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ABSTRACT

Reinforcement fine-tuning (RFT) often suffers from reward over-optimization,
where a policy model hacks the reward signals to achieve high scores while pro-
ducing low-quality outputs. Our theoretical analysis shows that the key lies in re-
ward misspecification at the high-reward tail: the inability to reliably distinguish
excellent responses from merely great ones. This motivate us to focus on the
high-reward region. However, such tail examples are scarce under the base LLM.
While off-policy exemplars (e.g. from stronger models or rewrites) are easier to
obtain, naively training on them yields a misspecified reward for the policy we
aim to align. To address this, we study rubric-based rewards. By design, rubrics
can leverage off-policy examples while remaining insensitive to their artifacts.
To elicit rubrics that capture the high-reward tail, we highlight the importance
of distinguishing among great and diverse responses, and introduce a workflow
to implement this idea. We empirically demonstrate that rubric-based rewards
substantially mitigate reward over-optimization and deliver effective LLM post-
training improvements.1

1 INTRODUCTION

In this paper, we are interested in how to produce reward models that are effective when used for
LLM post-training. A reward model is a function that takes a prompt and a response and produces
a score quantifying how good that response is for the prompt. In post-training, we then align a lan-
guage model to the reward by a reinforcement-learning type procedure. The fundamental challenge
here is that, in many settings, it is nearly inevitable that the reward model will be an imperfect proxy
for the behavior that we are actually trying to induce. In particular, this means that as we run post-
training, it will increasingly be the case that the LLM is aligned to the idiosyncratic misspecification
of the reward rather than the true signal that we are trying to extract. In this paper, we are interested
in mitigating this effect.

Given that some misspecification is inevitable, what should we focus on when defining a reward
model? The basic setup of post-training aims to induce the good behavior encoded by the reward
while minimally shifting other aspects of the base LLM. Mathematically, this can be formalized
as looking for post-training procedures that move along the Pareto frontier of KL divergence from
the base model vs win-rate (as judged by the reward) against the base model. We begin by theoreti-
cally demonstrating that, for such Pareto-optimal procedures, the effect of reward misspecification is
dominated by errors in the high-reward region. In other words, what really matters for post-training
is the ability to accurately distinguish between the very good responses.

Then, we know that we want to focus our reward modeling on the high-reward region of examples.
The basic challenge here is that actually producing high-reward examples to train a reward model
on is hard. If we simply sample responses from the base LLM itself, then it is extremely sample
inefficient to get the necessary examples (because we are trying to get elements in a low-probability
tail). On the other hand, if we use an off-policy procedure—e.g., drawing samples from a stronger
LLM, or producing good examples with extensive thinking or rewrites—we can get high-reward

1Our code can be accessed at https://anonymous.4open.science/r/rubrics.
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Figure 1: Chasing the Tail with Rubric-Based Rewards

examples, but naively training a reward model on them may learn superficial features instead of
eliciting real capabilities (see Appendix D).

To address this challenge, we empirically study rubric-based rewards as a solution to this problem.
In essence: we get very strong examplar responses by using off-policy generation. Then, we pro-
duce a reward model using these examples by using another LLM to produce a grading rubric for
each prompt. Such rubric-based rewards will generalize well off-policy because they are insensitive
to irrelevant aspects of the responses by design. The question is then if, and how, we can elicit
rubrics that succeed in capturing the high-reward tail behavior necessary for alignment. We give
two principles for achieving this goal. We then produce a workflow implementing these ideas and
show empirically that it is highly effective for the LLM post-training task.

Summarizing, the contributions of this paper are:

1. A theoretical characterization of how reward misspecification matters for post-training,
concluding that the high-reward region is key,

2. A method for constructing effective reward rubrics using off-policy data, and

3. An empirical study showing the efficacy of the constructed rubrics for post-training, and
confirming the critical role of misspecification in the high-reward region.

2 PRELIMINARIES

Notations. We use π to denote a large language model (LLM) and π0 to denote the reference
language model (usually the starting point of RL). Given a prompt x, a response y is sampled from
the conditional distribution π(· | x). A reward model r(·, ·) is utilized to assess the quality of a
prompt-response pair. We use r⋆ to represent the gold reward model (inaccessible in practice) and r
to represent the proxy reward applied in practice.

Reinforcement fine-tuning (RFT). With a prompt set D and a reward model r, the reinforcement
fine-tuning optimizes the following objective (Ouyang et al., 2022; Bai et al., 2022):

max
π

Ex∼D, y∼π(·|x) [r(x, y)]− βDKL [π(y | x)∥π0(y | x)] , (1)

where β is a hyperparameter to control fine-tuned model’s deviation from the reference model, i.e.,

DKL [π(y | x)∥π0(y | x)] = Ex∼D,y∼π(·|x)

[
log

π(y | x)
π0(y | x)

]
.

As demonstrated in Rafailov et al. (2023), the solution to (1) is

πr(y | x) ∝ π0(y | x) exp{r(x, y)/β}. (2)

Reward over-optimization. Because RFT relies on proxy rewards in practice, it inevitably suffers
from reward over-optimization: the policy exploits inaccuracies in the reward model, achieving high
proxy scores while true quality deteriorates. This phenomenon has been well studied in Bradley-
Terry reward models trained on human preference data (Gao et al., 2023). The standard remedy is
online RLHF, where fresh human feedback is periodically collected to update the reward model and
mitigate over-optimization (Bai et al., 2022), but such approaches are costly and slow.
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Figure 2: Theoretical impact of reward model misspecification on performance. (a) Inaccuracy in the
high-value region causes performance to collapse. (b) Correctly ranking top responses is sufficient
for near-optimal performance.

Reinforcement learning from rubrics-based reward. Reinforcement learning from rubrics-
based reward (RLRR) (Gunjal et al., 2025; Viswanathan et al., 2025; Huang et al., 2025b) has
emerged as a promising approach for open-ended tasks. The core idea is to associate each prompt x
with a rubric—a set of explicit criteria (ci) with corresponding weights (wi) that collectively define
a high-quality response. For instance, given a prompt asking for a likely diagnosis from a patient’s
symptoms, the rubric could specify key aspects of a good answer. This might include high-weight
criteria for “identifying [correct diagnosis] as the likely diagnosis” and “correctly identifying the
condition as a medical emergency,” and a low-weight criterion for “mentioning [typical treatment]
for treatment” (See Appendix I for a concrete example.)

In this framework, a verifier V , typically another LLM, assesses whether a given response y satisfies
each individual criterion. The total reward is then calculated as the weighted average of the criteria
that the response successfully meets. Formally, the verifier outputs a binary score for each criterion,
V (x, y, ci) 7→ {0, 1}, and the total reward is:

r(x, y) =

∑
i wiV (x, y, ci)∑

i wi
.

RLRR extends Reinforcement Learning with Verifiable Rewards (RLVR) to general tasks where per-
formance cannot be easily verified. Compared to RFT using Bradley-Terry reward models, RLRR’s
explicit criteria make rewards more interpretable and harder to game. However, it’s still unclear if,
and how, RLRR alleviates reward over-optimization.

3 HIGH-REWARD REGION ACCURACY IS KEY TO OVERCOMING REWARD
OVER-OPTIMIZATION

It’s well-known that using misspecified proxy rewards lead to reward over-optimization for rein-
forcement post-training. However, the ways in which different misspecification patterns of proxy
rewards influence the performance of the aligned model remain poorly understood. In this sec-
tion, we develop theoretical results showing that maintaining high-reward region accuracy is the key
determinant of alignment quality.

We introduce a misspecification mapping f from gold to proxy rewards and cast the problem as
analyzing how the geometry of f affects performance. More specifically, f : R → R is the mapping
from r⋆ to r, i.e., for any x-y pair,

f (r⋆(x, y)) = r(x, y).

To characterize the reward over-optimization phenomenon, we need to study the relationship be-
tween the utility (expected reward and win rates), and the KL divergence in (2). They can be sim-
plified as follows:

3
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Proposition 1. Define Rx
0 = r⋆(x, Y0) with Y0 ∼ π0(· | x) and F x

0 as its cumulative distribution
function. The RFT solution (2) has:

(i) Expected reward: Ex∼D, y∼πr(·|x) [r
⋆(x, y)] = Ex∼D

[
E[Rx

0 ef(Rx
0 )/β]

E[ef(Rx
0 )/β]

]
,

(ii) Win Rate: Ex∼D, y∼πr(·|x) [F
x
0 (r⋆(x, y))] = Ex∼D

[
E[Fx

0 (Rx
0 ) ef(Rx

0 )/β]
E[ef(Rx

0 )/β]

]
,

(iii) KL divergence: DKL [πr(y | x)∥π0(y | x)] = Ex∼D

[
E[f(Rx

0 ) ef(Rx
0 )/β/β]

E[ef(Rx
0 )/β]

− logE
[
ef(R

x
0 )/β

]]
To proceed, we assume the current policy’s ground-truth reward, Rx

0 , is distributed from the standard
uniform. This assumption is valid since: (i) it matches the reward distribution of best-of-n sampling
and the optimal solution which best balance KL divergence and win rate (Gui et al., 2024; Azar
et al., 2024; Balashankar et al., 2024) , and (ii) win rate and expected reward matches each other
in this case. Under this assumption, we can characterize the utility-KL tradeoff when applying the
misspecifed rewards:

Theorem 1. Suppose each Rx
0 ∼ U(0, 1) and f(Rx

0)
d
= Rx

0 . Then it holds that:

(i) KL divergence is invariant to f :

DKL [πr(y | x)∥π0(y | x)] = (1/β − 1)e1/β + 1

e1/β − 1
− log β − log(e1/β − 1).

(ii) Expected reward (or win rate) of πr is
∫ 1
0
f−1(u)eu/βdu

β(e1/β−1)
. [Proof].

The explicit formula in Theorem 1 indicates that misspecification, i.e., the deviation of f from the
identity map, in the high-value region of r⋆ has dominantly large effects on the utility-KL tradeoff.
On one hand, the KL divergence remains invariant to the choice of f and is fixed when the penalty
parameter β is set. On the other hand, the exponential term imposes increasingly severe penalties
on misspecification in the high-reward regime relative to the low-reward regime. This highlights the
criticality of accuracy in the high-reward region for achieving a favorable balance between utility
and KL divergence.

To verify this, we investigate different fs and exactly compute the utility-KL tradeoff curves:

(i) “Correct”: identity mapping f(r⋆) = r⋆

(ii) “Reversed”: the reverse mapping f(r⋆) = 1− r⋆

(iii) “ Top c% wrong”: r = f(r⋆) = r⋆1{r⋆≤1−c} + (2 − c − r⋆)1{r⋆>1−c}, i.e., the proxy
reward model provides completely reverse rewards for highest quality responses

(iv) “Worst c% wrong”: r = f(r⋆) = (c − r⋆)1{r⋆≤c} + r⋆1{r⋆>c}, i.e., the proxy reward
model provides completely reverse rewards for worst quality responses

Figure 2a plots KL divergence versus win rate across misspecification patterns and yields two key
observations: (i) when the proxy is inaccurate in the high-reward region, performance may look
acceptable at small KL but the win rate collapses as KL grows (this is similar to the reward over-
optimization behavior in Gao et al. (2023)); and (ii) if the proxy correctly ranks just a small top
proportion of responses (e.g., 10%), even while misgrading the remaining majority, the win rate
rapidly approaches the optimal curve at moderate KL. Separately, Figure 2b varies the fraction c
of correctly ranked top responses and traces the corresponding lower envelope of achievable win
rates, showing that this envelope is already near-optimal once a sufficiently large top proportion is
correctly identified and ordered (e.g., 40%). Together, we reach our central theoretical findings:

( I ) Reward over-optimization primarily arises from the inaccuracy in high-reward regions.
( II ) Being able to accurately rank and differentiate high-quality outputs is sufficient for a re-

ward model to effectively guide RL.

4
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(a) Single-round Improvement

(b) Iterative Improvement

Figure 3: Rubric refinement through response differentiation. (a) Single-round: A proposer LLM
analyzes a pair of responses to identify distinguishing features and encodes them as new rubric
criteria. (b) Iterative: Multiple rounds progressively focus on higher-quality responses, with each
iteration filtering to top-scoring candidates before generating new differentiating rubrics.

Algorithm 1 Iterative Rubric Refinement through Progressive Differentiation

1: Input: Pool of candidate responses and initial rubrics
2: Iteration: For each refinement round:

(a) Score all candidate responses with the current rubrics and get the top 2 responses from the
candidate pool as the comparison pair.

(b) Use the proposer LLM to identify distinguishing features between the pair and encode
these features by refining the existing rubric set.

3: Output: Final refined rubric set

4 PRINCIPLES FOR CONSTRUCTING RUBRICS

Based on the results of the previous section, we construct a reward model focusing on the high-
value region. The problem then is getting training examples that are in this high-reward region. By
definition, these are samples that are rare under the base LLM policy! This essentially forces us
to use off-policy data to define the reward model. Now, rubric-based rewards have emerged as an
approach for using off-policy data to define rewards. The basic idea of rubric-based reward models
is to explicitly restrict the reward to only care about aspects of the solution that are relevant to its
quality, thereby mitigating the effect of the off-policy data. However, the restrictive nature of the
rubrics is a double-edged sword. The same structure that limits the effect of off-policyness may
also limit their ability to distinguish between solutions that are excellent and those that are merely
great (they can easily end up in a tie). In this section, we consider how to construct rubrics that are
focused on accuracy in the high-reward region.

Refining rubrics to reliably tell apart two already great responses is a natural first step toward captur-
ing the high-reward tail. To push accuracy further in that tail, we also update rubrics to distinguish
among a diverse set of great responses. We formalize these ideas as two principles for rubric con-
struction

Principles for Rubric Construction
[Principle 1] Effective rubric construction requires

distinguishing excellent responses from great
ones.

[Principle 2] Effective rubric construction requires
distinguishing among diverse off-policy
responses.

5
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Table 1: RL experimental results on three datasets across two domains. Both principles lead to
consistent improvements.

Method
Generalist Domain Health Domain

Filtered Set LMArena Medical-o1
Win-Rate % Win-Rate % Win-Rate % HealthBench

Base Policy 5.2 4.1 10.8 0.1721
SFT 35.9 29.6 25.8 0.2999

Initial, Prompt only 31.3 29.7 21.7 0.3004
1 Good Pair 33.5 32.8 22.4 0.2912
1 Great Pair 36.8 33.1 26.5 0.3163

4 Great Pairs 38.7 34.7 31.4 0.3348
4 Great & Diverse Pairs 39.7 35.1 34.4 0.3513

4.1 METHODOLOGY

To operationalize the above principles, we design an iterative workflow that leverages off-policy
responses to refine rubrics.

Refinement-through-Differentiation (RTD). A natural way to make rubric-rewards more dis-
criminative is to prompt a proposer LLM with a pair of candidate responses and the current rubrics.
The proposer analyzes the pair, identifies their distinguishing features, and encodes these distinc-
tions as new rubric criteria or refinements of existing ones. We refer to this fundamental refinement
step as Refinement-through-Differentiation (RTD).

Iterative workflow for chasing the tail. While a single RTD step sharpens the rubric, repeated
application over a larger candidate pool yields systematic improvements. Starting with all off-policy
responses for a prompt, each iteration scores the candidates under the current rubric, selects the top
two responses, and refines the rubric using RTD. This workflow concentrates rubric discovery on the
performance frontier, extracting the most informative distinctions from the best available responses
with only a small number of comparisons (see Algorithm 1 and Figure 3).

4.2 EXPERIMENTAL SETUP

We conduct studies in two distinct domains: general-purpose and professional (health). More con-
cretely, we set up the experiments as follows:

Training setup. We employ GPT-4.1 as the rubric proposer, and prompt it to get the initial
rubrics. The training datasets consist of two generalist prompt collection (LMArena (Chiang et al.,
2024) and a manually filtered set of natural prompts, detailed in Appendix G) and one technical,
domain-specific prompt set (medical-o1-reasoning-SFT (Chen et al., 2024)). Each dataset contains
5000 prompts for training and an additional 1000 prompts for in-domain evaluation. The base model
for post-training is Qwen3-8b-Base (Yang et al., 2025), which has instruction-following capabilities.
We adopt GRPO (Shao et al., 2024) as the RFT algorithm and use a standard set of hyperparameters,
detailed in Table 4. For the reward computation, we leverage GPT-4.1-mini as a rubric verifier and
calculate the final reward as the weighted sum of satisfied rubric criteria, normalized by the total
weight. All prompts used in the experiments are presented in Appendix B.

Candidate pool. To validate Principle 1, we compare rubrics refined using (i) candidate pairs
from a great model versus (ii) candidate pairs from a good model (Gemini 2.5 Pro and Gemini-2.5-
Flash-Lite, respectively (Comanici et al., 2025)). To validate Principle 2, we enlarge the pool
by sampling 16 responses per prompt, from a broader set of excellent models, ensuring greater
diversity (see Appendix F for the full list). This setup allows us to test whether rubric refinement
benefits from better and more diverse candidate responses.
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Figure 4: Refinement with great and diverse responses mitigates reward over-optimization. Training
rewards r rise similarly across settings, but only models trained with iteratively refined, diverse
rubrics sustain higher win-rates (a proxy for ground-truth reward r∗) and delay the collapse that
signals reward over-optimization.

Evaluations. Final performance is evaluated by head-to-head comparison against Qwen3-8B, a
strong hybrid thinking model, using the held-out set of 1000 prompts from each dataset. We compute
the win-rate based on judgments from our GPT-4.1 judge , which was prompted to act as an impartial
evaluator (see Appendix E for the detail and justifications). For health domain, we additionally
evaluate models on the HealthBench (Arora et al., 2025).

5 RESULTS

5.1 RL IMPROVES WITH BETTER AND MORE DIVERSE RESPONSES

We first evaluate downstream RL performance to test whether the proposed principles indeed im-
prove rubrics. Table 1 shows two clear trends. First, rubrics refined with great pairs outperform
those refined with good pairs, validating Principle 1. Second, iterative refinement with multi-
ple diverse great pairs yields further gains, validating Principle 2.

Beyond improving average performance, refinement with better and more diverse responses also
mitigates reward over-optimization. Figure 4 shows training dynamics on the health domain when
RL is run for extended steps. Models trained on initial rubrics, or rubrics refined with only a single
pair, peak early and then suffer a rapid decline in win rate after about 60 steps—an indicator of
reward over-optimization. In contrast, models trained with iteratively refined, diverse rubrics sustain
higher win-rates for much longer, with over-optimization not appearing until after roughly 160 steps.
This pattern indicates that refining rubrics with great and diverse responses corrects inaccuracies in
the high-reward region, thereby delaying the onset of over-optimization. Together, these results
confirm our central hypothesis that rubrics can be constructed to mitigate reward over-optimization.

5.2 REWARD MODEL ACCURACY IMPROVES IN THE HIGH-REWARD TAIL

Our theoretical analysis (Section 3) suggests that accuracy in the high-reward tail is the critical factor
for downstream RL performance. To understand why refinement with better and more diverse re-
sponses helps, we evaluate the agreement between rubric-based rewards and the ground-truth judge,
separately on the high- and low-reward regions.

As shown in Table 2, incorporating any candidate responses through refinement improves rubric
accuracy compared to the prompt-only baseline. More importantly, rubrics refined with great pairs
largely improve accuracy in the high-reward region, while good pairs improve accuracy more than
great pairs in the low-reward region. Iterative refinement with great pairs pushes the accuracy in the
high-reward region even further, mirroring the RL improvements in Table 1. This confirms that both
principles work by sharpening reward model accuracy where it matters most: the high-value tail.

7
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Table 2: Accuracy of rubric-based scoring in predicting ground-truth model preferences was evalu-
ated on 1000 random prompts from the training set. Response pairs in the high-reward region were
sampled from Qwen3-8B, and response pairs in the low-reward region were sampled from Qwen3-
8B-Base. Rubric preferences were determined by a majority vote from five independent gradings,
with ties counted as incorrect.Results how refining with stronger and more diverse responses im-
proves high-reward accuracy.

Initial Only 1 Good Pair 1 Great Pair 4 Great Pairs 4 Great & Diverse Pairs

High-reward 40.3% 42.2% 45.8% 49.2% 47.9%
Low-reward 66.2% 67.9% 66.7% 68.9% 69.8%

5.3 REFINEMENTS FROM BETTER RESPONSES ARE MORE SOPHISTICATED

Finally, we analyze how refinements differ when using good versus great candidate responses. To
understand how stronger candidate responses lead to better rubrics, we analyzed the types of re-
finements made when using different quality levels of candidate pairs. We prompted an LLM to
compare initial and refined rubrics, and categorized the improvements into semantic clusters (see
details in Appendix H).

Table 3 shows the distribution of refinement types on the health domain. Both qualities contribute,
but the patterns diverge: good responses often drive basic corrections, such as adding penalties for
obvious mistakes or broadening overly restrictive criteria; by contrast, great responses more often
drive sophisticated refinements, such as breaking down complex criteria into sub-components or
enhancing verification standards.

In the example from Appendix I, for a medical prompt about a patient with serious symptoms,
two initially tied great responses are distinguished by adding the criterion: “The response mentions
that urgent imaging (e.g., contrast-enhanced CT or MRI/MRV) is required to confirm the diagnosis.”
This refinement, from the “Enhancing verification, validation, and evidence standards” cluster, man-
dates a critical, verifiable clinical action, and only one of the responses satisfies. Such qualitative
results confirm our finding that comparing great responses provides the nuanced distinctions needed
to identify excellent outputs, thereby sharpening accuracy in the high-reward tail.

Table 3: Distribution of rubric refinement types when using great (Gemini 2.5 Pro) versus good
(Gemini 2.5 Flash Lite) candidate pairs, in the healthcare domain. Rows with significant differences
(≥55% for one model) are highlighted: blue indicates great dominance, red indicates good dom-
inance. Bold percentages show the dominant model.

Refinement Type Proportion Great vs Good

Mandating explicit statements, justifications, or declarations 16.7% 52.6% vs 47.4%
Shifting focus from superficial to substantive qualities 11.7% 48.2% vs 51.8%
Adjusting scoring weights, granularity, or mechanisms 8.9% 48.5% vs 51.5%
Breaking down complex criteria into sub-components 7.2% 55.9% vs 44.1%
Introducing penalties, prohibitions, or negative scoring 6.6% 43.5% vs 56.5%
Replacing vague language with specific requirements 6.2% 54.7% vs 45.3%
Adding requirements for comparing alternatives 5.9% 49.0% vs 51.0%
Broadening criteria to accept multiple approaches 5.6% 44.4% vs 55.6%
Adding conditional or context-dependent rules 4.5% 51.4% vs 48.6%
Streamlining by removing redundancy 4.4% 41.6% vs 58.4%
Adding timing, sequencing, or process flow criteria 3.5% 54.1% vs 45.9%
Mandating precise language or technical accuracy 3.3% 50.2% vs 49.8%
Requiring causal explanations or mechanistic understanding 3.3% 51.8% vs 48.2%
Enhancing verification, validation, and evidence standards 2.3% 55.0% vs 45.0%
Mandating specific structure or formatting 2.1% 53.8% vs 46.2%
Requiring explicit justification for decisions 1.9% 50.3% vs 49.7%
Defining explicit scope, boundaries, or constraints 1.8% 58.9% vs 41.1%
Incorporating risk analysis or safety constraints 1.8% 55.2% vs 44.8%
Requiring specific, actionable recommendations 1.0% 55.5% vs 44.5%
Correcting errors or aligning with intended standards 0.9% 32.8% vs 67.2%
Assessing communication quality or tone 0.5% 43.8% vs 56.2%
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6 RELATED WORK

Reward over-optimization. Gao et al. (2023) highlighted the issue of reward over-optimization
for both best-of-n sampling and reinforcement learning when using preference-based reward mod-
els. Although this phenomenon has since been repeatedly observed in empirical studies (Bai et al.,
2022; Moskovitz et al., 2023; Perez et al., 2023; Gui et al., 2024; Wang et al., 2024), its theoret-
ical underpinnings remain limited. Existing analyses typically relate the performance degradation
caused by a proxy reward to global statistics describing how far the proxy deviates from the true
reward (Huang et al., 2025a; Mroueh, 2024). In contrast, our work provides a sharper perspective:
what truly governs performance is the fidelity of the proxy reward in the high-value region, where
high-quality responses concentrate.

Rubrics reward. RL from rubrics reward (RLRR) has proven to be an effective method in spe-
cialized domains like science and health (Gunjal et al., 2025), general instruction-following (Huang
et al., 2025b; Viswanathan et al., 2025), and for enhancing agentic ability (Team et al., 2025), with
implementations using both online and offline RL. The idea of rubrics is also utilized in generative
reward models (GRMs), wherein a reward model is prompted to first generate rubrics and then use
them to evaluate a response (Liu et al., 2025b; Chen et al., 2025). This approach enables inference
time scaling of reward modeling and improves explainability. However, generating rubrics on the
fly is computationally inefficient and unsuitable for large-scale training.

7 DISCUSSION

In this paper, we investigate rubric-based reward modeling for LLM post-training. We begin by
analyzing the central weakness of reinforcement fine-tuning, reward over-optimization, and theo-
retically trace it to misspecification of the proxy reward in the high-reward tail. A comprehensive
empirical study highlights rubric-based rewards as an effective remedy. We further demonstrate
that carefully designed rubrics, which distinguish among great, diverse off-policy responses, lead to
consistently strong fine-tuning performance.

Off-policy responses for Bradley-Terry reward model training might generalize, but is sample
inefficient. While we find a medium amount off-policy responses (n = 5000, in addition to the
same number of on-policy responses) do not help Bradley-Terry reward model guide the current
policy (see Appendix D), we note that other work successfully train BT reward model with off-
policy samples, but with a much larger scale—using up to 20 million high quality samples ((Liu
et al., 2025a; Cui et al., 2023)). Indeed, Bradley-Terry reward model’s generalizability scales with
the number, and diversity of training samples. However, it’s not always easy to find large-scale
data for many specialized domains, such as healthcare. In contrast, rubric-based reward can easily
encode generalizable principles from limited amount of data.

Weighted average of rubric score is not optimal. To specifically analyze the impact of rubric
quality, we deliberately use the most simple method of score aggregation, by taking a weighted av-
erage of scores from the satisfied criteria. Prior work has explored diverse approaches, including im-
plicit aggregation by a verifier model (Gunjal et al., 2025), sophisticated frameworks to capture non-
linear dependencies (Huang et al., 2025b), weighted averages of continuous scores (Viswanathan
et al., 2025), and model-based self-critique that weighs criteria against internal priors (Team et al.,
2025). We acknowledge that aggregation is a central component of an optimal rubric reward system
and leave it for future work.
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USAGE OF LARGE LANGUAGE MODELS

In this work, besides running LLMs in experiments, we use LLMs for the following purposes:

1. Aid or Polish Writing (Gemini 2.5 Pro, ChatGPT 4/5)
2. Literature Retrieval and Discovery (e.g., finding related work) (Gemini 2.5 Pro Deep Re-

search, ChatGPT Deep Research)
3. Assisting Code Writing and Debugging (Claude-Ops-4.1, GPT-5)

We fully understand the responsibility of using LLMs in academic research. We carefully monitor
any potential problems, such as plagiarism or scientific misconduct (e.g., fabrication of facts) when
using LLMs. We make sure these problems do not occur in the paper.

A THEORETICAL RESULTS

Theorem 1. Suppose each Rx
0 ∼ U(0, 1) and f(Rx

0)
d
= Rx

0 . Then it holds that:

(i) KL divergence is invariant to f :

DKL [πr(y | x)∥π0(y | x)] = (1/β − 1)e1/β + 1

e1/β − 1
− log β − log(e1/β − 1).

(ii) Expected reward (or win rate) of πr is
∫ 1
0
f−1(u)eu/βdu

β(e1/β−1)
. [Proof].

Proof. First, we compute the KL divergence. When f(Rx
0) ∼ U(0, 1), by Proposition 1, the KL

divergence is

DKL [πr(y | x)∥π0(y | x)] = Ex∼D

[
E
[
f(Rx

0) e
f(Rx

0 )/β/β
]

E
[
ef(R

x
0 )/β

] − logE
[
ef(R

x
0 )/β

]]

= Ex∼D

[ ∫ 1

0
ueu/βdu

β
∫ 1

0
eu/βdu

− log

(∫ 1

0

eu/βdu

)]
=

(1/β − 1)e1/β + 1

e1/β − 1
− log

[
β(e1/β − 1)

]
.

Then, we compute the expected reward: denote T x
0 = f(Rx

0),

Ex∼D, y∼πr(·|x) [r
⋆(x, y)] = Ex∼D

[
E
[
Rx

0 ef(R
x
0 )/β

]
E
[
ef(R

x
0 )/β

] ]

= Ex∼D

[
E
[
f−1(T x

0 ) e
Tx
0 /β

]
E
[
eT

x
0 /β

] ]
= Ex∼D

[∫ 1

0
f−1(u)eu/βdu∫ 1

0
eu/βdu

]

=

∫ 1

0
f−1(u)eu/βdu∫ 1

0
eu/βdu

=

∫ 1

0
f−1(u)eu/βdu

β(eu/β − 1)

Since F x
0 (R

x
0)=Rx

0 when Rx
0 ∼ U(0, 1), the win rate is the expected reward. Then the theorem

follows.
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B PROMPTS USED FOR EXPERIMENTS

Prompt for Constructing Initial Rubrics

You’re a skilled judge evaluating the quality of LLM responses to a user prompt. Your
first task is to create a comprehensive rubric for grading these responses across multiple
dimensions.

Given a user prompt, generate a list of binary (yes/no) criteria. These criteria should assess
how well the LLM answered the prompt. Only write rubrics you are confident about.

Here are tips for writing good rubrics:

i. MECE:
- Mutually Exclusive, Collectively Exhaustive

ii. Completeness:
- Consider all the elements you would want to include to create a perfect response and

put them into the rubric. This means including not only the facts and statements directly
requested by the prompt, but also the supporting details that provide justification, reasoning,
and logic for your response. Each of these elements should have a criterion because each
criterion helps to develop the answer to the question from a slightly different angle.

iii. No overlapping:
- the same error from a model shouldn’t be punished multiple times.

iv. Diversity:
- The rubric items should include variable types of information.
- If all criteria are like “the response mentions A”, “the response mentions B”, then this

is not a good rubric.

v: How many rubric items for each prompt
- There is no golden standard, and the desired number of rubrics varies by accounts and

task types.
- Write rubrics that cover all aspects of an ideal response.

vi: How many rubric items to fail
- A good rule of thumb is that the model fails on 50% of rubrics items

vii: Atomicity / Non-stacked
- Each rubric criterion should evaluate exactly one distinct aspect. Avoid bundling mul-

tiple criteria into a single rubric. Most stacked criteria with the word “and” can be broken
up into multiple pieces.

p Response identifies George Washington as the first U.S. president and mentions he
served two terms.

✓ Response identifies George Washington as the first U.S. president.
✓ Response mentions that George Washington served two terms.

viii: Specificity
- Criteria should be binary (true or false) and objective.
- Avoid vague descriptions (e.g., ”the response must be accurate” is vague).
- Example: ”The response should list exactly three examples.”

13
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ix: Self-contained
- Each criterion should contain all the information needed to evaluate a response, e.g.
p Mentions the capital city of Canada.
✓ Mentions the capital city of Canada is Ottawa.

x: Criterion should be verifiable without requiring external search.
p Response names any of the Nobel Prize winners in Physics in 2023
✓ Response names any of the following Nobel Prize winners in Physics in 2023: Pierre

Agostini, Ferenc Krausz, or Anne L’Huillier.

xi. The binary criteria should be phrased so that yes means the model response is good and
no means the model response is bad.

Finally, we want to assign different weight for each question. Give a weight on a scale of 1
(least important) to 3 (most important) for each question based on
1. the question’s alignment with user demand (3 if user would be frustrated if the answer is
no; 1 if user would not be bothered at all if the answer is no)
2. the question’s importance in terms of determining quality/correctness (3 if the response
would be completely incorrect if the answer is no; 1 if an extreme edge case would be missed
and the overall quality won’t be affected if the answer is no)

Here is the user prompt for which we want to generate a rubric:

PROMPT:
{prompt}

Return ONLY the JSON array of the rubrics, no other text. For example:

[
{{"criterion": "Does the response provide a list of

songs?", "weight": 3}},
{{"criterion": "The response explicitly state it is

listing French romantic songs.", "weight": 2}}
]

Note: Local IDs will be automatically assigned to each criterion (c1, c2, c3, etc.), so don’t
include IDs into outputed criterion.

Prompt for Improving Rubrics

You’re a skilled judge assessing the quality of LLM responses to a user prompt. The current
rubric isn’t good enough to effectively differentiate between high-quality responses.

Your goal is to improve the current rurbics to address this (adding new creteria, rewriting,
decomposing, and deleting the current creteria). The updated rubric must be comprehensive
and consistently applicable for grading LLM responses. These criteria should specifically
assess how well the LLM answered the given prompt. Only write rubrics you are confident
about.

Here are tips for writing good rubrics:
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i. MECE:
- Mutually Exclusive, Collectively Exhaustive

ii. Completeness:
- Consider all the elements you would want to include to create a perfect response and

put them into the rubric. This means including not only the facts and statements directly
requested by the prompt, but also the supporting details that provide justification, reasoning,
and logic for your response. Each of these elements should have a criterion because each
criterion helps to develop the answer to the question from a slightly different angle.

iii. No overlapping:
- the same error from a model shouldn’t be punished multiple times.

iv. Diversity:
- The rubric items should include variable types of information.
- If all criteria are like “the response mentions A”, “the response mentions B”, then this

is not a good rubric.

v: How many rubric items for each prompt
- There is no golden standard, and the desired number of rubrics varies by accounts and

task types.
- Write rubrics that cover all aspects of an ideal response.

vi: How many rubric items to fail
- A good rule of thumb is that the model fails on 50% of rubrics items

vii: Atomicity / Non-stacked
- Each rubric criterion should evaluate exactly one distinct aspect. Avoid bundling mul-

tiple criteria into a single rubric. Most stacked criteria with the word “and” can be broken
up into multiple pieces.

p Response identifies George Washington as the first U.S. president and mentions he
served two terms.

✓ Response identifies George Washington as the first U.S. president.
✓ Response mentions that George Washington served two terms.

viii: Specificity
- Criteria should be binary (true or false) and objective.
- Avoid vague descriptions (e.g., ”the response must be accurate” is vague).
- Example: ”The response should list exactly three examples.”

ix: Self-contained
- Each criterion should contain all the information needed to evaluate a response, e.g.
p Mentions the capital city of Canada.
✓ Mentions the capital city of Canada is Ottawa.

x: Criterion should be verifiable without requiring external search.
p Response names any of the Nobel Prize winners in Physics in 2023
✓ Response names any of the following Nobel Prize winners in Physics in 2023: Pierre

Agostini, Ferenc Krausz, or Anne L’Huillier.

xi. The binary criteria should be phrased so that yes means the model response is good and
no means the model response is bad.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Finally, we want to assign different weight for each criterion. Give a weight on a scale of 1
(least important) to 3 (most important) for each question based on
1. the question’s alignment with user demand (3 if user would be frustrated if the answer is
no; 1 if user would not be bothered at all if the answer is no)
2. the question’s importance in terms of determining quality/correctness (3 if the response
would be completely incorrect if the answer is no; 1 if an extreme edge case would be missed
and the overall quality won’t be affected if the answer is no)

Here is the user prompt for which we want to improve the rubric:

PROMPT:
{prompt}

The existing rubrics we are using is:
{rubrics}

The two reference responses are:

Reponse 1:
{response1}

Reponse 2:
{response2}

Return ONLY the JSON array of the full rubrics, no other text. For example:

[
{{"criterion": "Does the response provide specific

release years for each song?", "weight": 2}},
{{"criterion": "The response includes artist names

for each song mentioned", "weight": 1}}
]

Note: Local IDs will be automatically assigned to each criterion, so don’t include IDs in
your output.

Prompt for Scoring Responses

You are a skilled judge who will be assessing the quality of LLM responses to a user prompt.

Given a user prompt, LLM response, and a rubric, your task is evalauting the performance
of the model response by seeing whether or not it meets the rubric dimension.

Answer the each of the given rubric dimension in either ”yes” or ”no”. Do not output any
response other than ”yes” or ”no”.

Keep in mind that you will be grading industry-leading LLMs. Make sure to have high
expectation for grading the responses.
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Make sure your evaluation is as objective and consistent as it could be. By consistent we
mean that a different evaluator’s assessment of the task should agree with yours.

Think carefully before you make the decision. After you make the decision, explicitly output
which dimension receives ”yes” and which dimension receives ”no”.

Input:

* PROMPT: {prompt}

* RESPONSE: {response}

* RUBRIC: {rubric}

Return ONLY the JSON array, no other text. For example:

{{"c1":"yes", "c2":"no", "c3":"yes"}}
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C HYPERPARAMETER

The hyperparameter for GRPO training of RLRR is presented in Table 4.

Table 4: GRPO Hyperparameter Configuration

Hyperparameter Value
Rollouts per Prompt 16
Gradient Accumulation Steps 2
Per-Device Train Batch Size 6
Warmup Ratio 0.1
KL Coefficient 0.01
Learning Rate 1.0× 10−5

Learning Rate Scheduler Constant with Warmup
Maximum Sequence Length 3584
Training Epochs 2

D EMPIRICAL RESULTS ON RLHF

We finetune a Bradley-Terry Reward model on various responses, with preference generated by
GPT-4.1, the same model as the judge model for evaluation. For each of the prompt in the training
set, we generated a pair of responses at temperature 1.0 using the base policy model Qwen3-8B-
Base (on-policy) or Gemini-2.5-Pro (off-policy). Preferences were labeled using GPT-4.1, the same
model used for final evaluation. This preference data was then used to train a reward model based on
Llama-3.1-8B-Instruct, with hyperparameters specified in Table 6. Finally, this reward model was
used for GRPO training, following the configuration in Table 4.

We find that using on-policy responses is a baseline that can’t be easily improved upon:

1. Training on off-policy, great responses deteriorates the performance
2. Adding both off-policy and on-policy responses only helps with win rates but not helps with

healthbench. This suggests that the off-policy samples only help the reward model encode
superficial features (that can game LLM-judge) instead of true capabilities as measured by
more objective metrics.

This experiment shows the difficulty of improving Bradley-Terry models with off-policy responses.

Table 5: Win-rates and HealthBench scores for the Health domain.

Method Win-Rate HealthBench
Reward Model (on-policy) 26.8% 0.3036
Reward Model (off-policy, great) 22.4% 0.2798
Reward Model (on-policy + off-policy) 30.7% 0.3032
SFT 25.8% 0.3094

Initial, Prompt only 21.7% 0.3004
1 good Pair 22.4% 0.2912
1 great Pair 26.5% 0.3163
4 great Pairs 31.4% 0.3348
4 great & Diverse Pairs 34.4% 0.3513

E LLM JUDGE FOR EVALUATION

We use the same judge model as the rubrics proposer (GPT-4.1). This is by design: our primary
goal is to test how best to incorporate additional responses into the rubric construction process.
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Table 6: Reward Model Hyperparameter Configuration

Hyperparameter Value

Learning Rate 1.0× 10−5

Per-Device Train Batch Size 4
Gradient Accumulation Steps 4
Training Epochs 10
Maximum Sequence Length 8192
Warmup Ratio 0.1
Learning Rate Scheduler Cosine

By using the same powerful model for both proposing rubrics and evaluating final outputs, we
isolate the quality of the candidate responses as the key experimental variable and eliminate potential
confounding issues that could arise from disagreements between a proposer and a judge.

We use a minimal judge prompt to compare two responses:

LLM Judge Prompt

You are a skilled judge who will be assessing the quality of LLM responses to a user prompt.

Avoid any position biases and ensure that the order in which the responses were presented
does not influence your decision. Do not allow the length of the responses to influence your
evaluation.

Here is the user prompt:

PROMPT: {prompt}

The two responses are:

Response 1: {response1}

Response 2: {response2}

Which reponse would you prefer? Enclose your final answer (1 or 2) in \boxed{{...}}.

To reduce the position bias, we randomly flipped two responses.

F FRONTIER MODELS USED TO CREATE CANDIDATE RESPONSES

The 16 frontier models used to generate candidate responses are:

• Gemini-2.5-Pro

• Gemini-2.5-Flash

• GPT-5

• GPT-4.1

• GPT-4o-2024-05-13

• o3

• o1-2024-12-17

• o4-mini

• Claude-Sonnet-4-20250514
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• Claude-3-7-Sonnet-20250219

• Deepseek-V3

• Deepseek-R1

• Kimi-K2-Instruct

• GLM-4.5

• Qwen3-235B-A22B-Instruct-2507

• Mistral-Medium-Latest

G PRINCIPLES OF SELECTING PROMPTS

We manually curated a prompt dataset according to a specific set of criteria to ensure quality and
suitability for rubrics training.

• Prompts have clear user intent.

• Prompts are not multimodal/search/trivia/GTFA.

• Prompts are not too simple.

• Prompts are generalist friendly (nothing technical that requires expert knowledge).

• Prompts are not open-ended / creative-writing.

• Prompts are designed such that there is an objectively better response (“Tell me a good
bedtime story” can have multiple good responses)

This dataset will be made publicly available upon publication.

H PATTERN DETECTION ON RUBRIC REFINEMENTS

In Table 3 we show clusters of various rubric-refinements. To get this result, we first prompt GPT-
4.1 to describe the differences between refined rubrics, and the initial rubrics (for refinement with
one-good-pair, and one-great-pair). The differences are listed as atomic items describing different
aspects of improvement. We then run a clustering algorithm on the atomic differences from both
one-good-pair, and one-great-pair (they have almost the same number of atomic differences) to get
interpretable clusters, and report the proportions from one-good-pair versus and one-great-pair

I EXAMPLES OF RUBRICS AND RUBRIC REFINEMENTS

In this example, the initial rubric cannot differentiate between the two great responses (both from
Gemini-2.5-Pro). This is because it primarily handles basic criteria (e.g. the diagnosis is correct),
which both responses satisfy. The refinement process resolves the tie by adding a new criterion
c7—requiring the mention of an imaging test to confirm the diagnosis. Such refinement is one
example for the cluster Enhancing verification, validation, and evidence standards identified in
Table 3.
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Rubric Refinement Example

Prompt
What is the likely diagnosis for a young girl with a history of repeated pain over the medial canthus and chronic use of decongestants,
who now presents with intense chills, rigors, diplopia on lateral gaze, and a congested optic disc on examination?

---
Response 1
Most likely diagnosis: Cavernous sinus thrombosis (CST).
This is a life-threatening medical emergency.

Why CST fits

• Medial canthus pain + decongestants → sinusitis
(ethmoid/sphenoid)/dacryocystitis; valveless oph-
thalmic veins communicate with cavernous sinus.

• Intense chills/rigors → septicemia from septic
thrombophlebitis.

• Diplopia on lateral gaze → abducens nerve (CN
VI) involvement.

• Congested optic disc → impaired venous outflow
/ increased ICP.

Differential: orbital cellulitis; meningitis/brain abscess.
Immediate management: urgent contrast CT or MRI/MRV;
high-dose IV antibiotics; consider anticoagulation; drain
source if indicated.

Response 2
Most likely diagnosis: Cavernous sinus thrombosis (CST),
secondary to dacryocystitis/orbital cellulitis. This is a life-
threatening emergency.

Clinical reasoning

• Medial canthus pain localizes to lacrimal sac;
chronic congestion/decongestants imply naso-
lacrimal dysfunction and recurrent dacryocystitis.

• Valveless facial/ophthalmic veins permit retro-
grade spread to cavernous sinus.

CST manifestations

• Sepsis (chills, rigors).
• CN VI palsy causing diplopia on lateral gaze.
• Papilledema from impaired venous drainage / in-

creased ICP.

Urgency & treatment medical/neurosurgical emergency; high-
dose IV antibiotics essential.

---
Rubric Scores (Initial)

Criterion (Initial) Weight R1 (0/1) R2 (0/1)
c1: Identifies CST as most likely diagnosis 3 1 1
c2: States it is a medical emergency 3 1 1
c3: Links medial canthus pain + decongestants to sinusitis 3 1 1
c4: Diplopia due to CN VI involvement 3 1 1
c5: Papilledema from impaired venous drainage/ICP 2 1 1
c6: Chills/rigors = systemic infection/bacteremia 2 1 1
c7: Includes medical disclaimer / seek care 2 0 0
c8: Mentions orbital cellulitis differential 1 1 1
c9: Mentions high-dose IV antibiotics 1 1 1

Weighted total (Initial): R1 = 18/20, R2 = 18/20

---
Rubric Scores (Refined)

Criterion (Refined) Weight R1 (0/1) R2 (0/1)
c1: Identifies CST as most likely diagnosis 3 1 1
c2: Explicitly states CST is a medical emergency 3 1 1
c3: Links medial canthus pain + decongestants to sinusitis/dacryocystitis 3 1 1
c4: Diplopia due to abducens (CN VI) involvement 3 1 1
c5: Papilledema from impaired venous drainage/ICP 2 1 1
c6: Sepsis secondary to CST (chills/rigors) 2 1 1
c7: Urgent imaging (contrast CT or MRI/MRV) required to confirm diagnosis 2 1 0
c8: High-dose IV antibiotics are initial mainstay 2 1 1
c9: Medical disclaimer / seek immediate care 2 0 0
c10: Mentions orbital cellulitis differential 1 1 1
c11: Notes other CNs (III, IV, V1, V2) may be affected 1 1 0
c12: Avoids incorrect primary diagnosis 3 1 1

Weighted total (Refined): R1 = 25/27, R2 = 22/27
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