
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPSCO: A SPECULATIVE SAMPLING APPROACH TO
NEURAL COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

An open challenge in neural combinatorial optimization (CO), such as using rein-
forcement learning (RL) and diffusion models (DMs), is the speed–quality trade-
off: sequential RL decoders generalize well but tend to settle for suboptimal tours,
while DMs generate high-quality full solutions at the cost of long training and
slow iterative sampling. We present SpSCO, a new framework inspired by spec-
ulative sampling (SpS) for large language models (LLMs) inference. Resembling
SpS in LLMs, a light-weight draft model (analogous to the sequential RL decoder
in SpSCO) collaborates with a high-capacity target model (analogous to a DM in
SpSCO) to achieve fast, robust, and high-quality inference – the target model is
triggered only when there is a “cognitive divergence” between the draft and target
models or internal uncertainty of the draft model. This SpS strategy allows Sp-
SCO to achieve high solution quality while reducing the computational overhead
from DMs. Notably, SpSCO is model-agnostic and can be plug-and-play across
various RL and DM backbones. It also shows strong robustness: even with under-
trained, suboptimal RL and diffusion backbones, SpSCO achieves state-of-the-art
performance on diverse CO instances across various scales while attaining faster
inference time on large-scale instances.

1 INTRODUCTION

Combinatorial optimization (CO) problems like the Traveling Salesman Problem (TSP) are a cor-
nerstone of computational and operations research, which aim to find an optimal solution from expo-
nentially growing combinations of candidates (Garey & Johnson, 1979; Papadimitriou & Steiglitz,
1982). While traditional exact solvers like Concorde (Applegate et al., 2006) provide optimal solu-
tions, the exponential complexity of CO problems makes them impractical for large-scale instances.
This has spurred the design of heuristic methods and, more recently, learning-based approaches.

Neural solvers have emerged as a promising paradigm, learning heuristics directly from data. The
state-of-the-art (SOTA) methods broadly fall into two categories, each with a distinct trade-off. Rein-
forcement learning (RL) methods (Bello et al., 2016; Kool et al., 2019a) construct solutions sequen-
tially in an autoregressive fashion. They are fast and exhibit strong generalization, but their greedy,
step-by-step nature often results in suboptimal solutions, as early mistakes cannot be corrected. To
mitigate this limitation, some works augment these RL frameworks with search procedures like
Monte Carlo Tree Search (MCTS), but this comes at the cost of substantially increased inference
cost (Fu et al., 2021b; Wang et al., 2021). Diffusion models (DMs) (Sohl-Dickstein et al., 2015;
Graikos et al., 2022) emerge as the new SOTA neural CO solvers, which learn the global structure
of the solution space and generate the entire solution from random noises during inference. While
they produce exceptionally high-quality solutions, the iterative denoising process results in a steep
computational overhead during inference.

This inherent speed-quality dilemma motivates our work. Our underlying research question is: can
we synergistically combine the best of both worlds—the speed of RL models and the quality of
DMs—and create a hybrid solver that is both fast and highly accurate?

We introduce SpSCO (pronounced as “SPESS-koh“, see Figure 1), a fast, robust, high-quality, and
model-agnostic inference framework for neural CO problems that is inspired by the idea of specula-
tive sampling (SpS) (Chen et al., 2023a; Leviathan et al., 2023; Li et al., 2024; Xu et al., 2024) for
large language models (LLMs). SpSCO adaptively couples a sequential RL decoder (analogous to a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

light-weight draft model in LLMs SpS) with a conditional DM (analogous to a high-capacity target
model in LLMs SpS). The core of our approach is an a priori trigger mechanism that intelligently
decides when to invoke the powerful but expensive DM. At each step of the RL decoding process,
this trigger monitors for two states, which we quantify using two complementary signals: (1) the
RL policy’s high internal uncertainty, measured by its entropy, and (2) the “cognitive divergence”
between the RL policy and a global prior derived from the DM, measured by KL divergence.

Only when a critical juncture is detected—high RL uncertainty or significant cognitive diver-
gence—is the DM activated. Upon activation, it performs two tasks: it corrects the immediate
next step for the RL model and generates a set of complete, high-quality candidate solutions based
on the RL partial one. A final selection stage then chooses the best tour from the RL-DM hybrid so-
lution and all DM proposals. This strategic allocation of computational resources allows SpSCO to
harness the DM’s strengths precisely when they are most needed, avoiding its overhead in decisions.

Our experiments demonstrate the efficacy and robustness of SpSCO. Even when equipped with
under-trained, suboptimal RL and diffusion backbones, SpSCO achieves a state-of-the-art optimal-
ity gap of 0.02% with an inference time of approximately 1 second per instance on the standard
TSP-100 benchmark. On the larger TSP-500 (TSP-1000) problem, it attains a 3.56% (4.58%) gap
equipped with under-trained RL and DM components, outperforming most learning-based baselines
in quality while being substantially faster than other diffusion models. These results underscore our
central thesis: a principled, divergence-driven coordination of heterogeneous models can achieve
top-tier performance and efficiency during test time, offering a more computationally effective path
forward than simply scaling up models or relying on exhaustive search. Our code is included in the
supplementary material for reproducibility and will be released upon paper acceptance.

2 RELATED WORK

RL Solvers. RL solvers frame CO problems as a sequential decision-making process. The seminal
work of (Bello et al., 2016) applied a Pointer Network (Vinyals et al., 2015) with policy gradient
methods to construct solutions step-by-step. This was advanced by Kool et al. (2019a) with the
Transformer architecture that became a foundational blueprint for many subsequent models like
POMO (Kwon et al., 2020), which introduced techniques to leverage multiple optima, and Sym-
NCO (Kim et al., 2022), which exploited solution symmetries. NAR4TSP (Xiao et al., 2024) pro-
posed a non-autoregressive RL algorithm, but with lower solution quality than the autoregressive
versions. Later studies used RL to learn a generalized policy for certain COPs in graphs (Bengio
et al., 2020; Chen et al., 2021; Feng et al., 2025) or proposed more advanced learning paradigms to
enhance solution quality, such as searching in a continuous latent space (Chalumeau et al., 2023),
optimizing policies based on preferences between solutions (Pan et al., 2025), and framing problems
within game-theoretic contexts (Li et al., 2025). Some RL algorithms like Invit (Fang et al., 2024)
and UDC (Zheng et al., 2024) are designed for large-scale COPs. While these models are compu-
tationally efficient and serve as strong baselines, their myopic, autoregressive construction process
poses a fundamental limitation, often trapping them in local optima. SpSCO uses an RL model as
its fast, “draft model”, but crucially seeks to mitigate the limitation with a global-aware component.

Heatmap and Diffusion Models for CO. To overcome the sequential limitations of RL solvers,
another line of research has focused on non-autoregressive methods that generate a solution in a
single shot, often by producing a “heatmap” of edge or node probabilities (Li et al., 2018; Fu et al.,
2021a). Joshi et al. (2019) used Graph Convolutional Networks (GCNs) to predict edge inclusion
probabilities for TSP. More recently, diffusion models, with their remarkable success in generative
tasks, have been adapted for CO. Graikos et al. (2022) mapped TSP instances to images to be solved
by a standard image diffusion model. A more direct approach, DIFUSCO (Sun & Yang, 2023),
introduced a graph-based diffusion framework that operates on the problem’s native graph structure,
casting it as a discrete vector generation task. This paradigm has been explored for TSP (Athaide
et al., 2023) and extended to other routing problems like VRP (Chen et al., 2023b), while related
score-based generative models have been proposed for a broader class of CO problems (Weinberg
& Welling, 2021). These models excel at capturing the global structure of optimal solutions, leading
to state-of-the-art quality. However, their reliance on a slow, multi-step iterative sampling process
makes them computationally intensive. Our work incorporates a diffusion model as a costly, “target
model”, but mitigates its high inference cost through a sparse and adaptive invocation strategy.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARY

SpSCO is built upon two distinct neural solver paradigms: a sequential RL solver and a generative
Diffusion Model. We briefly outline the standard inference process for each. The training procedure
and details on the two solvers are added in the appendix A.

3.1 INFERENCE WITH RL SOLVERS

An RL solver decomposes the node (or edge, etc. in the CO problem) selection into a sequence and
sequentially chooses one based on the trained policy network πθ. Given the current state in the state
space, i.e. sk ∈ S, the policy πθ outputs a probability distribution πθ(·|sk) over the action space A.
During the inference process, the policy network is queried to determine the next action at each step
k until the solution is completed, e.g., when a Hamilton loop is found in a TSP. In a standard greedy
decoding setting, the action a with the highest probability in πθ(·|sk) is chosen:

ak = arg max
a∈Ak

πθ(a|sk). (1)

This greedy decoding generation of solutions is computationally fast, as it requires only N forward
passes of the policy network and argmax computation, in which N is the length of a solution.
To improve the quality or diversity of solutions, different decoding types like sampling and beam
search are proposed (Kool et al., 2019b), which introduce more computation burden and increase
the solving time. Therefore, SpSCO adopts the greedy action selection in its RL decoding strategy.

3.2 INFERENCE WITH CONDITIONAL DIFFUSION MODELS

In contrast, a diffusion model is a non-autoregressive, generative model that learns to produce a
complete solution holistically. For discrete problems like TSP, where a solution can be represented
by a binary adjacency matrix x ∈ {0, 1}N×N , the model uses a discrete diffusion process. It consists
of a denoising network, Dϕ, trained to reverse a noising process that gradually corrupts the solution
by flipping its binary entries. Notably, this process can be conditioned on prior information, such as
a given prefix of a tour in a TSP, to steer the generation.

Inference (sampling) starts with a matrix of pure random noise (e.g., a random binary matrix), xT ,
and iteratively refines it over T total steps to produce a clean solution, x0. At each denoising step t
(different from the time step k in the episode for RL), the denoising network Dϕ predicts the original
clean solution x̂0 based on the current noisy matrix xt and a conditioning prefix c. This prediction
is then used to sample a slightly less noisy matrix xt−1. The reverse step is generally formulated as:

xt−1 ∼ pϕ(xt−1|xt, c), t ∈ {1, ..., T}. (2)

This iterative process allows the model to capture complex global dependencies, leading to high-
quality results. However, it is computationally expensive, requiring many forward passes through
the large denoising network Dϕ. To accelerate this, we adopt fast sampling strategies like DDIM
(Song et al., 2021) to reduce the number of denoising steps while maintaining solution quality.

4 OUR APPROACH: SPSCO

In this section, we detail SpSCO, a framework that adapts the principles of speculative sampling
(Chen et al., 2023a; Leviathan et al., 2023) to combinatorial optimization. In Section 4.1, we first
introduce the motivation from sps and the core ”draft-then-verify” concept of SpSCO. The inference
loop and designs of the adaptive trigger mechanism are described in Section 4.2 and 4.3. In Section
4.4, we describe the dual-track solution generation strategy initiated by this trigger, explaining how
it produces both a corrected hybrid solution and a set of entirely new proposals for final selection.

4.1 MOTIVATION FROM SPS

Foundational work in large language models (LLMs) demonstrated that the high latency of powerful
autoregressive models can be amortized by using a smaller, faster “draft model” to generate specu-
lative candidates, which are verified in a single parallel pass by the large “target model” (Leviathan

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

No

Problem Instance

RL Policy 𝛑𝜽

Cognitive Divergence:

𝑫𝑲𝑳(𝛑𝜽(· |𝐬𝐤) || 𝐩𝝓(· |𝐬𝐤))

RL Policy Uncertainty:

𝐇(𝛑𝜽(· |𝐬𝐤))

Policy

Distribution

𝛑𝜽(· |𝐬𝒌)

Adaptive Trigger Mechanism

Update the State 𝐬𝒌+𝟏

Yes

State 𝐬𝒌
&Top

actions

Select

Best one

Problem Solutions Set Dual-track

solution

Generation

Final Solution

DM Model 𝐃𝝓

Figure 1: The inference pipeline of SpSCO. At each step, the RL policy (draft model) outputs
a probability distribution over the available actions, πθ(·|sk). This distribution is then evaluated
against two trigger conditions: (1) RL policy’s entropy, H(πθ(·|sk)), exceeds a threshold Hthresh,
signaling high internal uncertainty; or (2) Cognitive divergence, DKL, between the RL policy and
a global prior derived from the DM, denoted as pϕ(·|sk), is above its threshold DKL,thresh. Once
triggered, DM is invoked. SpSCO begins to operate the dual-track solution generation to collect
candidate solutions generated by RL and DM, and returns the best one as the final solution.

et al., 2023). SpSCO is the first framework to successfully translate this “draft-then-verify” paradigm
to the structured, sequential decision-making domain of combinatorial optimization. We instantiate
this by assigning distinct roles to two complementary solver families. An RL policy serves as the
fast draft model, which excels at rapidly constructing a solution by proposing the next action at each
step. A DM acts as the powerful target model, possessing a holistic understanding of the global so-
lution space and effectively verifying or correcting the RL model’s myopic, step-by-step decisions.

However, the true challenge is not merely to avoid the powerful target model, but to leverage its
global, simulative perspective in a computationally feasible manner. To this end, SpSCO repositions
the speculative framework as a high-efficiency simulation engine. The RL draft model proposes
plausible future actions, and the DM target model evaluates them in parallel, providing the deep
lookahead needed for high-quality decision-making at a fraction of the cost of traditional methods
like Monte Carlo Tree Search. The overall architecture of this process is depicted in Figure 1.

SpSCO constructs a solution sequentially, but unlike a standard RL solver, each step involves a spec-
ulative “propose-verify-correct” cycle. Figure 2 provides a conceptual illustration of this process.
At each step, the RL draft model proposes its greedy next action (e.g., node 37 in Step 3). Instead
of immediately accepting this proposal, SpSCO’s trigger mechanism assesses whether the decision
is critical enough to warrant verification by the DM target model. If triggered, the DM evaluates the
RL’s proposal. As shown in Figure 2, the DM may reject the draft (node 37) and provide a superior
correction (node 25), thereby steering the solution path away from a locally optimal but globally
poor trajectory. This dynamic interplay allows SpSCO to retain the speed of RL for ”obvious”
decisions while harnessing the wisdom of the DM for critical ones.

4.2 THE SPSCO INFERENCE LOOP

The SpSCO inference process is an iterative solution construction loop. At each step k, the RL
policy generates a probability distribution over available actions (πθ(·|sk)). Before committing to
the greedy choice, the adaptive trigger mechanism (introduced in Section 4.3) is evaluated.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

SpSCO path Proposing steps with Draft and Target modelTransformer Decoding Steps with Draft and Target Models

1.{START depot}
2.{START} RL → 12 ✅
3.{START} 12 RL→ 37 ❌ DM→ 🔵25
4.{START} 12 25 RL→ 41 ✅
5.{START} 12 25 41 RL→ 8 ❌ DM→ 🔵15
6.{START} 12 25 41 15 RL→ 33 ✅
7.{START} 12 25 41 15 33 RL→ 5 ❌ DM→ 🔵7

Accepted draft nodes –✅
Rejected draft nodes –❌
Corrected nodes –🔵

Accepted draft tokens
Rejected draft tokens
Corrected Tokens1. {START}

2. {START} LLMs
3. {START} LLMs on are not so slow anymore
4. {START} LLMs on are not so slow anymore
5. {START} LLMs on are not so slow anymore
6. {START} LLMs on are not so slow anymore

Figure 2: A conceptual illustration of the SpSCO path construction process compared to stan-
dard speculative decoding in LLMs. The RL draft model proposes the next node in the tour (e.g.,
RL→37). The DM target model may either accept this proposal or reject it and provide a globally
superior correction (e.g., DM→25), thus correcting the trajectory at critical junctures.

If the trigger conditions are not met, the RL model’s locally optimal greedy action is accepted,
and the partial solution is extended. However, if the trigger fires, indicating a critical juncture,
SpSCO initiates its dual-track path generation strategy (in Section 4.4). This process is governed
by a single-trigger design; once the DM is invoked at step k∗, a flag is set, and the RL policy
completes the remainder of the hybrid path without further checks. This design ensures a predictable
computational budget and maximizes the impact of the single, high-leverage intervention.

4.3 THE ADAPTIVE TRIGGER MECHANISM

The core of SpSCO is the adaptive trigger that determines when to speculatively invoke the DM. It is
designed to activate only at critical junctures where the RL policy’s decision is likely to be unreliable.
We identify two such states: RL policy is internally uncertain, and its confident decision externally
disagrees with the DM’s global knowledge. As illustrated in Figure 1, the trigger is based on two
complementary signals, and the DM is invoked if either signal surpasses a predefined threshold:

H(πθ(·|sk)) > Hthresh ∨ DKL(πθ∥pϕ) > DKL,thresh (3)

The following subsections state the mathematical computation of each signal.

4.3.1 SIGNAL 1: RL POLICY UNCERTAINTY

The first signal measures the RL model’s internal uncertainty. High uncertainty suggests the RL
policy does not have a single, confident choice, making it a prime moment for guidance. We quantify
this uncertainty using the standard policy entropy:

H(πθ(·|sk)) = −
∑
a∈Ak

πθ(a|sk) log πθ(a|sk) (4)

We use policy entropy because it directly quantifies the ”flatness” of the action probability distribu-
tion: a high entropy value signifies a more uniform distribution where probabilities are spread across
many actions—precisely reflecting the model’s indecisiveness as no single action is a clear winner.

4.3.2 SIGNAL 2: COGNITIVE DIVERGENCE BETWEEN RL AND DM

The second signal measures the external disagreement, or “cognitive divergence,” between the RL
policy’s choice and the DM’s global perspective. This is designed to catch the most dangerous
failure mode of a greedy policy: confidently making a locally optimal move that leads to a globally
suboptimal solution. Quantifying this requires two steps: efficiently probing the DM to form a prior
distribution, and then measuring the divergence between this prior and the RL’s own distribution.

Diffusion-Derived Prior via Energy Probing. To obtain the DM’s opinion without the cost of a
full sampling run, we introduce a lightweight single-step denoising energy probe. For a set of Top-
M candidate actions {a(i)}Mi=1 proposed by the RL policy, we calculate the “energy” Eϕ(ci) of each

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

corresponding prefix. This energy is the masked binary cross-entropy (BCE) loss from a single-step
denoising task at a fixed intermediate timestep tprobe:

Eϕ(ci) = LBCE(σ(Dϕ(Xtprobe , ci, tprobe)), X0(ci))|prefix mask (5)

A lower energy signifies that the prefix is more “plausible” to the DM. We then convert these energy
values into a DM-derived prior distribution, pϕ(·|sk), using a Boltzmann distribution with an inverse
temperature β:

pϕ(a
(i)|sk) =

exp(−β · Eϕ(sk ⊕ a(i)))∑M
j=1 exp(−β · Eϕ(sk ⊕ a(j)))

(6)

Quantifying Divergence with KL. With the RL policy πθ and the DM prior pϕ defined, we quantify
their disagreement using the Kullback-Leibler (KL) Divergence. To ensure a valid comparison,
πθ(·|sk) is first renormalized over the Top-M candidates. The cognitive divergence is then:

DKL(πθ(·|sk)∥pϕ(·|sk)) =
M∑
i=1

πθ(a
(i)|sk) log

πθ(a
(i)|sk)

pϕ(a(i)|sk)
(7)

A high KL divergence value signals that the RL model’s confident local choice is strongly opposed
by the DM’s global perspective.

4.4 DUAL-TRACK SOLUTION GENERATION AND FINAL SELECTION

Our SpSCO framework operates on a “dual-track solution generation” strategy when the adaptive
trigger fires at a critical step k∗. The strategy initiates two parallel path generations: the hybrid
path correction and full DM proposal generation. For the hybrid path correction track, DM is used
to correct the immediate next action for the hybrid path πH . Instead of the RL model’s greedy
choice, we select the action from the candidate pool that is most preferred by the DM’s prior. This
corrected action, anext, is appended to the tour, and the fast RL policy then autoregressively com-
pletes the remaining steps. Simultaneously, in the full DM proposal generation track, DM is used
to generate a set of complete, high-quality candidate solutions, {πDM}. This is done by taking the
high-probability candidate actions from the RL policy at step k∗ and using each one to form a prefix.
The conditional DM then generates a full tour for each prefix via its iterative denoising process.

Finally, after both tracks are complete, SpSCO compares the total cost of the hybrid path against
the costs of all tours in the proposal set and returns the one with the minimum cost. Algorithm 1
formalizes this entire procedure, summarizing the interplay between the adaptive trigger and the
dual-track strategy. It details the step-by-step logic where the trigger is evaluated (Lines 5-11), and
depending on the outcome, either a standard RL step is taken (Line 21) or the dual-track generation
is initiated (Lines 13-19), culminating in a final selection of the best overall solution (Line 25).

5 EXPERIMENTS

We evaluate SpSCO on the 2D Euclidean Traveling Salesman Problem (TSP), a standard bench-
mark for neural combinatorial optimization. Our evaluation is designed to assess SpSCO’s solution
quality, inference speed, and the effectiveness of its core components across various problem scales.

5.1 EXPERIMENTAL SETTINGS

Datasets. We use standard public datasets for TSP with 50, 100, and 500, 1000 nodes. Problem
instances are generated by sampling node coordinates uniformly from the unit square [0, 1]2. We
use the Concorde solver (Applegate et al., 2006) to obtain optimal solutions for training our diffusion
model and for calculating optimality gaps during evaluation.

Baselines. We compare SpSCO with a comprehensive set of methods: exact solver Concorde,
heuristic solver LKH-3 (Helsgaun, 2017), and state-of-the-art learning-based approaches, including
RL models (AM (Kool et al., 2019a), POMO (Kwon et al., 2020)), supervised models (GCN (Joshi
et al., 2019)), and diffusion-based solvers (DIFUSCO (Sun & Yang, 2023), T2T (Li et al., 2023)).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 SpSCO: Speculative Sampling for Combinatorial Optimization
1: Input: TSP instance I , RL policy πθ, DM denoiser Dϕ, thresholds Hthresh, DKL,thresh

2: Initialize: Hybrid path πH ← (), DM proposals PDM ← ∅, state s0, dm triggered← false
3: for k = 0, . . . , N − 1 do
4: if tour not complete AND not dm triggered then
5: {Adaptive Trigger Evaluation}
6: Get policy distribution πθ(·|sk) from RL draft model.
7: Calculate policy entropy Hk ← H(πθ(·|sk)).
8: Select Top-M candidate actions {a(i)}Mi=1 from πθ(·|sk).
9: Calculate denoising energy Eϕ(sk ⊕ a(i)) for each candidate via the energy probe.

10: Derive DM prior distribution pϕ(·|sk) from energies.
11: Calculate KL divergence DKL,k ← DKL(πθ||pϕ).
12: if Hk > Hthresh or DKL,k > DKL,thresh then
13: {Trigger Activated: Dual-Track Generation}
14: Select candidate actions {a∗} from πθ(·|sk) based on a cumulative probability threshold.
15: for each selected action a∗ do
16: Form prefix c∗ = sk ⊕ a∗.
17: Generate a full tour proposal πDM ∼ DM Sampler(Dϕ, c

∗) and add to PDM .
18: end for
19: Set dm triggered← true.
20: Let anext be the next action from the best DM proposal found so far.
21: else
22: {No Trigger: Standard RL Step}
23: Let anext ← argmaxa πθ(a|sk).
24: end if
25: end if
26: Append anext to hybrid path πH and update state to sk+1.
27: end for
28: {Final Selection}
29: Calculate cost C(πH) and all costs for proposals in PDM .
30: return argminπ∈{πH}∪PDM

C(π)

Implementation Details. Our SpSCO framework orchestrates an RL policy and a conditional DM.
For RL backbones, we use official pre-trained checkpoints. Our conditional DM, termed Prefix-
Difusco, adapts the GNN architecture from DIFUSCO and is specifically trained with a masked
loss and a curriculum learning strategy to complete tours from given prefixes. To convert the DM’s
probabilistic heatmap output into a valid tour, we employ a deterministic greedy decoding strategy.
Full architectural details, training procedures, and decoding algorithms are provided in Appendix A.

Evaluation Metrics. We report three key metrics: the average tour length, the percentage optimality
gap to the exact solver’s solutions, and the average inference time per problem instance.

5.2 MAIN RESULTS

To validate the performance and plug-and-play nature of our model-agnostic framework, we inte-
grated SpSCO with two different RL backbones, Attention Model (AM) and POMO. Besides, the
generalizability of SpSCO to other CO problems is supplemented in Appendix B.1.

5.2.1 PERFORMANCE ON TSP-50 AND TSP-100

Table 1 presents the performance of SpSCO and baseline methods on TSP-50 and TSP-100 in-
stances. The results are categorized by whether a 2-opt local search post-processing step is applied.
The 2-opt algorithm (Croes, 1958) is a classic and effective local search heuristic for the TSP, which
iteratively improves a tour by removing two edges and reconnecting the two resulting paths in the
only other possible way to see if the new tour is shorter. It is important to first clarify that the Pre-
fix Difusco model listed in the table is our custom version of Difusco, which we specifically adapted
to handle partial tours (prefixes) as conditions, making it compatible with the SpSCO framework.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Results with Greedy Decoding on TSP-50 and TSP-100. RL: Reinforcement Learning,
SL: Supervised Learning, G: Greedy Decoding. ∗ denotes results that are quoted from previous
works.The “Prefix Difusco (16 sample)“ represents the best result obtained by running our Pre-
fix Difusco model sampling 16 times in parallel.
ALGORITHM TYPE TSP-50 TSP-100

LENGTH ↓ DROP ↓ LENGTH ↓ DROP ↓

Concorde (Applegate et al., 2006) Exact 5.69 0.00% 7.76 0.00%
2Opt (Croes, 1958) Heuristics 5.86 2.95% 8.03 3.54%

AM* Kool et al. (2019a) RL+G 5.80 1.76% 8.12 4.53%
GCN* Joshi et al. (2019) SL+G 5.87 3.10% 8.41 8.38%
Transformer* Bresson & Laurent (2021) RL+G 5.71 0.31% 7.88 1.42%
POMO* Kwon et al. (2020) RL+G 5.73 0.64% 7.84 1.07%
Sym-NCO* Kim et al. (2022) RL+G 5.73 0.64% 7.84 0.94%
Image Diffusion* Graikos et al. (2022) SL+G 5.76 1.23% 7.92 2.11%
DIFUSCO (Ts=50) Sun & Yang (2023) SL+G 5.71 0.45% 7.85 1.21%
DIFUSCO (Ts=100) SL+G 5.71 0.41% 7.84 1.16%
T2T (Ts=50,Tt=15) Li et al. (2023) SL+G 5.69 0.07% 7.77 0.20%
Prefix Difusco (16 sample) SL+G 5.69 0.04% 7.76 0.04%
Prefix Difusco (Used in SpSCO) SL+G 5.70 0.27% 7.81 0.62%
SpSCO (AM + DF) RL+SL+G 5.69 0.03% 7.76 0.02%
SpSCO (POMO + DF) RL+SL+G 5.69 0.03% 7.76 0.02%

AM RL+G+2OPT 5.77 1.41% 8.02 3.32%
GCN SL+G+2OPT 5.77 1.40% 8.01 3.21%
Transformer RL+G+2OPT 5.70 1.06% 7.96 1.89%
POMO SL+G+2OPT 5.73 0.63% 7.91 1.62%
Sym-NCO SL+G+2OPT 5.73 0.64% 7.90 0.76%
DIFUSCO SL+G+2OPT 5.69 0.09% 7.78 0.22%
T2T SL+G+2OPT 5.69 0.02% 7.76 0.06%
SpSCO RL+SL+G+2OPT 5.69 0.03% 7.76 0.01%

5.2.2 PERFORMANCE ON LARGE-SCALE TSP

SpSCO’s superior speed-quality trade-off becomes even more pronounced on large-scale problems,
as shown in Table 2. On TSP-500, using a DM-undertrained that was only briefly fine-tuned for 20
epochs, SpSCO achieves a 3.56% optimality gap in just 1.20 mins. This result is not only signifi-
cantly better in quality than other RL-based methods and standalone DM solvers like T2T (5.09%),
but also faster than high-performance competitors like DIFUSCO (5.70m) and T2T (4.90m). This
good performance scales to even larger instances. On TSP-1000, even when pairing an RL model
directly from the TSP-500 checkpoint with another similarly undertrained DM, SpSCO delivers a
state-of-the-art optimality gap of 4.58% among learning-based methods. It achieves this result in
just 2.43 mins, over 6 times faster than T2T. This efficiency stems directly from our core design: the
fast RL model handles the majority of decisions, while the computationally intensive DM is invoked
only for a strategic, high-impact correction. This allows SpSCO to scale effectively, delivering
top-tier solutions without the prohibitive runtime of exhaustive search or full iterative generation.

5.3 ABLATION STUDY

We conduct ablation studies on TSP-100 to validate SpSCO’s core components and design choices.

Importance of the Trigger Mechanism. As shown in Table 3, our dual-signal trigger is essen-
tial. Relying solely on either the entropy or the KL divergence trigger leads to significantly worse
optimality gaps (0.05% and 0.09%, respectively). This confirms that both internal policy uncer-
tainty (entropy) and external disagreement with the DM (KL divergence) are complementary and
necessary signals for making effective intervention decisions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Results on large-scale TSP problems. RL, SL, AS, and G denote Reinforcement Learning,
Supervised Learning, Active Search, and Greedy decoding, respectively. Len means the average
tour length. * indicates the baseline for computing the performance gap.The TIME column reports
the average inference time per instance.

ALGORITHM TYPE TSP-500 TSP-1000

LENGTH↓ DROP↓ TIME LENGTH↓ DROP↓ TIME

Concorde Exact 16.55* 0.00% 37.66m 23.53* 0.00% 6.65h
Gurobi Exact 16.55 0.00% 45.63h 23.53 0.00% 48h
LKH-3 (default) Heuristics 16.55 0.00% 46.28m 23.53 0.00% 2.57h

AM RL+G 20.02 20.99% 1.51m 28.52 21.21% 3.18m
GCN SL+G 29.72 79.61% 6.67m 43.15 83.38% 28.52m
POMO+AS-Emb RL+AS+G 19.24 16.25% 12.80h - - -
POMO+AS-Tab RL+AS+G 24.54 48.22% 11.61h - - -
DIMES RL+G 18.93 14.38% 0.97m 27.23 15.73% 2.08m
DIMES RL+AS+G 17.81 7.61% 2.10h 25.11 6.72% 4.49h
DIFUSCO SL+G 18.11 9.41% 5.70m 25.68 9.14% 11.5m
T2T SL+G 17.39 5.09% 4.90m 25.17 8.87% 15.66m
Prefix DIFUSCO SL+G 17.92 8.23% 0.50m 25.86 9.91% 0.38m
SpSCO RL+SL+G 17.24 3.56% 1.20m 24.61 4.58% 2.43m

Table 3: Ablation study on the core components of SpSCO, Trigger Mechanism, evaluated on the
TSP-100 dataset. Gap (%) is the optimality gap compared to the Concorde solver. Time (s) is the
average inference time per instance.

Model / Method Description Gap (%) ↓

Entropy-Only Policy entropy trigger 0.05%
KL-Only KL divergence trigger 0.09%

Full Model Full Model 0.02%

Trigger Behavior and Sensitivity. Our analysis reveals a clear trade-off landscape for the trigger
thresholds. The entropy threshold directly balances solution quality and inference time (Table 12
in Appendix B), while a stricter (lower) KL divergence threshold proves superior for performance
(Table 13 in Appendix B). Notably, with our default thresholds, the trigger fires in 100% of instances
at a very early average step of 0.52. This supports our rationale of “strategic early intervention”:
SpSCO identifies the initial steps as the most critical, correcting the RL model’s trajectory before
errors can propagate. The full analysis, including sensitivity to candidate exploration strategies and
the robustness of the energy probe, is detailed in Appendix B.

6 CONCLUSION

We introduced SpSCO, a novel speculative sampling framework that synergistically combines a fast,
sequential RL model with a high-quality, nonautoregressive diffusion model for solving combina-
torial optimization problems. The core of our contribution is a lightweight trigger mechanism that
uses policy entropy and KL divergence to adaptively invoke the diffusion model at critical deci-
sion points. This “cognitive divergence” metric, calculated via an efficient single-step energy probe,
effectively identifies when the local, greedy decisions of the RL model begin to deviate from the
global optimum manifold learned by the diffusion model. Our results on standard TSP benchmarks
demonstrate that SpSCO achieves state-of-the-art solution quality while being more computation-
ally efficient than other high-performance methods. This work opens up a promising new direction
in neural CO solvers: better neural CO solvers may lie not just in developing larger or more complex
models, but in the principled and intelligent hybridization of diverse, complementary approaches.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David Applegate, Robert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver, 2006.

Roch G. Athaide, K. S. Sesh Kumar, and S. Anil Kumar. A denoising diffusion probabilistic model
for the travelling salesman problem. arXiv preprint arXiv:2302.06219, 2023.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimiza-
tion: A methodological tour d’horizon. European Journal of Operational Research, 2020.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, et al. Rl4co: an extensive reinforcement learning
for combinatorial optimization benchmark. arXiv preprint arXiv:2306.17100, 2023.

Xavier Bresson and Thomas Laurent. The transformer network for the traveling salesman problem,
2021.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre
Laterre, and Tom Barrett. Combinatorial optimization with policy adaptation using latent space
search. Advances in Neural Information Processing Systems, 36, 2023.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Haipeng Chen, Wei Qiu, Han-Ching Ou, Bo An, and Milind Tambe. Contingency-aware influence
maximization: A reinforcement learning approach. In UAI, pp. 1535–1545, 2021.

Zihan Chen, Tianyu Wang, Yutong Wang, Ming-Xuan Wu, Wentao Wang, and Gaoang Wang. GPS-
VRP: A graph-based partition-and-search framework for vehicle routing problems with diffusion
model. arXiv preprint arXiv:2309.16016, 2023b.

G. A. Croes. A method for solving traveling-salesman problems. Operations Research, 6(6):791–
812, 1958.

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: a generalizable routing problem solver
with invariant nested view transformer. In ICML, pp. 12973–12992, 2024.

Xinsong Feng, Zihan Yu, Yanhai Xiong, and Haipeng Chen. Sequential stochastic combinatorial
optimization using hierarchal reinforcement learning. In International Conference on Learning
Representations, 2025.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large TSP instances. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI 2021,
pp. 7474–7482, 2021a.

Zhiqing Fu, Zhaoxing Zhang, Zhaokun Wang, and Han Sun. Neural mcts: A learning-based solution
for combinatorial optimization on graphs. In International Conference on Learning Representa-
tions, 2021b.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, San Francisco, CA, 1979.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as
plug-and-play priors. In Advances in Neural Information Processing Systems, 2022.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Minsu Kim, Jinkyoo Park, et al. Sym-NCO: Leveraging symmetricity for neural combinatorial
optimization. In Advances in Neural Information Processing Systems, volume 35, 2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019a.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In ICML, pp. 3499–3508, 2019b.

Yeong-Dae Kwon, Juhan Choo, Bumm Kim, Iljoo Yoon, Young-Joon Gwon, and Seung-won Min.
POMO: Policy optimization with multiple optima for reinforcement learning. In Advances in
Neural Information Processing Systems, volume 33, pp. 21188–21198, 2020.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286, 2023.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
to gradient search in testing for combinatorial optimization. Advances in Neural Information
Processing Systems, 36:50020–50040, 2023.

Yuheng Li, Panpan Wang, and Haipeng Chen. Can reinforcement learning solve asymmetric
combinatorial-continuous zero-sum games? International Conference on Learning Represen-
tations, 2025.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, pp. 28935–
28948, 2024.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. In Advances in Neural Information Processing Systems, pp.
562–572, 2018.

Mingjun Pan, Guanquan Lin, You-Wei Luo, Bin Zhu, Zhien Dai, Lijun Sun, and Chun Yuan. Prefer-
ence optimization for combinatorial optimization problems. International Conference on Machine
Learning, 2025.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Advances in Neural Information Processing Systems, volume 36, 2023.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28, 2015.

Qi Wang, Yongsheng Hao, and Jie Cao. Learning to traverse over graphs with a monte carlo
tree search-based self-play framework. Engineering Applications of Artificial Intelligence, 105:
104422, 2021.

Ben Weinberg and J. M. K. Welling. Score-based generative models for np-hard combinatorial
optimization. arXiv preprint arXiv:2106.05831, 2021.

Yubin Xiao, Di Wang, Boyang Li, Huanhuan Chen, Wei Pang, Xuan Wu, Hao Li, Dong Xu, Yanchun
Liang, and You Zhou. Reinforcement learning-based nonautoregressive solver for traveling sales-
man problems. IEEE Transactions on Neural Networks and Learning Systems, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Han Xu, Jingyang Ye, Yutong Li, and Haipeng Chen. Can speculative sampling accelerate react
without compromising reasoning quality? In The Second Tiny Papers Track at International
Conference on Learning Representations 2024, 2024.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A uni-
fied neural divide-and-conquer framework for large-scale combinatorial optimization problems.
Neurips, 37:6081–6125, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS OF PREFIX DIFUSCO AND RL MODELS

Here we provide detailed specifications for our backbone conditional diffusion model, Pre-
fix Difusco, used in the experiments. About the RL model, we uniformly use the code and envi-
ronment provided by the RL4CO Berto et al. (2023) package for training 1. The detailed hyperpa-
rameters are listed in A.4.

A.1 MODEL ARCHITECTURE

The core of Prefix Difusco modifies the GNN architecture from DIFUSCOSun & Yang (2023) for
the conditional generation task. The key components are:

• Node Feature Embedding: Node coordinates are first converted into high-dimensional
features using a sinusoidal positional embedding. A binary feature indicating whether a
node is part of the prefix is concatenated to this embedding. A final linear layer projects
this combined feature vector to the GNN’s expected input dimension (dnode = 128).

• PrefixEncoder: An LSTM-based encoder takes the sequence of node features correspond-
ing to the prefix tour and outputs a single global conditioning vector (dcond = 256). This
vector summarizes the properties of the given partial tour.

• DifuscoGNNEncoder: This is the main denoising network. It is a 12-layer GNN
that processes a graph where nodes have the features described above. At each layer,
the GNN’s message passing is conditioned by both the global prefix vector from the
Prefix Encoder and a sinusoidal embedding of the current timestep t.

• Output Head: The GNN outputs a logit for each potential edge in the graph, representing
the probability of that edge being part of the optimal tour.

A.2 TRAINING PROCEDURE

The model is trained to predict the ground-truth adjacency matrix x0 from a noised version xt and a
conditional prefix.

• Dataset and Conditioning: The training dataset consists of TSP instances and their opti-
mal tours. For each sample, we derive a training instance by randomly selecting a prefix of
length k from the optimal tour.

• Diffusion Process: We use a discrete diffusion process over T = 1000 steps with a cosine
noise schedule to corrupt the ground-truth adjacency matrix x0 into a noisy matrix xt.

• Masked Loss Function: The model’s objective is to minimize the Binary Cross-Entropy
(BCE) loss between the predicted adjacency matrix and the ground truth x0. Crucially, the
loss is only computed on the “suffix” edges—that is, all edges except those whose both
endpoints are within the given prefix. This forces the model to learn how to best complete
the tour.

• Curriculum Learning: To improve convergence and performance, we employ a multi-
stage curriculum. The training starts with a distribution of long prefixes (e.g., k ∈ [60, 90]),
making the completion task easier. As training progresses, the distribution of k shifts to-
wards shorter, more difficult prefixes (e.g., k ∈ [1, 30]), allowing the model to gradually
master the full conditional generation task.

A.2.1 TRAINING FOR TSP-50

The Prefix Difusco model for TSP-50 was trained from scratch. We employed a 5-stage cur-
riculum learning strategy designed to gradually increase the task difficulty. Each stage was trained
for 10 epochs, initializing from the best checkpoint of the previous stage.

• Stage 1 (Easy): Trained on long prefixes with lengths k ∈ [30, 49].
• Stage 2 (Medium): Trained on prefix lengths k ∈ [10, 30].

1https://github.com/ai4co/rl4co

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Stage 3 (Hard): Trained on the full range of prefix lengths k ∈ [1, 49].

• Stage 4 (Short Focus): Focused on short prefixes with lengths k ∈ [1, 20].

• Stage 5 (Very Short Focus): Further focused on very short prefixes with k ∈ [1, 10] to
enhance performance on early-step decisions.

A.2.2 TRAINING FOR TSP-100

The model for TSP-100 was also trained from scratch following a similar multi-stage curriculum
learning approach. The prefix length ranges for each stage were adjusted proportionally for the
larger problem size to ensure a smooth learning progression from easy to hard completion tasks.
The core hyperparameters, such as hidden dimensions and learning rate, were kept consistent with
the TSP-50 model.

• Stage 1 (Easy): Trained on long prefixes with lengths k ∈ [61, 99].

• Stage 2 (Medium): Trained on prefix lengths k ∈ [30, 60].

• Stage 3 (Hard): Trained on the full range of prefix lengths k ∈ [1, 99].

• Stage 4 (Short Focus): Focused on short prefixes with lengths k ∈ [1, 20].

• Stage 5 (Very Short Focus): Further focused on very short prefixes with k ∈ [1, 10] to
enhance performance on early-step decisions.

A.2.3 TRAINING FOR TSP-500

Due to the significantly larger scale of TSP-500, we adopted a more advanced training strategy
combining transfer learning and a tailored curriculum.

• Transfer Learning: The TSP-500 model was not trained from scratch. Instead, it was ini-
tialized using the weights from our best-trained TSP-100 checkpoint. Weights were trans-
ferred for all layers with matching names and shapes (e.g., GNN layers, prefix encoder),
providing a strong starting point and accelerating convergence.

• Curriculum Learning: After initialization, the model was fine-tuned on TSP-500 data
using a 5-stage curriculum similar to the one for TSP-50, but with ranges adjusted for
N = 500 (e.g., Stage 1: k ∈ [50, 100], Stage 2: k ∈ [20, 50], etc.). For the results reported
in this paper, we ran an accelerated training schedule of approximately 20 epochs in total,
focusing on the most critical curriculum stages to balance performance and computational
cost.

A.2.4 TRAINING FOR TSP-1000

For the largest scale, TSP-1000, we continued the strategy of combining transfer learning with a
specialized curriculum to manage the increased complexity and computational demands.

• Transfer Learning: The TSP-1000 model was initialized with the weights from our best-
performing TSP-100 checkpoint. This transfer learning approach provided a robust feature
foundation, significantly accelerating the training convergence on the larger graph size.

• Curriculum Learning: Following initialization, the model was fine-tuned on the TSP-
1000 dataset using a 4-stage curriculum over a total of 25 epochs. The training began
with easier tasks (completing tours from long prefixes, with k up to 500) and progressively
moved to more difficult scenarios, focusing on shorter prefixes (k down to 1) in later stages
to refine the model’s ability to make critical early decisions.

A.3 DECODING ALGORITHMS

To convert the probabilistic heatmap output from our Prefix Difusco model into a valid TSP
tour, we employ a deterministic greedy decoding strategy inspired by DIFUSCO (Sun & Yang,
2023). This approach ensures that given a heatmap, the resulting tour is always the same, which

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

is crucial for the stability of the SpSCO framework. The core decoding process follows a prin-
cipled, multi-stage procedure designed to construct high-quality tours while respecting the prefix
constraints.

The decoding algorithm proceeds as follows:

• Edge Score Calculation: The raw adjacency probability matrix P from the diffusion
model is first symmetrized to ensure consistency (P ′ = (P + PT)/2). To favor shorter
edges, which are fundamental to good TSP solutions, we compute an edge score for each
potential edge (i, j) by dividing its symmetrized probability by its Euclidean distance:
Sij = P ′

ij/dist(i, j). All possible edges are then sorted in descending order based on
these scores.

• Enforce Prefix Constraint: Before any greedy selection, the decoder first enforces the
given conditional prefix. All edges that form the given partial tour are mandatorily included
in the solution set. A Union-Find data structure is initialized, and the degrees of the prefix
nodes are updated accordingly to ensure these edges are fixed.

• Greedy Spanning Path Construction: The algorithm iterates through the globally sorted
list of edges. For each candidate edge, it performs three checks:

1. It is not an existing prefix edge.
2. Adding the edge will not result in any node having a degree greater than two.
3. Adding the edge will not form a premature cycle (verified using the Union-Find data

structure).
If all conditions are met, the edge is added to the solution set, and the node degrees and
Union-Find structure are updated. This process continues until a total of N − 1 edges have
been selected, forming a spanning path of all nodes.

• Tour Finalization: Once a spanning path of N − 1 edges is formed, there will be exactly
two nodes with a degree of one (the endpoints of the path). The final edge connecting these
two endpoints is deterministically added to close the path and form a valid Hamiltonian
cycle. The final list of N edges is then converted into a sequential tour starting from the
first node of the original prefix (or node 0 if no prefix was given).

A.4 HYPERPARAMETERS

This subsection provides a comprehensive summary of the hyperparameters for the core mod-
els employed in the SpSCO framework: The configurations for our conditional diffusion model
(Prefix Difusco), the Attention Model (AM), and POMO Kool et al. (2019a); Kwon et al.
(2020) are detailed in Table 4, Table 5, and Table 6, respectively. These tables are intended to ensure
full reproducibility of our experimental results.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters for Prefix Difusco across different problem sizes.

Parameter TSP-50 TSP-100 TSP-500 TSP-1000

Model Architecture
Node Count (N) 50 100 500 1000
sparse factor(K) N.A N.A N.A 100
GNN Layers (L) 12 12 12 12
Hidden Dimension 256 256 256 256
Node Embedding Dim 128 128 128 128
Prefix Condition Dim 256 256 256 256

Diffusion Process
Timesteps (T) 1000 1000 1000 1000
Beta Schedule cosine cosine cosine cosine
Inference Steps 10 10 50 50
Inference Sampler DDIM DDIM DDIM DDIM

Training
Batch Size (per GPU) 128 96 4 8
Epoch 50 50 20 25
Training data (per epoch) 1500000 1500000 128000 65000
Learning Rate 2e-4 2e-4 2e-5 1e-4
Optimizer Adam Adam Adam Adam
Training Method Curriculum Curriculum Transfer&Curriculum Transfer&Curriculum
Environment 2x NVIDIA A40 GPUs

Table 5: Hyperparameters for Attention Model across different problem sizes. Need to notice, AM
and POMO models for TSP-500 are trained on the tsp-200 instances and then generalized into the
TSP 500.

Parameter TSP-50 TSP-100 TSP-500
Model Architecture

GNN Layers (L) 3 3 3
Hidden Dimension 512 512 512
Node Embedding Dim 128 128 128
Attention heads 8 8 8
Baseline rollout rollout critic

Training
Batch Size (per GPU) 512 512 1024
Training data (each epoch) 1280000 1280000 1280000
Epoch 100 100 120
Learning Rate 1e-4 1e-4 1e-4
LR Scheduler multistep LR, gamma=0.1, milestone = [80, 95]
Normalization batch
Environment 1x NVIDIA A40 GPUs

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters for POMO across different problem sizes.

Parameter TSP-50 TSP-100 TSP-500
Model Architecture

GNN Layers (L) 6 6 6
Hidden Dimension 512 512 512
Node Embedding Dim 128 128 128
Attention heads 8 8 8
Augment 8 8 8

Training
Batch Size (per GPU) 512 512 256
Training data (each epoch) 100000 100000 100000
Epoch 400 800 400
Learning Rate 1e-4 1e-4 1e-4
LR Scheduler multistep LR, gamma=0.1, milestone = [80, 95]
Normalization instance
Environment 1x NVIDIA A40 GPUs 2x NVIDIA A40 GPUs

B ADDITIONAL EXPERIMENT AND ABLATION STUDY RESULTS

B.1 GENERALIZABILITY TO OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

While the main body of this paper focuses on the Traveling Salesman Problem (TSP), the SpSCO
framework is designed to be general. To demonstrate its potential on other tasks, we conducted a
preliminary evaluation on the Orienteering Problem (OP).

Table 7 summarizes the performance on the OP-100 benchmark. The results highlight the synergy of
our hybrid approach. While the standalone RL (AM) and Diffusion (prefix difusco) backbones pro-
duce solutions with a significant 8-9% optimality gap, SpSCO successfully combines their strengths
to cut this gap nearly in half, achieving a much improved 4.657% gap.

Crucially, this substantial gain in solution quality is achieved with a minimal increase in computa-
tional cost, keeping the inference time under one second. This successful application to a different,
complex routing problem validates the plug-and-play nature of our framework and its ability to
create a superior solver from weaker components, showcasing its potential for broader use across
various combinatorial optimization problems.

Table 7: Performance comparison on the OP-100 benchmark. AVG Score denotes the average
collected prize (higher is better). Gap indicates the percentage deviation from the optimal solution
(lower is better). Time is the average inference time in seconds.

Method AVG Score ↑ Gap ↓ Time (s) ↓

Gurobi-30 31.13 0% 30
Gurobi-300 32.10 -3.115% 300

AM (RL) 28.37 8.866% 0.3
prefix difusco 28.28 9.317% 0.662

SpSCO (Ours) 29.68 4.657% 0.946

B.2 ABLATION STUDY

Therefore, SpSCO provides a flexible blueprint for creating next-generation hybrid neural solvers.
By simply swapping the problem-specific RL and DM backbones, our framework can be read-
ily extended to tackle a diverse set of complex optimization challenges, effectively navigating the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

speed-quality trade-off across various domains. This section provides detailed results and analy-
sis for the ablation studies presented in the main paper, all conducted on the TSP-100 benchmark.
These studies are designed to be self-contained, offering a deeper understanding of SpSCO’s inter-
nal mechanisms and validating our design choices. Echoing the central thesis from our introduction,
the following experiments empirically demonstrate how the principled, divergence-driven coordina-
tion of the RL and DM models allows SpSCO to effectively navigate the speed-quality trade-off.
We specifically analyze the necessity of our dual-criteria trigger (the heart of our “cognitive diver-
gence” measure), the critical balance between exploration breadth and computational efficiency, and
the overall robustness of the framework’s components. To maintain consistency with the main text,
table numbering in this appendix begins at 6.

Table 8 examines the sensitivity of our framework to the DM energy probe’s timestep
(dm probe timestep). The results demonstrate remarkable robustness: across a wide range
of timesteps from 100 to 900, the optimality gap remains stable at 0.02%. This is a significant
practical advantage, as it indicates that the single-step energy probe is a reliable signal that does not
require meticulous hyperparameter tuning.

Table 8: Sensitivity analysis on the DM energy probe timestep, dm probe timestep.

Energy Probe Ts Gap (%) ↓ Time (s) Ave. trigger step (Trig. Rates)
100 0.02 2255.95s 0.66 (100.0%)
300 0.02 2262.54s 0.66 (100.0%)
500 0.02 2238.88s 0.52 (100.0%)
700 0.02 2246.30s 0.51 (100.0%)
900 0.02 2243.36s 0.51 (100.0%)

Table 9 investigates the impact of the RL candidate pool size (probe rl top m) used for the KL
divergence calculation. This experiment highlights the importance of providing a sufficiently large
set of candidate actions for the probe. With too few candidates (e.g., 5), the KL divergence is not
a reliable indicator, resulting in a poor optimality gap (1.30%) and a low trigger rate (43.0%). Our
default setting of 15 ensures that the divergence metric is calculated over a meaningful distribution,
allowing for effective detection of critical junctures.

Table 9: Sensitivity analysis on the RL candidate pool size, probe rl top m, used for KL diver-
gence calculation.

Probe RL Top M Gap (%) ↓ Time (s) Ave. trigger step (Trig. Rates)
5 1.30 2894.19s 4.05 (43.0%)
10 0.15 1635.85s 5.20 (97.1%)
15 0.02 2238.88s 0.52 (100.0%)
20 0.01 3025.94s 0.00 (100.0%)

Finally, Table 10 analyzes the effect of the candidate selection threshold for DM exploration
(TopN cum Th). This parameter controls the breadth of the DM’s search once it is triggered. The
results show a clear trade-off: a small threshold (e.g., 0.2) is faster but often fails to find a high-
quality solution, yielding a suboptimal 0.12% gap. Increasing the exploration breadth is crucial for
capitalizing on the DM’s generative power. Our default value of 0.8 allows the DM to explore a
diverse set of high-probability candidates, which is vital for discovering the near-optimal paths that
lead to our state-of-the-art 0.02% gap.

Table 11 provides a comprehensive analysis of our core trigger mechanism. The results clearly show
that the dual-criteria trigger, which combines both policy entropy and KL divergence, is essential
for top performance. Relying solely on the KL-divergence or entropy trigger leads to significantly
worse optimality gaps (0.09% and 0.05%, respectively). This confirms our hypothesis that policy
uncertainty (entropy) and cognitive divergence (KL) are complementary signals. The former identi-
fies when the RL agent is indecisive, while the latter detects when it is confidently wrong. Together,
they form a robust and effective condition for invoking the diffusion model.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Ablation study on the candidate selection strategy for DM exploration,
n cumulative threshold.

TopN cum Th Gap (%) ↓ Time (s) Ave. trigger step (Trig. Rates)
0.2 0.12 724.87s 0.52 (100.0%)
0.4 0.12 729.66s 0.52 (100.0%)
0.5 0.08 925.61s 0.52 (100.0%)
0.6 0.05 1205.19s 0.52 (100.0%)
0.8 0.02 2238.88s 0.52 (100.0%)

Table 11: Complete Ablation study on the core components of SpSCO, evaluated on the TSP-100
dataset. Gap (%) is the optimality gap compared to the Concorde solver. Time (s) is the average
inference time per instance. Avg. Trigger Step Index indicates the average step number in the tour
construction at which the Diffusion Model was first invoked. Trigger Rate denotes the percentage
of instances where the DM was triggered at least once. The best-performing model is highlighted in
bold.

Model / Method Description: Triggers on Gap (%) ↓ Time (s) Ave. trigger step
(Trig. Rates)

Trigger Mechanism Ablation
SpSCO (Entropy) policy entropy only 0.05 2435.33s 2.36 (99.8%)
SpSCO (KL) KL divergence only 0.09 1670.84s 1.35 (97.0%)

SpSCO (Full Model) Full Model (Entropy + KL) 0.02 2238.88s 0.52 (100.0%)

Table 12: Sensitivity to the Policy Entropy Threshold
Threshold Gap (%) ↓ Time (s) Trigger step (Rates)

1.4 0.01% 3031.26s 0 (100%)
1.6 0.02% 2238.88s 0.52 (100.0%)
1.8 0.05% 1367.75s 1.47 (99.4%)
2.0 0.09% 1508.01s 1.44 (97.7%)

Table 13: Sensitivity to the KL-Divergence Threshold
Threshold Gap (%) ↓ Time (s) Trigger step (Rates)

8 0.02% 2238.88s 0.52 (100.0%)
10 0.02% 2284.97s 0.83 (100.0%)
12 0.03% 2304.25s 1.11 (100.0%)
14 0.03% 2334.44s 1.32 (100.0%)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized a Large Language Model (LLM) as a general-
purpose writing assistance tool. The use of the LLM was strictly limited to improving the quality
and clarity of the English prose.

Specifically, the LLM was employed for the following tasks:

• Proofreading to identify and correct typographical errors.
• Correcting grammatical mistakes and ensuring syntactical correctness.
• Rephrasing sentences to improve readability, flow, and conciseness.

The core scientific ideas, theoretical derivations, experimental design, results, and conclusions pre-
sented in this paper were conceived and articulated entirely by the human authors. The LLM did not
contribute to any aspect of the research ideation or the generation of the scientific content. Its role
was exclusively that of a language editing and refinement tool.

20

	Introduction
	Related Work
	Preliminary
	Inference with RL Solvers
	Inference with Conditional Diffusion Models

	Our Approach: SpSCO
	Motivation from SpS
	The SpSCO Inference Loop
	The Adaptive Trigger Mechanism
	Signal 1: RL Policy Uncertainty
	Signal 2: Cognitive Divergence between RL and DM

	Dual-Track Solution Generation and Final Selection

	Experiments
	Experimental Settings
	Main Results
	Performance on TSP-50 and TSP-100
	Performance on Large-Scale TSP

	Ablation Study

	Conclusion
	Implementation Details of Prefix_Difusco and RL models
	Model Architecture
	Training Procedure
	Training for TSP-50
	Training for TSP-100
	Training for TSP-500
	Training for TSP-1000

	Decoding Algorithms
	Hyperparameters

	Additional experiment and Ablation Study Results
	Generalizability to Other Combinatorial Optimization Problems
	Ablation Study

	Statement on the Use of Large Language Models (LLMs)

