Conditional Meta-Reinforcement Learning with State
Representation

Yuxuan Sun Laura Toni Yiannis Andreopoulos
Department of Electronic and Electrical Engineering
University College London
{yuxuan.sun.22,1.toni,i.andreopoulos}@ucl.ac.uk

Abstract

Reinforcement Learning (RL) has achieved remarkable success in diverse areas, yet
its sample inefficiency—requiring extensive interactions to develop optimal poli-
cies—remains a challenge. Meta-Reinforcement Learning (Meta-RL) addresses
this by leveraging previously acquired knowledge, often integrating contextual
information into learning. This study delves into conditional Meta-RL, investigat-
ing how context influences learning efficiency. We introduce a novel theoretical
framework for both unconditional and conditional Meta-RL scenarios, with a focus
on approximating the value function using state representations in environments
where the transition kernel is known. This framework lays the groundwork for
understanding the advantages of conditional Meta-RL over unconditional Meta-RL
approaches. Furthermore, we present a conditional Meta-RL algorithm that shown
to offer more than 50 percent increase in the average return than unconditional
setting in MiniGrid environments.

1 Introduction

Reinforcement learning has achieved unprecedented success in numerous fields [Mnih et al.,[2015]
Schulman et al. 2017]. However, it faces a major challenge in its typically low sample efficiency,
necessitating extensive datasets to reach optimal performance. To address this challenge, various
strategies, including Meta-Reinforcement Learning (Meta-RL) [Rakelly et all [2019] and state
representation learning, have been explored. The latter improves sample efficiency by combining
the learning of a low-dimensional state representation from high-dimensional observations with the
learning of the optimal policy [Wang et al., 2022].

Meta-RL leverages the insight that certain parameters are universally applicable across tasks, while
others require task-specific tuning. This approach, foundational to the Model-Agnostic Meta-Learning
(MAML) framework [Finn et al.,[2017]], divides learning into meta-training, where parameters are
learned from a variety of tasks, and meta-testing, where these parameters are fine-tuned for individual
tasks. Specifically in reinforcement learning, Meta-RL applies this concept to efficiently learn the
value function, enabling quick adaptation to new tasks with minimal additional training. When
the transition kernel is known, one method to address the problem is to learn a value function and
subsequently selecting the action which chooses the state that maximizes the estimated value function.
However, if the transition kernel is unknown, agents typically have two options: learning the transition
kernel itself or an action-value function. Since the theory underlying the two cases is similar, we
primarily focus on the first scenario where the transitional kernel is known [Konidaris et al., {201 1]].

Typical deep RL neural networks including DQN [Mnih et al., 2015]] learn value functions through
nonlinear functions in the hidden layer and the final layer is linearly mapping to a value function
prediction. Therefore, the final layer can be seen as a state representation (Figure|l]) [Le Lan et al.,
2022]]. As neural networks are commonly used in meta-RL [Liu et al.,[2021} Zintgraf et al.| 2021]],

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

State Representation Value

preprocess output
— o) ——>V

Figure 1: A deep RL architecture seen as a state representation ¢(z) and a value prediction V'(x).

we can assume that state representations are learned for tasks in meta-RL, and all the tasks share the
same state representations [[Cheng et al., 2022} |Chung et al., 2018]].

Utilizing identical state representations across all tasks proves beneficial primarily in scenarios where
tasks share a strong correlation [[Cheng et al.,|2022]. However, in real-world applications, tasks
often span a wide spectrum of diversity with merely superficial similarities. For example, consider
the development of a robotic vacuum cleaner: initial pretraining at the manufacturing site aims
to equip the device with the versatility to adapt seamlessly to various home environments. This
phase might involve classifying rooms by function—such as living rooms versus bedrooms—to tailor
cleaning strategies accordingly. A singular, shared state representation might fall short in capturing
the nuanced differences between these task categories, underscoring the challenge when tasks diverge
into distinct clusters each demanding a specialized low-dimensional representation. Consequently, it
becomes imperative to adopt a context-specific approach to representation learning. In our example,
this would mean developing different representations for different room types, thereby optimizing the
robotic cleaner’s performance across varying domestic environments.

Context-based methods are used in meta-RL to improve sample efficiency and reach higher asymptotic
performance [Rakelly et al., 2019} [Zhang et al.,|2021} [Yuan and Lul [2022]. In particular, it can solve
the aforementioned problem, if we assume each task comes with a context indicating which cluster it
comes from. However, the literature lacks a detailed theoretical analysis of how context influences
the generalization of state representations within Meta-RL frameworks. Our study addresses this gap
by rigorously examining the role of context in Meta-RL, providing theoretical evidence to support
the efficacy of context utilization. We demonstrate that context-aware learning significantly bolsters
the adaptability and efficiency of Meta-RL models, enabling them to navigate complex environments
with nuanced differences more effectively.

In this paper, we focus on understanding the power of contextual information in meta-RL, introduc-
ing the concept of ’conditional meta-RL.” This approach is characterized by its use of contextual
information to inform the learning process, which we refer to as conditional’ due to the conditioning
on specific task-related information. Conversely, approaches that do not leverage such contextual
information are termed "unconditional meta-RL.” Several works provided a general framework for
conditional meta-supervised learning and provided a bound for the transfer risk [Denevi et al.l 2020,
2022]. In this work, we extend this concept to the field of reinforcement learning.

2 Related work

Meta-reinforcement learning: Meta-RL integrates the principles of reinforcement learning with the
concepts of meta-learning. Meta-RL algorithms leverage the common structure shared among tasks
in the meta-training phase, effectively spreading the learning cost across these tasks. This allows for
quick adaptation to novel tasks in the meta-testing phase, requiring only minimal samples [[Finn et al.|
2017, Xu et al., [2018]].

These approaches typically necessitate on-policy meta-training and have been demonstrated to be
sample inefficient in practice. To address these limitations, several algorithms have been introduced,
focusing on meta-learning a policy with off-policy data and contextual information [Rakelly et al.,
2019, [Fu et al.| 2021} Zhang et al.| 2021]]. Here, the contextual information is learned through a few
interactions with the environment in the beginning. The contextual information should contain some
latent information of the distribution of the tasks.Therefore, context-based meta-RL is expected to
perform better on the generalization of the tasks.

Representation learning in RL: In reinforcement learning, state representations are utilized to man-
age large problem spaces effectively. These representations not only can be used in the approximation
of the value function, but also aid in generalizing to states that are newly encountered [Le Lan et al.|
2022]. These representations can be learned explicitly in linear approximations of the value functions
[Konidaris et al.l 2011}, Mahadevan and Maggioni, [2007, |Chung et al., 2018} [Lyle et al., 2021}, [Part|
et al., [2008]], as well as implicitly in deep RL network architectures such as DQN [Mnih et al.| [2015]],
where the final layer can be viewed as a state representation.

Learning a shared representation among a class of reinforcement learning tasks has been proven to
be a powerful approach in multi-task setting [[Cheng et al., |2022]. The shared state representation
should acquire universal and expressive features across the environments, without being tailored to
any specific policy [Jianye et al., [2022]. This approach has been demonstrated to be advantageous
compared to solving each task independently. We want to take advantage of the linear representation
model and apply it to meta-RL setting.

3 Background

We consider a Markov decision process M = (S, A, R, P,) with finite state space S, action space
A, state transition kernel P, reward function R : & X A — [—Rpax, Ruax|, and the discount factor
[Sutton and Bartol [2018]]. For simplicity, we assume that S = {1,...,S}.

A stationary policy 7 is a mapping from states to distributions over actions. For any policy 7, V™ (s)
is the value function. Let P, be the S x S transition matrix with Py (s, s") the transition probability
from state s to s’ under policy 7. Then following the vector notation [Mahadevan and Maggionil,
2007, we have

o)
VT = (1P e = (I = vPr) 1 ()
t=0
Here 7, € R is the expected reward. We consider the following approximation of the value function
with a linear combination of features [Parr et al., 2008|:

Vpols) = o(s) w)

where ¢ : S — R%is a function from states to d-dimensional representations and w € R? are weights.
Without loss of generality, we assume that ||¢|| < 1 and ||w|| < Whayx. This can be expressed in a
matrix form

Vo = Pw 3)

where ® € R5*4 ig the feature matrix.

We define the Meta-RL setting as involving a family of tasks M; = (S, A, R;, P;,~) drawn from
a distribution p(M). Assume that all the tasks share the same state space and action space, but
have different reward functions and state transition probabilities [[Dorfman et al.l 2021} |Liu et al.,
2021}, Mitchell et al., [2021} Zintgraf et al.,|2019]]. We are interested in the problem of value function
approximation in (3] for each task, assuming that the transition probability matrix is known for each
task but the reward needs to be learned. Namely, we are interested in learning a common feature
matrix ® for all tasks, while w is the weight learnt for each single task. In the following sections, we
will formalize the mathematical framework employed to define the problem of conditional Meta-RL.

3.1 Within-task objective

We consider the batch Monte Carlo policy evaluation setting, where we are provided with a group of
training samples Z = {(s1,41),- -, (Sn,yn)} € (S x R)". Here s; is a random initial state and y;
is a realization of the random return [Bellemare et al.,|[2017]] defined by

G™(s) = Zthgg, S0 = 8, ap ~ m(-|s¢). 4)
t=0

Suppose the initial state follows a distribution v. Then for a single task we want to minimize the
expected squared error of a linear approximation Vg .,

Rpm(w) = R(Vy) = Ey~sci’fy(s)(V¢,w(8) —y)? = Ey~scil(s)(¢(S)Tw - y)Q- (5)

In real-world applications, given samples Z = {(s1,y1), ..., (Sn,yn)} € (S x R)", we minimize
the regularized empirical risk function [Kolter and Ng, 2009, |Petrik et al., [2010]

n

Rzalw) =+ 3" (6(s0) 0 ~)

i=1

2 A
+ 5wl (©)

where we have also added a regularizing term parameterized by A, with A assuming values either 0 or
1. When A = 1, Rz 1 (w) represents the regularized empirical risk function. Since we can change
the bound W, for w, we can actually control the amount of regularization applied to the model.
Therefore, we assume A = 1 for simplicity. When A = 0, we get the empirical risk function Rz o(w).
Equipped with the above notation, the learning algorithm A(¢,-) : U3 ;(S x R)" — R< is defined
as follows

A(¢p,Z) = argmin Rz 1 (w). 7

weRd

3.2 Unconditional meta-RL

The goal of unconditional meta-RL is to find the optimal policy for each inner task M. This object
can be expressed as minimizing the transfer risk

where F is the function space of ¢.

Standard meta-RL methods usually aim at finding the policy that maximizes the expected returns
[Beck et al., 2023]]. In this work, since we assume that the transition kernel is known and random
returns are generated, we use a different objective. As we will show in Section [5] in real-world
scenarios where the transitional kernel is unknown, we can set a target vg,, -(s¢) for value function
and update it iteratively. Essentially, this means that instead of using y; in equation (6), we will use
Gord(St.is c)Tw as an approximation of y; and update ¢ and w accordingly.

3.3 Conditional meta-RL

We assume that for all the tasks M, there is an additional side information ¢ € C. In this case, we
consider a joint distribution of the environment and the side information p(M, ¢). The concept of side
information is broad, including descriptive context about the mission of a task [Chevalier-Boisvert
et al., 2023 or the previous collected experiences [Rakelly et al.,|2019]|. Utilize the idea of contextual
MDP [Amani et al.,|2022], the feature function can be written as ¢(s, ¢) where c is the context. We
call this setting conditional meta-RL since the learning process for each task is conditioned on the
contextual information. In conditional meta-RL, the aim is to solve the problem

¢(SHSI€1]__, gp(¢a C)a gp(¢7c) = E(Mi,ci)wp(M,C)EZwMiRMi (A(¢(S,CZ)7Z)) (9)

where F' is the space of feature functions whose input contains the side information. Note that
the unconditional meta-RL setting above can be viewed as restricting the side information to be a
constant across all the clusters. In the following, we will show that the conditional setting achieves a
lower transfer risk than unconditional setting.

4 The advantage of conditional meta-RL

To measure how well the conditional feature function setting approximates the true value function
and assess the advantage of conditional meta-RL, we analyze the generalization properties of ¢(s, c).
To achieve this, we compare the conditional transfer risk £,(¢, C) with the optimal minimum risk

& = Eppiry Bm(wnm) wap = argmrilnRM(w). (10)
weR

In this Section, we will first prove a bound between the conditional transfer risk and the optimal
minimum risk. Then, we compare the conditional transfer risk with its unconditional counterpart.

Now we want to measure the effectiveness of our conditional feature function ¢(s, ¢) approximation.
This is done by proving a bound on the difference between the conditional transfer risk &,(¢, C) and
the optimal minimum risk €. The proof is provided in Appendix.

Theorem 1. Let (ei)f:1 C R¥ be the standard basis and N £ E,.., [e;el]. We use @, to represent
the feature matrix when context information exists. We assume further that ®.®] is diagonal, then

2 2
£4(6.0) ~ & SEewyc) [= Tr(@00) M(@) + 1 (Wass + 72) Tr(@ 8T V(o)

2(1
11

where N (¢) = Eppmie)N and M (¢) = Epgoprje) N1

In conditional meta-RL, the aim is to minimize &,(¢,C) in (9). From Theorem we know that the
feature function ¢(s, ¢) that minimizes the upper bound in (TI)) is a potential optimal function for the
conditional meta-RL problem. The upper bound in contains the traces of both ®7 N®, and its
inverse. In the next proposition, we will find a feature function matrix ¢, minimize the upper bound
and provide a bound for the according excess risk.

Proposition 1. (Best conditioning function in hindsight) The minimizer of the bound in (TT)) in set
F' is the feature function ¢, (s, ¢) that satisfies the condition

Vi Raas N(©)V2(N(0) M ()N (0)})* N ()2

d. 07 = 12
¢ 4(Rmax + V[/vmax(1 - ’7)) (12)
The according excess risk satisfies
4R, R 1
£ C)—& < —F (Waax P NE ey Tr(M(c)N(c))2. 13
(0. C) 5 < s (Waas + T By Tr(M(AN(C)! (13)

Note that here we do not assume full ranks for N (c¢) and M (c), therefore, there can be many solutions
®, € R¥*4 with different d. However, if we assume full ranks for both N(c) and M (c), we get

1

— V1 Riax 3 134

e = 21/ (Rmax+ Waax (1—7)) (N M(N(e)2)
From Proposition [I] we know that the states with a smaller conditional expectation in the initial
distribution, will have a feature vector with a larger norm. Besides, since M (c), N(c) and N (c)!/?
are diagonal, and all of them have ranks equal to the number of states have non-zero expectations
in the initial state distribution v, ®.®1 has the same rank according to (T2). Because rank(®.) =
rank(®.®T) = d < S, we know that the dimension of the feature space d should be equal to the
number of states that has non-zero expectations in the initial state distribution v. In other words, for
the best conditioning feature matrix @, the dimension of the feature space d equals the number of
states that actually appears in the initial distribution v.

4.1 Conditional vs unconditional meta-RL

When applying Proposition [I| within the unconditional set F, by assuming the context ¢ remains
constant across clusters, we obtain

4R, R
Ep(dp) — € < =" X (Waax + —)T (Eptprty N X Epgpa NHY2 (14
p(0p) — & < T —) (+1_7) T(Eptpr) MepM)NT) (14)
Intuitively, the unconditional bound in is always greater than conditional bound in (13), since
the latter selects minimum over a larger set. If we look at bounds we get in and (T4), we can
see that the difference lies between Ecp(c) [Eatpmie) N X Entopme) NT] and Epoprn N X

Epfepan NV t. Basically, this means that in unconditional settings, the initial state distribution v is
assumed to be constant across the tasks, while in conditional settings, a context c indicates different
initial state distributions for different tasks. This conditional expectation (conditional on the context)
of the matrices N and NT cause the difference. Thus, when the initial distribution of states varies
significantly across clusters, the disparity between the conditional and unconditional bounds will be
substantial. Below we use an illustrative example to demonstrate the difference between conditional
and unconditional setting.

Algorithm 1: Meta Training

Input: Learning rate n > 0.
Output: Value function vy, (s) and policy 7o c.
Init: Initialize policies 7y, and value functions vy (s).
while r < 7" do
Sample tasks and side information (M, ¢;) ~ p(M,C).
Sample dataset Z; = {(st,i, Yt,i)i=1} ~ M with an equal probability for each initial state and
current policy 7, c,» and Ys,i = Veyy.c(5t,:) = Pota(5t,i, ¢)* w with ¢oa the feature function computed
from the previous iteration.
Update ¢(s, ¢), w and 6 according to the PPO object loss functions LLEC (¢) and Lf;,f;yo (0).
t=t+1
end

Example Suppose there are two clusters of environments, each containing two states, s; and s3. In
the first cluster, the initial state distribution is s; = 0.9, so = 0.1, whereas in the second cluster, the
initial state distribution is s; = 0.1, so = 0.9. Suppose the environments from the first cluster are
selected with a probability of 0.9.

In this scenario, under the unconditional setting, the expected environment matrix, denoted as
Eropay N, is calculated as diag(0.82, 0.18), and the pseudoinverse of this matrix, Eqpar N,
is diag(2,9.11). This computation leads to an unconditional excess risk bound that is 1.64 times
greater than the conditional excess risk bound.

Besides, the maximum of the true value function Fj“ and the maximum of the norm of the weights

Whax can also affect the bound. The larger they are, the higher the bound. Moreover, the bound is
inversely proportional to the square root of the number of samples n. Therefore, the more samples
we have, the tighter the bound becomes.

5 Conditional meta-RL algorithm

In practice, the objective is to identify the optimal policy for each task within a given task family.
Consequently, the random returns in (6) are for these optimal policies. However, direct access to such
returns is typically unavailable. To circumvent this limitation, we utilize the value function estimated
from the previous iteration as a surrogate for the actual returns. This estimated value function is then
iteratively updated to refine our approximation of the optimal policy’s returns. Essentially, this means
that instead of using y; in (€), we will use ¢oia (¢4, c)Tw as an approximation of y; and update ¢
and w accordingly.

In this section, we provide an actor-critic style algorithm based on PPO algorithm [Schulman et al.|
2017]], detailed in Algorithms|l|and [2|for the meta-training and meta-testing phases, respectively.
This approach is adaptable to any deep Reinforcement Learning (RL) network architecture, where the
final layer is conceptualized as a dynamic state representation from which the output value function
is linearly derived [Le Lan et al.,|2022]]. Within this architecture, actor neural networks, denoted as
., are employed to approximate the policy. Simultaneously, critic neural networks, expressed as
vg.c(s) = &(s, c)Tw, serve to approximate the value function. Here, ¢(s, c) represents the learned
state representation at the final layer.

In a special case, if the critic neural network is structured to include only one hidden layer with a
linear activation function, the state representation can be formulated as ¢(s, ¢) = M (s), where
1 (s) signifies the initial features (or pre-processed features) of the state. For example, in the MiniGrid
environments, the state s is the observation image of dimension 7 X 7 x 3 and 9 is a convolutional
neural network outputs the embedding of the image.

Note that the value function loss and the policy loss of the PPO algorithm are
2 2
LERE (8) = Ex [(vo.0(50) = voune(s0))?] + nllwl?,

LEPO(6) = —E; |min (7<) 4 cin(p1 1404,)] .
pollcy() tl:mln (77901d,c(at3t) tvCIP(pv © +6) !

Algorithm 2: Meta Test

Input: Trained value function vy (s) and policy 7g.c.
Sample task and side information (Myest, crest) from p(M, C).
Collect episodes by interacting with M., with an equal probability for each initial state and the policy 7, c.
while n < N do
Sample an initial state from the learned task Mes:.
Collect an episode in M s¢ with the learned policy 7o ..
Update ¢(s, c¢), w and 0 according to the PPO object loss function.
n=n+l
end
Evaluate the policy 7g,c.

\ 10

20 f
2 — Im 2 s — Im
w \ —— uncond. w —— uncond.
710 \ —— cond o —— cond
(o] - v 6 \\ .
© \ S = ~_ -
0 e
4 ——
0 100 200 300 400 0 100 200 300 400
Training Tasks Training Tasks
(a) One cluster (b) Two clusters

o
%)

§5 — T §4 \ — I
Y uncond. w uncond.
@ A cond. @3 cond.
@ 3 ; ~_ < N
e — 2 ———— .
2
0 100 200 300 400 0 100 200 300 400
Training Tasks Training Tasks
(c) Uneven clusters (d) Extremely uneven clusters

Figure 2: Synthetic experiment results: test errors of independent task learning, unconditional meta-
RL and conditional meta-RL with regard to the number of tasks in different environments. The result
is averaged over 10 seeds.

Here vy (s¢) is the predicted value of state s; under the value function vs .(s) = ¢(s, c)Tw. We
modify the value function loss by adding penalty on the weight to satisfy our theory setting. 7y .(at|s:)
is the probability of taking action a; in state s; under policy mg .. The policy parameters are denoted
as 6, with 6,4 representing the old policy parameters used for comparison in the update. A, stands
for the advantage estimate at time ¢, A, = &, + (YN)6s41 + ...+ (AN T 1501, where d; is the
temporal difference (TD) error at time ¢, calculated as: 0; = 7, +YVg ¢ (S141) —Vg,c(S¢). Additionally,
p is the importance sampling ratio, while € is a small constant introduced to clip the ratio, ensuring
stability in the optimization process. The clip function clip(p, 1—¢, 14+¢) = max(min(p, 1+€),1—e¢)
to make sure the ratio is clipped in the interval [1 — €, 1 + €].

6 Experiments

In this section, we compare our conditional meta-RL algorithm Algorithm [I]to the unconditional
setting. We address the following question: Does the conditional meta-RL algorithm improves
predictive performance comparing to the unconditional counterpart? We will begin by employing
a synthetic example to demonstrate our idea. Following that, we will utilize a well-established
benchmark in the field of reinforcement learning to further illustrate our approach.

6.1 Synthetic example

In this example, we assume that the tasks come from different clusters, tasks in the same cluster
share the same transition kernel. We consider S = 100 states and use three types of transition
structures: a star graph,a 2D torus and a chain graph. The topology of the graph structures can be

[[

3 3

©0.75 SO.G —— uncond

ﬁ ﬁ —— cond.

$0.50 So0.4

g g I |
0025 002 N A
& & ”/\/"\NAMW'\A/W
Zo.00 Co0 ¥ ¢ i

g g

< 0 15 20 25 30 < 0 5 10 15 20 25 30

10
10™4 Frames 1074 Frames

(a) Four Rooms Success Rate (b) Go To Door Success Rate

Figure 3: MiniGrid experiment results: Figures show success rates of the environments. The
results are averaged over 5 seeds.

found in Appendix. For each experiment, we take 560 tasks. For each task, we assume the initial
state distribution v to be uniform and the reward vector r, has one element equals 10 and all other
elements O, plus a standard Gaussian error. Then we sample a dataset of n; pairs of (s;, y;) where
a Monte Carlo rollout is performed to generate the returns (yi)?;"f and Ny 1s the number of the
samples. We set v = 0.9 and use a random policy to select the actions with equal probabilities. The
context is a scalar indicating which cluster the task comes from. In other words, context c is given in
the following experiments and different feature functions ¢(s, ¢) are trained for for different clusters.

In the training, we use ¢(s, ¢) = M.1(s) for simplicity and the radial basis for the initial feature.

In the first experiment, we just take one cluster of tasks with a star graph transition structure. We
set the number of features to be 1 and n;,; = 20. The result is shown in Figure@ We can see that
conditional meta-RL learns faster than unconditional counterpart and they both performs better than
independent task learning.

In the second experiment, we take two clusters of MDPs with their transition structures to be 2D
torus and chain graphs. We set the number of features to be 10 and n;,; = 200. We assume that the
MDPs come evenly from the two clusters. The result is shown in Figure 2b] The conditional setting
outperforms unconditional setting as we expected.

In the third experiment, we want to explore the impact of the distribution of the tasks on the result.
We use the same setting as the second experiment, except that the MDPs come from the chain graph
cluster with probability 0.9 and the 2D torus with probability 0.1. The result is shown in Figure 2c|
The result pattern of this experiment does not change a lot compare to the second experiment, but the
test error values decrease significantly.

In the fourth experiment, we want to test further the relationship between the distribution of the tasks
and the test error. We use the same setting as the second experiment, and the MDPs come from the
chain graph cluster with probability 0.99 and the 2d torus with probability 0.01. The result is shown
in Figure [2d]

In our experimental analysis of the last three experiments, we focused on evaluating the performance
of conditional and unconditional Meta-RL approaches across three distinct distributions of tasks
within two clusters of environments: even, uneven, and extremely uneven distributions. A consistent
observation across these experiments was the reduction in test error for the conditional approach as
compared to the unconditional approach, with a notable decrease of approximately 14 percent in all
three scenarios. This finding suggests that the variability in task distribution—ranging from even to
extremely uneven—exerts a minimal influence on the efficacy of the conditional Meta-RL framework
in enhancing test performance.

Notably, the magnitude of test error exhibited a declining trend in relation to the unevenness of task
distribution, with error rates diminishing from 4 in the even distribution scenario to 2.25 and 1.73
in the uneven and extremely uneven scenarios, respectively. This trend can likely be attributed to
the inherent complexity of learning within 2D torus environments. As these environments present
significant learning challenges, reducing their prevalence in the task distribution appears to directly
contribute to lower overall test errors.

6.2 MiniGrid

MiniGrid is commonly used as benchmark for contextual MDPs. It includes a wide range of grid-
based environments with varying levels of complexity, all of which are designed to be simple to
understand and work with. Within these environments, the agent is represented by a triangular figure,
with a set of discrete actions. The objectives range from navigating through various maze maps to
engaging with a variety of items, including doors, keys, and containers [[Chevalier-Boisvert et al.|
2023|]. Here we test our theory on two MiniGrid environments: Four rooms and Go to door. More
details are shown in Appendix.

Four rooms. In this environment, there are four interconnected rooms, linked by openings in the
walls. The agent is placed randomly and the goal is a green square placed in one of the rooms. To
receive a reward, the agent needs to reach the designated green goal square. We assume two clusters
of tasks, one with the goal square on the top left corner (1, 1), another with the goal square on the
bottom right corner (17, 17). The context here is the position of the goal square.

Go to door. In this setting, there is a room featuring four doors, one on each wall. The four doors
are in four different colors, and one of them is the goal door. Upon arriving at and performing the
’done’ action next to the goal door, the agent receives a positive reward. We assume four clusters of
the tasks depending on the color of the goal doors: red, green, blue and purple. The context here is
the color of the goal door.

Table 1: MiniGrid experimental results

Experiment Unconditional Mean Conditional Mean

Four Rooms 0.038+0.059 0.105+0.114
Go To Door 0.124+0.122 0.196+0.126

The mean of the return of the conditional and unconditional meta-RL algorithms are shown in
Table [T} The results demonstrate a substantial superiority of the conditional mean reward over the
unconditional mean reward, providing empirical support for our theoretical framework in MiniGrid
environments.

The environments of Four Rooms and Go To Door are notably challenging due to their sparse reward
structure, where rewards are only given upon achieving the goal, without any intermediate rewards.
Meta-RL with sparse rewards is extremely difficult as it amounts to solving many sparse reward
tasks from scratch [Rakelly et al.| |2019].The variation in mean rewards across these environments, as
observed in our experimental results, highlights this challenge. Following previous meta-RL work on
environments with sparse rewards [Zhang et al.| 2021} |Zintgraf et al.l 2021]], we also include figures
showing the success rate of the two environments in Figuers The conditional approach not
only demonstrates a higher average success rate but also provides a practical demonstration of its
capacity to navigate the complexities inherent in sparse reward environments more effectively than
the unconditional approach.

7 Conclusions

This study emphasizes the significant advantages of incorporating contextual information into meta-
reinforcement learning (meta-RL). While contextual information is commonly used in meta-RL,
there’s been a notable lack of statistical analysis on its impact on state representation learning. Our
research fills this gap by proposing a theoretical framework to assess the effectiveness of learning
state representations in conditional meta-RL. We found that conditional meta-RL, which utilizes
contextual information, outperforms traditional methods without such context. We’ve developed an
optimal state representation function to minimize transfer risk in meta-RL settings and introduced
a novel algorithm inspired by the PPO algorithm, demonstrating our theoretical insights through
synthetic and real-world tests. These experiments validate the importance of context in meta-RL and
show that conditional meta-RL yields better performance and efficiency. However, our algorithm only
investigates explicitly defined contexts. Future research could explore the potential of employing
encoders to generate context.

References

Sanae Amani, Lin Yang, and Ching-An Cheng. Provably efficient lifelong reinforcement learning
with linear representation. In The Eleventh International Conference on Learning Representations,
2022.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon
Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028, 2023.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pages 449—458. PMLR, 2017.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning
Research, 2:499-526, 2002.

Yuan Cheng, Songtao Feng, Jing Yang, Hong Zhang, and Yingbin Liang. Provable benefit of multitask
representation learning in reinforcement learning. arXiv preprint arXiv:2206.05900, 2022.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831,
2023.

Wesley Chung, Somyjit Nath, Ajin Joseph, and Martha White. Two-timescale networks for nonlinear
value function approximation. In International conference on learning representations, 2018.

Giulia Denevi, Massimiliano Pontil, and Carlo Ciliberto. The advantage of conditional meta-learning
for biased regularization and fine tuning. Advances in Neural Information Processing Systems, 33:
964-974, 2020.

Giulia Denevi, Massimiliano Pontil, and Carlo Ciliberto. Conditional meta-learning of linear
representations. Advances in Neural Information Processing Systems, 35:253-266, 2022.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning—identifiability
challenges and effective data collection strategies. Advances in Neural Information Processing
Systems, 34:4607-4618, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126-1135. PMLR, 2017.

Haotian Fu, Hongyao Tang, Jianye Hao, Chen Chen, Xidong Feng, Dong Li, and Wulong Liu.
Towards effective context for meta-reinforcement learning: an approach based on contrastive
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
7457-7465, 2021.

HAO lJianye, Pengyi Li, Hongyao Tang, Yan Zheng, Xian Fu, and Zhaopeng Meng. Erl-re@:
Efficient evolutionary reinforcement learning with shared state representation and individual policy
representation. In The Eleventh International Conference on Learning Representations, 2022.

J Zico Kolter and Andrew Y Ng. Regularization and feature selection in least-squares temporal
difference learning. In Proceedings of the 26th annual international conference on machine
learning, pages 521-528, 2009.

George Konidaris, Sarah Osentoski, and Philip Thomas. Value function approximation in rein-
forcement learning using the fourier basis. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 25, pages 380-385, 2011.

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G Bellemare. On
the generalization of representations in reinforcement learning. In International Conference on
Artificial Intelligence and Statistics, pages 4132-4157. PMLR, 2022.

Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling exploration and
exploitation for meta-reinforcement learning without sacrifices. In International conference on
machine learning, pages 6925-6935. PMLR, 2021.

10

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of auxiliary tasks
on representation dynamics. In International Conference on Artificial Intelligence and Statistics,
pages 1-9. PMLR, 2021.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework for learning
representation and control in markov decision processes. Journal of Machine Learning Research,
8(10), 2007.

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pages 7780-7791. PMLR, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L Littman.
An analysis of linear models, linear value-function approximation, and feature selection for
reinforcement learning. In Proceedings of the 25th international conference on Machine learning,
pages 752-759, 2008.

Marek Petrik, Gavin Taylor, Ron Parr, and Shlomo Zilberstein. Feature selection using regularization
in approximate linear programs for markov decision processes. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, pages 871-878,
2010.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pages 5331-5340. PMLR, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Represent to control partially observed
systems: Representation learning with provable sample efficiency. In The Eleventh International
Conference on Learning Representations, 2022.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning.
Advances in neural information processing systems, 31, 2018.

Haoqi Yuan and Zongqging Lu. Robust task representations for offline meta-reinforcement learning
via contrastive learning. In International Conference on Machine Learning, pages 25747-25759.
PMLR, 2022.

Jin Zhang, Jianhao Wang, Hao Hu, Tong Chen, Yingfeng Chen, Changjie Fan, and Chongjie Zhang.
Metacure: Meta reinforcement learning with empowerment-driven exploration. In International
Conference on Machine Learning, pages 12600-12610. PMLR, 2021.

Xingyu Zhou. Strong convexity, 2017. URL https://xingyuzhou.org/blog/notes/
strong-convexity.

Xingyu Zhou. On the fenchel duality between strong convexity and lipschitz continuous gradient.
arXiv preprint arXiv:1803.06573, 2018.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning.
arXiv preprint arXiv:1910.08348, 2019.

Luisa M Zintgraf, Leo Feng, Cong Lu, Maximilian Igl, Kristian Hartikainen, Katja Hofmann, and
Shimon Whiteson. Exploration in approximate hyper-state space for meta reinforcement learning.
In International Conference on Machine Learning, pages 12991-13001. PMLR, 2021.

11

https://xingyuzhou.org/blog/notes/strong-convexity
https://xingyuzhou.org/blog/notes/strong-convexity

A Generalization bound of the within-task algorithm

The following proposition provides a bound for the average difference between the expected risk
and the empirical risk. This proposition shows that the generalization error can be bounded by the
square of the sum of the maximum of the approximated value function and the maximum of the true

2
value function (Wpay + 1 Lo) and the expected square of the feature function of the initial state
B ||(s)]]>. We will 1ater use it in Theorem

Proposition 2. For a task M ~ p(M), fix a dataset Z = (s;,y;)"_; ~ M™. Forany ¢ € F, let
wy(Z) be the output in (7) over Z. Then the following generalization bound holds for w(Z):

B st (Rt 06(2)) ~ Rous(Z)] < & (Wase + 152) B 0

Proof. For any ¢ € {1,...,n},consider the dataset Z (1), a copy of the original dataset Z except
the i-th input (s;, y;) replaced by (s}, y;). now we will show the discrepancy between wg(Z) and
w¢(Z(i)).

Using Lemma 2 in [Zhou, 2018] (see also [Zhou, [2017])), we know that Rz ; (w) is 1-strongly convex,
therefore, we have

Ss(ZD) — wy(2) < Ry (we(Z9)) = R (wol2))

1 i 2 i
§||w¢(Z() —we(Z2)” < Ry 1 (we(Z)) = Ry 1 (we(Z2D))

Sum up the two inequalities, we get

lws(Z2D) = wa(Z)|° < Rya(ws(20)) - Ry 1 (wy(Z2)) (15)
+ Ry 1 (wy(2)) — Rz,1(wg(Z))
_ A;‘;B (16)
where
A =1(((s}), we(2)), y1) — 1({((s]), we (ZD)), 0f})
B =1((¢(s:), ws(Z")), y:) — 1({$(5:), we(Z)), yi)
1((6(s), w),y) = ((6(s), w) —y)°.

Note that the partial derivative

Ol({d(s), w),y) Pnax

o) = 2((9(s). 1) ~) < 2(Wae + T25)
This leads to the following
A< 2(W+ 72505, w(2) — w4(2)
2(W + 1250060 [106(2) = w0 (Z0)] (1)
B < 5 Waas + f_ 0l50),ws(Z9) = w0, (2)
2(Wass + 722|055 [106(2) = wo (2]

Combine these with (T6)), we get
Rmax

lws(Z29) —we(Z)]| < (Wmax+) llo(s D+ lle(s)l)

12

Then bring this into (T7), we get

Ruax 2 /
T 7) [e(sHIINle(s)I + lld(si))ll)

L(@(57), ws (2)), y) =19 (87), we(ZD)), 1) < — (Whax +

— 3

Now, take expectation with regard to Z and (s}, y;
2002], we get

Eznmn By () 1(0(1), we(2)), 47) — U{@(57), ws(Z7)), 9i)] = Ezepan [Raa(wp(Z)) = Rz,0(ws(2))]

/N
s~V

and apply lemma 7 in [Bousquet and Elisseeff],

Therefore, we get

Ruax
(Wmax + 7)]EZNM"Ey;NG""(s;)

Eznmn [Bm(we(Z)) = Rzo0(ws(Z))] < T SIS + e (si))ll)

8i,84~V
Ruax .2 2
1 ia};) EZNM"E&,,S,’L-NVQHQS(S;I) |

Ruax 2 2
72) B llo(s))

IN

(Wmax +

Sl 3|1+ Ik

IN

(Wmax +

O

Lemma. (lemma 7 in [Bousquet and Elisseeff, 2002]]) For any symmetric learning algorithm A, we
have Vi € {1,...,m}:

Ez[R(A, Z) = Remp(A, Z)] =Bz, [l(Az, %) = U(Az0), 2)]

B Excess risk with conditional feature function

Theorem Let (ei)le C R¥ be the standard basis and N = E;., [e;el]. We use @, to represent
the feature matrix when context information exists. We assume further that ®.®] is diagonal, then

we have

£)(6,C) — & <Eopio)|— = Tr((.07) M(c))

2(1=7)
2
o Wome + 125) Tr(@ TN ()] 18)

Proof. For any (M, ¢) ~ p(M,C) , we do the following decomposition:
Ep(8,C) — & = Em,opmpm,0) [Baie + Cate]-

Here,

BM,C =Ezmn [RM (A(¢(sv C)v Z)) - RZ,O(A(¢(sa C)v Z))}
Crme = Ezipmn[Rz,0(A(S(s,¢), Z)) = Rm(wa)]

From Proposition we know that Bue < 2 (Woax + {%ja;)zESNVH¢(S7C)H2 =
8 Ruas |2 T

E(Wmax + E) TT(@C N¢c)

As for Cpq,c, we know that

13

Cm,e < EZNMn[Héi]Rg Rz1(w) — Rp(wam)]
SEzomn[Rzi(wa) — Raa(wa)]
= 2wl
=3 WA

By the methods of least squares and the property of pseudoinverse, we have wp; =
(®TN®,) TNV Therefore,

1
Came < 5 [lwml?
1 T T&T 2
1
- 5Tr((<I>CTN<I>C)T@ZNVVTNQC(QCTNQC)T)

- %Tr(Ncbc(cbecbc)T((be@c)Ttl)f NVVT)

Since both NVVT and N<I>C(<I>CTN<I>C)Jr (<I>CTN<I>C)T<IJCT are positive semidefinite, we have

1 1l
Cate < STr(NO(OIND,) (@ ND,) @I NVVT)

1
< 5Tr(J\fcpc(cI)ZNcpc)T(<1>ZJ\I<1>C)T<I>CT)Tr(vaT)

- %TT(NCIJC(CPZNCDC)T(<I>CTN<I>C)T<I>Z)TT(VTNV)

_Bux @7 Na,)
o TNy

Assume A = N2 ®,, since ®.®] and N are diagonal, one can check that AT = @i(NT)%. Then
because (ATA)T = AT(AT)T, we get ((I>CTN(I>C)T = @iNT(CI)DT. Therefore,

2
Cuie < Q(R'“%Tr(cbiN*(@DT)

1-7)
2
_ Q(fma};)QTr((@i)TéiNT)
_ %Fﬂ};fﬂ((@cq{)wf).

Then we have

* ernax T\t T 8 Rmax 2 T
Ep(0,0)=E) SEmompmo oz Tr((2e®:) NT) + = (Waax +) Tr(®:.2. N
2(1 —7) n I—vy
2 2
ax T 8 Rmax
RmiQTT(((Dc(I)Z) EMNp(M\c)NT) + g(Wmax +) Tr((bcq)zEMNp(Mlc)N)]

:ECN
p<c>[2<1_7) 11—~

O

Note We want to justify the assumption that ®.®] is diagonal. The feature matrix is ®, € R%*9
where S is the number of states and d is the dimension of the representations. Ideally, we want to

14

find d as small as possible to reduce the computational cost. A simple way of achieving this is to
choose linearly independent representations for the d states that appear in the initial distribution,
with other representations being vectors with all elements equal to 0 (zero vector). Therefore, we
have ®.®7 € R*¥ as a diagonal matrix with only the first d elements not equal to 0. Therefore,
o, 0! = .27 (®.07)1 is a diagonal matrix.

Proposition[I} (Best conditioning function in hindsight)

The minimizer of the bound in (TI) in set 7 is the feature function ¢, (s, c) that satisfies the condition

1

VBN (€) (N ()M (0N (c))" N(0)1/2

o, 07 = 19
4(R'max + Wmax(l - ’7)) ()
The according excess risk
4R'max Rmax 1
&< — —)E Tr(M(c)N(c))=. 2
£1(0p,C) € < ™ (Waa + 12 By Tr(M (0N (0) 20)

Proof. The proof follows directly from Proposition 10 in [Denevi et al., 2022] and the fact that ®.®7
is positive semidefinite and N (c) and M (c) are diagonal matrices. O

C Graphical structures in synthetic example

In this section, we introduce the topological structures of the three graph structures we mentioned
in the synthetic experiment. We first give a detailed textual description of the graphs, followed by
showing the topological structures in Figure [}

A star graph is a type of graph in which all vertices are connected to a single central vertex, forming
a shape reminiscent of a star. This central vertex is known as the center of the star, and the edges
connecting the center to the other vertices are known as the spokes of the star. The central state is
directly connected to S — 1 other states, making star graphs a special case of a complete bipartite
graph Ky g_1.

The 2D Torus topology is characterized by a two-dimensional rectangular lattice, arranged in v/S
rows and v/S columns, culminating in a total of S states. This layout ensures that each node is directly
connected to its four immediate neighbors, allowing for communication in four principal directions:
+z, —z, +y, and —y. A distinctive feature of this topology is the connection of corresponding nodes
on opposite edges, significantly enhancing the network’s communication capabilities.

A chain graph is a type of graph that consists of a sequence of vertices connected by edges, where
each state is directly connected to two other states, except for the two pendant states at endpoints.
Chain graphs represent linear structures, where the vertices can be thought of as links in a chain.

D MiniGrid environment

In this work, we use two environments in MiniGrid: Four Rooms and Go To Door. Specifically, we
use "MiniGrid-FourRooms-v0’ and ’MiniGrid-GoToDoor-8x8-v0’.

In all tasks, an upper limit of ¢,,x steps is set to motivate the agent to complete the task efficiently.
If the agent successfully completes the task in ¢ steps, it receives areward r = 1 — O.Qﬁ in both
environments. The episode is terminated either when the agent obtains the final reward or when ¢«
is surpassed. Observations are presented as a 7 X 7 x 3 grid encoding. The first two dimensions
(7 x T) represent the spatial layout, while the third dimension encodes attributes like object type (e.g.,
wall, door), color (e.g., red, green), and status (e.g., door open, closed, locked). The agent can take
seven actions: turn left, turn right, move forward, pick up an object, drop an object, toggle and done.
Not all actions are applicable in every task.

E Hyperparameters

In this section, we list all the hyperparameters we used in learning the MiniGird environments.

15

(a) Star graph

(b) 2D torus

() ()
N A

HEaHD

o
o
o
£

oD
I Lar ALl

(c) Chain graph

Figure 4: Three types of graphs used in the synthetic experiment.

(a) Four Rooms (b) Go To Door

Figure 5: MiniGrid environments

Table 2: List of hyperparameters

Parameter Value
Number of frames per iteration 3000
Number of meta-training iteration 100
Number of parallel actors 12
Batch size 256
Discount ~y 0.99
Learning rate 0.001
GAE A\ 0.95
Value loss coefficient 0.5
Clipping factor PPO 0.2
Maximum norm of gradient 0.5
Penalty parameter 7 le-10

16

	Introduction
	Related work
	Background
	Within-task objective
	Unconditional meta-RL
	Conditional meta-RL

	The advantage of conditional meta-RL
	Conditional vs unconditional meta-RL

	Conditional meta-RL algorithm
	Experiments
	Synthetic example
	MiniGrid

	Conclusions
	Generalization bound of the within-task algorithm
	Excess risk with conditional feature function
	Graphical structures in synthetic example
	MiniGrid environment
	Hyperparameters

