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Abstract001

Modern medical community seeks precise, mul-002
timodal interpretability. People want to ex-003
plicitly connect image regions to diagnostic004
outcomes and reason using natural language.005
Large Multimodal Models (LMMs ) are rapidly006
advancing open domain vision-language rea-007
soning, yet progress in medical visual ques-008
tion answering (Med-VQA ) remains limited009
by two persistent bottlenecks: the scarcity of010
large-scale region-grounded supervision and011
the high cost of continuous radiologist over-012
sight. We present an automated Chest X-ray013
Med-VQA generation-validation pipeline and014
a grounded Chest X-ray (CXR) dataset GIV-015
CXR built on top of the Chest ImaGenome016
dataset. The automated pipeline incorporates017
LMMs based question-answers generation and018
validation scaling grounded data generation019
while preserving clinical reliability. Prompts020
incorporating domain experts insights regu-021
late question-answer generation ensuring clin-022
ical regulation and Large language Models023
(LLMs) evaluators bring in the reliability from024
model generated Question-answers. GIV-CXR025
is a large scale dataset embibing 20,534 im-026
ages from Chest ImaGenome , annotated over027
81,257 bounding boxes, resulting in 354,293028
question-answer pairs. The prompts used to029
generate the QA pairs are designed strategi-030
cally to imbibe in-depth reasoning for efficient031
grounding. Standard MLMs underperformed032
on a sampled test set highlighting the lack of033
grounding capabilities of the models. On fine-034
tuning the LMMs on our dataset, the models035
demonstrate significantly better reasoning and036
grounding enhancing their interpretability. We037
will release the resources along with a detailed038
instructions and ethical use guidelines upon ac-039
ceptance.040

1 Introduction041

Image-based methods have become a reliable ap-042

proach in medical diagnostics, offering clinicians043

an accurate and non-invasive window into disease044

Right Lung

Left Hilar

Questions :- 
1.What does the chest X-ray show in terms of abnormalities in the right  lung? 
2.Are there any other signs or indications visible on the X-ray that relate to the right lung base elevation?
3. Is there any pleural effusion noted on the right side, and if so, where is it located? 

Answers :-
1. The chest X-ray shows an abnormality in the right lung, characterized by low lung volumes and elevation of the
right lung base. 
2. The elevation of the right lung base suggests possible diaphragmatic elevation or paralysis, which could be due to
underlying conditions affecting the diaphragm. 
3. Yes, there is pleural effusion noted on the right side, located in the right pleural cavity.

BBOX: [243, 175, 875, 643]

Questions :- 
1.Where exactly in the lung area do these abnormalities appear? 
2.Are there any signs of fluid in the lungs or around the heart visible on the X-ray? 
3. Does the chest X-ray show any signs of heart-related issues? 
4. How would you interpret the pattern of lung opacity seen in this X-ray? 

Answers :-
1. These abnormalities appear in the left hilar area of the lung. 
2. The chest X-ray does not explicitly mention fluid around the heart, but there is evidence of pulmonary edema
suggesting fluid in the lungs.  
3. The chest X-ray shows signs of heart-related issues, indicated by the vascular congestion and venous engorgement.
4. The pattern of lung opacity suggests areas where the lungs are not as clear as they should be, potentially due to fluid
or other substances. 

BBOX: [470, 290, 512, 645]

Figure 1: An overview of what GIV-CXR provides
to the multimodal interpretability research community.
Built upon the Chest ImaGenome dataset, GIV-CXR
provides region level deep reasoning question answer
pairs along with visual grounding.

progression and treatment response (Bae et al., 045

2023). Recent advancements in text-image aligned 046

spaces (Radford et al., 2021; Wu et al., 2021) have 047

led to the development of powerful LMMs (Li 048

et al., 2022b; Kim et al., 2021; Ramesh et al., 2021; 049

Radford et al., 2021; Li et al., 2023; Driess et al., 050

2023; Yang et al., 2023; Ye et al., 2023; Chen 051

et al., 2023a,b). These LMMs have demonstrated 052

remarkable capabilities, facilitating the develop- 053

ment of multimodal applications across various 054

domains (Wang et al., 2024). The medical domain 055

has also leveraged the incredible capabilities of 056

LMMs to develop interpretable diagnostic appli- 057

cations such as the generation of medical reports 058

and the visual medical question answer (Med-VQA 059

) (Lin et al., 2023). Despite their remarkable ca- 060

pabilities, LMMs are not entirely reliable for the 061

development of clinically trustworthy multimodal 062

medical applications (Sonicki, 2024) due to two 063

major bottlenecks. 064

Critical regions in medical images are often not 065

uniformly distributed; they concentrate essential 066

information at specific spatial locations (Tascon- 067

Morales et al., 2024). This fine-grained under- 068

standing is vital for report generation (Zou et al., 069

2024) and interactive question answering (Tascon- 070

Morales et al., 2023), and interest in region-specific 071

analysis is rising (Bai et al., 2025a; Zhang et al., 072

2024b; Peng et al., 2024; Yung et al., 2024; 073
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Dataset # Images Properties Annotations Primary Task Groundable Region-specific

VQA-RAD (Antol et al., 2015) 3.5 K Radiology VQA (X-ray, CT, MRI) QA VQA × ×
SLAKE (Liu et al., 2021) 14.0 K Multi-modality VQA QA VQA × ×
PathVQA (He et al., 2020) 33 K Histopathology VQA QA VQA × ×
Chest ImaGenome (Wu et al., 2021) 242 K Region findings BBox Report Gen. ✓ ✓

ChestX-ray8 (Wang et al., 2017) 112 K 14 diseases, partial boxes BBox Classification ✓ ×
EHRXQA (Bae et al., 2023) 46 K Image + structured queries QA QA/VQA ✓ ×
VinDr-CXR (Nguyen et al., 2022) 18 K Thoracic findings BBox Classification ✓ ×
Diff-VQA (Cho et al., 2024) 700 K Paired-image diff questions QA VQA × ×
CXL-Seg (Li et al., 2022a) 243 K Segmentation masks Mask Segmentation × ×
CheXmask DB (Gaggion et al.) 657 K Anatomical masks (1024²) Mask Segmentation ✓ ×

GIV-CXR++ (Ours) 21.6 K Dense grounding + QA BBox + QA VQA ✓ ✓

Table 1: Comparison of major medical-imaging datasets. ✓ denotes the presence of region-level information
suitable for grounding; × denotes its absence. Existing Med-VQA corpora do not jointly provide bounding boxes
and region-specific QA pairs at scale.

Tascon-Morales et al., 2024). However, most Med-074

VQA datasets provide either grounding annotations075

or question–answer pairs but not both (Table 1)076

and existing QAs seldom include open-ended,077

region-focused queries. Given the need for excep-078

tional precision in medicine (Bélisle-Pipon, 2024),079

incorporating region-specific information improves080

interpretability, mitigates hallucinations, and en-081

ables rigorous model probing. While recent ef-082

forts pursue region-aware comprehension (Chen083

et al., 2023c; Liu et al., 2024b; Zou et al., 2024),084

a comprehensive resource that couples QAs with085

explicit spatial grounding at scale remains lack-086

ing. Given this level of precision, large-scale su-087

pervision relies on expert radiologists to annotate088

and validate data via iterative review, multi-reader089

adjudication, standardized protocols, and quality090

checks. Such fine-grained work is time, coordi-091

nation, and cost-intensive, demanding specialized092

expertise and institutional resources. As a result,093

high-quality datasets are scarce and model devel-094

opment remains bottlenecked. Curating densely095

grounded datasets therefore imposes a prohibitive096

annotation burden on already resource-constrained097

healthcare systems, limiting both the pace and the098

breadth of progress.099

To address these limitations, we move from100

exhaustive per-example annotation to an auto-101

mated, self-evaluating generation pipeline. The102

proposed pipeline synthesizes region-specific ques-103

tion–answer (QA) pairs mirroring expert radiolo-104

gists’ reasoning. Because LMM-assisted gener-105

ation is vulnerable to hallucinations, generation106

is coupled with LLM driven filtering and valida-107

tion that enforces factuality, semantic consistency,108

and answer–region coherence. We build on Chest109

ImaGenome (Wu et al., 2021), a large-scale mul-110

timodal Chest X-ray dataset (Fig. 1) which con- 111

tains clinically meaningful findings and anatomy. 112

We manually curate a seed set of critical descrip- 113

tors and feed them to an instruction-tuned Grok 114

via radiologist-informed prompts. These prompts 115

distilled by expert feedback and refined iterative 116

regulate generation of open-ended, clinically spe- 117

cific questions anchored to particular image regions 118

and require correspondingly grounded answers. 119

To regulate biases and spurious generations, we 120

integrate an evaluation module comprising filter- 121

ing and a DeepSeek (Liu et al., 2024a) based 122

judge to score factuality, semantic alignment, and 123

box–answer coherence, alongside linguistic quality 124

and reasoning depth (Liu et al., 2023a). We addi- 125

tionally compute standard NLG metrics (BLEU, 126

ROUGE-1, ROUGE-L, METEOR, BERTScore) 127

and localization scores (mIoU) to provide comple- 128

mentary, reproducible diagnostics. The generated 129

GIV-CXR dataset using this pipeline comprises 130

892,364 QA pairs across 191,654 critical regions 131

drawn from 21,680 images. Curation is ongoing, 132

with the goal of scaling to all 242,072 images in the 133

base corpus, thereby creating a comprehensive re- 134

source for grounded reasoning in medical imaging. 135

We evaluated seven standard LMMs on a curated 136

test set derived from our proposed dataset. The 137

models exhibited low performance, highlighting 138

their limited capability for region-specific reason- 139

ing. we fine-tuned two of these models on a smaller 140

subset of our dataset, carefully balancing resource 141

constraints. Despite being trained on a fraction 142

of the full dataset, the fine-tuned models showed 143

notable improvements across standard answer gen- 144

eration (BLEU, ROUGE-1, ROUGE-L, METEOR, 145

BERTScore) and grounding metrics (mIoU). The 146

generated answers are well-reasoned, and the mod- 147
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els successfully aligned their responses with rele-148

vant image regions. These findings lay the foun-149

dation for further research into the development150

of interpretable LMMs for medical imaging. We151

provide a dedicated section discussing the impact152

of our dataset, potential future directions, and the153

types of datasets that could be built upon it. Our154

contributions can be summarised as follows:155

• We introduce a radiologist-informed,156

LMM-driven self validating pipeline that157

generates region-specific QAs reducing domain158

experts.159

• We release a large-scale, densely grounded Med-160

VQA resource with 20,534 images, 354,293161

bounding boxes, and 81,257 region-anchored QA162

pairs, with ongoing curation toward full Chest163

ImaGenome coverage (Wu et al., 2021).164

• Across seven LMMs, we demonstrate low perfor-165

mance and demonstrate that modest fine-tuning166

on GIV-CXR significantly improves reasoning167

and grounding, as measured by G-Eval, standard168

NLG metrics, and mIoU.169

2 Related Works170

2.1 Medical Visual Question Answering171

Datasets172

In recent years, several datasets have been devel-173

oped to advance Medical Visual Question Answer-174

ing (Med-VQA ), each addressing specific chal-175

lenges across clinical domains. VQA-RAD (An-176

tol et al., 2015) is a foundational resource with177

over 3,000 QA pairs focused on radiology im-178

ages, particularly Chest X-ray , SLAKE (Liu et al.,179

2021) extends beyond X-rays to CT and MRI180

with 14,000+ manually curated QA pairs, enabling181

models to integrate visual and textual reasoning,182

and VQA-Med has been widely used in Med-183

VQA competitions, providing 4,500 radiology im-184

ages paired with structured question–answer sets185

across training, validation, and testing. Expanding186

on these, OmniMedVQA introduces multi-modal187

imaging data covering the entire body to en-188

courage generalization, while PMC-VQA (Zhang189

et al., 2023) extracts VQA pairs from biomedi-190

cal figure captions for more knowledge-driven in-191

terpretations, PathVQA (He et al., 2020) targets192

fine-grained pathology analysis with 32,000+ QA193

pairs for histopathological images. However, de-194

spite this diversity, these resources collectively195

contain fewer than 40K X-ray-related QA pairs,196

limiting their effectiveness for training LMMs.197

Complementing these datasets, RadGenome-Chest 198

CT (Zhang et al., 2024a) offers structured annota- 199

tions for model training, MIMIC-Diff-VQA (Hu 200

et al., 2023) addresses differential diagnosis rea- 201

soning by comparing two X-ray images; and 202

MIMIC-CXR-VQA (Bae et al., 2024), built on 203

MIMIC-CXR (Johnson et al., 2019), introduces 204

diverse question templates tailored for thoracic ra- 205

diology to aid chest abnormality detection. 206

2.2 Medical Visual Grounding Datasets 207

Beyond VQA, several datasets focus on ground- 208

ing and segmentation tasks, contributing to broader 209

AI applications in medical imaging. Chest Im- 210

aGenome is one of the largest grounding datasets, 211

covering 242K images with region-specific medi- 212

cal findings, making it invaluable for structured 213

reasoning tasks. Chest X-ray 8 (Wang et al., 214

2017), which includes 112K images, provides 215

1,600 bounding boxes across 14 disease categories, 216

making it a significant dataset for classification 217

tasks. EHRXQA (Bae et al., 2023), a dataset 218

that integrates image-based and structured data 219

queries, enhances multi-modal learning in QA and 220

VQA applications. Another crucial dataset, VinDr- 221

CXR (Nguyen et al., 2022), offers 18K images an- 222

notated for thoracic diseases and critical findings, 223

supporting classification and anomaly detection. 224

Diff-VQA (Hu et al., 2023), a large dataset with 225

700K images, focuses on difference-based reason- 226

ing, helping models compare main and reference 227

images effectively. For segmentation and classifi- 228

cation tasks, CXLSeg (Nimalsiri et al., 2023) and 229

CheXmask DB (Gaggion et al., 2024) contribute 230

by providing labeled segmentation masks, with the 231

latter offering 657K images with high-resolution 232

anatomical segmentation masks. These datasets 233

collectively enhance model performance in detec- 234

tion, segmentation. 235

2.3 LLM-as-a-Judge Metrics for Medical 236

VQA Evaluation 237

Evaluation of open-ended generative VQA 238

especially in medicine has shifted towards 239

reference-free, human-aligned metrics. Traditional 240

metrics like BLEU/ROUGE correlate poorly with 241

human judgments on tasks requiring creativity 242

or factual precision. G-Eval (Liu et al., 2023b) 243

instantiates an LLM-as-a-judge (GPT-4) with 244

structured chain-of-thought and form-filling. 245

Evaluators are given explicit criteria, the LLM 246

reasons step-by-step, and then scores outputs for 247
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Answers:

Questions:
["What could be the cause of the lack of
consolidation in the right lung?", ...]

["The lack of consolidation suggests no
pneumonia or other conditions causing lung
tissue to become solid.", ....]

GIV-CXR

Name: Left Costophrenic Sulcus
Attribute: Left Costodiaphragmatic Recess
Anatomical Finding: Lung Opacity, Pleural
Effusion

NLP: Abnormal

Iterative refinement
by radiologist

Phrases: As compared to the previous
radiograph, the effusion on the left has
mildly\n decreased

 Local reports in the Chest Imagegenome

Bboxes: [55,60, 78,140]

QA generation using Grok V2Bbox : [55,60,78,140]

Answers:

Questions:

["What could be the cause of the lack of
consolidation in the right lung?", 
"Where exactly in the X-ray can you see a
problem?", ...]

["The report doesn't mention the presence
of consolidation.", .....]

Curated QAs with noisy data

Bboxes:[55,60, 78,140]

Phase 1: VQA Generation

Filtering 
relevant

attributes

Complex and structured Scene graphs in 
Chest ImaGenome Prompt Engineering 

and Refinining

 Regex
Fuzzy String Matching

Deduplication

Phase 2: Post Processing

Figure 2: Curation pipeline for GIV-CXR.

correctness, coherence, context alignment, and248

fluency.249

3 GIV-CXR Curation pipeline250

In this section, we expand upon the automated cu-251

ration pipeline for the proposed GIV-CXR dataset.252

A visual schema of the entire pipeline is pro-253

vided in Figure 2. The dataset is built upon the254

Chest ImaGenome dataset (Wu et al., 2021). The255

dataset construction process mainly consists of256

three phases. In the first phase as explained in257

sec 3.1, we preprocess and generate the question-258

answer-bbox triplets from the base dataset. the259

next two phases involves extensive filtering on the260

curated data and removal of hallucinated sampled,261

ensuring consistent and high quality data samples.262

The prompt design strategy is covered in sec 3.2.263

The final phase comprising post-processing and264

the details to reach the final stage of GIV-CXR is265

discussed in the section.266

3.1 Phase 1: VQA generation267

3.1.1 Extracting critical keywords from268

Chest ImaGenome269

The Chest ImaGenome dataset (Wu et al., 2021)270

represents each frontal Chest X-ray as a scene271

graph. We iteratively parse each graph to extract272

reason_for_exam, objects, and attributes JSON273

fields sufficient to generate semantically meaning-274

ful QA pairs. In the current version of the dataset275

release, we restrict supervision to single regions276

and omit inter-regional relations, which we plan277

to incorporate in future versions to enable con-278

nectivity reasoning. Texture cues and anatomical279

findings supply rich visual descriptors, while dis- 280

ease/abnormality phrases derived from reports pre- 281

serve clinical semantics. 282

Curation and filtering were conducted under 283

close radiologist supervision as illustrated in Fig 1 284

with multiple iterations to ensure clinical fidelity. 285

Our pipeline mirrors radiologists’ region-first read- 286

ing, emphasizing fine-grained localization and evi- 287

dence attribution, thereby improving the dataset’s 288

reliability and alignment with real-world radiologi- 289

cal practice. 290

3.1.2 Generating Question-Answer Pairs 291

using XAI’s Grok-2 292

Leveraging bounding box-specific data, we sys- 293

tematically generate clinically relevant question- 294

answer (QA) pairs that align with radiologists’ rea- 295

soning process in Chest X-ray analysis. To achieve 296

this, we designed structured prompts that incor- 297

porate anatomical regions, attributes, texture cues, 298

and descriptive phrases, ensuring that each ques- 299

tion is contextually grounded and medically rele- 300

vant. These prompts guide the LMMs in generating 301

precise and meaningful questions that focus on ab- 302

normalities, locations, causes, and textures while 303

explicitly avoiding speculative interpretations or 304

temporal assumptions. 305

Once the questions are generated, the LLM 306

is strategically prompted again to produce corre- 307

sponding answers. This process involves condi- 308

tioning the LLM on the generated questions and 309

contextual information associated with the specific 310

anatomical region. By infusing domain-specific 311

medical knowledge into the response generation 312

process, the model ensures that all answers remain 313
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concise, clinically precise, and strictly aligned with314

the provided data. Each QA pair is then systemati-315

cally linked to its respective bounding box, image316

ID, and associated attributes, maintaining traceabil-317

ity, contextual integrity, and relevance for down-318

stream clinical and research applications.319

3.2 Prompt design for data generation320

LLMs play a crucial role in enhancing contex-321

tual information by refining and expanding ex-322

tracted keywords and provide contextual under-323

standing for improving data consistency. We se-324

lected XAI’s Grok-2 due to its better performance325

on the MedQA (VALS AI, 2025) benchmark con-326

ducted by Vals AI, demonstrating its advanced med-327

ical context comprehension. Key parameters were328

identified and incorporated into prompt designing329

to ensure their alignment with the core goals: 1)330

Enhancing in-depth perceptual reasoning through331

well-grounded QA pairs. The generated QA pairs332

are designed with consistent alignment to corre-333

sponding anatomical region. This approach enables334

the model trained on this data to learn structured335

medical reasoning beyond what is achievable with336

conventional Visual Question Answering (VQA)337

datasets, and 2) By incorporating feedback from338

radiologists, we iteratively refined our prompts to339

eliminate assumptions about underlying conditions340

and maintained the dataset’s integrity. The prompts341

used are given in the apendix.342

1. Clinical Relevance: The prompt asks the343

model to frame questions that: Identify ab-344

normalities visible in the region. Explore the345

location, cause, and significance of the find-346

ings. Focus on texture information if available.347

This aligns the questions with the diagnostic348

process that radiologists follow when inter-349

preting X-rays.350

2. Avoidance of ambiguity: The question gener-351

ation prompt explicitly restricts speculative352

or overly generic questions, such as “Can353

you explain what this means?"; “Should I be354

concerned about this finding?", and “Why is355

this happening?". Instead, the questions are356

designed to be specific, factual information357

that can be derived directly from the given358

attributes and phrases. For the answers gen-359

eration, we hinder the llm from referencing360

the reports directly, instead the model is ad-361

vised strictly to answer each question from362

a visual point of view, given the observa- 363

tions at that specific zone. We also discour- 364

age the model from assuming or giving self- 365

explanatory questions or answers. 366

3. Exclusion of temporal comparisons for 367

questions: Temporal comparisons (e.g., 368

changes from previous exams) are deliberately 369

avoided in the questions. This ensures that the 370

QA pairs focus solely on the current findings, 371

which is crucial for standalone diagnostic in- 372

sights. 373

3.3 Phase 2: Data Quality Enhancement 374

Through Question-Answer Pair Filtering 375

We implemented a rigorous filtering mechanism to 376

enhance the quality of question-answer pairs. 377

This specifically targeted QA pairs that refer- 378

enced report text rather than direct visual observa- 379

tions from the X-ray images, as well as questions 380

that were generically specific about spatial loca- 381

tion in the entire X-ray, rather than focusing on a 382

specific region. 383

Our filtering approach utilized regular expres- 384

sion pattern to remove these references. These 385

patterns included phrases like “as per the report”, 386

“mentioned in the report,”, “according to the report”, 387

“Where exactly in the X-ray”, and “In which part 388

of the X-ray”. Hence, we filtered 15403 QA pairs 389

and 369, 696 reduced to 354, 293 pairs. Notably, 390

while the filtering process affected many entries, 391

it did not eliminate any complete entries from the 392

dataset, as evidenced by the unchanged count of 393

81, 257 entries. 394

3.4 Phase 3: Self Evaluating Hallucinated 395

question-answers filtering 396

The generated question-answer (QA) pairs may 397

contain hallucinations. These include factual incon- 398

sistencies, contradictions, or clinically irrelevant 399

reasoning, such as speculative explanations for nor- 400

mal findings. To identify and remove such hallu- 401

cinated pairs, we employed an Deep-Seek based 402

verification system that evaluates each QA against 403

the corresponding report data. 404

We provided the model with structured report 405

metadata: anatomical attributes, texture cues, and 406

descriptive phrases associated with the region of 407

interest. The prompt incorporated insights from 408

radiologists to flag hallucinated QA pairs based 409

on three primary criteria: (i) unsupported factual 410

claims, (ii) contradictions with the report, and (iii) 411
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clinically unhelpful reasoning (e.g., justifying nor-412

mality). QA pairs were assigned a hallucination413

flag (is hallucination: 1 or 0), a confidence score414

(0.0–1.0), and an explanation for the classification.415

Out of 393,425 QA pairs across 78,593 entries,416

71,723 (18.2%) were classified as hallucinated. No-417

tably, hallucination rates varied across anatomi-418

cal regions. The regions with the highest rates419

included:420

Table 2: Hallucination Rates by Anatomical Region

Region Hallucination Rate

Right clavicle 60.0%
Left clavicle 47.8%
Abdomen 29.9%
Right hemidiaphragm 28.6%
Left apical zone 27.9%
Right apical zone 27.0%
Left hemidiaphragm 25.4%
Left costophrenic angle 22.9%
Left hilar structures 22.4%
Right costophrenic angle 21.8%
Right hilar structures 21.0%

Common patterns observed in hallucinations in-421

cluded: 1) Negation hallucinations: 9.9% of cases422

involved inappropriate reasoning about the absence423

of findings (e.g., "reason for no pneumothorax").424

2) Normality-based hallucinations: 58.9% of hallu-425

cinated pairs were linked to answers or questions426

referencing normal findings without supportive di-427

agnostic context. 3) Left-right confusion: Present428

in 1.0% of hallucinated cases.429

Frequently used terms in hallucinated answers430

included: normal, lung, left, absence, and pleural,431

suggesting a pattern of overgeneralization or un-432

supported negations. Post filtering, the dataset was433

left with high-quality, clinically relevant QA pairs.434

4 Dataset overview435

The curated dataset comprises of 20,534 Chest X-436

ray images from the MIMIC-CXR dataset, result-437

ing in a total of 354,293 question-answer-bounding438

box pairs after post-processing. More analysis and439

statistics about dataset are shared in apendix.440

Split # QAs # Imgs # BBoxes

Original 354,293 20,534 81,257
Train 150,000 19,194 66,615
Test 7,500 1000 3,916

Table 3: Dataset statistics.

5 Experiments and Results 441

5.1 Sampling training and test sets from 442

GIV-CXR 443

The training set was sampled by region-level QA 444

counts Fig 3 and filtered by mean bounding box 445

area, selecting regions up to the aortic arch to bal- 446

ance anatomical diversity with spatial consistency. 447

Train/test splits were then matched for anatomical 448

distribution to support generalization across com- 449

parable regions 450

Figure 3: Sampling distribution of train-test splits

5.2 Evaluation Metrics 451

To evaluate grounded question–answer generation, 452

we adopt G-Eval as our primary criterion. Geval 453

uses LLM-as-a-judge framework that scores cor- 454

rectness, coherence, context alignment, and flu- 455

ency, chosen for its alignment with our goal of 456

assessing relevance to ground-truth answers (Liu 457

et al., 2023b). Complementing this, and follow- 458

ing grounded text-generation practice (Liu et al., 459

2024b), we report standard NLG metrics: BLEU 460

(Papineni et al., 2002), ROUGE1/L (Ganesan, 461

2018), BERTScore (Zhang et al., 2019) and local- 462

ization performance via mIoU for box alignment 463

with ground truth (Rezatofighi et al., 2019). 464

5.3 Baselines 465

To evaluate the effectiveness of our proposed 466

pipeline and dataset in improving region-specific 467

medical reasoning, we conduct multiple experi- 468

ments using both pre-trained and fine-tuned mod- 469

els. The models in our evaluation can be cate- 470

gorized into two groups: (1) Unfine-tuned mod- 471

els, which are directly used for inference with- 472

out adaptation, and (2) Fine-tuned models, which 473
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Model BLEU ROUGE-L ROUGE-1 BERTScore mIoU

CheXagent 10.59 27.05 28.43 28.20 -
MedGemma 14.24 36.84 41.07 55.20 -
GPT-4o-mini 18.65 47.53 50.37 65.35 19.33
LLaMA-3.2-11B* 48.87 70.71 73.93 80.05 -
Qwen-2.5VL-7B (Bbox output)* 42.56 66.40 69.78 77.57 68.12
Qwen-2.5VL-7B (Bbox input)* 28.04 51.22 55.33 66.04 -

Table 4: Model performance on language generation metrics. All values are F1 scores in percentages. * indicates
fine-tuned models.

Model GIV-CXR

Qwen-2.5VL (Bbox output)* 3.86

LLaMA 3.2 11B* 3.83

Qwen-2.5VL (Bbox input)* 3.67

MedGemma (Sellergren et al., 2025) 3.47

CheXagent (Chen et al., 2024) 3.22

GPT-4o-mini (Achiam et al., 2023) 3.13

Table 5: G-Eval results of different models on the GIV-
CXR dataset. * indicates models fine-tuned on task-
specific data.

are finetuned using our dataset to improve both474

question-answering (QA) and grounding capabili-475

ties. We evaluate medical domain-pretrained multi-476

modal models: CheXagent (Chen et al., 2024) and477

MedGemma-4B (multi-modal) (Sellergren et al.,478

2025) for visual question answering, and use479

GPT-4o-mini (Achiam et al., 2023) separately for480

grounding. These systems perform strongly on481

generic multimodal benchmarks but lack supervi-482

sion targeted at fine-grained, region-level reasoning483

in medical images.484

We fine-tune LLaMA-3.2-11B (Touvron et al.,485

2023) on a 50k QA subset to predict answers486

from image–question pairs (no grounding). For487

Qwen-2.5 VL-7B (Bai et al., 2025b), we train488

two variants on 150k QA pairs: (i) answer489

+ bounding-box generation; and (ii) the same,490

with explicit box supervision using <box_start>491

and <box_end> tokens to reinforce region-specific492

learning.493

5.4 Discussion494

Table 4 and 5 highlights the impact of fine-tuning495

on region-specific reasoning.496

Pretrained performance: Despite strong gen-497

eral multimodal capability, domain-pretrained base-498

lines underperform on our benchmark: CheXagent 499

(Chen et al., 2024) attains 3.22 G-Eval (Liu et al., 500

2023b) and 27.05 ROUGE-L (Ganesan, 2018), 501

while MedGemma-4B (Sellergren et al., 2025) im- 502

proves to 3.47 G-Eval and 36.84 ROUGE-L, yet 503

still fails to reason effectively at fine-grained, re- 504

gion level. This supports our hypothesis that lack 505

of region-specific supervision limits both answer 506

quality and localization. 507

Effect of fine-tuning (QA): Fine-tuning 508

LLaMA-3.2-11B (Touvron et al., 2023) on 50k 509

curated QA pairs yields substantial gains: 3.83 510

G-Eval (Liu et al., 2023b) and 70.71 ROUGE-L 511

(Ganesan, 2018) surpassing all un-fine-tuned mod- 512

els and indicating that even modest, high-quality 513

supervision improves medical QA. 514

Impact of bounding-box supervision: For 515

Qwen-2.5-VL-7B (Bai et al., 2025b), adding 516

explicit box supervision with <box_start> / 517

<box_end> further boosts performance: G-Eval 518

rises to 3.67 (Liu et al., 2023b) and ROUGE-L 519

to 51.22 (Ganesan, 2018), showing that structured 520

spatial cues benefit both generation and grounding. 521

Performance on Visual grounding: The 522

fine-tuned Qwen-2.5-VL-7B outperforms 523

GPT-4o-mini (Achiam et al., 2023) on localization 524

with an mIoU of 68.12 (Rezatofighi et al., 2019), 525

demonstrating strong grounding capacity even 526

with limited training data. 527

Generalization over other benchmarks: Ta- 528

ble 7 reports G-Eval scores for models trained 529

only on our GIV-CXR and evaluated on two 530

benchmarks (VQA-RAD and MIMIC-CXR). The 531

fine-tuned LLaMA-3.2-11B attains 2.98/2.98, 532

matching or exceeding CheXagent on VQA-RAD 533

(2.91) and approaching it on MIMIC-CXR 534

(3.02); MedGemma-4B remains strongest overall 535

(3.49/3.06). Our grounding-oriented Qwen-2.5-VL 536
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CASE I CASE II CASE III

Question What could be the cause of the atelec-
tasis visible in the right lung?

What might explain the absence of
acute osseous abnormalities in the
left clavicle area on the X-ray?

What abnormality is visible in the
cardiac silhouette area of the Chest
X-ray ?

Ground Truth The atelectasis in the right lung could
be due to obstruction of the airways.

The absence of acute osseous abnor-
malities indicates that there are no
recent bone injuries or diseases af-
fecting the left clavicle.

The lung opacity in the left lower
lung zone could be due to atelecta-
sis or pulmonary edema.

GPT-4o-
mini (Achiam
et al., 2023)

The atelectasis in the right lung could
be due to several causes, including
mucus plugging, foreign body aspira-
tion, pleural effusion, or compression
from a mass. Other potential causes
include postoperative states, partic-
ularly after thoracic surgery, or pro-
longed bed rest leading to inadequate
lung expansion.

The absence of acute osseous abnor-
malities in the left clavicle area on the
X-ray may be explained by factors
such as no recent trauma or injury to
the area, an absence of underlying
pathology like tumors or infections,
or a well-healed previous injury. Ad-
ditionally, the positioning of the clav-
icle and the quality of the X-ray may
influence visibility. Proper alignment
and sufficient imaging technique can
lead to clear portrayals of normal
anatomy without visible abnormal-
ities.

The lung opacity seen in the right
lung could be due to several causes,
including pneumonia, pulmonary
edema, a neoplasm (tumor), or pleu-
ral effusion. The specific characteris-
tics (size, shape, borders) of the opac-
ity would further narrow down the
differential diagnosis.

Qwen* (Wang et al.,
2024)

Atelectasis in the right lung could be
due to various reasons including ob-
struction of the airways, compression
from outside the lung, or lack of sur-
factant.

The absence of acute osseous abnor-
malities in the left clavicle area in-
dicates that there are no recent bone
injuries or diseases affecting this re-
gion.

The lung opacity in the left lower
lung zone could be due to atelecta-
sis.

Table 6: Questions from GIV-CXR answered by GPT-4o-mini (Achiam et al., 2023) and Qwen* (fine-tuned
Qwen-2.5VL (Wang et al., 2024)) on GIV-CXR for grounding. These examples highlight the limitations of LVLMs
like GPT-4o-mini (Achiam et al., 2023) in visual grounding with precise answers, which can be effectively improved
by fine-tuning with our dataset.

Model VQA-RAD MIMIC-CXR

CheXagent (Chen et al., 2024) 2.91 3.02

LLaMA 3.2 11B * 2.98 2.98

MedGemma 4B (Sellergren et al., 2025) 3.49 3.06

Qwen-2.5 VL (Bbox output)* 2.98 2.75

Table 7: G-Eval performance comparison across VQA-
RAD and MIMIC-CXR datasets.

(bbox) reaches 2.98/2.75, suggesting a modest537

trade-off between localization and text generation.538

Overall, models trained on GIV-CXR generalize539

well to datasets they never saw during training,540

achieving performance comparable to specialized541

systems already tuned on those benchmarks.542

6 Limitations543

Our dataset inherits biases from the source cor-544

pora (MIMIC-CXR / Chest ImaGenome ), in-545

cluding potential demographic skews. It is546

region-imbalanced (lungs >55% of QA pairs, with547

abdomen, spine, and clavicles under-represented)548

and disease-skewed toward pneumonia (50.2%), 549

which may hinder learning for rarer yet clinically 550

important conditions. The aggressive hallucina- 551

tion filtering—coupled with expert-guided prompt 552

design—removed 18.2% of generated QA pairs, 553

likely eliminating some valid edge cases. Finally, 554

the resource is limited to single-modality Chest 555

X-ray , which may constrain generalizability to 556

other imaging modalities and multi-modal clinical 557

contexts (e.g., integration with history, laboratory 558

results, or additional imaging). 559
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A Appendix 857

A.1 Dataset Analysis 858

A.1.1 QA Pair Density across Anatomical 859

Regions 860

Figure 5 illustrates the distribution of Question- 861

Answer (QA) pairs across different anatomical re- 862

gions in the curated dataset. 863

The left and right lungs lead with over 55,000 864

pairs each, underscoring their importance in di- 865

agnosing pulmonary conditions. The cardiac sil- 866

houette also shows high density, highlighting its 867

diagnostic relevance. Regions such as the medi- 868

astinum, costophrenic angles, and hilar structures 869

are moderately represented. In contrast, areas like 870

the abdomen, spine, clavicles, and trachea have 871

fewer QA pairs (5,000–10,000), suggesting they 872

are less frequently the focus in chest X-rays, while 873

the apical zones and other regions occur the least. 874

This distribution mirrors clinical priorities while 875

also indicating that additional annotations in low- 876

density regions could further enhance the dataset’s 877

balance and overall utility. 878

A.1.2 Findings and diseases mentioned in the 879

dataset 880

As illustrated in Figure 4 Lung opacity is the most 881

common finding, constituting 26.1% of cases, fol- 882

lowed by pleural effusion (14.9%) and pneumoth- 883

orax (9.1%). Additionally, over 20% of findings 884

fall under “Others," encompassing less common 885

or mixed conditions. These distributions highlight 886

the prevalence of opacities and effusions, align- 887

ing with their frequent occurrence in pulmonary 888

and pleural diseases. Among diseases, pneumo- 889

nia is the most dominant, accounting for 59.9% of 890

mentions, reflecting its high clinical significance. 891

Fluid overload/heart failure follows at 11.2%, em- 892

phasizing the role of cardiac conditions in chest 893

X-ray analysis. Lung cancer and pleural effusion, 894

as primary disease entities, each contribute approx- 895

imately 1–2% of cases. While the dataset is natu- 896

rally skewed towards pneumonia, it still captures 897
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Figure 4: Top findings and diseases in the dataset cu-
rated. The left panel illustrates the distribution of the
most frequent findings, while the right panel highlights
the distribution of the most common diseases men-
tioned.

Figure 5: Distribution of curated dataset among regions
in an X-ray.

a diverse range of abnormalities and disease pro-898

cesses relevant to chest imaging.899

A.2 Prompts used in the work900

Answer Generation Prompt Design

Based on the findings and the question:
CONTEXT: Finding Location: {bbox}
Observation Attribute: {attr}
Texture Description: {texture}
Report Excerpt: "{phrase}"
Question: "{question}"

Objective: Compose a concise and professional re-
sponse that clearly explains the significance of the find-
ings. The response should:

• Avoid overly technical terms or speculative language.

• Remain accessible, factual, and aligned with the pro-
vided report details.

• Focus solely on the clinical findings relevant to the
question.

• Avoid assumptions, opinions, or additional context
beyond what is directly supported by the report.

Guidelines:
• DO NOT respond with opinions or personal reason-

ing.

• Stick strictly to the provided information when an-
swering the question.
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• Ensure the response does not reference the report
explicitly (e.g., avoid phrases like "As mentioned in
the report," "The report states...," or "Not provided in
the report").

• Maintain a professional tone, answering as a medical
expert interpreting the X-ray findings.

• The report is only for generating answers, but its
details should not appear in the response.

• Provide answers in the same order as the correspond-
ing questions.

Expected Output Format (JSON):
{

"answers": ["......",..]
}
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Question Generation Prompt Design

Given the following chest X-ray findings for a specific
zone (i.e., the finding location):
CONTEXT: Finding Location: {bbox}
Observation Attribute: {attr}
Texture Description: {texture}
Report Excerpt: "{phrase}"

Draft simple and formal questions that a person might
ask to understand the condition and findings about the
zone from the given X-ray. Avoid overly technical
phrasing and ensure that the questions directly relate to
the provided details.
The questions should focus on:
• Identifying any abnormalities visible in the given

zone.

• Determining the location of the abnormality.

• Understanding the cause of the abnormality.

• Locating suspicious areas in the X-ray region.

• Identifying potential diseases (if explicitly mentioned
in the report).

• Understanding texture information in the region (if
present in the report).

Guidelines:
• Frame questions strictly based on the given data.

• Do not mention the presence of the report in the ques-
tions.

• Avoid subjective or speculative phrasing such as:

– "Is my condition...?"
– "Should I be concerned about...?"
– "Why is this happening?"

• Do not frame generic questions for the entire X-ray;
questions must be region-specific.

• Do not assume prior scans or temporal comparisons.

Expected Output Format (JSON):
{

"questions": ["......",..]
}
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Medical Expert Hallucination Detection
Prompt

You are a medical expert evaluating whether ques-
tions and answers about the chest X-ray contain
hallucinations or not, based on the given report.
GIVEN MEDICAL REPORT INFORMATION:
Region of interest: {bbox_name}

Attributes: {json.dumps(attr_list)}
Texture cues: {json.dumps(texture_cues)}
Report phrases: {json.dumps(phrases)}

The report is formatted with pipes (|) to separate
different attributes:
• anatomicalfinding|yes|X means the anatomical find-

ing X is present

• anatomicalfinding|no|X means the anatomical finding
X is absent

• disease|yes|X means disease X is present

• disease|no|X means disease X is ruled out

• texture|yes|X means texture X is present

• texture|no|X means texture X is absent

• nlp|yes|normal means report describes this area as
normal

• nlp|yes|abnormal means report describes this area as
abnormal

QUESTION-ANSWER PAIRS TO EVALUATE:
{json.dumps(qa_pairs, indent=2)}

For each question-answer pair, determine if the in-
formation in answer AND question is supported by
the report.
A hallucination is when a question or answer:

1. States something as fact that isn’t mentioned in report

2. Contradicts information in report

3. Makes claims about findings that aren’t supported in
report

There are certain entries which are also not useful for
the diagnosis. These are mainly reverse negation of the
findings OR reason for normal findings. For example,
"What might be the reason for the absence of pneu-
mothorax in the right lung?" these kind of questions or
answers are not useful per radiologists as they ask for
the reason for normal findings. So, for these kind of
entries, classify them as hallucination and respond with
the corresponding explanation.
In the cases where, there are multiple facts in a report,
and if a question or the corresponding answer is sup-
ported by any of the facts, then it is not a hallucination.
Which means, not every fact in the report needs to be
supported by the question or the answer. On the other
hand, if a question or the answer is not supported by any
of the facts from the report, then it is a hallucination.
STRICTLY MAINTAIN THE ORDER OF THE
QUESTION-ANSWER PAIRS.
Output a JSON array where each element is an object
with these fields:

• "is_hallucination": 0 if the question and answer are
fully supported by the report, 1 if it contains any
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hallucination (Also the case of reasonings for normal
findings as specified above)

• "explanation": Brief explanation of your decision

• "score": A score between 0 and 1 indicating your
confidence level in this decision

– 1.0: Absolute certainty (clear evidence in report)
– 0.8-0.9: High confidence (strong indications in

report)
– 0.5-0.7: Moderate confidence (some indications

but not explicit)
– 0.1-0.4: Low confidence (limited information

available)

Remember that, based on your confidence of the deci-
sion, you can assign a score between 0 and 1 to your
decision.
These confidence scores will be essential for human
medical expert validation, so please be precise and thor-
ough in your analysis.
Return ONLY the JSON array, nothing else.
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Expert Evaluator Assessment Prompt

As an expert evaluator, your task is to assess the
accuracy and precision of the model’s response com-
pared to the provided ground truth. Your evaluation
should consider the relevance, completeness, and
correctness of the response.
{question_part}
Ground Truth Answer: "{reference}"
Model Response: "{prediction}"

Please rate the model response on a scale from 1 to 5
Criteria:
Correctness (1-5) — Does the answer factually align
with the provided ground truth?
Provide only the numerical score.
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