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Abstract

Recent studies have shown that Graph Neural Networks (GNNs) are vulnerable to1

adversarial attacks. Previous attacks and defenses on GNNs face common prob-2

lems like scalability or generality, which hinder the progress of this domain. By3

rethinking limitations in previous works, we propose Graph Robustness Benchmark4

(GRB), the first benchmark that aims to provide scalable, general, unified, and5

reproducible evaluation on adversarial robustness of GNNs. GRB includes (1)6

scalable datasets processed by a novel splitting scheme; (2) diverse set of baseline7

methods covering GNNs, attacks, and defenses; (3) unified evaluation pipeline that8

permits a fair comparison; (4) modular coding framework that facilitates imple-9

mentation of various methods and ensures reproducibility; (5) leaderboards that10

track the progress of the field. Besides, we propose two strong baseline defenses11

that significantly outperform previous ones. With extensive experiments, we can12

fairly compare all methods and investigate their pros and cons. GRB is open-source13

and maintains all datasets, codes, leaderboards at https://cogdl.ai/grb/home,14

which will be continuously updated to promote future research in this field.15

1 Introduction16

Graph Neural Networks (GNNs), starting from Graph Convolutional Network (GCN) [1], to a17

large group of more recent variants [2, 3, 4], have shown promising performance in graph machine18

learning (ML) tasks in various domains including recommender systems [5], academic network19

analysis [2], knowledge graphs [6] and molecular graph learning [7]. However, neural networks20

are known to be vulnerable to adversarial examples [8], and recent works [9, 10, 11, 12] show that21

GNNs are no exception. Typically, GNNs take an attributed graph as the input, and use the message22

passing scheme [13] to extract relational information. Attackers may modify the graph structure by23

adding/removing edges [14, 15], or modify the features of nodes with tiny perturbations [10, 11, 12],24

or even inject malicious nodes [16, 17] to conduct adversarial attacks on GNNs. These attacks can25

significantly destroy the performance of GNNs with only small changes to the graph [10].26

Threatened by adversarial attacks, researchers have begun to take robustness into consideration while27

designing new GNNs. New architectures like RobustGCN [18], GRAND [19], ProGNN [20] are28

designated to improve robustness against adversarial attacks. Other methods, like GNN-SVD [21] or29

GNNGuard [22], try to alleviate the impact of attacks through preprocessing based on the intrinsic30

properties of the graph. Despite previous works, there are still several common limitations from both31

the attacker side and the defender side:32
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Figure 1: Process of Graph Robustness Benchmark (GRB). It introduces a refined threat model
considering: Black-box: the attacker only has access to the attributed graph but not the target model;
Evasion: the attack happens during model inference; Inductive: the target model is trained in an
inductive setting (test nodes are unseen during training); Injection: the attacker is allowed to inject
new nodes without modifying existing nodes. All attacks and defenses are evaluated under unified
settings and the results are shown on GRB leaderboards.

1. Ill-defined threat model. Previous works attempt to imitate the threat model from other domains,33

like adversarial attacks in image classification, which is not actually suitable for graph structured34

data. For example, the definition of "unnoticeability" needs to be refined.35

2. Lack of fair comparison among various methods. Previous works use different settings in36

their experiments (datasets, data splitting, attack constraints, etc.), each introduces its own bias to37

the evaluation results, making it difficult to fairly compare the effectiveness of different methods.38

3. Lack of scalability and generality. Most of previous works only consider small-scale graphs39

(tens of thousands of nodes), which is far from the scale of real-world applications. Moreover, the40

assumption of attacking/defending only a single type of defense/attack lacks generality.41

Because of these limitations, so far, there is no benchmark on evaluating the adversarial robustness of42

GNNs, i.e. the robustness in the presence of adversarial attacks. Nevertheless, it is an important but43

challenging task, which requires avoiding pitfalls in previous works and proposing a better solution.44

Given that there already exist several benchmarks focusing on evaluating the performance of GNNs,45

like Open Graph Benchmark (OGB) [23] and GNN benchmarking framework [24], it is essential to46

construct a well-defined, general and scalable graph robustness benchmark.47

In this paper, we first revisit the adversarial robustness of GNNs in a principled way. Then, we48

propose a new benchmark, Graph Robustness Benchmark (GRB). The main goal of GRB is to provide49

a fair evaluation for adversarial attacks & defenses on GNNs under unified settings. As illustrated50

in Figure 1, GRB is designed to include the following features:51

1. Refined threat model. GRB provides a refined threat model and gives precise definitions of52

attacker and defender’s capabilities. The framework clarifies the information and possible actions53

for both sides, resulting in a new challenging and realistic evaluation scenario.54

2. Elaborated datasets.1 GRB consists of five datasets with different scales. The datasets are under55

an innovative splitting scheme which helps to better evaluate the adversarial robustness of GNNs56

under different levels of difficulties.57

3. Unified evaluation pipeline. GRB provides a unified evaluation pipeline that calibrates the58

experiment settings, which helps to make fair comparisons for both attacks and defenses.59

4. Reproducible leaderboards.2 GRB offers leaderboards for each dataset as well as codes, trained60

models, attack results, and scripts that help to easily reproduce all results. The leaderboards61

are continuously updated and maintained to ensure reproducibility and to track the progress of62

adversarial robustness researches on GNNs.63

1https://cogdl.ai/grb/datasets
2https://cogdl.ai/grb/leaderboard
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5. Extendable coding framework.3 GRB has an extendable framework supporting all above64

features. GRB also contains implementations of existing methods and is based on a modular65

design that facilitates researchers to add new GNN models, attacks, or defenses conveniently.66

6. Abundant baseline methods. GRB currently has diverse set of baseline methods covering GNNs,67

attacks, and defenses. We also propose two general defense mechanisms that can significantly68

improve the robustness of GNNs and regard them as strong baselines. GRB will be continuously69

be elaborated with more methods as the research advances.70

Overall, GRB serves as a scalable, general, unified, and reproducible benchmark on adversarial71

robustness of GNNs. We believe that it can help researchers to investigate pros and cons of previous72

works, and provide insights for future research.73

2 Rethinking Adversarial Robustness in Graph ML74

2.1 General Definition75

In graph ML, adversarial robustness refers to the performance of graph ML models (e.g. GNNs)76

under potential adversarial attacks. Take node classification as an example, for an attributed graph77

G = (A,F) where A ∈ RN×N represents the adjacency matrix of N nodes and F ∈ RN×D the78

set of node features with D dimensions for every node. Define a graph modelM : G → Z where79

Z ∈ [0, 1]
N×L, that maps a graph G to probability vectors of all N nodes across L classes. The80

adversarial attack can be formulated as:81

max
G′
|M(G′) 6=M(G)| (1)

where G′ = (A′,F ′) is the graph modified by attackers. The attacker try to maximize the number of82

wrong predictions. Usually, there is an assumption that the attack should be unnoticeable [9]:83

dA(A′,A) ≤ ∆A and dF (F ′,F) ≤ ∆F (2)

where dA and dF are the functions that measure the changes between A′ and A, F ′ and F . These84

changes are limited by the constraints ∆A and ∆F . Although this kind of definition is frequently85

used in previous works, we discuss in the following parts that there are actually some pitfalls.86

2.2 Revisiting Adversarial Attacks on GNNs87

Table 1: Categorization of adversarial attacks on
GNNs. GRB supports the implementation of all
kinds of attacks. For GRB leaderboard, we mainly
consider the following case: Black-box, Evasion,
Inductive, Injection.

Attack Knowledge Objective Approach Training
Black. White. Poi. Eva. Mod. Inj. Trans. Ind.

DICE [14]
√ √ √ √

FGSM [9]
√ √ √ √ √

RND [9]
√ √ √ √

Nettack [9]
√ √ √ √ √

RL-S2V [25]
√ √ √ √ √

Metattack [10]
√ √ √ √

PGD-Topo [15]
√ √ √ √ √

AFGSM [16]
√ √ √ √

SPEIT [26]
√ √ √ √

TDGIA [17]
√ √ √ √

GRB Support
√ √ √ √ √ √ √ √

GRB Leaderboard
√ √ √ √

In the domain of security, it is essential to define88

a threat model, which determines the capabil-89

ity of the attackers. As shown in Table 1, we90

categorize adversarial attacks on GNNs into sev-91

eral types. Some of terms (Black-box / White-92

box) are inherited from adversarial attacks in93

image classification [27], others (Poisoning /94

Evasion [9], Modification / Injection [17], Trans-95

ductive / Inductive [2]) are specific for graph96

structured data and GNNs. Here, we give pre-97

cise definitions of each term:98

Attacker’s knowledge. Black-box: The attack-99

ers do NOT have access to the targeted model100

(including its architecture, parameters, defense101

mechanism, etc.). However, they have access to102

the graph data (structure, features, labels of training data, etc.). Besides, they are allowed to query103

the GNNs and get the outputs. White-box: The attackers have access to ALL information as the104

defender has. However, if the targeted model has random process, the runtime randomness should105

not be available for the attackers.106

Attacker’s objective. Poisoning: The attackers generate corrupted graph data and assume that the107

targeted model is (re)trained on these data to get a worse model. Evasion: The attackers generate108

corrupted graph data to affect the runtime performance of a trained model.109

Attacker’s approach. Modification: The attackers modify the original graph (the same one used by110

the defenders for training) by adding/removing edges or perturbing the value of features. Injection:111

3https://github.com/THUDM/grb
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The attackers do not modify the original graph but inject new malicious nodes to influence the nodes112

in the original graph.113

GNNs’ training approach. Transductive: The targeted model is trained with the entire graph114

containing all nodes (including training, validation, test nodes). Inductive: The targeted model is115

trained with the graph containing only the training nodes.116

As show in Table 1, previous works cover various combination of these categories. However, there117

are some common limitations: (1) Lack of scalability: most attacks only evaluate in very small118

graphs and are not scalable to large ones. (2) Lack of generality: most attacks only evaluate on basic119

GCNs, without showing effectiveness to other kinds of GNNs or in the presence of defenses. (3)120

Ill-defined threat model: the threat model in some works is actually ill-defined, especially for the121

poisoning attack under transductive training setting, which will be explained in the Section 2.4.122

2.3 Revisiting Defenses for GNNs123

The defenses for GNNs can mainly be categorized into two types: Preprocess-based and Model-based.124

In the case of an attributed graph, the defender can preprocess the adjacency matrix (e.g. GNN-125

SVD [21], GNN-Jaccard [28]) or the features of nodes (e.g. feature transformation [26]). Robustness126

can also be achieved through model enhancement, either by robust training scheme (e.g. adversarial127

training [29, 30]) or new model architectures (e.g. RobustGCN [18], GNNGuard [22]). Despite many128

attempts of defenses, they have some common limitations: (1) Lack of scalability: defenses are129

not scalable to large graphs due to time/memory complexity. (2) Lack of generality: defenses are130

proposed to defend only certain types of GNNs with ad-hoc designs, or are only effective against131

certain types of attacks. (3) Fragmented evaluation: there are many biases (choice of datasets,132

random splitting, various threat models, choice of attacks, different constraints, etc.) introduced in133

the evaluation process, making it hard to compare the effectiveness of different defenses.134

2.4 Rethinking the Notion of Unnoticeability135

Many of the previous adversarial attacks [9, 25, 10] consider the poisoning attack and develop the136

notion of unnoticeability, similar to Eq. 2. The initial idea is to imitate the same notion in image137

classification task: the differences of adversarial examples, compared with clean examples, should be138

tiny and unnoticeable, so that humans can still easily recognize the objects in images. That’s why139

lp-norm is a widely-used constraint, as it corresponds to the visual sense of humans.140

In the poisoning setting of graph modification attacks, the attackers assume that the graph is perturbed141

with corrupted nodes and edges, in a way that the perturbed graph is close to the original one.142

However, this assumption is controversial: If defenders have the original graph, they can simply train143

the model on that one; If defenders do not have the original graph (the general case for data poisoning144

where defenders can not tell whether the data are benign or not), then it does not make sense to145

keep unnoticeability. In this case, we only have G′ = (A′,F ′) but not G = (A,F) in Eq. 2, making146

it almost impossible to compare them. Previous works propose to compare the graph properties,147

like degree distribution [9], feature statistics [28] or topological properties [15]. However, all these148

comparisons need to be done in presence of the original graph. This is different from the case of149

images, where unnoticeability can be easily judged by humans even without ground-truth images.150

The attackers may perturb the graph structure or attributes within the scope of unnoticeability151

defined by themselves, while defenders have to depend on their own observations to discover. For152

example, Nettack [9] proposes to keep the degree distribution of modified graph similar to the original153

one. However, even if defenders notice that the degree distribution is different, it is still hard to154

identify specific malicious nodes or edges from the entire graph. On the contrary, defenses like155

GNNGuard [22] can use the dissimilarity between features to alleviate effects of perturbations. We156

argue that it is inadequate to simply adopt the notion from image classification, and to make two157

graphs “similar” in whatever way. Indeed, there is not an absolute definition, but it is recommended158

that: “Unnoticeability” shall be considered from the defenders’ view instead of the attackers’.159

2.5 Unifying Evaluation of Adversarial Robustness for both Attack and Defense160

As mentioned in the above sections, there are some common limitations in both attacks and defenses,161

making it hard to evaluate the adversarial robustness in graph ML. To tackle these problems, we162

propose a unified evaluation scenario in GRB for fair comparisons between attacks and defenses.163

As shown in Figure 1, to make it realistic, the scenario is Black-box, Inductive, Evasion, Injection164

(as defined in Section 2.2). Take the case of a citation-graph classification system for example. The165
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platform collects labeled data from previous papers and trains a GNN model. When a batch of new166

papers are submitted, it updates the graph and uses the trained model to predict labels for them.167

(1) Evasion: We assume that the GNNs are already trained in trusted data (e.g. authenticated users),168

which are untouched by the attackers but might have natural noises. Thus, attacks will only happen169

during the inference phase. (2) Inductive: We assume that the GNNs are used to classify unseen170

data (e.g. new users), i.e. validation or test data are unseen during training, which requires GNNs to171

generalize to out of distribution data. (3) Injection: We assume that the attackers can only inject new172

nodes but not modify the target nodes directly. Since it is usually hard to hack into users’ accounts and173

modify their profiles. However, it is easier to create fake accounts and connect them to existing users.174

(4) Black-box: Both the attacker and the defender have no knowledge about the applied methods each175

other uses. We further clarify attacker and defender’s capability in the following:176

1. For attackers: they have knowledge about the entire graph (including all nodes, edges and labels,177

excluding labels of the test nodes to attack), but do NOT have knowledge about the target model178

or the defense mechanism; they are allowed to inject a limited number of new nodes with limited179

edges, but are NOT allowed to modify the original graph; they are allowed to generate features of180

injected nodes as long as they remain unnoticeable by defenders (e.g. nodes with features that181

exceed the range can be easily detected); they are allowed to get the classification results from the182

target model through limited number of queries.183

2. For defenders: they have knowledge about the entire graph excluding the test nodes to be184

attacked (thus only the training and validation graph); they are allowed to use any method to185

increase adversarial robustness, but NOT having prior knowledge about what kind of attack is186

used or about which nodes in the test graph are injected nodes.187

Besides, it is reasonable that both sides can make assumptions even in Black-box scenario. For188

example, the attackers can assume that the GNN-based system uses GCNs, since it is one of the most189

popular GNNs. Also, it is not reasonable to assume that the defense mechanism can be completely190

held secretly, known as the Kerckhoffs’ principle [31]. If a defense wants to be general and universal,191

it should guarantee part of robustness even when attackers have some knowledge about it.192

Following the above assumptions, we are able to provide a unified evaluation scenario, in which a193

fair comparison of attacks and defenses could be done in a principled way. Moreover, unnoticeability194

becomes meaningful in this case because defenders can compare test data with train data, thus195

attackers need to pay attention to it. We believe that the scenario covers limitations in previous works196

and helps promote future research in this field. It is worth mentioning that this is not the only scenario,197

more well-defined scenarios may be introduced according to the progress of the field in the future.198

3 GRB: Graph Robustness Benchmark199

3.1 Overview of GRB200

Figure 2: GRB Implementation Framework.

GRB is proposed as a benchmark for evaluat-201

ing the adversarial robustness of GNNs. It en-202

ables fair and convenient evaluations for var-203

ious attacks and defenses, especially in the204

above-defined scenario. To this end, GRB in-205

cludes scalable datasets, unified evaluator, and206

up-to-date leaderboards to track the most recent207

progress of this domain. Furthermore, GRB has208

a modular coding framework based on popu-209

lar deep learning libraries (Figure 2), which is210

more than a benchmark. This design facilitates211

implementations of GNN models, attacks, and212

defenses, which help to ensure reproducibility213

and extendability for future works.214

Altogether, GRB serves as a scalable, general, unified, reproducible, and extendable benchmark215

on evaluating adversarial robustness of GNNs. In the following subsections, we introduce the216

implementation of GRB and design details as well as the motivation behind them.217
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3.2 GRB Framework218

GRB is mainly built on PyTorch [32], and also supports popular graph learning libraries like219

CogDL [33] and DGL [34]. It provides a modular coding framework, which allows users to con-220

veniently use the implemented methods, and to add new ones. It contains several modules that221

support the process introduced in Figure 1: (1) Dataset: loads GRB datasets and applies necessary222

preprocessing including splitting scheme and features normalization; it also allows users to customize223

their own datasets and make them compatible with GRB evaluation framework. (2) Model: imple-224

ments GNN models, which supports models built on pure Pytorch, CogDL or DGL by automatically225

transforming the inputs to the required formats. (3) Attack: builds adversarial attacks on GNNs, the226

process of attack is abstracted to different components. For example, graph injection attacks are227

decomposed to node injection and feature generation. (4) Defense: engages defense mechanism228

to GNN models, including preprocess-based and model-based defenses. (5) Evaluator: evaluates229

one/multiple methods under unified evaluation settings, i.e. same datasets, constraints and evaluation230

metrics. (6) Pipeline: unifies the entire process of evaluation: load datasets, train/load models, apply231

attacks/defenses, and finally get the robustness evaluation results; it also helps to easily reproduce232

the exact results on GRB leaderboards. Apart from these modules, there are also some others like233

Trainer for model training, Visualise for visualizing the attack process.234

This implementation framework allows GRB to have the following features: (1) Easy-to-use: GNN235

models or attacks can be easily built by only a few lines of codes (Figure 3). (2) Fair-to-compare: all236

methods can be fairly compared under unified settings. (3) Up-to-date: GRB maintains leaderboards237

for each dataset and continuously track the progress of this domain. (4) Guarantee-to-reproduce:238

unlike other benchmarks that just display the results, GRB attaches great importance to reproducibility.239

For reproducing results on leaderboards, all necessary components are available, including model240

weights, attack parameters, generated adversarial results, etc. Besides, GRB provides scripts that241

allow users to reproduce results by a single command line. For all future submissions to GRB, we242

insist that they should all respect the reproducibility rules detailed in Appendix A.4. All codes are243

available in https://github.com/THUDM/grb. where the implementation details and examples244

can be found. GRB also provides full documentation for each module and function.245

Figure 3: Code example of GRB. Left: Train GCNs on grb-cora dataset. Right: Apply TDGIA
attack on the trained model. GRB facilitates the use of the GNN models, attacks and defenses.

3.3 GRB Baseline Methods246

GRB currently has a number of implemented methods including GNN models, attacks, and defenses.247

GNN models: GRB includes 7 popular GNN models, GCN [1], GAT [3], GIN [4], APPNP [35],248

TAGCN [15], GraphSAGE [2], SGCN [36]. Note that these models are not originally designed to249

increase the robustness. Attacks: GRB adapt 5 baseline attacks to the proposed scenario: RND [9],250

FGSM [8], PGD [29], SPEIT [26], TDGIA [17]. All these methods are implemented as graph injection251

attacks and are scalable to large-scale graphs. Defenses: GRB adopts RobustGCN (R-GCN) [18],252

GNN-SVD [21] and GNNGuard [22]. We also find that techniques like layer normalization (LN) [37]253

and adversarial training (AT) [29], if properly used in the proposed scenario, can significantly increase254

the robustness of various GNN models and outperform current methods. The proposed LN is to apply255

LN on the input features and after each graph convolutional layer (except the last layer). The idea is256

to stabilize the dynamics of input and hidden states to alleviate the impact of adversarial perturbations.257
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The proposed AT is to apply injection attacks during training to make GNNs more robust. In each258

iteration, we apply FGSM with a few steps to attack the current model and repeat this until the loss259

converges. These two defenses are general and scalable, and the experiment results show that they260

outperform previous methods significantly. Thus, we include them in GRB as strong baselines for261

defenses. More details of these methods can be found in Appendix A.3.262

3.4 Datasets263

Table 2: Statistics of five datasets in GRB, which cover from small to large scale graphs.
Dataset Type Scale #Nodes #Edges #Features #Classes

grb-cora Academic networks Small 2,680 5,148 302 7
grb-citeseer Academic networks Small 3,191 4,172 768 6
grb-flickr Social networks Medium 89,250 449,878 500 7
grb-reddit Social networks Large 232,965 11,606,919 602 41
grb-aminer Academic networks Large 659,574 2,878,577 100 18

Scalability. GRB includes five datasets of different scales, grb-cora, grb-citeseer, grb-flickr, grb-264

reddit, grb-aminer. The original datasets are gathered from previous works [38, 39, 17] , and in GRB265

they are reprocessed. The fundamental statistics of these datasets are shown in Table 2. Besides266

small-scale datasets which are common in previous works, GRB also includes medium and large-scale267

datasets for hundreds of thousands of nodes and millions of edges. More details about how the268

datasets are generated can be found in Appendix A.1.269

Figure 4: GRB splitting scheme. Difficulties are
related to average degree of test nodes.

Figure 5: Effect of dataset difficulties on the per-
formance of adversarial attacks.

Splitting scheme. Random splits are not suitable for a fair comparison across methods, especially270

when it indeed affects the evaluation results of GNNs [40]. GRB introduces a new splitting scheme271

specially designed for evaluating adversarial robustness. The key idea is based on the assumption that272

nodes with lower degrees are easier to attack, as demonstrated in [17]. In principle, GNNs aggregate273

information from neighbor nodes to update a target node. If the target node has few neighbors, it274

is more likely to be influenced by adversarial perturbations, vice-versa. Thus, we construct test275

subsets with different average degrees. Firstly, we rank all nodes by their degrees. Secondly, we276

filter out 5% nodes with the lowest degrees (including isolated nodes that are too easy to attack)277

and 5% nodes with the highest degree (including nodes connected to hundreds of other nodes that278

are hardly influenced). Thirdly, we divide the rest nodes into three equal partitions without overlap,279

and randomly sample 10% nodes (without repetition) from each partition. Finally, we get three test280

subsets with different degree distributions (Figure 4). According to the average degrees, we define281

them as Easy/Medium/Hard/Full (’E/M/H/F’, ’F’ contains all test nodes). For the rest nodes, we282

divide them into train set (60%) and val set (10%), for training and validation respectively.283

Feature normalization. Initially, the features in each dataset have various ranges. To make them in284

the same scale (e.g. range [−1, 1]), we apply a standardization following by an arctan transformation:285

F = 2
πarctan(F−mean(F)

std(F) ). Finally, the statistics of datasets after splitting scheme and feature286

normalization can be found in Appendix A.1.287

4 Experiments288

4.1 Experimental Settings289

Methods. For baseline models, we include 7 popular GNN models, GCN [1], GAT [3], GIN [4],290

APPNP [35], TAGCN [15], GraphSAGE [2], SGCN [36]. For adversarial attacks, we adapt five291
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baselines to the proposed scenarios: RND [9], FGSM [8], PGD [29], SPEIT [26], TDGIA [17]. For292

robustness-enhancement defenses, we adopt RobustGCN (R-GCN) [18], GNN-SVD [21], GNN-293

Guard [22]. We also include two general methods, layer normalization (LN) [37] and adversarial294

training (AT) [29] to the proposed scenarios. All details of these methods and hyper-parameters can295

be found in Appendix A.3 A.4.296

Evaluation metrics. For attacks: (1) Avg.: Average accuracy for various defense models on the297

attack scenario. (2) Avg. 3-Max: Average accuracy for the 3 most robust models (maximum298

accuracy). (3) Weighted: Weighted accuracy across various attacked models, calculated by:sattw =299 ∑n
i=1 wisi, wi = 1/i2∑n

i=1(1/i
2) , si = (Sdefdescend)i where Sdefdescend is the set of defense scores in a300

descending order. The metric attaches more weight to the most robust defenses. For defenses: (1)301

Avg.: Average accuracy across various attacks. (2) Avg. 3-Min: Average accuracy across the 3 most302

effective attacks (minimum accuracy). (3) Weighted: Weighted accuracy across various attacks,303

calculated by:sdefw =
∑n
i=1 wisi, wi = 1/i2∑n

i=1(1/i
2) , si = (Sattascend)i where Sattascend is the set of304

attack scores in an ascending order. The metric attaches more weight to the most effective attacks.305

4.2 Experimental Results306

Figure 6: Ranking adversarial robustness of
GNNs (W/O Defense) for grb-aminer dataset.

Figure 7: Ranking adversarial robustness of
GNNs (W/ Defense) for grb-aminer dataset.

With GRB, we are able to conduct extensive experiments. We show an example of the GRB307

leaderboard, and the effect of two proposed defense baselines. More results for all datasets can be308

found in Appendix A.5 or in our website.309

Example of GRB leaderboard. Following the GRB process in Figure 1, we evaluate the performance310

of attacks vs. defense. Table 3 shows a example of leaderboard for grb-aminer dataset. The attacks311

are repeated 10 times to report the error bar. Both attacks and defenses are ranked by the weighted312

accuracy, where red and blue indicated the best results in each difficulty. We also compare the313

adversarial robustness of GNNs with or without defense (Figure 7 and 6). Clearly, the defense can314

help to significantly improve the robustness of GNNs.315

Effect of average degrees of test nodes. The new splitting scheme is designed to investigate the316

effect of average degree of test nodes on the attack performance. As shown in Figure 5, attacks317

tend to better decrease the accuracy for nodes with lower average degree (Easy), which confirms the318

assumption the adversarial robustness of GNNs is related to the degree of nodes.319

Effect of layer LN and AT. Figure 8 and 9 shows that the proposed LN and AT can generally increase320

the robustness of various types of GNNs. The detailed algorithms can be found in Appendix A.3.3.321

The leaderboards also show that GNNs defended by these two methods have SOTA adversarial322

robustness compared with previous works.323
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Table 3: GRB leaderboard (Top 5 Attacks vs. Top 10 Defenses) for grb-aminer dataset.
Attack

Defenses 1 2 3 4 5 6 7 8 9 10 Avg.
Accuracy

Avg. 3-Max
Accuracy

Weighted
AccuracyGAT+AT R-GCN+AT SGCN+LN R-GCN GCN+LN GATLN GIN+LN TAGCN+LN TAGCN+AT GAT

1 TDGIA

E 59.54_±0.05 56.83_±0.06 56.73_±0.06 56.12_±0.07 53.51_±0.21 43.93_±0.41 51.10_±0.12 54.63_±0.20 49.59_±0.50 42.40_±0.52 52.44_±0.17 57.70_±1.31 58.08_±0.04

M 68.39_±0.02 65.61_±0.02 66.11_±0.02 65.23_±0.03 66.78_±0.05 61.84_±1.20 64.49_±0.10 64.62_±0.02 67.27_±0.04 62.47_±1.01 65.28_±0.23 67.48_±0.68 67.69_±0.02

H 75.83_±0.02 72.35_±0.02 72.10_±0.00 71.94_±0.02 73.39_±0.02 75.22_±0.04 72.92_±0.02 68.94_±0.03 73.98_±0.01 75.03_±0.03 73.17_±0.01 75.36_±0.34 75.33_±0.01

F 67.69_±0.03 63.62_±0.32 62.20_±0.15 61.99_±0.22 60.38_±1.46 59.69_±1.57 59.59_±0.42 59.06_±1.75 57.24_±5.04 56.63_±6.75 60.81_±1.71 64.52_±2.32 65.74_±0.21

2 SPEIT

E 59.54_±0.07 56.80_±0.05 56.94_±0.10 55.64_±0.10 56.15_±0.06 56.13_±0.07 54.24_±0.09 56.61_±0.06 56.59_±0.08 57.36_±0.09 56.60_±0.04 57.95_±1.14 58.62_±0.05

M 68.37_±0.03 65.46_±0.03 66.20_±0.02 65.25_±0.05 66.75_±0.03 67.49_±0.06 65.05_±0.06 64.47_±0.04 66.95_±0.05 66.81_±0.04 66.28_±0.02 67.60_±0.59 67.86_±0.03

H 75.94_±0.04 72.27_±0.03 72.36_±0.03 71.86_±0.03 73.41_±0.01 75.34_±0.03 72.87_±0.03 68.88_±0.05 73.98_±0.02 73.83_±0.04 73.07_±0.01 75.08_±0.82 75.33_±0.02

F 68.04_±0.03 64.05_±0.04 64.84_±0.04 64.06_±0.04 65.51_±0.02 64.02_±0.04 63.11_±0.02 62.59_±0.04 63.77_±0.06 63.58_±0.06 64.36_±0.02 66.13_±1.38 66.89_±0.02

3 RND

E 59.56_±0.06 57.53_±0.06 57.41_±0.06 56.38_±0.11 57.76_±0.05 58.83_±0.10 54.41_±0.13 58.07_±0.12 58.14_±0.04 57.46_±0.10 57.55_±0.03 58.85_±0.57 59.09_±0.05

M 68.22_±0.04 65.86_±0.03 66.29_±0.03 65.34_±0.06 67.03_±0.03 68.62_±0.05 65.54_±0.06 64.98_±0.08 67.34_±0.04 67.71_±0.06 66.69_±0.02 68.18_±0.38 68.24_±0.03

H 75.75_±0.02 72.66_±0.02 72.42_±0.03 72.00_±0.03 73.52_±0.02 75.63_±0.03 73.36_±0.03 69.30_±0.06 74.04_±0.02 75.36_±0.03 73.40_±0.01 75.58_±0.17 75.39_±0.01

F 67.72_±0.04 64.98_±0.02 65.31_±0.04 64.45_±0.04 66.17_±0.02 67.54_±0.04 64.36_±0.06 64.33_±0.03 66.42_±0.03 66.23_±0.04 65.75_±0.02 67.23_±0.58 67.34_±0.03

4 PGD

E 59.70_±0.06 57.71_±0.05 57.73_±0.09 57.19_±0.07 57.60_±0.08 57.05_±0.17 54.69_±0.09 58.18_±0.07 58.27_±0.09 58.46_±0.11 57.66_±0.05 58.81_±0.64 59.14_±0.05

M 68.40_±0.05 66.12_±0.02 66.39_±0.04 65.67_±0.04 67.04_±0.03 68.24_±0.04 65.64_±0.08 65.17_±0.05 67.32_±0.03 67.85_±0.05 66.78_±0.02 68.16_±0.23 68.12_±0.03

H 75.83_±0.03 72.91_±0.02 72.47_±0.04 72.18_±0.05 73.52_±0.02 75.55_±0.05 73.58_±0.04 69.64_±0.05 73.89_±0.02 74.34_±0.04 73.39_±0.01 75.24_±0.65 75.36_±0.02

F 68.01_±0.02 65.41_±0.01 65.54_±0.03 65.05_±0.03 66.22_±0.02 66.49_±0.04 64.63_±0.04 64.82_±0.04 66.32_±0.02 66.14_±0.04 65.86_±0.01 66.94_±0.76 67.37_±0.02

5 FGSM

E 59.71_±0.05 57.69_±0.08 57.62_±0.06 57.16_±0.08 57.60_±0.06 56.97_±0.09 54.67_±0.08 58.20_±0.10 58.23_±0.06 58.46_±0.07 57.63_±0.05 58.81_±0.65 59.15_±0.04

M 68.37_±0.02 66.10_±0.03 66.38_±0.04 65.70_±0.05 67.03_±0.04 68.27_±0.04 65.61_±0.08 65.16_±0.05 67.30_±0.02 67.84_±0.07 66.78_±0.02 68.16_±0.23 68.11_±0.02

H 75.82_±0.02 72.92_±0.04 72.48_±0.03 72.18_±0.05 73.52_±0.02 75.55_±0.05 73.60_±0.04 69.64_±0.04 73.90_±0.01 74.34_±0.04 73.39_±0.01 75.23_±0.65 75.35_±0.02

F 68.00_±0.02 65.41_±0.02 65.54_±0.04 65.05_±0.04 66.22_±0.02 66.50_±0.06 64.65_±0.04 64.82_±0.03 66.34_±0.03 66.15_±0.06 65.87_±0.01 66.95_±0.75 67.37_±0.01

6 W/O Attack

E 59.67_±0.00 58.08_±0.00 60.22_±0.00 58.53_±0.00 58.14_±0.00 60.78_±0.00 56.83_±0.00 59.47_±0.00 59.62_±0.00 59.88_±0.00 59.12_±0.00 60.29_±0.37 60.42_±0.00

M 68.28_±0.00 66.14_±0.00 67.11_±0.00 66.35_±0.00 67.00_±0.00 68.98_±0.00 66.26_±0.00 65.41_±0.00 67.53_±0.00 68.41_±0.00 67.15_±0.00 68.56_±0.30 68.59_±0.00

H 75.85_±0.00 73.05_±0.00 72.69_±0.00 72.66_±0.00 73.46_±0.00 75.64_±0.00 73.69_±0.00 69.84_±0.00 74.10_±0.00 75.76_±0.00 73.67_±0.00 75.75_±0.09 75.52_±0.00

F 67.93_±0.00 65.76_±0.00 66.68_±0.00 65.85_±0.00 66.20_±0.00 68.47_±0.00 65.59_±0.00 64.91_±0.00 67.08_±0.00 68.02_±0.00 66.65_±0.00 68.14_±0.24 68.11_±0.00

Avg.
Accuracy

E 59.62_±0.02 57.44_±0.03 57.77_±0.03 56.84_±0.04 56.79_±0.04 55.62_±0.06 54.33_±0.04 57.53_±0.05 56.74_±0.09 55.67_±0.10 - - -
M 68.34_±0.01 65.88_±0.01 66.41_±0.01 65.59_±0.02 66.94_±0.02 67.24_±0.19 65.43_±0.03 64.97_±0.02 67.28_±0.01 66.85_±0.18 - - -
H 75.84_±0.01 72.69_±0.01 72.42_±0.01 72.14_±0.02 73.47_±0.01 75.49_±0.01 73.33_±0.02 69.38_±0.02 73.98_±0.00 74.78_±0.02 - - -
F 67.90_±0.01 64.87_±0.05 65.02_±0.03 64.41_±0.04 65.12_±0.25 65.45_±0.26 63.65_±0.07 63.42_±0.29 64.53_±0.84 64.46_±1.13 - - -

Avg. 3-Min
Accuracy

E 59.55_±0.03 57.05_±0.04 57.02_±0.03 56.05_±0.07 55.73_±0.07 52.33_±0.12 53.25_±0.07 56.43_±0.07 54.77_±0.16 52.41_±0.17 - - -
M 68.28_±0.01 65.64_±0.02 66.20_±0.01 65.28_±0.03 66.84_±0.02 65.85_±0.40 65.02_±0.04 64.69_±0.03 67.17_±0.02 65.66_±0.34 - - -
H 75.80_±0.02 72.42_±0.02 72.29_±0.01 71.93_±0.02 73.42_±0.01 75.36_±0.02 73.05_±0.02 69.04_±0.03 73.92_±0.01 74.17_±0.03 - - -
F 67.78_±0.02 64.22_±0.11 64.12_±0.06 63.50_±0.08 64.02_±0.49 63.39_±0.53 62.35_±0.14 61.99_±0.58 62.44_±1.69 62.11_±2.26 - - -

Weighted
Accuracy

E 59.53_±0.04 56.93_±0.04 56.94_±0.04 55.93_±0.08 54.63_±0.14 48.21_±0.27 52.23_±0.08 55.55_±0.14 52.18_±0.33 47.45_±0.35 - - -
M 68.25_±0.02 65.57_±0.02 66.17_±0.02 65.28_±0.02 66.79_±0.02 63.85_±0.80 64.77_±0.07 64.60_±0.03 67.06_±0.03 64.07_±0.68 - - -
H 75.78_±0.02 72.37_±0.02 72.20_±0.01 71.92_±0.03 73.41_±0.01 75.30_±0.02 72.98_±0.02 68.99_±0.04 73.91_±0.01 74.08_±0.03 - - -
F 67.73_±0.03 63.96_±0.21 63.19_±0.10 62.80_±0.15 62.18_±0.98 61.58_±1.05 61.00_±0.28 60.54_±1.18 59.82_±3.38 59.37_±4.53 - - -

Figure 8: Effect of the proposed layer normaliza-
tion (LN) on the adversarial robustness of GNNs.

Figure 9: Effect of the proposed adversarial train-
ing (AT) on the adversarial robustness of GNNs.

5 Conclusion324

To improve and facilitate the evaluation of adversarial robustness of GNNs, we rethink limitations in325

previous works and propose Graph Robustness Benchmark (GRB), a scalable, unified, reproducible326

and extendable benchmark. It has scalable datasets with special design and a unified evaluation327

pipeline for adversarial robustness. Its coding framework ensures the reproducibility and facilitates328

the implementation of future methods. We implement various methods and propose two defenses as329

strong baselines. We believe that GRB is helpful for promoting future research in this field.330

6 Broader Impact331

Positive impact. GRB provides a clear and general framework for robustness evaluation of both332

attacks and defenses. On one hand, it’ll help researchers to develop more robust GNNs against333

adversarial attacks. On the other hand, it’ll also help possible attackers to develop better attack334

methods to turn down defenses. In the case of adversarial attack and defense, the more public335

information of potential attack and defense methods, the easier the attackers can use public attack336

methods and the harder he can conduct secret attacks based on private methods. For defenders, the337

more information about potential attack methods they have, the more generalized robustness defense338

mechanism can be designed.339

Negative impact. As this benchmark will offer a lot of public information for both sides, it will also340

make public attack methods more widely-known and hence GNNs may become more vulnerable.341

Attackers can also use it to design destructive attacks that may cause damage to GNN-based systems.342

. GRB also has limitations. It only considers homogeneous graph rather then heterogeneous graph. It343

focuses on node classification task, while other tasks like link prediction and graph classification are344

also vulnerable to attacks. Since the domain of adversarial attacks and defenses develops rapidly, we345

will maintain update GRB continuously to track the progress and we highly welcome the community’s346

contribution to cover these issues in the future.347
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Checklist470

1. For all authors...471

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s472

contributions and scope? [Yes] We introduce in the abstract and introduction the idea and473

strengths of GRB, and we show in other parts including extensive experiments to confirm the474

contributions of the proposed benchmark.475

(b) Did you describe the limitations of your work? [Yes] We describe the limitations of GRB in476

Section 6.477

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss the478

potential negative societal impacts of GRB in Section 6.479

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?480

[Yes] We read and confirm that we read the ethics review guidelines.481

2. If you are including theoretical results...482

(a) Did you state the full set of assumptions of all theoretical results? [N/A] This work does not483

contain theoretical results.484

(b) Did you include complete proofs of all theoretical results? [N/A] This work does not contain485

theoretical results.486
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3. If you ran experiments (e.g. for benchmarks)...487

(a) Did you include the code, data, and instructions needed to reproduce the main exper-488

imental results (either in the supplemental material or as a URL)? [Yes] We include489

all codes, data and instructions for reproducibility, which can be found in out website490

https://cogdl.ai/grb/home and https://github.com/THUDM/grb.491

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were492

chosen)? [Yes] We detailed all the training details in Section 4 as well as in Appendix A.4.493

(c) Did you report error bars (e.g., with respect to the random seed after running experiments494

multiple times)? [Yes] We repeat experiments ten times and report the average and standard495

deviation. We also report error bars in figures in Section 4.496

(d) Did you include the total amount of compute and the type of resources used (e.g., type of497

GPUs, internal cluster, or cloud provider)? [Yes] We report the type of GPU in Appendix A.4.498

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...499

(a) If your work uses existing assets, did you cite the creators? [Yes] We reprocess existing500

datasets and cite the creators in Section 4.501

(b) Did you mention the license of the assets? [Yes] We mention the MIT license used for GRB502

codes and datasets in Appendix A.1.503

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] We504

include the GRB datasets and codes in our website.505

(d) Did you discuss whether and how consent was obtained from people whose data you’re506

using/curating? [Yes] The datasets are inherited from previous works.507

(e) Did you discuss whether the data you are using/curating contains personally identifiable508

information or offensive content? [Yes] The data are processed thus the identifiable information509

is lost and can not be recovered.510

5. If you used crowdsourcing or conducted research with human subjects...511

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?512

[N/A] Not applicable.513

(b) Did you describe any potential participant risks, with links to Institutional Review Board514

(IRB) approvals, if applicable? [N/A] Not applicable.515

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on516

participant compensation? [N/A] Not applicable.517
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