative states, partic-
ularly after thoracic surgery, or pro-
longed bed rest leading to inadequate
lung expansion.

The absence of acute osseous abnor-
malities in the left clavicle area on the
X-ray may be explained by factors
such as no recent trauma or injury to
the area, an absence of underlying
pathology like tumors or infections,
or a well-healed previous injury. Ad-
ditionally, the positioning of the clav-
icle and the quality of the X-ray may
influence visibility. Proper alignment
and sufficient imaging technique can
lead to clear portrayals of normal
anatomy without visible abnormal-
ities.

The lung opacity seen in the right
lung could be due to several causes,
including pneumonia, pulmonary
edema, a neoplasm (tumor), or pleu-
ral effusion. The specific characteris-
tics (size, shape, borders) of the opac-
ity would further narrow down the
differential diagnosis.

Qwen* (Wang et al.,

Atelectasis in the right lung could be
due to various reasons including ob-
struction of the airways, compression

The absence of acute osseous abnor-
malities in the left clavicle area in-
dicates that there are no recent bone

The lung opacity in the left lower

2024) from outside the lung, or lack of sur-

factant.

gion.

injuries or diseases affecting this re-|sis.

lung zone could be due to atelecta-

Table 6: Questions from GIV-CXR answered by GPT-40-mini (Achiam et al., 2023) and Qwen* (fine-tuned
Qwen-2.5VL (Wang et al., 2024)) on GIV-CXR for grounding. These examples highlight the limitations of LVLMs
like GPT-40-mini (Achiam et al., 2023) in visual grounding with precise answers, which can be effectively improved

by fine-tuning with our dataset.

Model VQA-RAD MIMIC-CXR
CheXagent (Chen et al., 2024) 2.91 3.02
LLaMA 32 11B * 2.98 2.98
MedGemma 4B (Sellergren et al., 2025) 3.49 3.06
Qwen-2.5 VL (Bbox output)* 2.98 2.75

Table 7: G-Eval performance comparison across VQA-
RAD and MIMIC-CXR datasets.

(bbox) reaches 2.98/2.75, suggesting a modest
trade-off between localization and text generation.
Overall, models trained on GIV-CXR generalize
well to datasets they never saw during training,
achieving performance comparable to specialized
systems already tuned on those benchmarks.

6 Limitations

Our dataset inherits biases from the source cor-
pora (MIMIC-CXR / Chest ImaGenome ), in-
cluding potential demographic skews. It is
region-imbalanced (lungs > 55% of QA pairs, with
abdomen, spine, and clavicles under-represented)

and disease-skewed toward pneumonia (50.2%),
which may hinder learning for rarer yet clinically
important conditions. The aggressive hallucina-
tion filtering—coupled with expert-guided prompt
design—removed 18.2% of generated QA pairs,
likely eliminating some valid edge cases. Finally,
the resource is limited to single-modality Chest
X-ray , which may constrain generalizability to
other imaging modalities and multi-modal clinical
contexts (e.g., integration with history, laboratory
results, or additional imaging).
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A Appendix

A.1 Dataset Analysis

A.1.1 QA Pair Density across Anatomical
Regions

Figure 5 illustrates the distribution of Question-

Answer (QA) pairs across different anatomical re-

gions in the curated dataset.

The left and right lungs lead with over 55,000
pairs each, underscoring their importance in di-
agnosing pulmonary conditions. The cardiac sil-
houette also shows high density, highlighting its
diagnostic relevance. Regions such as the medi-
astinum, costophrenic angles, and hilar structures
are moderately represented. In contrast, areas like
the abdomen, spine, clavicles, and trachea have
fewer QA pairs (5,000-10,000), suggesting they
are less frequently the focus in chest X-rays, while
the apical zones and other regions occur the least.
This distribution mirrors clinical priorities while
also indicating that additional annotations in low-
density regions could further enhance the dataset’s
balance and overall utility.

A.1.2 Findings and diseases mentioned in the
dataset

As illustrated in Figure 4 Lung opacity is the most
common finding, constituting 26.1% of cases, fol-
lowed by pleural effusion (14.9%) and pneumoth-
orax (9.1%). Additionally, over 20% of findings
fall under “Others," encompassing less common
or mixed conditions. These distributions highlight
the prevalence of opacities and effusions, align-
ing with their frequent occurrence in pulmonary
and pleural diseases. Among diseases, pneumo-
nia is the most dominant, accounting for 59.9% of
mentions, reflecting its high clinical significance.
Fluid overload/heart failure follows at 11.2%, em-
phasizing the role of cardiac conditions in chest
X-ray analysis. Lung cancer and pleural effusion,
as primary disease entities, each contribute approx-
imately 1-2% of cases. While the dataset is natu-
rally skewed towards pneumonia, it still captures


https://www.vals.ai/benchmarks/medqa-01-30-2025

Figure 4: Top findings and diseases in the dataset cu-
rated. The left panel illustrates the distribution of the
most frequent findings, while the right panel highlights
the distribution of the most common diseases men-
tioned.
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Figure 5: Distribution of curated dataset among regions
in an X-ray.

a diverse range of abnormalities and disease pro-
cesses relevant to chest imaging.

A.2 Prompts used in the work

Answer Generation Prompt Design

Based on the findings and the question:
CONTEXT: Finding Location: {bbox}
Observation Attribute: {attr}

Texture Description: {texture}

Report Excerpt: "{phrase}”

Question: "{question}”

Objective: Compose a concise and professional re-
sponse that clearly explains the significance of the find-
ings. The response should:

* Avoid overly technical terms or speculative language.

* Remain accessible, factual, and aligned with the pro-
vided report details.

* Focus solely on the clinical findings relevant to the
question.

* Avoid assumptions, opinions, or additional context
beyond what is directly supported by the report.

Guidelines:

* DO NOT respond with opinions or personal reason-

ing.

* Stick strictly to the provided information when an-
swering the question.
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* Ensure the response does not reference the report
explicitly (e.g., avoid phrases like "As mentioned in
the report,” "The report states...," or "Not provided in
the report").

* Maintain a professional tone, answering as a medical
expert interpreting the X-ray findings.

* The report is only for generating answers, but its
details should not appear in the response.

* Provide answers in the same order as the correspond-
ing questions.
Expected Output Format (JSON):

{

"answers": ["...... o]

3

Question Generation Prompt Design

Given the following chest X-ray findings for a specific
zone (i.e., the finding location):

CONTEXT: Finding Location: {bbox}

Observation Attribute: {attr}

Texture Description: {texture}

Report Excerpt: "{phrase}"”

Draft simple and formal questions that a person might
ask to understand the condition and findings about the
zone from the given X-ray. Avoid overly technical
phrasing and ensure that the questions directly relate to
the provided details.

The questions should focus on:

 Identifying any abnormalities visible in the given
zone.

¢ Determining the location of the abnormality.
¢ Understanding the cause of the abnormality.
¢ Locating suspicious areas in the X-ray region.

* Identifying potential diseases (if explicitly mentioned
in the report).

¢ Understanding texture information in the region (if
present in the report).

Guidelines:

* Frame questions strictly based on the given data.

* Do not mention the presence of the report in the ques-
tions.

* Avoid subjective or speculative phrasing such as:

— "Is my condition...?"
— "Should I be concerned about...?"
— "Why is this happening?"
* Do not frame generic questions for the entire X-ray;
questions must be region-specific.
¢ Do not assume prior scans or temporal comparisons.
Expected Output Format (JSON):
{

"questions”: ["...... "]

3




Medical Expert Hallucination Detection

Prompt

You are a medical expert evaluating whether ques-
tions and answers about the chest X-ray contain
hallucinations or not, based on the given report.
GIVEN MEDICAL REPORT INFORMATION:
Region of interest: {bbox_name}

Attributes: {json.dumps(attr_list)?}
Texture cues: {json.dumps(texture_cues)}
Report phrases: {json.dumps(phrases)}

The report is formatted with pipes (I) to separate
different attributes:

 anatomicalfindinglyes|X means the anatomical find-
ing X is present

* anatomicalfindinglnolX means the anatomical finding
X is absent

* diseaselyesIX means disease X is present
* diseaselnolX means disease X is ruled out
* texturelyes|X means texture X is present
* texturelnolX means texture X is absent

* nlplyeslnormal means report describes this area as
normal

* nlplyeslabnormal means report describes this area as
abnormal

QUESTION-ANSWER PAIRS TO EVALUATE:
{json.dumps(ga_pairs, indent=2)}

For each question-answer pair, determine if the in-
formation in answer AND question is supported by
the report.

A hallucination is when a question or answer:

1. States something as fact that isn’t mentioned in report
2. Contradicts information in report

3. Makes claims about findings that aren’t supported in
report

There are certain entries which are also not useful for
the diagnosis. These are mainly reverse negation of the
findings OR reason for normal findings. For example,
"What might be the reason for the absence of pneu-
mothorax in the right lung?" these kind of questions or
answers are not useful per radiologists as they ask for
the reason for normal findings. So, for these kind of
entries, classify them as hallucination and respond with
the corresponding explanation.

In the cases where, there are multiple facts in a report,
and if a question or the corresponding answer is sup-
ported by any of the facts, then it is not a hallucination.
Which means, not every fact in the report needs to be
supported by the question or the answer. On the other
hand, if a question or the answer is not supported by any
of the facts from the report, then it is a hallucination.
STRICTLY MAINTAIN THE ORDER OF THE
QUESTION-ANSWER PAIRS.

Output a JSON array where each element is an object
with these fields:

* "is_hallucination": O if the question and answer are
fully supported by the report, 1 if it contains any
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hallucination (Also the case of reasonings for normal
findings as specified above)

» "explanation": Brief explanation of your decision

* "score": A score between 0 and 1 indicating your
confidence level in this decision

1.0: Absolute certainty (clear evidence in report)

0.8-0.9: High confidence (strong indications in
report)

0.5-0.7: Moderate confidence (some indications
but not explicit)

0.1-0.4: Low confidence (limited information
available)

Remember that, based on your confidence of the deci-
sion, you can assign a score between 0 and 1 to your
decision.

These confidence scores will be essential for human
medical expert validation, so please be precise and thor-
ough in your analysis.

Return ONLY the JSON array, nothing else.

Expert Evaluator Assessment Prompt

As an expert evaluator, your task is to assess the
accuracy and precision of the model’s response com-
pared to the provided ground truth. Your evaluation
should consider the relevance, completeness, and
correctness of the response.

{question_part}

Ground Truth Answer: "{reference}"

Model Response: "{prediction}”

Please rate the model response on a scale from 1 to 5
Criteria:

Correctness (1-5) — Does the answer factually align
with the provided ground truth?

Provide only the numerical score.
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