Detecting and Filtering Unsafe Training Data via Data Attribution

Anonymous ACL submission

Abstract

Large language models (LLMs) are vulnerable
to unsafe training data that even small amounts
of unsafe data can lead to harmful model be-
haviors. Detecting and filtering such unsafe
training data is essential for trustworthy model
development. Current state-of-the-art (SOTA)
approaches typically rely on training modera-
tion classifiers which requires significant com-
putational overhead and are limited to prede-
fined taxonomies, making them less adaptable
to evolving safety concerns. Moreover, these
classifiers lack insight into the training process,
limiting their effectiveness in filtering unsafe
data. To address these limitations, we propose
DABUF, leveraging data attribution to detect
and filter unsafe training data by attributing
harmful model outputs to influential training
data points. DABUF enables flexible identi-
fication of various unsafe data types without
predefined taxonomies. However, in practice,
model outputs can be complex with combined
safe linguistic features and unsafe content, lead-
ing to reduced attribution accuracy. In such
cases, DABUF will integrate moderation clas-
sifiers to identify a minimal subset of unsafe
training data for targeted attribution (such as
jailbreak). When model outputs are relatively
straightforward, DABUF uses model outputs
directly as the attribution targets. We evalu-
ate the performance on two different tasks: in
filtering jailbreaking training data and in iden-
tifying and mitigating gender bias. DABUF
outperforms SOTA approaches by 7.5 % in de-
tection AUPRC in jailbreaking scenarios, and
44.1 % in detecting gender bias. Moreover, re-
training on DABUF-filtered data leads to higher
model safety across experiments, underscoring
its versatility in addressing a broad spectrum of
unsafe data issues.

1 Introduction

Large Language Models (LLMs) are known to
exhibit various unsafe behaviors, including toxi-
city, stereotyping, privacy leaks, and ethical vio-

lations (Wang et al., 2024a). A primary source of
these issues is unsafe training data (Jiang et al.,
2024; Chen et al., 2024). For instance, inherent bi-
ases or toxic content in a dataset can lead to harm-
ful responses (Jiang et al., 2024; Ouyang et al.,
2022), while deliberate attacks, such as adversar-
ial prompts or injected backdoors, can be used to
bypass safety alignments (Chen et al., 2024; Zou
et al., 2023; Li et al., 2024b). Consequently, identi-
fying and removing these unsafe training instances
is critical for mitigating risks and building safer
LLM:s.

Existing methods for detecting and filtering un-
safe training data typically rely on moderation clas-
sifiers. Online API tools, such as the Perspec-
tive API ! and OpenAI’s Moderation API (Markov
et al., 2023), focus on certain predefined toxicity
taxonomies, but struggle to generalize to nuanced
and emerging unsafe artifacts beyond these pre-
defined taxonomies (Weber et al., 2025). Fine-
tuned detection models, including Llama-Guard-
3-8B (Llama Team, 2024) and Wildguard (Han
et al., 2024), require significant time and resources
for additional data collection and training. More-
over, these moderation classifiers primarily detect
semantically unsafe training data without consid-
ering the influence of each data point on model
training, resulting in suboptimal filtering effective-
ness for enhancing model safety.

In this work, we introduce Data-Attribution-
Based Unsafe Training Data Detection and
Filtering (DABUF), a method that leverages data
attribution techniques to enhance unsafe data de-
tection and filtering in LLMs. Data attribution is
a family of methods that quantify the influence of
individual training data points on specific model
outputs (Koh and Liang, 2020; Pruthi et al., 2020).
Our central hypothesis is that unsafe training data
exerts greater influence on unsafe outputs; thus,
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attributing these outputs back to their influential
training instances can reveal which data points are
responsible. These methods do not require addi-
tional training data and can be applied flexibly to
diverse types of unsafe model outputs.

However, applying data attribution naively—by
directly attributing unsafe model generations to
their training data—is ineffective in many cases.
LLM outputs, particularly in long-form generations
such as jailbreaking attacks, are influenced by a mix
of benign and unsafe training data. Since model
generations include common linguistic structures
(e.g., stop words, neutral phrases) alongside unsafe
content, direct attribution to the entire sequence
leads to a noisy attribution signal, reducing the
precision of unsafe data identification.

To address this challenge, our method introduces
a targeted filtering mechanism. Specifically, for
long-form outputs, such as those found in jailbreak-
ing scenarios, we first use moderation classifiers
to identify a small subset of clearly unsafe train-
ing data. We then use this subset as the attribution
target, allowing us to refine the attribution process
and isolate the most influential unsafe training in-
stances. In contrast, for shorter model outputs, such
as those in gender bias scenarios, where the influ-
ence of training data is more direct and less noisy,
standard data attribution techniques are sufficient
without additional moderation filtering.

We validate our approach through experiments
in two distinct setups. In jailbreaking scenarios
involving adversarial prompts that lead to noisy
or long unsafe outputs, we apply the proposed
DABUF with moderation classifiers for initial un-
safe data identification. Conversely, in the gender
bias scenario—where outputs are relatively con-
cise—we directly apply DABUF on the model gen-
eration. Experimental results show that our ap-
proach achieves superior detection performance
across different model architectures in jailbreaking
scenarios and deliver improved safety when mod-
els are retrained with filtered data, outperforming
state-of-the-art detection methods. Furthermore,
our method generalizes effectively to gender bias
scenarios, highlighting its versatility.

2 Related work

2.1 Sources of Unsafe Training Data in LLMs

Recent studies (Yi et al., 2024; Qi et al., 2023)
reveal that malicious fine-tuning can severely com-
promise safety alignment, even with limited ex-

posure to unsafe data. Unfortunately, current on-
line fine-tuning services are inadequate at detecting
these unsafe training data, leaving LLMs vulnera-
ble to potential exploitation (Qi et al., 2023).

Unsafe data may also emerge from synthetic
training data generation. For instance, Wang et al.
(2022) generate samples by conditioning LLMs on
specific keywords and target labels, while Wang
et al. (2023) synthesize fine-tuning data from LLM-
generated responses. However, as recent safety
research (Wang et al., 2024a) indicates, even highly
aligned models like GPT-4 and GPT-3.5 exhibit
unsafe behaviors, suggesting that synthetic data
can introduce significant risks.

In addition, inherent biases in training data pose
challenges that current detection methods are not
equipped to handle. Studies have shown that gen-
der bias in training data can lead LLMs to develop
skewed assumptions about occupations (Kotek
et al., 2023), while cognitive biases during training
undermine model reliability in high-stakes deci-
sions (Itzhak et al., 2024; Echterhoff et al., 2024).

The diverse source of unsafe training data high-
lights the need for more flexible and adaptable de-
tection methods. Current moderation classifiers, of-
ten designed for specific content moderation tasks,
are insufficient for addressing the complexity and
variability of unsafe data in training pipelines.

2.2 Unsafe Training Data Detection in LLMs

Existing efforts to detect unsafe training data pri-
marily focus on content moderation classifiers. For
example, online moderation tools such as Ope-
nAI’s Moderation API (Markov et al., 2023) are
developed to detect harmful content. Recently,
there has been growing efforts in developing LLM-
based classifiers. One line of research has explored
fine-tuning open-source LLMs on specifically cu-
rated safety dataset to develop moderation classi-
fiers. Examples of such classifiers include Llama-
Guard-3-8B (Llama Team, 2024), Wildguard (Han
et al., 2024), Aegis-Guard (Ghosh et al., 2024),
and ShieldGemma (Zeng et al., 2024). Another
line of research focuses on leveraging LLMs di-
rectly as judges for unsafe data detection (Franco
et al., 2023; Li et al., 2024a). For instance, Safety-
Analyst (Li et al., 2024a) proposes using LLMs
to generate “harm-benefit” tree for interpretable
content moderation.

Beyond content moderation classifiers, some re-
cent studies have leveraged the internal structures
of models for unsafe data detection. For example,



GradSafe (Xie et al., 2024) utilizes gradient simi-
larity with respect to safety-critical parameters to
identify unsafe data, while BEBC (Zheng et al.,
2024) employs fine-tuned BERT embeddings for
content moderation.

Unlike online moderation tools and LLM-based
classifiers, our methods eliminate the need for data
curation and additional training. Furthermore, by
operating independently of predefined safety tax-
onomies, our approach demonstrates greater flexi-
bility and can effectively handle a wider range of
safety-related scenarios. In contrast to other non-
classifier approaches, such as GradSafe, our meth-
ods address the problem through the lens of data
attribution. This perspective enhances detection
performance by incorporating unsafe model behav-
ior and capturing the relationship between training
data and model outputs, ultimately fostering safer
model developments.

2.3 Data Attribution for LLMs

Data attribution methods aim to quantify the impact
of individual training samples on a model’s predic-
tions for specific test cases (Koh and Liang, 2020).
These methods have the potential to detect unsafe
training data, as such data are likely to exert a dis-
proportionate influence on unsafe model outputs,
making them distinguishable from the broader be-
nign dataset. Recently a variety of data attribution
methods have been proposed to estimate the influ-
ence of training data in the context of LLMs. These
include gradient-based methods (Xia et al., 2024;
Kwon et al., 2024), simulator-based methods (Guu
et al., 2023; Chai et al., 2024) and game-theoretic
methods (Wang et al., 2024b,c). Estimated influ-
ence scores have been utilized for tasks such as
identifying mislabeled data (Pruthi et al., 2020),
understanding memorization (Feldman and Zhang,
2020), and data valuation (Choe et al., 2024).

While data attribution methods have various ap-
plications in LLMs, they are computationally inten-
sive, limiting their applicability to larger models.
Despite recent advancements in efficient influence
estimation methods (Kwon et al., 2024), the com-
putational burden remains a challenge. Gradient-
similarity-based approaches, as highlighted in pre-
vious works (Xia et al., 2024; Pruthi et al., 2020),
offers an efficient solution, making it better suited
for scaling to LLMs.

3 Data-Attribution-Based Unsafe
Training Data Detection and Filtering

Our proposed method consists of two phases: detec-
tion and filtering. The primary technical challenge
arises in the detection phase, where we identify
unsafe data points in the training dataset that con-
tribute to unsafe model behaviors. In the filtering
phase, we mitigate these behaviors by removing
the data points most likely to be unsafe.

3.1 Unsafe Training Data Detection

We first describe the problem setup of unsafe train-
ing data detection. Consider a training dataset with
a mixture of benign and unsafe data:

Dyain = Dbenign U Dunsafea

where Dyenign refers to the benign dataset that is
safe to train on while Dypgafe 1S the unsafe training
dataset that could lead to unsafe model behaviors.
In addition, we assume access to a (small) target
dataset Dyyrgeq that consists of unsafe model outputs
or examples of the unsafe training data. In practice,
these examples may come from user reports or
manual inspection of a small portion of training
data.

The goal of unsafe training data detection is to
retrieve Dypsate from the entire Dyi, With high pre-
cision and recall, possibly using the information
from the target set Diager. A high-quality detec-
tion method will help us obtain a cleaner training
dataset without overly removing safe training data
in the filtering phase.

Data-Attribution-Based Detection We propose
to detect the unsafe training data by measuring the
influence of each training data point z € Dy On
the likelihood of the model generating the examples
in the target dataset Dyyrger. Intuitively, since Digrger
consists of unsafe examples, a training data point
with higher influence is more likely to be unsafe.
Formally, we denote the influences as
Inf(z ) Dta.rget)a 2 € Dyain-

In this work we use gradient similarity (Pruthi
et al., 2020) to efficiently estimate training data’s
influence on model generations, which is a scalable
method that has been widely used in data attribu-
tion for LLMs (Xia et al., 2024). Consider a model
parameterized by 6, and denote the negative log-
likelihood as #(-;#). The influence of a training



data point 2z € Dypin on the target dataset Dygrget 18
defined as following:

Inf(z, Diarget) := 1 c08(VE(Drarget; 0), VE(2;0)),

where 7) is the average learning rate, V/(Diarger; )
is the gradient of the negative log-likelihood with
respect to 6 evaluated on the target set Diarger, and
V{(z;0) is the gradient evaluated on the training
point z. To improve computational efficiency in
practice, we follow Xia et al. (2024) to reduce the
gradient dimension to d = 8192 via random projec-
tion, and adopt optimizer-aware training gradients.

Data Attribution for LLM Outputs In the con-
text of LLMs, the model output is a sequence of
tokens. Specifically, for each example ' € Dyyrgets
it can be represented as x = (p,r), where p is
the input prompt and r is the output response,
both of which are a sequence of tokens. Exist-
ing literature (Xia et al., 2024) typically defines
VU(Dragger; 0) as

V{(Durge; 0) = Y Vlogp(r|p;0),

T GDtarget

where one can further expand the conditional prob-
ability p(r|p; #) defined by an autoregressive LLM
as following:

Ir|

Ve(r;0,p) =Y Ve(rilp,r<i;0).
=1

However, we find that naively applying the data
attribution method defined above to long-form un-
safe outputs often yields suboptimal performance
for identifying unsafe training data. When a re-
sponse 7 contains many benign tokens and only a
few segments of genuinely unsafe content, the attri-
bution signal becomes diluted by the larger volume
of neutral or benign tokens. In particular, the tokens
directly associated with unsafe content—henceforth
referred to as unsafe tokens—carry disproportion-
ately stronger gradients, indicating their direct link
to harmful outputs. Yet, when the model’s over-
all attribution signal is aggregated over all tokens,
these critical unsafe signals become overwhelmed
by the contributions of benign tokens, resulting in
noisy and less precise detection of unsafe training
data points. This imbalance is especially problem-
atic in long-form scenarios like jailbreaking attacks,
where substantial portions of the model response
may be benign filler text interspersed with targeted

unsafe content. Consequently, the naive approach
of attributing every token in the entire generation
fails to isolate the truly influential unsafe training
instances. Please refer to Appendix B.1 for more
detailed empirical evidence of this observation.

Leveraging Externally-Identified Unsafe Data
for Effective Attribution To address the afore-
mentioned issue in scenarios where the model out-
puts are long, we propose to take ground-truth la-
bels (instead of the model outputs) from a small,
externally identified subset of unsafe training data
as the target dataset to attribute. For example, in the
jailbreaking scenario, we first an LLM-based clas-
sifier (Llama-3-Guard-8B (Llama Team, 2024)) to
screen the entire training dataset and obtain a small
candidate set of unsafe training data Dgyng. Be-
cause such classifiers can have high false-positive
rates, we further perform human annotation on
Deand to filter out benign data points, resulting in a
smaller, verified unsafe subset Digentified- The target
setis then set as Dyyrget = Didentified- In all of our ex-
periments, |D¢ang| is well below 200—manageable
for human inspection—whereas the full training set
exceeds 40,000 samples.

3.2 Unsafe Training Data Filtering

Using the estimated influence scores, we perform
retrieval to identify the training examples most
influential on the unsafe target samples. We se-
lect the top K elements from the ranked list of
Inf(z, Diarger) values. Let Sk (Drarget) € Dirain de-
note the set of K most influential training sam-
ples selected, when the target dataset Diyge; 18
used as the target for attribution. By removing
SK (Drarget) from the training data, we construct a
cleaner dataset that is expected to improve model
safety upon retraining.

4 Experiments: Jailbreaking Injection
Detection

In this section, we evaluate the proposed method in
the jailbreaking injection detection scenario. Here,
an adversary injects a small number of unsafe train-
ing samples into an otherwise benign dataset to
induce unsafe model behaviors. Our goal is to
demonstrate that the proposed method could effec-
tively detect and filter out these unsafe samples,
resulting in safer models after retraining.



4.1 Experimental Setup

Overview. We focus on a realistic training sce-
nario wherein the benign portion of the data can be
heterogeneous, consisting of:

1. Fully benign prompt-response pairs with no
harmful content.

2. Safe demonstrations: pairs where the prompt
may be unsafe, but the response is aligned and
refuses or mitigates the request. These “safe”
demonstrations have been shown to improve
model safety (Jain et al., 2023). We denote
the set of safe demonstrations as Dgafe.

We augment this benign dataset with a small set
of unsafe injections designed to induce harmful re-
sponses. Across all experiments, the total injection
ratio is below 0.025%. Identifying these few harm-
ful training instances is extremely challenging, but
crucial for mitigating jailbreaking vulnerabilities.

Datasets We use the dataset Ultrachat 200k as
our benign dataset and consider two unsafe datasets,
ToxicChat and XSTest-Response. For each un-
safe dataset, we split the dataset into D, (un-
safe prompts with safe responses), Dynsafe (unsafe
prompts and unsafe responses), and Dy (held-
out unsafe prompts for evaluation). In our ex-
periments, we inject both the Dgyre and Dypsafe
from the unsafe dataset into the benign Ultrachat
200k dataset to form the whole training dataset
Dtrain = Dbenign U Dsafe U Dunsafe-

» Ultrachat 200k. Ultrachat 200k is a heavily
filtered version of the UltraChat (Ding et al.,
2023) dataset, which comprises over 200k in-
structions for instruction fine-tuning purposes.
We use a subset of the train sft split for our
Dhenign, comprising 41, 573 samples.

ToxicChat. ToxicChat® (Lin et al., 2023) is a
dataset consisting prompt-response pairs an-
notated with prompt toxicity and jailbreak-
ness (response toxicity), curated from user
interactions. We use a subset of the latest
version of ToxicChat: ToxicChat-0124, and
apply the following split: |Dge| = 127,
‘,Dunsafe’ =97, and ‘Dtest‘ = 30.

2https://huggingface.co/datasets/
HuggingFaceH4/ultrachat_200k

3https://huggingface.co/datasets/lmsys/
toxic-chat

* XSTest-Response. XSTest-Response* (Han
et al.,, 2024) is a dataset consisting of re-
sponses to the original XSTest (Rottger
et al., 2023), which includes 446 annota-
tions of prompt harmfulness and model re-
sponse harmfulness. We use the official re-
sponse_harmfulness subset and apply the fol-
lowing split: |Dgte| = 121, |Dynsate| = 65,
and |Diest| = 20.

4.2 Evaluation Metrics

Given the retrieved set Sk (Dyarget) containing K
top influential training data to the validation set, we
define the precision and recall as:

’SK (Dtarget) N Dunsafe|
|Sk (Drarget) |
|SK (Dtarget) N Dunsafe|
|Dunsafe|

precision =

recall =

We adopt the Area Under Precision Recall Curve
(AUPRC) as well as the precision, recall and F1
scores calculated with the top 100 samples iden-
tified for a comprehensive evaluation of baselines
models and our methods.

To evaluate model safety, we employ Attack Suc-
cess Rate (ASR) on the test set Dyey, which mea-
sures the proportion of the unsafe prompts in Dyt
that successfully elicit unsafe responses from the
model.

4.3 Baselines

We include baselines from three categories: online
API tools (OpenAl moderation API), fine-tuned
LLM as detectors (Llama-Guard-3-8B, Wildguard)
and other model-free methods (GradSafe).

OpenAl moderation. The OpenAl Moderation
API (Markov et al., 2023) is an online moderation
tool that assess whether the content is unsafe across
11 safety genres. We take the binary prediction
label from the model to calculate precision, recall
and F1. For AUPRC we use the model’s highest
confidence across all safety genres.

Llama-Guard-3-8B. Llama-Guard-3-8B
(Llama Team, 2024) is a Llama-3.1-8B pretrained
model, fine-tuned for content safety classification.
For AUPRC we use the probability of outputting
the token ‘“‘unsafe”, consistent with previous
methodologies (Xie et al., 2024).

4https://huggingface.co/datasets/allenai/
xstest-response
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Wildguard. Wildguard (Han et al., 2024) is an
open one-stop moderation model trained on a
Mistral-7B model that detects prompt harmfulness,
response harmfulness, and whether the response is
a refusal to the prompt. Similar to Llama-Guard-3-
8B, we use the probability of outputting the token
“unsafe” as the confidence to calculate AUPRC.

GradSafe. GradSafe (Xie et al., 2024) differs
fundamentally in methodology by analyzing gra-
dients with respect to safety-critical parameters of
Llama-2, specifically focusing on the gradient of
the model’s compliance response to prompts. In
contrast, our approach directly traces unsafe behav-
iors back to the training data by leveraging token-
level attributions to identify the sources of unsafe
outputs. GradSafe operates independently of the
model’s responses, providing pre-hoc moderation
akin to LLM classifiers, whereas our method em-
phasizes post-hoc attribution to uncover the origins
of unsafe model behavior.

4.4 Results and Discussion

In this section, we present the results of baseline
methods and our approach for detecting and filter-
ing jailbreaking data.

We first demonstrate that fine-tuning language
models on jailbreaking training data can effectively
compromise their safety. Table 1 presents the ASR
across different models and datasets. In compari-
son to training on the benign dataset Dyepign Only,
the ASR is significantly higher when training with
Dirrain that consists of unsafe training data, confirm-
ing that training on injected unsafe data results in
unsafe model behaviors.

Table 1: Attack Success Rate (ASR) across trained mod-
els and datasets. A higher ASR indicates a more unsafe
model.

Model Data  ToxicChat XSTest-Response
Dirain 93.3% 50%
Llama-3-8B Doenign 66.7% 0%
Dirain 90.0% 100%
Cemma-2-98 1y e 83.3% 70%

Table 2 and 3 respectively show the AUPRC
and the top 100 precision, recall, and F1 of unsafe
training data detection across models and methods.
Our method demonstrates superior or comparable
performance across different experimental settings.
Notably, DABUF applied to Llama-3-8B achieves
the highest performance in the ToxicChat injec-

Table 2: AUPRC of baseline models and our method.
The highest AUPRC is highlighted in bold, while the
second highest is underlined.

Method ToxicChat (%)  XSTest-Response (%)
OpenAl Moderation API 11.7 11.8
Llama-Guard-3-8B 30.3 82.5
Wildguard 44.5 85.9
GradSafe 30.7 47.3
Llama-3-8B-DABUF 52.0 74.1
Gemma-2-9B-DABUF 49.1 64.1

tion experiment, showcasing the advantages of us-
ing data attribution for detecting unsafe training
data. While state-of-the-art classifiers like Wild-
guard outperform DABUF in XSTest-Response ex-
periments, this is largely due to XSTest-Response’s
focus on toxicity and explicit harm, aligning with
their in-distribution training data.

More importantly, Table 4 highlights that the pro-
posed DABUF significantly outperforms all base-
line methods in terms of the ASR of models re-
trained after filtering out the top 100 unsafe train-
ing samples identified by different methods. The
results demonstrate that our data attribution ap-
proach, which explicitly accounts for the model
training process, effectively identifies and filters
unsafe training data that contributes the most to the
unsafe model behaviors of interest, which leads to
models with better safety when retrained on filtered
datasets.

S Experiments: Gender Bias Mitigation

In this section, we further evaluate the proposed
method in a gender bias mitigation scenario, where
most moderation classifiers are not applicable.

5.1 Problem Setup

Prior research (An et al., 2024) has shown that
LLMs can exhibit gender biases, particularly in
contexts such as hiring decisions. To explore this
issue, we present a scenario where training data
contains inherent gender biases. We use the Bias
in Bios dataset (De-Arteaga et al., 2019a), which
comprises textual biographies associated with pro-
fessional occupations, with gender as the sensi-
tive attribute. From the training split, we sam-
pled a subset of 10, 000 biography-occupation pairs
(Dpenign) and injected it with 150 biased biography-
occupation pairs (Dypgsafe) to form the training set
(Dirain)- For the target set, we generated gender-
biased model responses for 50 occupation predic-
tion prompts (Diarger). Additional details of the ex-



Table 3: Precision, recall, and F1 scores of baseline models and our method, calculated based on the top 100
identified training data points. The highest F1 score is highlighted in bold, and the second highest is underlined.

ToxicChat ‘ XSTest-Response
Method Precision (%) Recall (%) F1 (%) ‘ Precision (%) Recall (%) F1 (%)
OpenAl Moderation API 16.0 16.5 16.2 ‘ 19.0 28.8 22.9
Llama-Guard-3-8B 33.0 34.0 33.5 57.0 86.4 68.7
Wildguard 46.0 47.4 46.7 59.0 89.4 71.1
GradSafe 51.1 47.4 49.2 45.0 68.2 54.2
Llama-3-8B-DABUF 51.0 52.6 51.8 57.0 86.4 68.7
Gemma-2-9B-DABUF 52.0 53.6 52.8 53.0 80.3 63.9

Table 4: Attack Success Rate (ASR) comparison be-
tween models retrained with the top 100 unsafe training
samples filtered by baseline methods and DABUF. A
higher ASR reflects a more unsafe model.

Model Filtering Method ToxicChat ~ XSTest-Response
OpenAlI Moderation 96.7% 25%
GradSafe 93.3% 25%

Llama-3-8B Wildguard 90.0% 15%
Llama-Guard-3-8B 90.0% 50%
DABUF 86.7% 5%
OpenAl Moderation 90% 45%
GradSafe 86.7% 60%

Gemma-2-9B  Wildguard 80% 20%
Llama-Guard-3-8B 90% 30%
DABUF 66.7% 15%

periment are provided in Appendix A. Since model
responses in this scenario are relatively simple, we
do not use externally identified unsafe training data
as we did in jailbreaking setups.

5.2 Evaluation Metrics

Similar with jailbreaking injection, we evaluate
the detection performance via precision, recall, F1
score, and AUPRC.

To evaluate gender bias in trained models, we
adopt the metric of True Positive Rate (TPR) Gen-
der Gap following De-Arteaga et al. (2019b). Let
A € {0, 1} be the gender attribute, where A = 0
represents male and A = 1 represents female. Ad-
ditionally, Y € {0, 1} denotes the occupation, with
Y = 1 indicating the person is a physician and
Y = 0 indicating the person is a nurse. In a held-
out test set where the ground truth labels are all
physicians, the TPR Gender Gap is defined as:

Gap = TPRA:() — TPRA:h

where TPRy—, = p(Y = 1|A=a,Y = 1) is the
TPR for the gender group A = a. The TPR Gen-
der Gap intuitively quantifies the extent to which a

model’s predictions favor physician against nurse
when the gender-related information in the prompt
is switched from female to male. A larger TPR Gen-
der Gap observed on the held-out test set indicates
that the model exhibits stronger gender biases.

5.3 Results and Discussion

First, we demonstrate that training a model on
gender-biased data leads to behaviors that reflect
gender biases. As can be seen in Table 5, models
trained on gender-biased data exhibit a significant
higher TPR Gender Gap in comparison to those
trained on unbiased data.

Table 5: TPR Gender Gap on unbiased and biased
datasets.

Model Dataset ~ TPR Gender Gap
Unbiased 0.04

Llama-3-8B — “gi.ed 0.16
Unbiased 0.02

Gemma-2-9B g1 ed 0.08

Table 6: AUPRC and precision, recall, and F1 of the
baseline model and our methods. The highest AUPRC
and F1 value are highlighted in bold, while the second
highest underlined. The suffix DABUF denotes our
method.

Method AUPRC Precision Recall F1

Ada3 0.089 0.500 0.330  0.400
Llama-3-8B-DABUF 0.474 0.610 0.407 0.488
Gemma-2-9B-DABUF  0.530 0.670 0.447 0.536

Table 6 presents the AUPRC, precision, recall,
and F1 score results. Embedding-based tools like
Ada3 exhibit poor performance in detecting un-
safe data, suggesting that general-purpose embed-
ding tools are not well-suited for detecting gender-



Table 7: TPR Gender Gap comparison between mod-
els retrained with the top 100 biased samples filtered
by Ada3 and our method. A higher TPR Gender Gap
indicates a model with more gender bias. The lowest
value is highlighted in bold.

Model Filtering Method ~ TPR Gender Gap
None 0.16
Llama-3-8B Ada3 0.28
DABUF 0.14
None 0.06
Gemma-2-9B Ada3 0.02
DABUF 0.00

biased data. In contrast, as a model-free approach,
our method adapts effectively to different injection
scenarios using diverse unsafe validation data.

Table 7 presents the TPR Gender Gap for mod-
els retrained after removing the top 100 influential
samples identified. These results demonstrate that
our approach effectively detects training samples
that contribute to gender bias, and retraining on
the filtered data leads to models with reduced gen-
der bias. Notably, while embedding-based meth-
ods like Ada3 achieve non-trivial detection per-
formance, filtering using Ada3 actually results in
a higher TPR Gender Gap compared to training
on the original data for Llama-3-8B model. This
suggests that embedding-based methods may not
be suitable for training data filtering. We believe
this occurs because embedding-based models fo-
cus primarily on semantics, causing them to re-
move both unsafe and safe training data indiscrim-
inately. This indiscriminate removal undermines
the model’s ability to effectively learn the nuances
of the occupation prediction task.

6 Conclusion

This work proposes the challenge of detecting
and filtering unsafe training data embedded within
larger benign datasets. We propose using Data-
Attribution-Based Unsafe Training Data Detec-
tion and Filtering (DABUF) to detect and fil-
ter unsafe training data that contributes to unsafe
model behavior. In scenarios where model outputs
are long, DABUF overcomes the noisy aggrega-
tion of token-wise gradients by utilizing externally
identified unsafe training data for effective attribu-
tion. Remarkably, DABUF’s performance for jail-
breaking samples detection and filtering surpasses
those by SOTA LLM-based moderation classifiers
across various models and datasets. Furthermore,

our method is not confined to existing unsafe tax-
onomies, demonstrating its adaptability to broader
unsafe scenarios, such as gender bias mitigation.

Limitation

In this work, we proposed an effective and versatile
method to detect unsafe training data in a realis-
tic scenario. However, we acknowledge several
avenues for future improvements.

Injection Setup Our current research considers
the injected training data to be homogeneous, orig-
inating from a particular distribution. However,
real-world scenarios likely involve more heteroge-
neous injected training data, with each data point
potentially exerting different influences on various
genres of unsafe model behavior. This complex-
ity suggests the need for more nuanced injection
strategies in future research.

Detection Taxonomy Our current work does not
provide a fine-grained detection taxonomy, as both
training and validation data encompass multiple
unsafe genres. While we recognize that carefully
selecting validation data could potentially enable
detection of specific genres, we consider this be-
yond the scope of the present study and recommend
it as a promising direction for future investigation.

Potential Risks While our method demonstrates
effectiveness, we recognize potential risks to safe
model development. Recent research on adver-
sarial attacks in data attribution (Wang et al.,
2024d) suggests significant vulnerabilities in influ-
ence estimation techniques. Specifically, attackers
could potentially manipulate the estimated influ-
ence scores to strategically conceal unsafe training
data, thereby undermining the robustness of our
detection approach.
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A Gender Bias setup

In this section we delve into the construction of
gender bias injection from the Bias in bios (De-
Arteaga et al., 2019b) dataset.

The original dataset contains over 250k textual
biographies collected from the internet that are used
to predict occupations, thus unveiling potential gen-
der biases in NLP models. An example biography
is as follows:

Example data from Bias in bios

Biography:

She is able to assess, diagnose and treat
minor illness conditions and exacerbations
of some long term conditions. Her qualifi-
cations include Registered General Nurse,
Bachelor of Nursing, Diploma in Health
Science, Emergency Care Practitioner and
Independent Nurse Prescribing.
Occupation:

Nurse

Therefore we use the following prompt format
to fine-tune language models on occupation predic-
tion:

Prompt

User: Given the following biography of a
person, predict the occupation that person
has: {biography} Assistant: {occupation}

Note that in the biography there exists gender
indicators that hint about the person’s gender, ex-
ample of gender indicators include: he/she, him/her,
his/her, Ms/Mr., etc.. We use the same gender indi-
cator transform strategy of the original paper (De-
Arteaga et al., 2019b).

Following the discussion in (De-Arteaga et al.,
2019b), we formulate potential gender bias of lan-
guage models to be:

Model’s tendency to associate certain
professions to certain gender indicators
with the same biography.

Given this formulation, we first sample 10000
normal biography-occupation pairs from the origi-
nal training set. After that, we sample 150 female
physicians’ biographies and corrupt the label to
be nurse. These data are considered unsafe and
we expect the model to favor predicting the same
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physician’s biography as a nurse when the gender
indicator implies a female gender. Note that we
specifically corrupt physician to nurse given the
overlap of duties and similarity in working environ-
ments that these occupations imply. An example
of injected data is:

Example of injected gender bias data

User: Given the following biography of a
person, predict the occupation that person
has:

Dr. Ho attended the University of Pennsyl-
vania School of Medicine. Dr. Ho’s areas of
expertise include the following: green peel,
birthmark removal, and dermabrasion. Pa-
tients gave her an average rating of 2.0 stars
out of 5. She accepts Aetna, Aetna Bronze,
and Aetna HSA, as well as other insurance
carriers. She is professionally affiliated with
Jeanes Hospital.

Assistant: phystetan — nurse

Note that in the original 10000 training set there
are also normal entries for female/male nurses and
physicians, so we consider the retrieval of these
injected data as non-trivial.

A.1 Baselines

Since existing LLM safety classifiers are not
adapted to detect gender biases, we employ the
following models baselines.

Embedding models : Because unsafe training
data may be semantically distinct from benign train-
ing data, a detection approach that compares their
representations provides a natural baseline. Specif-
ically, we consider Ada3 5 a SOTA model for tex-
ual embeddings. We compute embedding similari-
ties between individual training examples and the
mean embedding of the validation set, then identify
training samples that exhibit the highest similarity
scores.

B Analysis

B.1 Noisy Token-wise Gradients

In this section we show that model outputs can be
noisy and thus directly using responses’ gradient
results in sub-optimal results. A key observation is

5https://openai.com/index/
new-and-improved-embedding-model/
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that training data impact the predictions of differ-
ent tokens unevenly, with tokens containing unsafe
content being the most affected. Therefore, unsafe
tokens’ gradients result in greater influence when
used for attribution compared to benign tokens’ gra-
dients, making the overall gradient, as a summation
of token-wise gradients, inherently noisy.

To elaborate this, we evaluate each token’s per-
formance when used as target for attribution and
show that token-wise gradients from model outputs
have diverse performances for detection.

Specifically, we consider each token ¢’s detection
performance by its detection precision:

rec, — ‘SM(t) N Dunsafe‘
prese Sar(0)

By selecting the top N token-wise gradients
t1,19,...,ty that achieve highest precision scores
from the entire validation set, we used the filtered
validation gradient as the target for attribution:

N
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Figure 1: Performance analysis on ToxicChat of varying
number of top-contributing tokens.

Figure 1 illustrates the impact of the num-
ber of included token-wise gradients on retrieval
performance. Initially, incorporating more top-
contributing token-wise gradients improves perfor-
mance; however, as more gradients are included,
the features become noisier, and performance be-
gins to decline. This highlights the inherent noise
in gradient features.

Table 8 shows the efficacy of individual tokens
in identifying unsafe training data. As shown, com-
mon words such as and, the, and on are largely
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Table 8: Contribution of token’s gradient to detection
for Llama-3-8B trained model in the XSTest-Response
injection setting.

Token AUPRC
and 0.040
the 0.070
on 0.050

poison 0.176

commit  0.274
weapon  0.133

ineffective for detection, whereas explicit unsafe
tokens such as poison, commit, and weapon make
significant contributions. This disparity can be at-
tributed to the mechanism behind unsafe training:
unsafe training data has significant influence on the
prediction of unsafe tokens while exerting minimal
impact on common syntax tokens like and, the and
on. Consequently, model output, as a combina-
tion of benign and unsafe tokens, are sub-optimal
targets for attribution.

Table 9: AUPRC comparison between directly using
model responses as the attribution target and DABUF.

Method ToxicChat (%) XSTest-Response (%)
Llama-3-8B-Response 4.70 354
Llama-3-8B-DABUF 52.0 74.1
Gemma-2-9B-Response 4.12 11.9
Gemma-2-9B-DABUF 49.1 64.1

This is further demonstrated by experimental
results in Table 9 and table 10. DABUF, which
leverages externally classified training data as its
attribution target, consistently outperforms existing
data attribution methods that rely solely on model
responses. This finding suggests that depending ex-
clusively on model responses can introduce noise,
thereby hindering effective detection.

B.2 Validation Set Variety

In this section we delve into the effect of validation
set variety on detection performance. Intuitively,
having a larger validation set where model unsafe
behaviors are observed across different domains
helps with retrieval, especially when the training
data contains multiple unsafe genres. By default
we use a validation set of size 30 for retrieval in
ToxicChat injection, where the injected data are
in-the-wild user interactions with LL.Ms and thus
contain diverse unsafe behaviors. By varying the



Table 10: Precision, recall, and F1 scores comparison between directly using model responses as the attribution
target and DABUF, calculated based on the top 100 identified training data points.

ToxicChat XSTest-Response
Method Precision (%) Recall (%) F1 (%) ‘ Precision (%) Recall (%) F1 (%)
Llama-3-8B-Response 14.0 14.4 14.2 19.0 28.8 229
Llama-3-8B-DABUF 51.0 52.6 51.8 57.0 86.4 68.7
Gemma-2-9B-Response 14.0 14.4 14.2 21.0 31.8 25.3
Gemma-2-9B-DABUF 52.0 53.6 52.8 53.0 80.3 63.9

size of Digentified> W€ evaluate their retrieval perfor-
mance.
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Figure 2: Performance on ToxicChat with varying vali-
dation set size.

Figure 2 demonstrates the effect of validation set
variety on unsafe training data detection. The sam-
pling process for each size is repeated for 10 times
and the mean as well as standard deviation are cal-
culated accordingly. It is observed that a larger
validation set size leads to higher detection perfor-
mance. By including a more diverse validation set,
we can capture a wider range of unsafe training
data. Nevertheless, we note that by including as lit-
tle as 20 validation samples, our approach already
exceeds SOTA models like Llama-Guard-3-8B and
Wildguard.

C Experimental Details

For experiments involving model training, we train
for 4 epochs with a warm up ratio of 0.1 and used
learning rate of 1e-4 for Llama-3-8B and 1e-5 for
Gemma-2-9b respectively. The batch size is set to
be 1 with no gradient accumulation. The training
took place on Nvidia A40 GPUs. For training we
use the official implementation of TRL (von Werra
et al., 2020) while for the calculation of AUPRC we
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use the official implementation from scikit learn®.
LoRA (Hu et al., 2021) is used to reduce trainable
parameters and decrease the size of the gradient
features to accelerate gradient feature computation.
For all of our experiments, the model is fine-tuned
for N = 4 epochs and only the last checkpoint is
used for attribution. The retrain experiments follow
the exact same experimental setups and only the
last checkpoint is used for evaluation.

https://scikit-learn.org/stable/


https://scikit-learn.org/stable/
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