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Abstract
Reinforcement Learning (RL) algorithms aim to
learn an optimal policy by iteratively sampling ac-
tions to learn how to maximize the total expected
return, R(x). GFlowNets are a special class of
algorithms designed to generate diverse candi-
dates, x, from a discrete set, by learning a policy
that approximates the proportional sampling of
R(x). GFlowNets exhibit improved mode dis-
covery compared to conventional RL algorithms,
which is very useful for applications such as drug
discovery and combinatorial search. However,
since GFlowNets are a relatively recent class of
algorithms, many techniques which are useful in
RL have not yet been associated with them. In this
paper, we study the utilization of a replay buffer
for GFlowNets. We explore empirically various
replay buffer sampling techniques and assess the
impact on the speed of mode discovery and the
quality of the modes discovered. Our experimen-
tal results in the Hypergrid toy domain and a
molecule synthesis environment demonstrate sig-
nificant improvements in mode discovery when
training with a replay buffer, compared to training
only with trajectories generated on-policy.

1. Introduction
Generative Flow Networks (GFlowNets) (Bengio et al.,
2021a) are a class of reinforcement learning (RL) algorithms
which have been recently proposed, whose goal is to learn a
stochastic policy to generate diverse objects from a discrete
set, such as graphs. This is achieved by iteratively sampling
actions that construct the object through a sequence of edits.
GFlowNets (Bengio et al., 2021b) sample a diverse set of
objects x with a training objective that approximately sam-
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ples x in proportion to the reward function R(x) associated
with it1.

In drug discovery, the learner has access to an oracle, which
is periodically queried with a batch of candidate molecules,
to obtain rewards that estimate the efficacy of each candidate
(Bengio et al., 2021a). The oracle usually takes the form of
a neural network, trained as a proxy for estimating binding
affinity to a target protein. Given the inherent uncertainty
involved in drug trials and the approximate nature of the
proxy reward (which is learned in a supervised manner
from available data), it is important to have a diverse set of
candidates.

Existing work has demonstrated that GFlowNets outper-
form traditional techniques like Bayesian Optimization, and
Markov Chain Monte Carlo (MCMC) in terms of both train-
ing efficiency and the diversity of the candidates discovered
(Bengio et al., 2021a). GFlowNet is an offline off-policy
learning algorithm (Bengio et al., 2021a), but the training of
GFlowNets has predominantly focused on utilizing the data
generated by the stochastic policy which is trained. That is,
for every training step, a fixed set of trajectories is sampled
from the current policy and used to train the GFlowNet.

In this paper, we conduct an empirical analysis to evaluate
the impact of adding experience replay to the GFlowNet
training process. We examine three different training config-
urations, (i) without replay buffer, (ii) with a replay buffer
that uses random sampling to choose training tuples, and (iii)
R-PRS (Reward Prioritized Replay Sampling), a technique
inspired by Prioritized Experience Replay (PER) (Schaul
et al., 2015). We perform experiments on a Hypergrid toy
domain and on a large-scale molecular synthesis environ-
ment. The empirical results demonstrate that using a replay
buffer with GFlowNets significantly improves the training
speed, the diversity of generated candidates, and the ability
to discover different modes of the distribution.

1Unlike in usual RL, rewards are only associated with objects
x corresponding to terminal states.
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2. Preliminaries
Let G = (S,A) be a directed acyclic graph (DAG) (Bengio
et al., 2021a;b), where S is the set of states (vertices) and
A is the set of actions (edges). In GFlowNets, the learner
constructs G using a series of actions (edges) starting from
an initial state, s0 ∈ S until a terminal (sink) node, sn ∈ S
is reached. A complete trajectory (Malkin et al., 2022),
τ , is a sequence of transitions from s0 to a terminal state:
τ = (s0 → s1 → · · · → sn), where (si → si+1) ∈ A ,∀i.
A trajectory flow F : T 7→ R+ is any non-negative function
defined on the set of complete trajectories T to R+. The
trajectory flow can be interpreted as the total amount of
unnormalized probability flowing through a state. More
formally, for any state s, the state flow is defined as F (s) =∑

τ∈T :s∈τ F (τ), and for any edge (s → s′), the edge flow
is defined as

F (s → s′) =
∑

τ∈T :(s→s′∈τ)

F (τ) (1)

The terminal flow is defined as the flow associated with the
final transition (si → sn), F (si → sn). The intention is to
make the total flow at state sn approximately equal to the
reward R(sn). The forward transition probability, PF for
each step of the trajectory is defined as:

PF =
F (s → s′)

F (s)
(2)

and the probability of visiting a terminal state is:

PF (s) =

∑
τ∈T :s∈τ F (τ)

Z
(3)

where Z is the total flow, Z =
∑

τ∈T F (τ).

Flow Matching Objective (Bengio et al., 2021a): The flow
matching criterion states that the sum of inflow from all the
parents of a node should be equal to the total outflow to all
the children of that node:

LFM (s; θ) =

(
log

∑
s′∈Parent(s) Fθ(s

′ → s)∑
s′′∈Child(s) Fθ(s → s′′)

)2

. (4)

(Bengio et al., 2021a) showed that these constraints can
be converted into a temporal-difference (TD)-like objective
(Sutton, 1988) which is then optimized with respect to the
parameters of a function approximator, like a neural network.
GFlowNets approximate the edge flow Fθ : A → R+ with
learnable parameters θ, such that the terminal flow is roughly
equal to the reward function R(x). Trajectories for training
θ are sampled from an exploratory policy π̃ with full support,
learned by minimizing the flow-matching objective (4).

Trajectory Balance Objective (Malkin et al., 2022): The
flow-matching objective can suffer from inefficient credit

assignment. To overcome this, an alternative was proposed
by Malkin et al., which leads to faster convergence. The
trajectory balance objective is defined as:

LTB(τ ; θ) =

(
log

Zθ

∏
s→s′∈τ PFθ

(s′|s)
R(x)

)2

(5)

3. Experience Replay
Experience replay has emerged as a very useful RL tech-
nique which can improve learning efficiency and stability
(Lin, 1992). The traditional approach involves storing past
experiences encountered by the agent in a buffer and re-
playing them, by randomly sampling batches of experiences
during the training process. The randomization allows the
agent to explore diverse transitions, leading to better explo-
ration and improved learning. Furthermore, if experience
replay is done at the level of state-action transitions, rather
than full trajectories, it breaks the temporal correlations be-
tween transitions, which can have a stabilizing effect when
the RL agent is using non-linear function approximation.
Mnih et al. demonstrated the effectiveness of experience
replay in Deep Q-Networks (DQNs), achieving state-of-the-
art performance on a wide range of Atari 2600 games.

Schaul et al. proposed a technique that enhances the re-
play buffer, by assigning priorities to the experiences stored
therein. The idea is to prioritize and sample experiences
based on the potential that they will induce learning. Pri-
oritized Experience Replay (PER) assigns higher priority
to experiences that have a larger TD-error magnitude, in-
dicating that more would be learned from replaying this
experience. This approach helps the agent learn from the
most informative and challenging experiences.

4. Experiments
Our goal is to investigate the impact of different experience
replay techniques on the training process of GFlowNets.
Specifically, we compare three approaches: (i) training only
with samples from the current online policy; (ii) training
with an experience replay buffer that contains both samples
from the current policy and from past policies, and where
random sampling is used to select batches; and (iii) R-PRS
(Reward Prioritized Replay Sampling), a technique inspired
by prioritized experience replay. In R-PRS, we store and
sample trajectories with the highest reward in the replay
buffer. During the sampling process, the learner prioritizes
the buffer according to this reward (instead of the TD-error
like in PER). The underlying hypothesis is that by prioritiz-
ing and learning from the most promising trajectories, the
agent can effectively explore the state space and improve
learning performance. This idea is very similar in spirit to
the initial work on replay by Lin (1992).
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4.1. Hypergrid

We first analyze the effect of using experience replay with
GFlowNets in Hypergrid, a toy domain presented by Bengio
et al., which allows easy control of the number of inter-
esting modes of a distribution and of the ease with which
these modes can be discovered. The environment is an n-
dimensional hypercube grid of side length H , where the
states are the cells of the hypercube. The agent always starts
at coordinate x = (0, 0, . . . ), and the allowed actions ai
increase the coordinate i, up to H , upon which the episode
terminates. A stop action can also terminate the episode.
There are many sequences of actions that lead to the same
goal state, making this MDP a DAG.

We use the codebase and architecture developed by (Bengio
et al., 2021a) as a foundation. For the GFlowNet model, we
use an MLP as the reward approximator, with two hidden
layers, each with 256 hidden units. We train all the models
with the Flow Matching objective. We set the learning rate
to 0.001 and use the Adam optimizer (Kingma & Ba, 2014).
All the experiments are run on 5 independent seeds and the
mean and standard error are reported in the plots.

The reward for terminating the episode at coordinate x is
given by R(x) > 0. We experimented with the reward
function R(x) = R0 + R1

∏
i I(0.25 < |xi/H − 0.5|) +

R2

∏
i I(0.3 < |xi/H − 0.5| < 0.4) with 0 < R0 ≪

R1 < R2. We set R1 = 0.5 and R2 = 2. We vary the
value of R0 by setting it closer to 0, to make the problem
artificially harder, by creating a region of state space which
is less desirable to explore. The reward distribution for a 2D
Hypergrid with H = 8 is shown in Figure 1.
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Figure 1. Hypergrid domain - Reward distribution for a 2-
dimensional Hypergrid with H = 8.

We present the results of an experiment with R0 = 10−3,
one of the more difficult settings. For each batch, the agent
draws an equal number of trajectories from both the online
policy and the replay buffer (16 trajectories each). Figure 2
shows the evolution of the number of modes discovered as a
function of training samples. R-PRS discovers all the modes
relatively quickly compared to the random sampling and no

replay buffer settings. Figure 9 shows that the R-PRS tech-
nique exhibits faster convergence towards the true reward
distribution, compared to the other methods. Similar results
in a relatively easier setting, R0 = 10−2, are shown in Ap-
pendix A.1. This suggests that GFlowNets are more capable
of exploration when the learner is repeatedly exposed to
more promising samples (samples with high rewards).

To further evaluate the impact of the experience replay sam-
ple size, we plot mode discovery as a function of the number
of trajectories sampled from the replay buffer for use with
R-PRS. The agent samples 16 trajectories from the online
policy. We vary the number of trajectories from older poli-
cies from 4 to 16. Figure 3 shows that increasing the number
of older trajectories sampled from the replay buffer helps
the learner to discover modes more quickly. We can ob-
serve similar kinds of results in a relatively easier setting,
R0 = 10−2 as shown in Appendix A.1.

To analyze whether the improvement in performance is due
to the increased sample size from the experience replay
buffer, we plot the modes discovered as a function of in-
creasing batch size. When using no replay buffer, we varied
the batch size from 16 to 32 and included R-PRS for compar-
ison. In Figure 4, we observe that solely increasing the batch
size (number of samples) negatively affects performance,
thereby confirming that drawing high-reward samples from
the replay buffer yields better results, compared to simply
drawing additional samples from the online policy. Similar
results can be observed in a relatively simpler setting, with
R0 = 10−2, as shown in Appendix A.1.

As shown in Appendix A.2, similar results can be observed
when mode discovery is plotted as a function of both the
size of the experience replay and the sample size of the
replay buffer.

4.2. Molecule synthesis

We carry out further analysis in a large-scale, a molecu-
lar synthesis environment, where the objective is to gen-
erate small molecules that have low binding affinity to a
pre-specified target. In this environment, the reward func-
tion is the binding affinity of a candidate molecule to the
target protein. The objective is to generate a diverse set of
molecules that exhibit high reward. The environment has ap-
proximately 1016 states, and the number of available actions
ranges from 100 to 2000, depending on the agent’s current
state. Inspired by the work of Bengio et al. and following
the framework proposed by Jin et al., we adopt a method for
molecule generation that utilizes a predefined vocabulary of
building blocks. The process involves constructing graphs
through iterative addition. Each action corresponds to select-
ing a specific block to attach and determining the attachment
point. This construction process gives rise to a directed
acyclic graph (DAG), as multiple action sequences can lead
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Figure 2. Hypergrid domain - States vis-
ited vs. percentage of modes discovered
during training in a 4-dimensional hyper-
grid (max = 16 modes) with H = 8 for all
three training regimes, with R0 = 10−3

(mean and standard error over 5 runs).
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Figure 3. Hypergrid domain - States vis-
ited vs. percentage of modes discovered
during training in a 4-dimensional hyper-
grid (max = 16 modes) with H = 8 for
varying sample sizes for the R-PRS re-
play technique, with R0 = 10−3 (mean
and standard error over 5 runs).
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Figure 4. Hypergrid domain - States vis-
ited vs. percentage of modes discovered
during training in a 4-dimensional hyper-
grid (max = 16 modes) with H = 8 for
different batch sizes, with R0 = 10−3

(mean and standard error over 5 runs).

to the same resulting graph. The details about the reward
signal in this environment are shown in Appendix A.3.

We tested the impact of the replay buffer on this large-scale
environment by experimenting with all three training tech-
niques introduced earlier. Figure 5 shows the number of
modes discovered by each of these techniques. We identify
all the candidates with rewards of more than 0.9 as modes.
It is clear that R-PRS performs significantly better in terms
of mode discovery. The average reward during the training
is also better for R-PRS, as shown in Appendix A.3. Concur-
rent work by Shen et al. proposes prioritized replay training
with high-reward samples as well. The authors claim that
the performance of GFlowNets improved with the inclusion
of experience replay. Figure 5 shows an interesting insight:
the performance of the model without the replay buffer and
the performance of the model with random sampling from
the replay buffer is almost identical. This further ascertains
that increasing the access to promising trajectories during
training is what improves the performance, not just the use
of the replay buffer.

5. Discussion
In this paper, we conducted an empirical study of the effect
of using an experience replay buffer containing past expe-
rience in GFlowNets training. Our empirical results show
that using a prioritized replay which encourages the use
of high-reward trajectories provides a performance boost
in terms of mode discoverability as well as training speed.
This, in turn, led to an increase in the diversity of candidate
solutions without compromising on training convergence.
We have also shown that increasing the size of the experi-
ence replay and of the replay buffer sample during training
has a positive impact on the performance.

While our experimentation was limited to a couple of vari-
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Figure 5. Molecule synthesis environment - Number of iterations
vs. the number of modes discovered with a reward at least r > 0.9
during training for R-PRS, Random sampling from replay buffer,
and no replay buffer (mean and standard error over 3 runs).

ants of experience replay, additional variations may further
improve learning performance. Investigating other methods
for improving learning speed and stability from the RL liter-
ature may also bring GFlowNet performance improvements.
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A. Appendix
We use Python 3.9 (Van Rossum & Drake, 2009) to run all our experiments. We implemented all the ML models using
PyTorch (Paszke et al., 2019). Following Bengio et al., we use the AutoDock Vina library (Trott & Olson, 2010) for binding
energy estimation and the RDKit library (Landrum, 2006) for chemistry routines. We use NVidia RTX 8000 GPUs with
4 CPU cores in a cluster to train on the molecule synthesis environment and single-core CPUs to train on the Hypergrid
environment.

A.1. Additional Hypergrid Experiments
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Figure 6. Hypergrid domain - States vis-
ited vs. percentage of modes discovered
during training in a 4-dimensional hyper-
grid (max = 16 modes) with H = 8 for all
three proposed training techniques, with
R0 = 10−2 (mean and standard error
over 5 runs).
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Figure 7. Hypergrid domain - States vis-
ited vs. percentage of modes discovered
during training in a 4-dimensional hy-
pergrid (max = 16 modes) with H = 8
for varying sample sizes for R-PRS, with
R0 = 10−2 (mean and standard error
over 5 runs).
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Figure 8. Hypergrid domain - States vis-
ited vs. percentage of modes discovered
during training in a 4-dimensional hyper-
grid (max = 16 modes) with H = 8 for
different batch sizes of only samples from
the online policy (no replay buffer) and
R-PRS, with R0 = 10−2 (mean and stan-
dard error over 5 runs).

In the Experiments section of the main paper, we presented the influence of different experience replay variants on the
GFlowNets training process, in the difficult setting of R0 = 10−3. We also conducted similar tests on a relatively easier
setting, R0 = 10−2. The results are as shown in Figure 6. As before, R-PRS performs better in terms of mode discovery,
followed by the replay buffer with random sampling. We also plot the number of modes discovered as a function of the
replay buffer sample size and of the batch size, in Figure 7 and Figure 8 respectively.

Figure 9 illustrates the impact of the replay buffer on the training efficiency of GFlowNets. The empirical L1 error, measured
between the true reward distribution and the learned reward distribution, is used as the evaluation metric. R-PRS converges
faster than the other techniques towards the true reward distribution.
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Figure 9. Hypergrid domain - Empirical L1 error vs States visited during training in a 4-dimensional hypergrid with H = 8 and
R0 = 10−3 (mean over five independent runs).
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Figure 10. Hypergrid domain - States vis-
ited vs. percentage of modes discovered
during training in a 4-dimensional hyper-
grid (max = 16 modes) with H = 8 as a
function of increasing the experience re-
play sample size and the replay buffer
size for R-PRS replay technique, with
R0 = 10−2 (mean and standard error
over 5 runs).
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Figure 11. Hypergrid domain - States vis-
ited vs. percentage of modes discovered
during training in a 4-dimensional hyper-
grid (max = 16 modes) with H = 8 as a
function of increasing the experience re-
play sample size and the replay buffer
size for R-PRS replay technique, with
R0 = 10−3 (mean and standard error
over 5 runs).
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Figure 12. Hypergrid domain - States vis-
ited vs. percentage of modes discovered
during training in a 6-dimensional hyper-
grid (max = 64 modes) with H = 8 as a
function of increasing replay sample size
and experience replay size for R-PRS re-
play technique, with R0 = 10−2 (mean
and standard error over 5 runs).

A.2. Mode discovery as a function of replay buffer size and batch size

So far, we presented the mode discovery as a function of increasing replay buffer sample size. In this section, we show the
mode discovery as a function of both increasing replay buffer sample size and increasing experience replay size. Figure 10
and Figure 11 shows the outcome of increasing both the entities in easy and difficult setting respectively. We vary our
experiment with the replay buffer sample size from 2 to 16 samples per batch and the experience replay size from 10 to
4000 samples in a 4 dimensional hypergrid.

We conduct a similar experiment in a 6 dimensional hypergrid and the results are as shown in Figure 12. From the results
obtained in both 4D and 6D settings, it can be observed that as the buffer size and sample size increase, there is an
acceleration in mode discovery.

A.3. Additional Molecule Synthesis
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Figure 13. Molecule synthesis environment - Number of iterations vs. average reward during training for different training techniques
namely R-PRS, Random sampling from replay buffer, and no replay buffer (mean and standard error over 3 runs).

The reward signal in this environment is determined by the binding energy required to attach a molecule to a target protein.
However, computing binding energies is computationally expensive. To address this challenge, Bengio et al. developed
a pretrained proxy model that predicts the binding energy for a given molecule and target protein. The proxy employs a
message-passing neural network (MPNN) (Gilmer et al., 2017) parameterized over the atom graph. To train the proxy model,
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a semi-curated semi-random dataset of 300k molecules is utilized.

We use the pretrained proxy developed by Bengio et al. for binding energy estimation. We use the subtrajectory balance
objective introduced by Madan et al. for our GFlowNet training in the molecule environment. We use the training
architecture, hyperparameters, and dataset as provided by Bengio et al. for our experiments. The binding energy scores,
i.e., the reward for the candidates are computed with AutoDock (Trott & Olson, 2010). All the experiments are run on 3
independent seeds and the mean and standard error are reported in the plots. To test the hyperparameter robustness, we
tried various batch sizes 64, 128, and 256, varied the replay buffer sampling size from 64 to 128, and tested different replay
buffer sizes, 100, 1000, and 5000 samples. We trained all the models for 10000 iterations.

As shown in the Experiment section of the main paper, we conducted experiments with all three training techniques proposed.
Figure 13 displays the average reward for each technique throughout the number of iterations. It is evident that R-PRS
outperforms the other two techniques.


