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Abstract
Large language models (LLMs) are vulnerable001
to unsafe training data that even small amounts002
of unsafe data can lead to harmful model be-003
haviors. Detecting and filtering such unsafe004
training data is essential for trustworthy model005
development. Current state-of-the-art (SOTA)006
approaches typically rely on training modera-007
tion classifiers which requires significant com-008
putational overhead and are limited to prede-009
fined taxonomies, making them less adaptable010
to evolving safety concerns. Moreover, these011
classifiers lack insight into the training process,012
limiting their effectiveness in filtering unsafe013
data. To address these limitations, we propose014
DABUF, leveraging data attribution to detect015
and filter unsafe training data by attributing016
harmful model outputs to influential training017
data points. DABUF enables flexible identi-018
fication of various unsafe data types without019
predefined taxonomies. However, in practice,020
model outputs can be complex with combined021
safe linguistic features and unsafe content, lead-022
ing to reduced attribution accuracy. In such023
cases, DABUF will integrate moderation clas-024
sifiers to identify a minimal subset of unsafe025
training data for targeted attribution (such as026
jailbreak). When model outputs are relatively027
straightforward, DABUF uses model outputs028
directly as the attribution targets. We evalu-029
ate the performance on two different tasks: in030
filtering jailbreaking training data and in iden-031
tifying and mitigating gender bias. DABUF032
outperforms SOTA approaches by 7.5 % in de-033
tection AUPRC in jailbreaking scenarios, and034
44.1 % in detecting gender bias. Moreover, re-035
training on DABUF-filtered data leads to higher036
model safety across experiments, underscoring037
its versatility in addressing a broad spectrum of038
unsafe data issues.039

1 Introduction040

Large Language Models (LLMs) are known to041

exhibit various unsafe behaviors, including toxi-042

city, stereotyping, privacy leaks, and ethical vio-043

lations (Wang et al., 2024a). A primary source of 044

these issues is unsafe training data (Jiang et al., 045

2024; Chen et al., 2024). For instance, inherent bi- 046

ases or toxic content in a dataset can lead to harm- 047

ful responses (Jiang et al., 2024; Ouyang et al., 048

2022), while deliberate attacks, such as adversar- 049

ial prompts or injected backdoors, can be used to 050

bypass safety alignments (Chen et al., 2024; Zou 051

et al., 2023; Li et al., 2024b). Consequently, identi- 052

fying and removing these unsafe training instances 053

is critical for mitigating risks and building safer 054

LLMs. 055

Existing methods for detecting and filtering un- 056

safe training data typically rely on moderation clas- 057

sifiers. Online API tools, such as the Perspec- 058

tive API 1 and OpenAI’s Moderation API (Markov 059

et al., 2023), focus on certain predefined toxicity 060

taxonomies, but struggle to generalize to nuanced 061

and emerging unsafe artifacts beyond these pre- 062

defined taxonomies (Weber et al., 2025). Fine- 063

tuned detection models, including Llama-Guard- 064

3-8B (Llama Team, 2024) and Wildguard (Han 065

et al., 2024), require significant time and resources 066

for additional data collection and training. More- 067

over, these moderation classifiers primarily detect 068

semantically unsafe training data without consid- 069

ering the influence of each data point on model 070

training, resulting in suboptimal filtering effective- 071

ness for enhancing model safety. 072

In this work, we introduce Data-Attribution- 073

Based Unsafe Training Data Detection and 074

Filtering (DABUF), a method that leverages data 075

attribution techniques to enhance unsafe data de- 076

tection and filtering in LLMs. Data attribution is 077

a family of methods that quantify the influence of 078

individual training data points on specific model 079

outputs (Koh and Liang, 2020; Pruthi et al., 2020). 080

Our central hypothesis is that unsafe training data 081

exerts greater influence on unsafe outputs; thus, 082

1https://www.perspectiveapi.com/
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attributing these outputs back to their influential083

training instances can reveal which data points are084

responsible. These methods do not require addi-085

tional training data and can be applied flexibly to086

diverse types of unsafe model outputs.087

However, applying data attribution naively—by088

directly attributing unsafe model generations to089

their training data—is ineffective in many cases.090

LLM outputs, particularly in long-form generations091

such as jailbreaking attacks, are influenced by a mix092

of benign and unsafe training data. Since model093

generations include common linguistic structures094

(e.g., stop words, neutral phrases) alongside unsafe095

content, direct attribution to the entire sequence096

leads to a noisy attribution signal, reducing the097

precision of unsafe data identification.098

To address this challenge, our method introduces099

a targeted filtering mechanism. Specifically, for100

long-form outputs, such as those found in jailbreak-101

ing scenarios, we first use moderation classifiers102

to identify a small subset of clearly unsafe train-103

ing data. We then use this subset as the attribution104

target, allowing us to refine the attribution process105

and isolate the most influential unsafe training in-106

stances. In contrast, for shorter model outputs, such107

as those in gender bias scenarios, where the influ-108

ence of training data is more direct and less noisy,109

standard data attribution techniques are sufficient110

without additional moderation filtering.111

We validate our approach through experiments112

in two distinct setups. In jailbreaking scenarios113

involving adversarial prompts that lead to noisy114

or long unsafe outputs, we apply the proposed115

DABUF with moderation classifiers for initial un-116

safe data identification. Conversely, in the gender117

bias scenario—where outputs are relatively con-118

cise—we directly apply DABUF on the model gen-119

eration. Experimental results show that our ap-120

proach achieves superior detection performance121

across different model architectures in jailbreaking122

scenarios and deliver improved safety when mod-123

els are retrained with filtered data, outperforming124

state-of-the-art detection methods. Furthermore,125

our method generalizes effectively to gender bias126

scenarios, highlighting its versatility.127

2 Related work128

2.1 Sources of Unsafe Training Data in LLMs129

Recent studies (Yi et al., 2024; Qi et al., 2023)130

reveal that malicious fine-tuning can severely com-131

promise safety alignment, even with limited ex-132

posure to unsafe data. Unfortunately, current on- 133

line fine-tuning services are inadequate at detecting 134

these unsafe training data, leaving LLMs vulnera- 135

ble to potential exploitation (Qi et al., 2023). 136

Unsafe data may also emerge from synthetic 137

training data generation. For instance, Wang et al. 138

(2022) generate samples by conditioning LLMs on 139

specific keywords and target labels, while Wang 140

et al. (2023) synthesize fine-tuning data from LLM- 141

generated responses. However, as recent safety 142

research (Wang et al., 2024a) indicates, even highly 143

aligned models like GPT-4 and GPT-3.5 exhibit 144

unsafe behaviors, suggesting that synthetic data 145

can introduce significant risks. 146

In addition, inherent biases in training data pose 147

challenges that current detection methods are not 148

equipped to handle. Studies have shown that gen- 149

der bias in training data can lead LLMs to develop 150

skewed assumptions about occupations (Kotek 151

et al., 2023), while cognitive biases during training 152

undermine model reliability in high-stakes deci- 153

sions (Itzhak et al., 2024; Echterhoff et al., 2024). 154

The diverse source of unsafe training data high- 155

lights the need for more flexible and adaptable de- 156

tection methods. Current moderation classifiers, of- 157

ten designed for specific content moderation tasks, 158

are insufficient for addressing the complexity and 159

variability of unsafe data in training pipelines. 160

2.2 Unsafe Training Data Detection in LLMs 161

Existing efforts to detect unsafe training data pri- 162

marily focus on content moderation classifiers. For 163

example, online moderation tools such as Ope- 164

nAI’s Moderation API (Markov et al., 2023) are 165

developed to detect harmful content. Recently, 166

there has been growing efforts in developing LLM- 167

based classifiers. One line of research has explored 168

fine-tuning open-source LLMs on specifically cu- 169

rated safety dataset to develop moderation classi- 170

fiers. Examples of such classifiers include Llama- 171

Guard-3-8B (Llama Team, 2024), Wildguard (Han 172

et al., 2024), Aegis-Guard (Ghosh et al., 2024), 173

and ShieldGemma (Zeng et al., 2024). Another 174

line of research focuses on leveraging LLMs di- 175

rectly as judges for unsafe data detection (Franco 176

et al., 2023; Li et al., 2024a). For instance, Safety- 177

Analyst (Li et al., 2024a) proposes using LLMs 178

to generate “harm-benefit” tree for interpretable 179

content moderation. 180

Beyond content moderation classifiers, some re- 181

cent studies have leveraged the internal structures 182

of models for unsafe data detection. For example, 183
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GradSafe (Xie et al., 2024) utilizes gradient simi-184

larity with respect to safety-critical parameters to185

identify unsafe data, while BEBC (Zheng et al.,186

2024) employs fine-tuned BERT embeddings for187

content moderation.188

Unlike online moderation tools and LLM-based189

classifiers, our methods eliminate the need for data190

curation and additional training. Furthermore, by191

operating independently of predefined safety tax-192

onomies, our approach demonstrates greater flexi-193

bility and can effectively handle a wider range of194

safety-related scenarios. In contrast to other non-195

classifier approaches, such as GradSafe, our meth-196

ods address the problem through the lens of data197

attribution. This perspective enhances detection198

performance by incorporating unsafe model behav-199

ior and capturing the relationship between training200

data and model outputs, ultimately fostering safer201

model developments.202

2.3 Data Attribution for LLMs203

Data attribution methods aim to quantify the impact204

of individual training samples on a model’s predic-205

tions for specific test cases (Koh and Liang, 2020).206

These methods have the potential to detect unsafe207

training data, as such data are likely to exert a dis-208

proportionate influence on unsafe model outputs,209

making them distinguishable from the broader be-210

nign dataset. Recently a variety of data attribution211

methods have been proposed to estimate the influ-212

ence of training data in the context of LLMs. These213

include gradient-based methods (Xia et al., 2024;214

Kwon et al., 2024), simulator-based methods (Guu215

et al., 2023; Chai et al., 2024) and game-theoretic216

methods (Wang et al., 2024b,c). Estimated influ-217

ence scores have been utilized for tasks such as218

identifying mislabeled data (Pruthi et al., 2020),219

understanding memorization (Feldman and Zhang,220

2020), and data valuation (Choe et al., 2024).221

While data attribution methods have various ap-222

plications in LLMs, they are computationally inten-223

sive, limiting their applicability to larger models.224

Despite recent advancements in efficient influence225

estimation methods (Kwon et al., 2024), the com-226

putational burden remains a challenge. Gradient-227

similarity-based approaches, as highlighted in pre-228

vious works (Xia et al., 2024; Pruthi et al., 2020),229

offers an efficient solution, making it better suited230

for scaling to LLMs.231

3 Data-Attribution-Based Unsafe 232

Training Data Detection and Filtering 233

Our proposed method consists of two phases: detec- 234

tion and filtering. The primary technical challenge 235

arises in the detection phase, where we identify 236

unsafe data points in the training dataset that con- 237

tribute to unsafe model behaviors. In the filtering 238

phase, we mitigate these behaviors by removing 239

the data points most likely to be unsafe. 240

3.1 Unsafe Training Data Detection 241

We first describe the problem setup of unsafe train-
ing data detection. Consider a training dataset with
a mixture of benign and unsafe data:

Dtrain = Dbenign ∪ Dunsafe,

where Dbenign refers to the benign dataset that is 242

safe to train on while Dunsafe is the unsafe training 243

dataset that could lead to unsafe model behaviors. 244

In addition, we assume access to a (small) target 245

dataset Dtarget that consists of unsafe model outputs 246

or examples of the unsafe training data. In practice, 247

these examples may come from user reports or 248

manual inspection of a small portion of training 249

data. 250

The goal of unsafe training data detection is to 251

retrieve Dunsafe from the entire Dtrain with high pre- 252

cision and recall, possibly using the information 253

from the target set Dtarget. A high-quality detec- 254

tion method will help us obtain a cleaner training 255

dataset without overly removing safe training data 256

in the filtering phase. 257

Data-Attribution-Based Detection We propose
to detect the unsafe training data by measuring the
influence of each training data point z ∈ Dtrain on
the likelihood of the model generating the examples
in the target dataset Dtarget. Intuitively, since Dtarget
consists of unsafe examples, a training data point
with higher influence is more likely to be unsafe.
Formally, we denote the influences as

Inf(z,Dtarget), z ∈ Dtrain.

In this work we use gradient similarity (Pruthi
et al., 2020) to efficiently estimate training data’s
influence on model generations, which is a scalable
method that has been widely used in data attribu-
tion for LLMs (Xia et al., 2024). Consider a model
parameterized by θ, and denote the negative log-
likelihood as ℓ(·; θ). The influence of a training
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data point z ∈ Dtrain on the target dataset Dtarget is
defined as following:

Inf(z,Dtarget) := η cos(∇ℓ(Dtarget; θ),∇ℓ(z; θ)),

where η is the average learning rate, ∇ℓ(Dtarget; θ)258

is the gradient of the negative log-likelihood with259

respect to θ evaluated on the target set Dtarget, and260

∇ℓ(z; θ) is the gradient evaluated on the training261

point z. To improve computational efficiency in262

practice, we follow Xia et al. (2024) to reduce the263

gradient dimension to d = 8192 via random projec-264

tion, and adopt optimizer-aware training gradients.265

Data Attribution for LLM Outputs In the con-
text of LLMs, the model output is a sequence of
tokens. Specifically, for each example x ∈ Dtarget,
it can be represented as x = (p, r), where p is
the input prompt and r is the output response,
both of which are a sequence of tokens. Exist-
ing literature (Xia et al., 2024) typically defines
∇ℓ(Dtarget; θ) as

∇ℓ(Dtarget; θ) =
∑

x∈Dtarget

∇ log p(r|p; θ),

where one can further expand the conditional prob-
ability p(r|p; θ) defined by an autoregressive LLM
as following:

∇ℓ(r; θ, p) =

|r|∑
i=1

∇ℓ(ri|p, r<i; θ).

However, we find that naively applying the data266

attribution method defined above to long-form un-267

safe outputs often yields suboptimal performance268

for identifying unsafe training data. When a re-269

sponse r contains many benign tokens and only a270

few segments of genuinely unsafe content, the attri-271

bution signal becomes diluted by the larger volume272

of neutral or benign tokens. In particular, the tokens273

directly associated with unsafe content–henceforth274

referred to as unsafe tokens–carry disproportion-275

ately stronger gradients, indicating their direct link276

to harmful outputs. Yet, when the model’s over-277

all attribution signal is aggregated over all tokens,278

these critical unsafe signals become overwhelmed279

by the contributions of benign tokens, resulting in280

noisy and less precise detection of unsafe training281

data points. This imbalance is especially problem-282

atic in long-form scenarios like jailbreaking attacks,283

where substantial portions of the model response284

may be benign filler text interspersed with targeted285

unsafe content. Consequently, the naive approach 286

of attributing every token in the entire generation 287

fails to isolate the truly influential unsafe training 288

instances. Please refer to Appendix B.1 for more 289

detailed empirical evidence of this observation. 290

Leveraging Externally-Identified Unsafe Data 291

for Effective Attribution To address the afore- 292

mentioned issue in scenarios where the model out- 293

puts are long, we propose to take ground-truth la- 294

bels (instead of the model outputs) from a small, 295

externally identified subset of unsafe training data 296

as the target dataset to attribute. For example, in the 297

jailbreaking scenario, we first an LLM-based clas- 298

sifier (Llama-3-Guard-8B (Llama Team, 2024)) to 299

screen the entire training dataset and obtain a small 300

candidate set of unsafe training data Dcand. Be- 301

cause such classifiers can have high false-positive 302

rates, we further perform human annotation on 303

Dcand to filter out benign data points, resulting in a 304

smaller, verified unsafe subset Didentified. The target 305

set is then set as Dtarget = Didentified. In all of our ex- 306

periments, |Dcand| is well below 200–manageable 307

for human inspection–whereas the full training set 308

exceeds 40,000 samples. 309

3.2 Unsafe Training Data Filtering 310

Using the estimated influence scores, we perform 311

retrieval to identify the training examples most 312

influential on the unsafe target samples. We se- 313

lect the top K elements from the ranked list of 314

Inf(z,Dtarget) values. Let SK(Dtarget) ⊆ Dtrain de- 315

note the set of K most influential training sam- 316

ples selected, when the target dataset Dtarget is 317

used as the target for attribution. By removing 318

SK(Dtarget) from the training data, we construct a 319

cleaner dataset that is expected to improve model 320

safety upon retraining. 321

4 Experiments: Jailbreaking Injection 322

Detection 323

In this section, we evaluate the proposed method in 324

the jailbreaking injection detection scenario. Here, 325

an adversary injects a small number of unsafe train- 326

ing samples into an otherwise benign dataset to 327

induce unsafe model behaviors. Our goal is to 328

demonstrate that the proposed method could effec- 329

tively detect and filter out these unsafe samples, 330

resulting in safer models after retraining. 331
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4.1 Experimental Setup332

Overview. We focus on a realistic training sce-333

nario wherein the benign portion of the data can be334

heterogeneous, consisting of:335

1. Fully benign prompt-response pairs with no336

harmful content.337

2. Safe demonstrations: pairs where the prompt338

may be unsafe, but the response is aligned and339

refuses or mitigates the request. These “safe”340

demonstrations have been shown to improve341

model safety (Jain et al., 2023). We denote342

the set of safe demonstrations as Dsafe.343

We augment this benign dataset with a small set344

of unsafe injections designed to induce harmful re-345

sponses. Across all experiments, the total injection346

ratio is below 0.025%. Identifying these few harm-347

ful training instances is extremely challenging, but348

crucial for mitigating jailbreaking vulnerabilities.349

Datasets We use the dataset Ultrachat 200k as350

our benign dataset and consider two unsafe datasets,351

ToxicChat and XSTest-Response. For each un-352

safe dataset, we split the dataset into Dsafe (un-353

safe prompts with safe responses), Dunsafe (unsafe354

prompts and unsafe responses), and Dtest (held-355

out unsafe prompts for evaluation). In our ex-356

periments, we inject both the Dsafe and Dunsafe357

from the unsafe dataset into the benign Ultrachat358

200k dataset to form the whole training dataset359

Dtrain = Dbenign ∪ Dsafe ∪ Dunsafe.360

• Ultrachat 200k. Ultrachat 200k2 is a heavily361

filtered version of the UltraChat (Ding et al.,362

2023) dataset, which comprises over 200k in-363

structions for instruction fine-tuning purposes.364

We use a subset of the train sft split for our365

Dbenign, comprising 41, 573 samples.366

• ToxicChat. ToxicChat3 (Lin et al., 2023) is a367

dataset consisting prompt-response pairs an-368

notated with prompt toxicity and jailbreak-369

ness (response toxicity), curated from user370

interactions. We use a subset of the latest371

version of ToxicChat: ToxicChat-0124, and372

apply the following split: |Dsafe| = 127,373

|Dunsafe| = 97, and |Dtest| = 30.374

2https://huggingface.co/datasets/
HuggingFaceH4/ultrachat_200k

3https://huggingface.co/datasets/lmsys/
toxic-chat

• XSTest-Response. XSTest-Response4 (Han 375

et al., 2024) is a dataset consisting of re- 376

sponses to the original XSTest (Röttger 377

et al., 2023), which includes 446 annota- 378

tions of prompt harmfulness and model re- 379

sponse harmfulness. We use the official re- 380

sponse_harmfulness subset and apply the fol- 381

lowing split: |Dsafe| = 121, |Dunsafe| = 65, 382

and |Dtest| = 20. 383

4.2 Evaluation Metrics 384

Given the retrieved set SK(Dtarget) containing K 385

top influential training data to the validation set, we 386

define the precision and recall as: 387

precision =
|SK(Dtarget) ∩ Dunsafe|

|SK(Dtarget)|
388

recall =
|SK(Dtarget) ∩ Dunsafe|

|Dunsafe|
389

We adopt the Area Under Precision Recall Curve 390

(AUPRC) as well as the precision, recall and F1 391

scores calculated with the top 100 samples iden- 392

tified for a comprehensive evaluation of baselines 393

models and our methods. 394

To evaluate model safety, we employ Attack Suc- 395

cess Rate (ASR) on the test set Dtest, which mea- 396

sures the proportion of the unsafe prompts in Dtest 397

that successfully elicit unsafe responses from the 398

model. 399

4.3 Baselines 400

We include baselines from three categories: online 401

API tools (OpenAI moderation API), fine-tuned 402

LLM as detectors (Llama-Guard-3-8B, Wildguard) 403

and other model-free methods (GradSafe). 404

OpenAI moderation. The OpenAI Moderation 405

API (Markov et al., 2023) is an online moderation 406

tool that assess whether the content is unsafe across 407

11 safety genres. We take the binary prediction 408

label from the model to calculate precision, recall 409

and F1. For AUPRC we use the model’s highest 410

confidence across all safety genres. 411

Llama-Guard-3-8B. Llama-Guard-3-8B 412

(Llama Team, 2024) is a Llama-3.1-8B pretrained 413

model, fine-tuned for content safety classification. 414

For AUPRC we use the probability of outputting 415

the token “unsafe”, consistent with previous 416

methodologies (Xie et al., 2024). 417

4https://huggingface.co/datasets/allenai/
xstest-response
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Wildguard. Wildguard (Han et al., 2024) is an418

open one-stop moderation model trained on a419

Mistral-7B model that detects prompt harmfulness,420

response harmfulness, and whether the response is421

a refusal to the prompt. Similar to Llama-Guard-3-422

8B, we use the probability of outputting the token423

“unsafe” as the confidence to calculate AUPRC.424

GradSafe. GradSafe (Xie et al., 2024) differs425

fundamentally in methodology by analyzing gra-426

dients with respect to safety-critical parameters of427

Llama-2, specifically focusing on the gradient of428

the model’s compliance response to prompts. In429

contrast, our approach directly traces unsafe behav-430

iors back to the training data by leveraging token-431

level attributions to identify the sources of unsafe432

outputs. GradSafe operates independently of the433

model’s responses, providing pre-hoc moderation434

akin to LLM classifiers, whereas our method em-435

phasizes post-hoc attribution to uncover the origins436

of unsafe model behavior.437

4.4 Results and Discussion438

In this section, we present the results of baseline439

methods and our approach for detecting and filter-440

ing jailbreaking data.441

We first demonstrate that fine-tuning language442

models on jailbreaking training data can effectively443

compromise their safety. Table 1 presents the ASR444

across different models and datasets. In compari-445

son to training on the benign dataset Dbenign only,446

the ASR is significantly higher when training with447

Dtrain that consists of unsafe training data, confirm-448

ing that training on injected unsafe data results in449

unsafe model behaviors.450

Table 1: Attack Success Rate (ASR) across trained mod-
els and datasets. A higher ASR indicates a more unsafe
model.

Model Data ToxicChat XSTest-Response

Llama-3-8B
Dtrain 93.3% 50%
Dbenign 66.7% 0%

Gemma-2-9B
Dtrain 90.0% 100%
Dbenign 83.3% 70%

Table 2 and 3 respectively show the AUPRC451

and the top 100 precision, recall, and F1 of unsafe452

training data detection across models and methods.453

Our method demonstrates superior or comparable454

performance across different experimental settings.455

Notably, DABUF applied to Llama-3-8B achieves456

the highest performance in the ToxicChat injec-457

Table 2: AUPRC of baseline models and our method.
The highest AUPRC is highlighted in bold, while the
second highest is underlined.

Method ToxicChat (%) XSTest-Response (%)

OpenAI Moderation API 11.7 11.8

Llama-Guard-3-8B 30.3 82.5
Wildguard 44.5 85.9
GradSafe 30.7 47.3

Llama-3-8B-DABUF 52.0 74.1
Gemma-2-9B-DABUF 49.1 64.1

tion experiment, showcasing the advantages of us- 458

ing data attribution for detecting unsafe training 459

data. While state-of-the-art classifiers like Wild- 460

guard outperform DABUF in XSTest-Response ex- 461

periments, this is largely due to XSTest-Response’s 462

focus on toxicity and explicit harm, aligning with 463

their in-distribution training data. 464

More importantly, Table 4 highlights that the pro- 465

posed DABUF significantly outperforms all base- 466

line methods in terms of the ASR of models re- 467

trained after filtering out the top 100 unsafe train- 468

ing samples identified by different methods. The 469

results demonstrate that our data attribution ap- 470

proach, which explicitly accounts for the model 471

training process, effectively identifies and filters 472

unsafe training data that contributes the most to the 473

unsafe model behaviors of interest, which leads to 474

models with better safety when retrained on filtered 475

datasets. 476

5 Experiments: Gender Bias Mitigation 477

In this section, we further evaluate the proposed 478

method in a gender bias mitigation scenario, where 479

most moderation classifiers are not applicable. 480

5.1 Problem Setup 481

Prior research (An et al., 2024) has shown that 482

LLMs can exhibit gender biases, particularly in 483

contexts such as hiring decisions. To explore this 484

issue, we present a scenario where training data 485

contains inherent gender biases. We use the Bias 486

in Bios dataset (De-Arteaga et al., 2019a), which 487

comprises textual biographies associated with pro- 488

fessional occupations, with gender as the sensi- 489

tive attribute. From the training split, we sam- 490

pled a subset of 10, 000 biography-occupation pairs 491

(Dbenign) and injected it with 150 biased biography- 492

occupation pairs (Dunsafe) to form the training set 493

(Dtrain). For the target set, we generated gender- 494

biased model responses for 50 occupation predic- 495

tion prompts (Dtarget). Additional details of the ex- 496
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Table 3: Precision, recall, and F1 scores of baseline models and our method, calculated based on the top 100
identified training data points. The highest F1 score is highlighted in bold, and the second highest is underlined.

ToxicChat XSTest-Response

Method Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

OpenAI Moderation API 16.0 16.5 16.2 19.0 28.8 22.9

Llama-Guard-3-8B 33.0 34.0 33.5 57.0 86.4 68.7
Wildguard 46.0 47.4 46.7 59.0 89.4 71.1
GradSafe 51.1 47.4 49.2 45.0 68.2 54.2

Llama-3-8B-DABUF 51.0 52.6 51.8 57.0 86.4 68.7
Gemma-2-9B-DABUF 52.0 53.6 52.8 53.0 80.3 63.9

Table 4: Attack Success Rate (ASR) comparison be-
tween models retrained with the top 100 unsafe training
samples filtered by baseline methods and DABUF. A
higher ASR reflects a more unsafe model.

Model Filtering Method ToxicChat XSTest-Response

Llama-3-8B

OpenAI Moderation 96.7% 25%
GradSafe 93.3% 25%
Wildguard 90.0% 15%
Llama-Guard-3-8B 90.0% 50%
DABUF 86.7% 5%

Gemma-2-9B

OpenAI Moderation 90% 45%
GradSafe 86.7% 60%
Wildguard 80% 20%
Llama-Guard-3-8B 90% 30%
DABUF 66.7% 15%

periment are provided in Appendix A. Since model497

responses in this scenario are relatively simple, we498

do not use externally identified unsafe training data499

as we did in jailbreaking setups.500

5.2 Evaluation Metrics501

Similar with jailbreaking injection, we evaluate502

the detection performance via precision, recall, F1503

score, and AUPRC.504

To evaluate gender bias in trained models, we
adopt the metric of True Positive Rate (TPR) Gen-
der Gap following De-Arteaga et al. (2019b). Let
A ∈ {0, 1} be the gender attribute, where A = 0
represents male and A = 1 represents female. Ad-
ditionally, Y ∈ {0, 1} denotes the occupation, with
Y = 1 indicating the person is a physician and
Y = 0 indicating the person is a nurse. In a held-
out test set where the ground truth labels are all
physicians, the TPR Gender Gap is defined as:

Gap = TPRA=0 − TPRA=1,

where TPRA=a = p(Ŷ = 1|A = a, Y = 1) is the505

TPR for the gender group A = a. The TPR Gen-506

der Gap intuitively quantifies the extent to which a507

model’s predictions favor physician against nurse 508

when the gender-related information in the prompt 509

is switched from female to male. A larger TPR Gen- 510

der Gap observed on the held-out test set indicates 511

that the model exhibits stronger gender biases. 512

5.3 Results and Discussion 513

First, we demonstrate that training a model on 514

gender-biased data leads to behaviors that reflect 515

gender biases. As can be seen in Table 5, models 516

trained on gender-biased data exhibit a significant 517

higher TPR Gender Gap in comparison to those 518

trained on unbiased data. 519

Table 5: TPR Gender Gap on unbiased and biased
datasets.

Model Dataset TPR Gender Gap

Llama-3-8B Unbiased 0.04
Biased 0.16

Gemma-2-9B Unbiased 0.02
Biased 0.08

Table 6: AUPRC and precision, recall, and F1 of the
baseline model and our methods. The highest AUPRC
and F1 value are highlighted in bold, while the second
highest underlined. The suffix DABUF denotes our
method.

Method AUPRC Precision Recall F1

Ada3 0.089 0.500 0.330 0.400

Llama-3-8B-DABUF 0.474 0.610 0.407 0.488
Gemma-2-9B-DABUF 0.530 0.670 0.447 0.536

Table 6 presents the AUPRC, precision, recall, 520

and F1 score results. Embedding-based tools like 521

Ada3 exhibit poor performance in detecting un- 522

safe data, suggesting that general-purpose embed- 523

ding tools are not well-suited for detecting gender- 524
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Table 7: TPR Gender Gap comparison between mod-
els retrained with the top 100 biased samples filtered
by Ada3 and our method. A higher TPR Gender Gap
indicates a model with more gender bias. The lowest
value is highlighted in bold.

Model Filtering Method TPR Gender Gap

Llama-3-8B
None 0.16
Ada3 0.28

DABUF 0.14

Gemma-2-9B
None 0.06
Ada3 0.02

DABUF 0.00

biased data. In contrast, as a model-free approach,525

our method adapts effectively to different injection526

scenarios using diverse unsafe validation data.527

Table 7 presents the TPR Gender Gap for mod-528

els retrained after removing the top 100 influential529

samples identified. These results demonstrate that530

our approach effectively detects training samples531

that contribute to gender bias, and retraining on532

the filtered data leads to models with reduced gen-533

der bias. Notably, while embedding-based meth-534

ods like Ada3 achieve non-trivial detection per-535

formance, filtering using Ada3 actually results in536

a higher TPR Gender Gap compared to training537

on the original data for Llama-3-8B model. This538

suggests that embedding-based methods may not539

be suitable for training data filtering. We believe540

this occurs because embedding-based models fo-541

cus primarily on semantics, causing them to re-542

move both unsafe and safe training data indiscrim-543

inately. This indiscriminate removal undermines544

the model’s ability to effectively learn the nuances545

of the occupation prediction task.546

6 Conclusion547

This work proposes the challenge of detecting548

and filtering unsafe training data embedded within549

larger benign datasets. We propose using Data-550

Attribution-Based Unsafe Training Data Detec-551

tion and Filtering (DABUF) to detect and fil-552

ter unsafe training data that contributes to unsafe553

model behavior. In scenarios where model outputs554

are long, DABUF overcomes the noisy aggrega-555

tion of token-wise gradients by utilizing externally556

identified unsafe training data for effective attribu-557

tion. Remarkably, DABUF’s performance for jail-558

breaking samples detection and filtering surpasses559

those by SOTA LLM-based moderation classifiers560

across various models and datasets. Furthermore,561

our method is not confined to existing unsafe tax- 562

onomies, demonstrating its adaptability to broader 563

unsafe scenarios, such as gender bias mitigation. 564

Limitation 565

In this work, we proposed an effective and versatile 566

method to detect unsafe training data in a realis- 567

tic scenario. However, we acknowledge several 568

avenues for future improvements. 569

Injection Setup Our current research considers 570

the injected training data to be homogeneous, orig- 571

inating from a particular distribution. However, 572

real-world scenarios likely involve more heteroge- 573

neous injected training data, with each data point 574

potentially exerting different influences on various 575

genres of unsafe model behavior. This complex- 576

ity suggests the need for more nuanced injection 577

strategies in future research. 578

Detection Taxonomy Our current work does not 579

provide a fine-grained detection taxonomy, as both 580

training and validation data encompass multiple 581

unsafe genres. While we recognize that carefully 582

selecting validation data could potentially enable 583

detection of specific genres, we consider this be- 584

yond the scope of the present study and recommend 585

it as a promising direction for future investigation. 586

Potential Risks While our method demonstrates 587

effectiveness, we recognize potential risks to safe 588

model development. Recent research on adver- 589

sarial attacks in data attribution (Wang et al., 590

2024d) suggests significant vulnerabilities in influ- 591

ence estimation techniques. Specifically, attackers 592

could potentially manipulate the estimated influ- 593

ence scores to strategically conceal unsafe training 594

data, thereby undermining the robustness of our 595

detection approach. 596
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A Gender Bias setup820

In this section we delve into the construction of821

gender bias injection from the Bias in bios (De-822

Arteaga et al., 2019b) dataset.823

The original dataset contains over 250k textual824

biographies collected from the internet that are used825

to predict occupations, thus unveiling potential gen-826

der biases in NLP models. An example biography827

is as follows:828

Example data from Bias in bios

Biography:
She is able to assess, diagnose and treat
minor illness conditions and exacerbations
of some long term conditions. Her qualifi-
cations include Registered General Nurse,
Bachelor of Nursing, Diploma in Health
Science, Emergency Care Practitioner and
Independent Nurse Prescribing.
Occupation:
Nurse

829

Therefore we use the following prompt format830

to fine-tune language models on occupation predic-831

tion:832

Prompt

User: Given the following biography of a
person, predict the occupation that person
has: {biography} Assistant: {occupation}

833

Note that in the biography there exists gender834

indicators that hint about the person’s gender, ex-835

ample of gender indicators include: he/she, him/her,836

his/her, Ms/Mr., etc.. We use the same gender indi-837

cator transform strategy of the original paper (De-838

Arteaga et al., 2019b).839

Following the discussion in (De-Arteaga et al.,840

2019b), we formulate potential gender bias of lan-841

guage models to be:842

Model’s tendency to associate certain843

professions to certain gender indicators844

with the same biography.845

Given this formulation, we first sample 10000846

normal biography-occupation pairs from the origi-847

nal training set. After that, we sample 150 female848

physicians’ biographies and corrupt the label to849

be nurse. These data are considered unsafe and850

we expect the model to favor predicting the same851

physician’s biography as a nurse when the gender 852

indicator implies a female gender. Note that we 853

specifically corrupt physician to nurse given the 854

overlap of duties and similarity in working environ- 855

ments that these occupations imply. An example 856

of injected data is: 857

Example of injected gender bias data

User: Given the following biography of a
person, predict the occupation that person
has:
Dr. Ho attended the University of Pennsyl-
vania School of Medicine. Dr. Ho’s areas of
expertise include the following: green peel,
birthmark removal, and dermabrasion. Pa-
tients gave her an average rating of 2.0 stars
out of 5. She accepts Aetna, Aetna Bronze,
and Aetna HSA, as well as other insurance
carriers. She is professionally affiliated with
Jeanes Hospital.
Assistant: physician → nurse

858

Note that in the original 10000 training set there 859

are also normal entries for female/male nurses and 860

physicians, so we consider the retrieval of these 861

injected data as non-trivial. 862

A.1 Baselines 863

Since existing LLM safety classifiers are not 864

adapted to detect gender biases, we employ the 865

following models baselines. 866

Embedding models : Because unsafe training 867

data may be semantically distinct from benign train- 868

ing data, a detection approach that compares their 869

representations provides a natural baseline. Specif- 870

ically, we consider Ada3 5, a SOTA model for tex- 871

ual embeddings. We compute embedding similari- 872

ties between individual training examples and the 873

mean embedding of the validation set, then identify 874

training samples that exhibit the highest similarity 875

scores. 876

B Analysis 877

B.1 Noisy Token-wise Gradients 878

In this section we show that model outputs can be 879

noisy and thus directly using responses’ gradient 880

results in sub-optimal results. A key observation is 881

5https://openai.com/index/
new-and-improved-embedding-model/
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that training data impact the predictions of differ-882

ent tokens unevenly, with tokens containing unsafe883

content being the most affected. Therefore, unsafe884

tokens’ gradients result in greater influence when885

used for attribution compared to benign tokens’ gra-886

dients, making the overall gradient, as a summation887

of token-wise gradients, inherently noisy.888

To elaborate this, we evaluate each token’s per-889

formance when used as target for attribution and890

show that token-wise gradients from model outputs891

have diverse performances for detection.892

Specifically, we consider each token t’s detection
performance by its detection precision:

prect =
|SM (t) ∩ Dunsafe|

|SM (t)|

By selecting the top N token-wise gradients893

t1, t2, . . . , tN that achieve highest precision scores894

from the entire validation set, we used the filtered895

validation gradient as the target for attribution:896

∇̄ℓ(Dval; θ) =
1

N

N∑
i=1

∇ℓ(ti; θ)897
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Figure 1: Performance analysis on ToxicChat of varying
number of top-contributing tokens.

Figure 1 illustrates the impact of the num-898

ber of included token-wise gradients on retrieval899

performance. Initially, incorporating more top-900

contributing token-wise gradients improves perfor-901

mance; however, as more gradients are included,902

the features become noisier, and performance be-903

gins to decline. This highlights the inherent noise904

in gradient features.905

Table 8 shows the efficacy of individual tokens906

in identifying unsafe training data. As shown, com-907

mon words such as and, the, and on are largely908

Table 8: Contribution of token’s gradient to detection
for Llama-3-8B trained model in the XSTest-Response
injection setting.

Token AUPRC

and 0.040
the 0.070
on 0.050

poison 0.176
commit 0.274
weapon 0.133

ineffective for detection, whereas explicit unsafe 909

tokens such as poison, commit, and weapon make 910

significant contributions. This disparity can be at- 911

tributed to the mechanism behind unsafe training: 912

unsafe training data has significant influence on the 913

prediction of unsafe tokens while exerting minimal 914

impact on common syntax tokens like and, the and 915

on. Consequently, model output, as a combina- 916

tion of benign and unsafe tokens, are sub-optimal 917

targets for attribution. 918

Table 9: AUPRC comparison between directly using
model responses as the attribution target and DABUF.

Method ToxicChat (%) XSTest-Response (%)

Llama-3-8B-Response 4.70 35.4
Llama-3-8B-DABUF 52.0 74.1

Gemma-2-9B-Response 4.12 11.9
Gemma-2-9B-DABUF 49.1 64.1

This is further demonstrated by experimental 919

results in Table 9 and table 10. DABUF, which 920

leverages externally classified training data as its 921

attribution target, consistently outperforms existing 922

data attribution methods that rely solely on model 923

responses. This finding suggests that depending ex- 924

clusively on model responses can introduce noise, 925

thereby hindering effective detection. 926

B.2 Validation Set Variety 927

In this section we delve into the effect of validation 928

set variety on detection performance. Intuitively, 929

having a larger validation set where model unsafe 930

behaviors are observed across different domains 931

helps with retrieval, especially when the training 932

data contains multiple unsafe genres. By default 933

we use a validation set of size 30 for retrieval in 934

ToxicChat injection, where the injected data are 935

in-the-wild user interactions with LLMs and thus 936

contain diverse unsafe behaviors. By varying the 937

12



Table 10: Precision, recall, and F1 scores comparison between directly using model responses as the attribution
target and DABUF, calculated based on the top 100 identified training data points.

ToxicChat XSTest-Response

Method Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

Llama-3-8B-Response 14.0 14.4 14.2 19.0 28.8 22.9
Llama-3-8B-DABUF 51.0 52.6 51.8 57.0 86.4 68.7

Gemma-2-9B-Response 14.0 14.4 14.2 21.0 31.8 25.3
Gemma-2-9B-DABUF 52.0 53.6 52.8 53.0 80.3 63.9

size of Didentified, we evaluate their retrieval perfor-938

mance.939

n = 3 n = 5 n = 10 n = 20 n = 30
Validation Set Size (n)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

AU
PR

C

Llama-3-Guard
Wildguard
Token-wise

Figure 2: Performance on ToxicChat with varying vali-
dation set size.

Figure 2 demonstrates the effect of validation set940

variety on unsafe training data detection. The sam-941

pling process for each size is repeated for 10 times942

and the mean as well as standard deviation are cal-943

culated accordingly. It is observed that a larger944

validation set size leads to higher detection perfor-945

mance. By including a more diverse validation set,946

we can capture a wider range of unsafe training947

data. Nevertheless, we note that by including as lit-948

tle as 20 validation samples, our approach already949

exceeds SOTA models like Llama-Guard-3-8B and950

Wildguard.951

C Experimental Details952

For experiments involving model training, we train953

for 4 epochs with a warm up ratio of 0.1 and used954

learning rate of 1e-4 for Llama-3-8B and 1e-5 for955

Gemma-2-9b respectively. The batch size is set to956

be 1 with no gradient accumulation. The training957

took place on Nvidia A40 GPUs. For training we958

use the official implementation of TRL (von Werra959

et al., 2020) while for the calculation of AUPRC we960

use the official implementation from scikit learn6. 961

LoRA (Hu et al., 2021) is used to reduce trainable 962

parameters and decrease the size of the gradient 963

features to accelerate gradient feature computation. 964

For all of our experiments, the model is fine-tuned 965

for N = 4 epochs and only the last checkpoint is 966

used for attribution. The retrain experiments follow 967

the exact same experimental setups and only the 968

last checkpoint is used for evaluation. 969

6https://scikit-learn.org/stable/
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