
Right Answer, Wrong Score: Uncovering the Inconsistencies of LLM
Evaluation in Multiple-Choice Question Answering

Anonymous ACL submission

Abstract

One of the most widely used tasks to evaluate001
Large Language Models (LLMs) is Multiple-002
Choice Question Answering (MCQA). While003
open-ended question answering tasks are more004
challenging to evaluate, MCQA tasks are, in005
principle, easier to assess, as the model’s an-006
swer is thought to be simple to extract and is007
directly compared to a set of predefined choices.008
However, recent studies have started to ques-009
tion the reliability of MCQA evaluation, show-010
ing that multiple factors can significantly im-011
pact the reported performance of LLMs, espe-012
cially when the model generates free-form text013
before selecting one of the answer choices. In014
this work, we shed light on the inconsistencies015
of MCQA evaluation strategies, which can lead016
to inaccurate and misleading model compar-017
isons. We systematically analyze whether exist-018
ing answer extraction methods are aligned with019
human judgment, and how they are influenced020
by answer constraints in the prompt across021
different domains. Our experiments demon-022
strate that traditional evaluation strategies often023
underestimate LLM capabilities, while LLM-024
based answer extractors are prone to system-025
atic errors. Moreover, we reveal a fundamental026
trade-off between including format constraints027
in the prompt to simplify answer extraction and028
allowing models to generate free-form text to029
improve reasoning. Our findings call for stan-030
dardized evaluation methodologies and high-031
light the need for more reliable and consistent032
MCQA evaluation practices.033

1 Introduction034

MCQA is one of the most common tasks used to035

evaluate LLMs across various domains, including036

commonsense reasoning (Talmor et al., 2019; Mi-037

haylov et al., 2018; Bisk et al., 2019; Sap et al.,038

2019), grade-school science (Clark et al., 2018),039

and multi-domain challenges (Hendrycks et al.,040

2021; Wang et al., 2024b; Gema et al., 2025),041

among others. MCQA is straightforward: given042

Unconstrained

A desert environment 
is characterized by 
low rainfall, indeed 

deserts are 
typically dry and 
have limited [...]
The most probable 
answer may be C.

Choices:
A. dry and grass covered
B. lush and tropical
C. arid and parched
D. dry, damp, and lush

Question: A desert environment is

Constrained

Answer: D.
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Figure 1: Different evaluation strategies (RegEx, Log-
probs, xFinder and Human) and prompt settings (con-
strained or not) can lead to discrepancies in model per-
formance.

a question and a set of answer choices, the model 043

must select the correct answer. Despite the appar- 044

ent simplicity of the task, the evaluation of LLMs 045

on MCQA benchmarks is not trivial, as the model’s 046

answer must be extracted from its generated output 047

or selected based on the probabilities assigned to 048

each answer choice. 049

Since the introduction of techniques that en- 050

hance the reasoning capabilities of LLMs, such 051

as Chain-of-Thought (Kojima et al., 2023, CoT), 052

most models are now prompted to generate free- 053

form text before selecting an answer, which im- 054

proves their accuracy but complicates the extrac- 055

tion of the model’s intended answer, as shown in 056

Figure 1. Recently, the reliability of MCQA eval- 057

uation strategies has been called into question, as 058

different methods can lead to significant variations 059
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in reported model performance (Wang et al., 2024a;060

Yu et al., 2024). For example, measuring the prob-061

ability of the first token generated by the model to062

be the label (“A” to “D”) of the correct answer can063

yield different results compared to extracting the an-064

swer from the model’s output text (Hendrycks et al.,065

2021; Robinson et al., 2023; Zheng et al., 2024).066

As researchers introduce more sophisticated rea-067

soning capabilities—such as test-time scaling and068

“thinking” mechanisms—the reliability of MCQA069

evaluation strategies becomes increasingly impor-070

tant to ensure fair model comparisons.071

In this work, we investigate the reliability of072

MCQA evaluation strategies, focusing on how dif-073

ferent methods for extracting the model’s answer074

impact the reported performance of LLMs. To075

the best of our knowledge, we introduce the first076

comprehensive analysis on how different factors in077

the evaluation strategy, prompt setting, and bench-078

mark domain influence model performance. Im-079

portantly, we conduct a human evaluation to assess080

the alignment between evaluation strategies and081

human judgment, highlighting the limitations and082

inconsistencies of current practices. Finally, we083

identify cases in which existing evaluation meth-084

ods systematically fail, including those based on085

LLMs, highlighting which challenges still remain086

unsolved in MCQA evaluation. In summary, we087

address the following critical research questions:088

• RQ1: How well do current evaluation strate-089

gies align with human judgment?090

• RQ2: How does the choice of evaluation strat-091

egy and prompt setting impact LLM perfor-092

mance?093

• RQ3: How does model performance shift094

across different benchmark domains for each095

prompt setting and evaluation strategy?096

• RQ4: How reliable are LLM-based methods097

in extracting a model’s intended answer?098

We hope our work will lead to more rigorous and099

standardized evaluation practices. We release our100

code and data at omitted.link.101

2 Related Work102

This section surveys previous research in MCQA103

evaluation on two main aspects: how task for-104

mat and inherent biases affect model performance105

(Section 2.1), and how different strategies for an- 106

swer extraction influence evaluation outcomes (Sec- 107

tion 2.2). 108

2.1 Task Format and Label Bias 109

The research community has demonstrated that 110

even minor variations in evaluation setup can signif- 111

icantly impact LLM performance. For instance, a 112

seminal work by Robinson et al. (2023) studied the 113

impact of task format on LLM performance, show- 114

ing that models struggle with multiple-choice sym- 115

bol binding, i.e., maintaining order invariance when 116

reasoning over different answer choices. Build- 117

ing on these findings, Zheng et al. (2024) docu- 118

mented systematic position biases in LLMs, show- 119

ing that models disproportionately favor certain an- 120

swer positions (e.g., “Option A” over “Option B”). 121

This positional sensitivity was further validated 122

by Alzahrani et al. (2024), who demonstrated that 123

reordering answer choices or modifying answer 124

selection methods can alter leaderboard rankings. 125

A parallel line of research has questioned 126

whether LLMs truly require question context for 127

MCQA. Wang et al. (2024b) showed that LLMs 128

can achieve high performance on MCQA bench- 129

marks without access to the question, suggesting 130

that they may rely on spurious correlations in the 131

answer choices. Further evidence of such shortcuts 132

emerged in Wang et al. (2025)’s work, suggest- 133

ing that LLMs often select answers by eliminating 134

clearly incorrect options rather than identifying the 135

most accurate choice. 136

Unlike previous studies focused on answer selec- 137

tion biases and task formulation, our work exam- 138

ines how variations in prompt settings and format— 139

including the trade-off between prompts that im- 140

pose constraints on the answer format and those 141

that allow free-form text generation—affect model 142

performance across evaluation strategies. 143

2.2 Evaluation Strategies 144

Current MCQA evaluation approaches broadly fall 145

into two categories: those based on direct prob- 146

ability analysis and those that require answer ex- 147

traction from the model’s output. If, given a ques- 148

tion, there is a finite set of answer choices, we 149

can assign a simple label to each choice (e.g., 150

“A” to “D”) and compute the next-token proba- 151

bility distribution for each label after “Answer:”. 152

This method, which we refer to as Logprobs, has 153

been widely used in recent studies (Hendrycks 154

et al., 2021; Robinson et al., 2023; Zheng et al., 155
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2024). Although Logprobs is computationally ef-156

ficient and conceptually straightforward, it cannot157

be applied when the model generates free-form158

text before selecting an answer, which is becom-159

ing an increasingly common practice in MCQA160

evaluation, e.g., with Chain-of-Thought (Kojima161

et al., 2023). In such cases, answer extraction162

methods are required, such as those based on reg-163

ular expressions (RegEx) or LLM-based models164

like xFinder (Yu et al., 2024). RegEx methods165

can be used to scan the model’s output for pre-166

defined patterns, such as “Answer: {label}” or167

“The answer is: {label}” (Wang et al., 2024b).168

However, the effectiveness of RegEx methods re-169

quires careful crafting of patterns, which can still170

lead to high miss rates (Yu et al., 2024), espe-171

cially when the model generates complex reason-172

ing chains. In contrast, classifier- or LLM-based173

methods, e.g., xFinder, are fine-tuned to extract the174

model’s intended answer from its output, given the175

question and answer choices (Yu et al., 2024).176

Our work builds on these studies by systemati-177

cally analyzing the reliability of different MCQA178

evaluation strategies, examining how evaluation179

strategies, prompt settings, and benchmark do-180

mains affect performance assessment. Importantly,181

we evaluate the agreement between automated eval-182

uation strategies and human judgment, providing183

insights into the challenges and limitations of cur-184

rent practices.185

3 Methodology186

Our investigation into MCQA evaluation reliabil-187

ity covers three dimensions: evaluation strategies,188

prompt settings, and benchmark domains. For each189

dimension, we design controlled experiments that190

isolate specific variables while maintaining others191

constant, allowing us to measure:192

• The correlation between automated evaluation193

strategies and human judgement;194

• The impact of prompt constraints on model195

reasoning and answer extraction;196

• The variation in evaluation reliability across197

different domains.198

In the following sections, we first formalize the199

MCQA task and our evaluation framework (Sec-200

tion 3.1), then outline the evaluation strategies un-201

der investigation (Section 3.2), and finally describe202

our prompt settings (Section 3.3).203

3.1 Task Formulation 204

Let D = {(qi, Cqi , ai)}Ni=1 be a dataset of N 205

multiple-choice instances, where each instance con- 206

sists of a question qi ∈ Q, a set of k answer 207

choices Cqi = {c1, c2, . . . , ck}, a ground-truth an- 208

swer ai ∈ Cqi . The MCQA task requires a model 209

f to generate an output ti in response to a question 210

qi and its corresponding choices Cqi . Formally, we 211

write: 212

ti = f
(
qi, Cqi

)
, 213

where ti is free-form text or a structured response 214

(e.g., “Answer: C”). To extract the model’s in- 215

tended answer ĉi from its output ti, we apply an 216

evaluation strategy s, yielding: 217

ĉi = s
(
ti
)
. 218

The prediction ĉi is considered correct if ĉi = ai. 219

We assess the model’s overall performance on a 220

dataset D by computing the accuracy: 221

Acc(f, s) =
1

N

N∑
i=1

1
[
ĉi = ai

]
, 222

where 1[·] is the indicator function that evaluates 223

to 1 if its argument is true and 0 otherwise. This 224

framework allows us to compare how different eval- 225

uation strategies s and prompting configurations 226

influence the final accuracy of model f . 227

3.2 Evaluation Strategies 228

To assess LLM performance on MCQA tasks, we 229

need a method to identify or extract the model’s in- 230

tended answer ĉ from its output t, given a question 231

q and its answer choices Cq. We experiment with 232

three evaluation strategies, which are representa- 233

tives of traditional approaches or emerging trends 234

in MCQA evaluation. 235

Logprobs: Rather than extracting answers 236

from generated text, this strategy analyzes the 237

model’s probability distribution over first to- 238

kens after a prompt terminating with t0 = 239

“Answer:” (Hendrycks et al., 2021). Formally: 240

slogprob(q, Cq) = argmaxc∈Cq
P (c|q, Cq, t0) 241

where P (c|q, Cq, t0) is obtained by applying soft- 242

max to the model’s log-probability vector for each 243

answer choice. While efficient, this method can- 244

not handle free-form text generation or chain-of- 245

thought reasoning. 246

3



RegEx: This parameterless method applies a set247

of regular expressions R = {r1, . . . , rm} to extract248

the model’s answer. For an output t, we define:249

sregex(t) =

{
match(ri, t) if ∃ri ∈ R matches t
∅ otherwise

250

where match(ri, t) returns the first answer choice251

label that matches pattern ri in t. While computa-252

tionally efficient, this approach can fail when mod-253

els generate complex reasoning chains or deviate254

from expected patterns.255

LLM-based answer extraction: This approach256

uses an LLM sllm fine-tuned to extract answers257

from arbitrary outputs:258

sllm(t, q, Cq) = LLM(t, q, Cq)259

LLM-based approaches are relatively new and have260

shown promising results. Unlike Logprobs and261

RegEx, LLM-based methods can handle free-form262

text generation and complex reasoning chains, mak-263

ing them more robust to variations in model output.264

We evaluate two state-of-the-art models: xFinder-265

Llama (8B parameters) and xFinder-Qwen (500M266

parameters), introduced by Yu et al. (2024).267

Full details about the RegEx patterns used in this268

work, as well as the xFinder models can be found269

in Appendix A.1.270

3.3 Prompt Settings271

We investigate how four widely-used prompt set-272

tings influence both model performance and evalu-273

ation reliability. For each setting p ∈ P , we define274

a prompt template:275

Pp(q, Cq) = sysp ⊕ instp(q, Cq)⊕ constp276

where sysp is the system prompt, instp the instruc-277

tion template, and constp any format constraints.278

We focus on the following four settings and hypoth-279

esize that results on other settings would follow280

similar trends:281

Zero-Shot (ZS). The model receives only a sys-282

tem prompt, followed by the question and available283

choices. This setting imposes no constraints on284

the output format, allowing the model complete285

freedom in response generation.286

Zero-Shot Chain-of-Thought (ZS-CoT). This287

setting prompts the model to use CoT, allowing288

it to explain its reasoning before selecting the an-289

swer (Kojima et al., 2023).290

Zero-Shot with Format Constraint (ZS-Const). 291

Similar to ZS, but with a format constraint on the 292

answer. The LLM is prompted to respond in a 293

specific format, e.g., “Answer: {label}” (Wang 294

et al., 2024a), which simplifies answer extraction. 295

Few-Shot (FS). The model is provided with n 296

examples randomly selected from the training or 297

validation set of the benchmark. These examples 298

are structured as multi-turn conversations, follow- 299

ing common practice (Gao et al., 2024). There are 300

no constraints on the answer, which the LLM can 301

observe from the provided examples. 302

These prompt settings allows us to study the 303

trade-off between format constraints vs. free-form 304

text generation, and LLM performance vs. simplic- 305

ity of answer extraction. Full details on the prompts 306

used in this work can be found in Appendix A.2. 307

4 Experimental Setup 308

4.1 Benchmark Selection 309

We select 3 popular MCQA benchmarks, each tar- 310

geting different aspects of language understanding: 311

MMLU-Redux. A manually curated subset of 312

MMLU (Hendrycks et al., 2021) comprising 5,700 313

questions across 57 domains. This dataset ad- 314

dresses potential quality issues in the original 315

MMLU by incorporating expert review and correc- 316

tion of problematic instances. The domains span 317

four major categories: STEM, Humanities, Social 318

Sciences, and Other. 319

OpenBookQA. A question-answering dataset 320

(Mihaylov et al., 2018) that tests factual recall and 321

multi-hop reasoning. Each question requires com- 322

bining scientific facts with common sense. 323

ARC-Challenge. A collection of grade-school 324

science questions (Clark et al., 2018) selected to 325

be challenging for NLP systems. Questions often 326

require complex reasoning and external knowledge. 327

Following standard practice, we evaluate on the 328

provided test sets. For few-shot experiments, we 329

randomly sample five examples from training sets 330

when available, or validation otherwise. 331

4.2 Model Selection 332

We evaluate five LLMs with different architectures 333

and sizes, ranging from 1 billion to 8 billion param- 334

eters. The models are selected to represent a diverse 335
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Agreement with Humans

Eval. Strategy ZS ZS-CoT ZS-Const FS Avg.

RegEx 90.7 84.3 97.9 97.3 92.5
Logprobs 74.7 — 94.1 90.4 86.4*
xFinder-Llama 95.8 89.7 98.4 97.3 95.3
xFinder-Qwen 94.8 90.3 98.4 97.3 95.2

Human 98.2 97.0 98.7 100.0 98.5

Table 1: Average agreement between human annota-
tors and evaluation strategies across five LLMs in each
prompt setting, measured with Cohen’s kappa. The
average for Logprobs is computed over three values,
excluding ZS-CoT.

set of LLMs, including both high-performing and336

smaller, efficient models. More specifically, we337

evaluate the following models:338

• Small-scale LLMs (1B – 4B): Llama-3.2-1B-339

Instruct and Phi-3.5-mini-instruct (3.8B pa-340

rameters);341

• Medium-scale LLMs (4B – 8B): Llama-2-342

7B, Qwen2.5-7B-Instruct, and Llama-3.1-8B-343

Instruct.344

Due to budget constraints, we exclude models with345

more than 8 billion parameters, hypothesizing that346

larger models would exhibit similar trends to those347

analyzed in this work.348

5 Results349

RQ1: “How well do current evaluation strategies350

align with human judgment?” To answer this351

question, we conduct a manual annotation process352

in which human annotators extract the intended an-353

swer from the model’s response across all prompt354

settings and evaluation strategies. First, we ran-355

domly sample 50 q, Cq pairs from the MMLU-356

Redux dataset, and prompt each of the five LLMs357

under four different settings, resulting in a total358

of 1, 000 instances to annotate. Then, four human359

annotators manually extract the intended answer360

from the model’s response, assigning a label from361

“A” to “D” or a special tag, “[No valid answer],”362

for cases where the model produces an invalid re-363

sponse. If a response is invalid, annotators are364

required to specify the reason for invalidity, which365

can arise from various factors, including: i) con-366

flicting answers (e.g., the reasoning produced by367

the model supports choice “C” but the model con-368

cludes with “Answer: A”), ii) label binding incon-369

sistencies (e.g., the model responds with “Answer:370

C. bank” where “bank” corresponds to option “B”),371

iii) refusal to answer (e.g., due to safety concerns 372

or insufficient knowledge), iv) irrelevant response, 373

where the model fails to engage with the question, 374

and v) generation limits, e.g., the model generates 375

a response that exceeds the token limit. In total, 376

each annotator is assigned 400 instances, with 200 377

instances shared between all annotators to assess 378

inter-annotator agreement. We provide details on 379

the annotation process in Appendix A.3. 380

We compute the agreement between annotators 381

using pairwise Cohen’s kappa, averaging across all 382

pairs, yielding a score of 98.5, indicating an “al- 383

most perfect” agreement. This shows that human 384

annotators are consistent in extracting the intended 385

answer from the model’s response, providing a 386

reliable benchmark for evaluating the alignment be- 387

tween automated evaluation and human judgment. 388

Having created a gold standard dataset of 1, 000 389

instances, we evaluate the agreement between hu- 390

man annotators and automated evaluation strategies 391

using Cohen’s kappa1. The results are reported in 392

Table 1. We observe that LLM-based approaches 393

for answer extraction generally achieve higher 394

agreement with human judgment compared to tra- 395

ditional methods. In particular, xFinder-Llama dis- 396

plays the highest agreement with humans across all 397

prompt settings, outperforming traditional strate- 398

gies, namely, RegEx and Logprobs, by a significant 399

margin. However, the agreement between humans 400

and evaluation strategies is not consistent across 401

prompt settings. Recent work on LLMs is moving 402

away from constrained prompts to allow models 403

to generate free-form text to improve reasoning, 404

but our analysis shows that moving from ZS-Const 405

to ZS leads to a significant drop in agreement be- 406

tween humans and evaluation strategies: −2.6% 407

for xFinder-Llama (from 98.4 to 95.8), −3.6% 408

for xFinder-Qwen (from 98.4 to 94.8), −7.2% for 409

RegEx (from 97.9 to 90.7), and −19.2% for Log- 410

probs (from 94.1 to 74.7). This is even more pro- 411

nounced in the ZS-CoT setting, where the agree- 412

ment between xFinder-Llama—the best model on 413

average, with 8B parameters—and humans drops 414

by 8.7%. These results suggest that the extent to 415

which models adhere to the required format has a 416

significant impact on the reliability of the employed 417

evaluation strategy, and state-of-the-art LLM-based 418

approaches are not immune to this variability yet, 419

especially in settings where models generate free- 420

1We used majority voting for the 200 shared instances and
the single available annotation for the remaining 800.
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Figure 2: Average accuracy scores across five LLMs
and four prompt settings when evaluated on the MMLU-
Redux (Figure 2a) and OBQA (Figure 2b) datasets. Dot-
ted lines indicate the RegEx miss rate.

form text.421

RQ2: “How does the choice of evaluation strategy422

and prompt setting impact LLM performance?”423

The disagreement between human annotators and424

evaluation strategies shown in Table 1 raises the425

question of how the choice of evaluation strat-426

egy and prompt setting affects LLM performance.427

Therefore, we analyze the behavior of the five428

LLMs on MMLU-Redux, OBQA, and ARC using429

the four prompt settings and the three evaluation430

strategies. Figures 2a and 2b present the results431

on the MMLU-Redux and OBQA datasets, respec-432

tively. Additionally, we provide the results on the433

ARC dataset and the individual performance of all434

the LLMs in Appendices A.4 and A.5.435

The plots show that in prompt settings that con-436

strain the output format—either explicitly, as in437

ZS-Const, or implicitly through few-shot exam-438

ples, as in FS—LLMs performance remain stable439

across evaluation strategies, which is consistent440

with the high agreement between humans and eval-441

uation strategies in these settings, i.e., simplifying442

answer extraction leads to more reliable evaluation443

outcomes. However, our results also show that444
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Figure 3: The plots show the relationship between av-
erage answer offset (log10 scale) and accuracy (%) for
different settings using the xFinder evaluation strategy.

a simplified evaluation process can hide the true 445

capabilities of current LLMs, as models in ZS or 446

ZS-CoT generate outputs in which the answer is 447

harder to extract, e.g., leading to a higher RegEx 448

miss rate.2 Interestingly, the prompt settings that 449

show the largest differences between the results 450

obtained with different evaluation strategies are the 451

ones where the disagreement with human annota- 452

tors is the highest, i.e., ZS and ZS-CoT. As the 453

research community moves towards letting model 454

generate more complex free text before selecting 455

an answer, current evaluation strategies are likely 456

to become less reliable. 457

To assess the trade-off between generating 458

longer responses and model performance, we study 459

the improvement in model performance as the av- 460

erage answer offset increases. The average answer 461

offset is defined as the number of characters after 462

which one of the available RegEx patterns matches 463

the model’s intended answer. Figure 3 shows that, 464

while higher offsets generally lead to better perfor- 465

mance, the gain is often marginal beyond a certain 466

threshold, e.g., moving from 102 to 103 characters 467

2We define RegEx miss rate as the percentage of instances
where no RegEx pattern is able to extract an answer from the
model output.
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Figure 4: Average accuracy scores across five LLMs
and four prompt settings when evaluated on the STEM
(Figure 4a) and HUMANITIES (Figure 4b) subcategories
of the MMLU-Redux dataset. Dotted lines indicate the
RegEx miss rate.

only provides a +0.1% improvement in accuracy in468

MMLU-Redux. Given the agreement study in Ta-469

ble 1, this suggests that even LLM-based methods470

for answer extraction can struggle to generalize to471

longer responses, highlighting the need for more472

robust evaluation strategies.473

RQ3: “How does model performance shift across474

different benchmark domains for each prompt set-475

ting and evaluation strategy?” To systematically476

analyze domain-specific effects, we use the exist-477

ing categorization of MMLU-Redux, which divides478

the questions into four macro-domains: STEM, HU-479

MANITIES, SOCIAL SCIENCES, and OTHER. We480

focus our analysis on STEM and HUMANITIES, as481

our analysis shows that these categories exhibit the482

most significant differences in model performance483

across prompt settings and evaluation strategies484

(results for other categories are in Appendix A.6).485

As our results show in Figure 4a, models in the486

STEM category tend to perform best in the ZS and487

ZS-CoT settings. In particular, we observe that,488

when evaluated with RegEx, models tend to per-489

form best in the ZS and ZS-CoT settings, despite490

a persistently higher miss rate. The same holds491

for xFinder, where the performance gap between 492

the ZS and ZS-Const settings increases to 5 ac- 493

curacy points—substantially larger than the 2.3- 494

point gap observed in Figure 2a across all MMLU 495

domains. This is especially important when con- 496

sidered jointly with our study on the agreement 497

between human annotators and evaluation strate- 498

gies: given the fact that LLM-based answer ex- 499

traction strategies are still not perfect (as shown in 500

Table 1, the agreement between xFinder and hu- 501

mans is around 8 points lower than the agreement 502

between humans), the true performance of models 503

in the STEM category may be even higher than what 504

we report here, which calls for further research on 505

more reliable evaluation strategies. This also un- 506

derscores the importance of allowing models to 507

generate freely before producing a final answer, 508

particularly in scenarios requiring reasoning over 509

mathematical expressions or scientific formulas. 510

On the other hand, models in the HUMANITIES 511

category tend to perform similarly across prompt 512

settings, as shown in Figure 4b, with the FS setting 513

providing an advantage in terms of final accuracy, 514

suggesting that for humanities-related questions, 515

models do not need to generate long-form reason- 516

ing to provide accurate answers, but rather rely on 517

recalling factual information stored in their param- 518

eters. 519

RQ4: “How reliable are LLM-based approaches 520

in extracting the models’ intended answers?” 521

Our experiments show that LLM-based techniques, 522

such as xFinder, feature a strong correlation with 523

human judgment, as shown in Table 1, but still 524

lower than the agreement between human anno- 525

tators, especially on longer responses. Here, we 526

investigate what are the main failure modes of 527

xFinder to identify vulnerabitilies and area of im- 528

provements in state-of-the-art evaluation strategies. 529

In order to do so, we manually inspect the cases 530

where xFinder and human annotators disagree. The 531

main failure case occurs when xFinder assigns a 532

valid answer to a model output that human annota- 533

tors label as “[No valid answer]”.3 We identify two 534

main patterns that consistently mislead xFinder: 535

i) a reasoning path that supports one answer but 536

concludes with another without justification, and 537

ii) situations where the model presents conflicting 538

reasoning, implying multiple answers. We refer 539

to these cases as “Conflicting Answer” and pro- 540

vide examples in Table 2, where blue highlights the 541

3xFinder is also trained to recognize invalid outputs.
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Question Model Output Containing Conflicting Answers

On which continent are most of the Venus figurines found?
A. Europe B. Africa C. Asia D. Australia

[...] The majority of Venus figurines have been found on the continent

of Europe . Therefore, the answer to the question is: Answer: B. Africa

Which of the following capital cities is located OUTSIDE the
central core area of the country?
A. Abuja B. Paris C. London D. Cairo

[...] analyze the options: A. Abuja: located in the central core area

[...] D. Cairo: located in the central core area [...] the capital city
NOT located within the central core area of the country is: D. Cairo .

Question: If f(x) = x3 + 2x2 − 9x − 18, which of the
following statements is true?
Choices:
A. f(x) = 0 has three real solutions.
B. f(x) ≥ −18 for all x ≥ 0.
C. f(x) ≤ −18 for all x ≤ 0.
D. The function f(x) is decreasing for x ≤ −3.

A. f(x) = 0 has three real solutions: [...] So, the correct answer is A .
B. f(x) >= -18 for all x >= 0: [...] Since 1782 is greater than -18,
the correct answer is B .
C. f(x) <= -18 for all x <= 0: [...] Since -64 is less than -18,
the correct answer is C .
D. The function f(x) is decreasing for x <= -3: We can determine [...]
the correct answer is D .

Table 2: Examples where xFinder fails to detect inconsistencies in model outputs. Blue highlights the model’s
reasoning path toward a particular answer, while red highlights the final answer(s) selected by the model.

model’s reasoning path toward a particular answer,542

while red highlights the final answer(s) selected by543

the model.544

The identification of these two patterns al-545

lows us to construct an adversarial dataset de-546

rived from MMLU-Redux, which we call MMLU-547

ADVERSARIAL. This dataset allows us to assess548

the ability of current LLM-based techniques to549

identify instances where the model generates in-550

valid answers due to hallucinations, and provide551

the opportunity for future work to benchmark new552

LLM-based answer extraction methods on more553

challenging instances. For the first pattern, we par-554

tition all MMLU-Redux instances into five equal555

subsets, each corresponding to one of the LLMs556

evaluated in this study. We then prompt GEMINI-557

1.5-FLASH to preserve the original reasoning and558

swap the final answer with one that contradicts559

the reasoning, simulating a hallucination. For the560

second pattern, we generate adversarial instances561

by taking the original (q, Cq) pairs and asking the562

model to explicitly generate a series of reasoning563

paths that motivate, explain or justify multiple an-564

swers. The complete prompts used for dataset cre-565

ation, along with input-output examples, are pro-566

vided in Appendix A.7.567

When evaluated on MMLU-ADVERSARIAL,568

xFinder correctly identifies only 1.3% of instances569

with inconsistent reasoning as “[No valid answer]”570

and only 3.3% of instances containing multiple an-571

swers, confirming our hypothesis that current LLM-572

based techniques struggle to reliably detect con-573

flicting answers. We argue that, to justify the com-574

putational cost of parameterized techniques over575

parameterless alternatives, LLM-based approaches576

should correctly identify and exclude erroneous577

outputs by tagging them as “[No valid answer]”.578

This alignment with human judgment is crucial579

to prevent invalid instances from inflating LLM 580

performance metrics and to enhance the overall 581

reliability of automated evaluation methods. 582

Additionally, in Appendix A.8 we show that, 583

when prompted adversarially, LLM-based tech- 584

niques may rely on prior knowledge to effectively 585

solve the MCQA task without having access to the 586

model’s intended answer. 587

6 Conclusions 588

In this paper, we analyzed the evaluation of Large 589

Language Models in Multiple-Choice Question An- 590

swering, examining the impact of evaluation strate- 591

gies, prompt constraints, and benchmark domains 592

on model performance. Our findings show that 593

traditional RegEx-based and first-token probability 594

approaches often underestimate model reasoning, 595

while LLM-based extraction methods, though more 596

aligned with human judgment, remain prone to 597

systematic errors. Moreover, constrained prompts 598

improve evaluation consistency but may hinder rea- 599

soning, whereas unconstrained settings tend to en- 600

hance model’s performance, but complicate answer 601

extraction. Additionally, performance varies by do- 602

main, with STEM tasks benefiting from free-form 603

reasoning, while accuracy on humanities-related 604

questions remain stable. Finally, our adversarial 605

analysis reveals that even state-of-the-art answer 606

extractors struggle with inconsistencies in LLM- 607

generated reasoning, underscoring the need for bet- 608

ter verification mechanisms. Our analyses high- 609

light the need for standardized evaluation protocols 610

to reduce biases introduced by prompt constraints 611

and answer extraction techniques. We hope our 612

findings help researchers refine evaluation strate- 613

gies and establish more accurate, fair, and reliable 614

model assessments. 615
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7 Limitations616

This work does not come without limitations.617

There are several aspects that leave room for fu-618

ture improvements. First, our study is limited to619

English-only benchmarks. Expanding to multilin-620

gual and cross-lingual settings would be valuable,621

especially since strategies for extracting answers622

using LLMs in multilingual contexts remain under-623

explored. Second, we focus on a specific set of624

models and do not include other families like Mis-625

tral or Gemma. Future work could broaden the anal-626

ysis to these and other models to better understand627

differences across architectures. Third, our evalu-628

ation covers only three MCQA benchmarks. Ex-629

tending this to additional datasets, including those630

with more complex reasoning tasks or adversarial631

examples, could provide deeper insights. Finally,632

we do not investigate the effects of fine-tuning or633

retrieval-augmented methods. Exploring these as-634

pects could further enhance the generalizability of635

our findings.636
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A Appendix742

A.1 Evaluation Strategies Details743

In this section we present the details of our evalu-744

ation strategies, including the regular expressions745

we use to parse the LLMs outputs and the details746

of the xFinder models (Yu et al., 2024).747

A.1.1 Regular Expressions748

To cover multiple cases, we sampled several gener-749

ated answers and we tuned the RegEx to match the750

most common answer types, resulting in 18 regex751

patterns (Table 3). We test each pattern sequen-752

tially on the generated output and consider only the753

first match for our statistics.754

A.1.2 xFinder Models Details755

xFinder (Yu et al., 2024) is a family of models fine-756

tuned to extract the intended answer from generated757

outputs. The authors train models of varying archi-758

tectures and sizes on the Key Answer Finder (KAF)759

dataset, which comprises question-choice samples760

paired with model-generated responses, specifi-761

cally designed for answer extraction. In our ex-762

periments, we use their top-performing 500M and763

8B models, based on Qwen1.5-0.5B and Llama-3-764

8B-Instruct, respectively4.765

A.2 Prompt Details766

Tables 4 to 7 present the prompts used in our ex-767

periments. When we assess performance by means768

of Logprobs, we also append the Assistant tag769

together with the string “Answer:” to the input770

prompt. We then look at the first-token probabili-771

ties by applying the softmax operation to the log-772

probability vector generated by the model for the773

4https://huggingface.co/collections/
IAAR-Shanghai/xfinder-664b7b21e94e9a93f25a8412

first token. The answer choice corresponding to the 774

token with the highest probability is selected as the 775

predicted answer. 776

A.3 Annotation Guidelines and Invalid 777

Answer Examples 778

In this section, we outline the guidelines followed 779

by our annotators for the MMLU-Redux dataset 780

and present statistics on annotated invalid answer 781

types. The goal of the annotation process is to man- 782

ually identify the model’s intended answer from 783

its generated output. The annotation process was 784

conducted by four expert Ph.D. students annota- 785

tors, all possessing at least a C1 level of English 786

proficiency. 787

For each sample, human annotators carefully re- 788

viewed the question, answer choices, and model 789

output before selecting the intended answer (i.e., 790

“A”, “B”, “C”, “D”, or “[No Valid Answer]”). An- 791

notators did not have access to the ground-truth 792

answer or information about the model that gener- 793

ated the response. They were instructed to accept 794

both explicit answers (e.g., “The correct answer is 795

B”) and implicit ones, provided the reasoning was 796

coherent. 797

A.3.1 Annotation Procedure 798

Annotators followed a structured process: 799

Step 1: Read the Question and Answer Choices 800

Understand the question’s context and review all 801

answer choices (A, B, C, D) to ensure clarity. 802

Step 2: Read the Model Output Analyze the 803

entire response, considering explicit answers, rea- 804

soning leading to an answer, and any conflicting 805

statements. 806

Step 3: Extract the Intended Answer Identify 807

the direct answer or infer it from the model’s rea- 808

soning if unstated. Cases where the response is 809

ambiguous, irrelevant, or contradictory are labeled 810

as “[No Valid Answer].” 811

As discussed in Section 5, we define five types 812

of outputs that should be marked as “[No Valid 813

Answer]” and include them in the annotation guide- 814

lines with examples: 815

Conflicting Answer (C.A.): The model output 816

exhibits conflicting reasoning. For instance, it may 817

suggest that multiple answers are correct or present 818

a reasoning pattern that contradicts the explicitly 819

stated answer. 820
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RegEx Matching String

Answer: [A-Z] Answer: A

Answer: \\([A-Z]\\) Answer: (A)

Answer: \\[[A-Z]\\] Answer: [A]

Answer:[A-Z] Answer:A

^[A-Z](\\.|$) A.

^\\([A-Z]\\)(\\.|$) (A).

correct answer is [A-Z]( |\\.|$) ... correct answer is A.

correct answer is \\([A-Z]\\)( |\\.|$) ... correct answer is (A).

correct answer is:\n[A-Z]( |\\.|$)
... correct answer is:
A.

correct answer is:\n\\([A-Z]\\)( |\\.|$)
... correct answer is:
(A)

correct answer is:\n\n[A-Z]( |\\.|$)
... correct answer is:

A.

correct answer is:\n\n\\([A-Z]\\)( |\\.|$)
... correct answer is:

(A).

is [A-Z]( |\\.|$) ... is A.

is \\([A-Z]\\)( |\\.|$) ... is (A).

is:\n[A-Z]( |\\.|$)
... is:
A.

is:\n\\([A-Z]\\)( |\\.|$)
... is:
(A).

is:\n\n[A-Z]( |\\.|$)
... is:

A.

is:\n\n\\([A-Z]\\)( |\\.|$)
... is:

(A).

Table 3: The 18 RegEx patterns we use to parse the LLMs outputs.

SYSTEM

You are an expert in question answering.
Given a question and a set of choices,
provide the correct answer.

USER

Question: {question}
Choices: {choices}

Table 4: Prompt for the Zero-Shot setting.

Inconsistency in Label Binding (I.L.B.): The821

model associates a choice’s text with the wrong822

label, e.g., generating “A. 3” when the original823

choices were “A. 4” and “C. 3”.824

Refused to Answer (R.A.): The model explicitly825

declines to answer due to insufficient knowledge826

or safety concerns.827

SYSTEM

You are an expert in question answering.
Given a question and a set of choices,
provide the reasoning process necessary
to answer the question and then
provide your answer exactly as ’Answer:
[label]’.

USER

Question: {question}
Choices: {choices}

Table 5: Prompt for the Zero-Shot Chain-of-Though
setting.

Irrelevant Response (I.R.): The model refer- 828

ences choices not provided (e.g., “The answer is E” 829

when E is not an option), or states that there is no 830

valid choice among the ones provided. 831
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SYSTEM

You are an expert in question answering.
Given a question and a set of choices,
provide the correct answer. Answer
exactly as ’Answer: [label]’.

USER

Question: {question}
Choices: {choices}

Table 6: Prompt for the Zero-Shot Constrained setting.

SYSTEM

You are an expert in question answering.
Given a question, a set of choices,
and few examples, provide the correct
answer.

USER

Question: {question}
Choices: {choices}

Table 7: Prompt for the Few-Shot setting.

Reached Token Limit (R.T.L.): The model fails832

to generate a complete response within the avail-833

able 512 tokens, making it impossible to infer the834

intended answer.835

Table 8 provides examples of these invalid an-836

swer patterns. Table 9 presents the number of in-837

stances tagged as invalid answers across different838

prompt settings for the 1, 000 manually annotated839

samples. We observe that the frequency of “[No840

Valid Answer]” varies with the prompt setting. No-841

tably, under ZS and ZS-CoT settings, outputs are842

more prone to invalid answers. The most common843

invalid answer type is “Conflicting Answer”.844

A.4 Results on ARC845

In this section, we present the results for the ARC846

dataset across different evaluation strategies and847

prompt settings.848

From Figure 5, we can observe that, since ARC849

consists of grade-school science questions, model850

performance closely aligns with the results ob-851

tained for the STEM category in MMLU-Redux852

(Figure 4a). Despite high miss rates, models evalu-853

ated with the RegEx strategy in the ZS and ZS-CoT854

settings perform comparably or even better than855
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Figure 5: Average accuracy scores across five LLMs
and four prompt settings when evaluated on the ARC
dataset. Dotted lines indicate the RegEx miss rate.
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Figure 6: The plot shows the average answer offset
(log10 scale) and accuracy (%) across the four different
prompt setting using the xFinder evaluation strategy.

in the ZS-Const setting, underscoring the benefits 856

of allowing free-form generation. This trend is 857

further supported by the xFinder-based evaluation, 858

where both ZS and ZS-CoT outperform ZS-Const, 859

and ZS-CoT even surpasses FS. To reinforce these 860

findings, Figure 6 reports average answer offsets 861

across prompt settings. The higher offset values 862

in ZS-CoT strongly correlate with final model per- 863

formance, except in FS, which we believe compen- 864

sates for the lack of explicit reasoning by leverag- 865

ing the benefits of learning from in-context exam- 866

ples. 867

A.5 Individual LLM Results 868

To have a more comprehensive analysis, we present 869

the accuracy results separately for each of the 870

LLMs under investigation (Section 4.2). The re- 871

sults are organized into three distinct tables: Ta- 872

ble 10 for MMLU-Redux, Table 11 for OBQA, and 873

Table 12 for ARC. 874

The reported results validate the consistency 875

of our findings across all tested models, further 876

strengthening the conclusions in Section 5. 877
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Error type Description Example

Conflicting answer The model output includes con-
flicting answers, such as incon-
sistent reasoning or multiple an-
swers.

Question: When light undergoes interference, it can sometimes
Choices: A. build up to more than the sum of amplitudes B. cancel
completely C. Both of these D. Neither of these
Model Output: When light waves overlap, they can build
up to more than the sum of amplitudes (addition) or cancel each
other out (destruction) . Therefore, the correct answer is
(A) build up to more than the sum of amplitudes .

Inconsistency in la-
bel binding

The model fails to bind the
choice’s label to its correspond-
ing text.

Question: What is the capital of France?
Choices: A) Berlin, B) Madrid, C) Paris , D) Rome
Model Output: The capital of France is A. Paris .

Refused to answer The model explicitly states that
it cannot answer the question.

Question: How much energy do Americans waste each year by
throwing out the unused ice in their drinks?
Choices: A. 6× 108 J B. 6× 1011 J C. 6× 1014 J D. 6× 1017 J
Model Output: I couldn’t find any information about the amount
of energy wasted by throwing out unused ice in drinks. This seems
to be an unknown or fictional fact.

Irrelevant response The model fails to engage with
the question or generates an out-
put which is not relevant to the
question.

Question: Sofia and Tess will each randomly choose one of the 10 in-
tegers from 1 to 10. What is the probability that neither integer chosen
will be the square of the other?
Choices: A. 0.64 B. 0.72 C. 0.81 D. 0.95
Model Output: To find the probability that neither integer chosen will
be the square of the other, we need to consider the cases where this con-
dition is not met and subtract it from 1. [...] The probability that neither
integer chosen will be the square of the other is 1 - (9/100) = 91/100 =
0.91. However, none of the given choices match this answer.

Reach token limit The model output is truncated as
it reached the maximum token
limit.

Question: The language ww | w in (0 + 1)* is
Choices: A. not accepted by any Turing machine B. accepted by
some Turing machine, but by no pushdown automaton C. accepted
by some pushdown automaton, but not context-free D. context-free,
but not regular
Model Output: Great! Let’s break down the question and the
choices: [...] The language ww | w in (0 + 1)* is context-sensitive,
but not context [EOS]

Table 8: Identified error categories in model outputs with corresponding examples. Errors are highlighted in red,
while input cues for correct answers (if present) are shown in green. Examples are drawn from the MMLU-Redux
dataset post-annotation. A similar table was provided to annotators before the annotation process.

Setting C.A. I.L.B R.A. I.R. R.T.L # Samples

ZS 5 2 1 3 5 250
ZS-CoT 11 0 1 7 10 250

ZS-Const 3 0 1 1 0 250
FS 4 0 3 1 0 250

All 23 2 6 12 15 1000

Table 9: Number of instances annotated as “[No valid
answer]” for each prompt setting.

A.6 Additional Results on MMLU-Redux878

In this section, we present additional results for the879

last two main categories of MMLU-Redux: SO-880

CIAL SCIENCES and OTHER (Figures 7a and 7b).881

As shown in the figures, model performance882

on these categories follow a trend similar to that883

of the HUMANITIES category (Figure 4b). This884

is expected, as they include subcategories such885

as GLOBAL FACTS, BUSINESS ETHICS, HIGH886

SCHOOL GEOGRAPHY, and HIGH SCHOOL PSY- 887

CHOLOGY, among others, which are less aligned 888

with STEM fields like ABSTRACT ALGEBRA and 889

COLLEGE MATHEMATICS. 890

A.7 MMLU-ADVERSARIAL 891

In this section, we present the details on how we 892

constructed the MMLU-ADVERSARIAL dataset. 893

The MMLU-ADVERSARIAL dataset contains the 894

same samples of MMLU-Redux, with the addition 895

of a model-generated output for each sample. This 896

dataset aims to be a valuable resource for evalu- 897

ating how well current LLM-based answer extrac- 898

tion methods can identify and handle conflicting 899

answers within model outputs. Specifically, we 900

divide MMLU-ADVERSARIAL into two subsets: 901

one comprising model outputs where the reasoning 902

supports one answer but ultimately concludes with 903

another without justification (“inconsistent reason- 904
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ZS ZS-CoT ZS-Const FS

Model RegEX Logprobs xFinder RegEX Logprobs xFinder RegEX Logprobs xFinder RegEX Logprobs xFinder

Qwen2.5-7B-Instruct 71.4 72.1 73.5 75.2 — 75.8 72.1 72.1 72.1 74.0 74.0 74.1

Llama-3.1-8B-Instruct 67.3 67.0 69.1 70.6 — 71.6 66.8 66.8 66.8 68.8 69.0 69.8

Llama-2-7b-chat-hf 44.0 44.4 46.1 37.7 — 43.7 43.1 43.4 43.3 48.5 49.5 48.7

Phi-3.5-mini-instruct 67.2 67.9 70.2 70.1 — 70.9 67.8 67.4 68.4 67.9 67.7 69.4

Llama-3.2-1B-Instruct 44.6 45.6 47.5 38.8 — 44.9 44.2 44.0 44.3 47.7 48.1 47.9

Table 10: Accuracy results on MMLU-Redux for the different models over the four prompting stragety. For
each prompt are reported the different evaluation strategies, namely: Regural Expression (RegEx), Logarithmic
Probability (Logprobs) and xFinder.

ZS ZS-CoT ZS-Const FS

Model RegEX Logprobs xFinder RegEX Logprobs xFinder RegEX Logprobs xFinder RegEX Logprobs xFinder

Qwen2.5-7B-Instruct 77.0 87 85.2 88.8 — 89.0 87.2 87.2 87.4 89.4 90.2 89.4

Llama-3.1-8B-Instruct 81.4 82.6 81.4 85.4 — 85.4 82.6 83.0 82.6 81.0 81.0 81.0

Llama-2-7b-chat-hf 57.2 52.4 57.6 53.2 — 54.6 52.2 52.0 52.6 63.2 64.2 63.2

Phi-3.5-mini-instruct 80.0 83.4 83.0 85.2 — 85.6 84.0 83.8 84.0 86.0 85.2 86.0

Llama-3.2-1B-Instruct 55.8 51.0 56.6 51.2 — 55.4 54.8 55.0 54.8 60.0 60.0 60.0

Table 11: Accuracy results on OBQA for the different models over the four prompting stragety. For each prompt
are reported the different evaluation strategies, namely: Regural Expression (RegEx), Logarithmic Probability
(Logprobs) and xFinder.

ing”) and another containing cases where the model905

provides multiple answers (“multiple answers”). In906

the following, we provide the details on how we907

automatically construct these subsets starting from908

few examples.909

A.7.1 Inconsistent Reasoning910

To generate samples which contain an inconsis-911

tent reasoning pattern, we used a commercially-912

available LLM to modify the original model out-913

puts. Specifically, we partition all the MMLU-914

Redux instances into five equal subsets, each cor-915

responding to one of the LLMs evaluated in this916

study. We then collect model outputs using the ZS917

setting and employ GEMINI-1.5-FLASH5 to pre-918

serve the original reasoning while swapping the919

final answer with one that contradicts the reason-920

ing, thereby simulating an inconsitent reasoning.921

In Table 15, we provide the system prompt used922

to generate this subset. An example of generated923

outputs are presented in Table 13.924

We tested xFinder models on this automatically-925

generated adversarial subset and found that it was926

able to correctly identify only 1.3% of these in-927

stances as “[No valid answer]” (Table 18), confirm-928

ing our concerns about its reliability.929

5All experiments use the latest version of GEMINI-1.5-
FLASH available as of February 2025.

A.7.2 Multiple Answers 930

To replicate the multiple answer pattern on a large 931

scale, we again leveraged GEMINI-1.5-FLASH, 932

this time to generate adversarial samples without 933

relying on pre-existing model outputs. Specifically, 934

for each sample of MMLU-REDUX, we perform 935

two inference steps; in both steps, we feed the 936

question and a single choice out of four, without 937

repetition, to the model, asking it to generate a plau- 938

sible reasoning for that specific choice. Then, we 939

concatenate both replies, forming the final adver- 940

sarial model output for the given sample (second 941

row of Table 14). We provide the system prompt 942

used to generate these samples in Table 16. 943

In Table 18 we show that xFinder fails to cor- 944

rectly classify as “[No Valid Answer]” almost every 945

samples generated in this way, reaching a maxi- 946

mum accuracy of 3.3%. 947

A.8 Can xFinder Perform the MCQA Task? 948

Our manual analysis (Section 5) uncovered discrep- 949

ancies between xFinder’s outputs and human anno- 950

tations. Specifically, in cases where the annotators 951

labeled responses as “[No Valid Answer]” due to 952

the model reaching the maximum token limit, we 953

found that xFinder still assigned a label in some 954

instances. This suggests that xFinder may inherit 955

biases from its underlying Large Language Models, 956

occasionally attempting to solve the MCQA task 957

rather than strictly adhering to the intended answer 958
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ZS ZS-CoT ZS-Const FS

Model RegEX Logprobs xFinder RegEX Logprobs xFinder RegEX Logprobs xFinder RegEX Logprobs xFinder

Qwen2.5-7B-Instruct 85.4 89.3 89.5 89.7 — 91.7 87.7 89.5 89.5 87.8 89.7 89.6

Llama-3.1-8B-Instruct 81.8 82.4 84.2 85.8 — 87.7 80.6 82.3 82.3 80.9 82.4 83.1

Llama-2-7b-chat-hf 54.5 52.2 57.1 49.5 — 55.3 50.2 52.3 52.6 59.5 61.2 61.1

Phi-3.5-mini-instruct 81.8 86.5 87.3 86.8 — 88.9 84.3 85.4 86.6 84.3 86.0 86.6

Llama-3.2-1B-Instruct 50.1 51.7 54.6 47.0 — 54.8 51.2 52.3 52.3 54.1 55.7 55.7

Table 12: Accuracy results on ARC for the different models over the four prompting stragety. For each prompt
are reported the different evaluation strategies, namely: Regural Expression (RegEx), Logarithmic Probability
(Logprobs) and xFinder.

Input sample
Question: On which continent are most of the Venus
figurines found?
Choices:
A. Europe
B. Africa
C. Asia
D. Australia

Original Model Output
[...] The majority of Venus figurines have been found on
the continent of Europe. In fact, over 70% of all known
Venus figurines are from Europe, with the majority coming
from the Upper Paleolithic period (around 40,000-10,000
BCE). [...]
Therefore, the answer to the question is:
Answer: B. Africa

Input sample
Question: How much toothpaste is recommended
for cleaning teeth?
Choices:
A. A smear.
B. A pea-sized amount.
C. The length of the toothbrush.
D. Half an inch.

Original Model Output
The correct answer is B. A pea-sized amount.
According to the American Dental Association (ADA) and
most dental professionals, a pea-sized amount of
toothpaste is recommended for cleaning teeth,
especially for children.

Adversarial Model Output (GEMINI-1.5-FLASH)
The correct answer is A. A smear.
According to the American Dental Association (ADA) and
most dental professionals, a pea-sized amount of
toothpaste is recommended for cleaning teeth,
especially for children.

Table 13: Examples of outputs showing inconsistent reasoning (blue highlights the reasoning path, while red
highlights the answer given as correct). The first row shows one of the annotated samples, while the second row
depicts a coherent sample generated by one of the models used in our study, along with the relative adversarial
sample generated by GEMINI-1.5-FLASH.

extraction objective for which it was fine-tuned.959

To test this hypothesis, we designed three dis-960

tinct prompts (Table 17) specifically to highlight961

this unintended behavior. The rationale behind962

such prompts is the creation of an ambiguous an-963

swer that tries to stimulate the extractor model964

to solve the MCQA task. Specifically, PROMPT965

A and PROMPT B list all possible answers and966

state that one is correct without specifying which967

one, while PROMPT C simply lists all available968

choices in a more straightforward manner. Ac-969

cording to xFinder’s design principles, all these970

prompts should result in a “[No valid answer]” re-971

sponse, since no single answer is explicitly deemed972

as correct.973

We report the results of this analysis over three974

different datasets in Table 19 (MMLU-Redux), Ta-975

ble 20 (OBQA), and Table 21 (ARC). The results976

show that xFinder is indeed prone to solving the977

MCQA task rather than strictly performing answer 978

extraction. For instance, xFinder-Qwen reaches an 979

adversarial rate6 of up to 96.9% on the MMLU- 980

Redux dataset. This suggests that when prompted 981

adversarially, xFinder models may shift toward 982

solving the original MCQA task instead of extract- 983

ing the intended answer. 984

To assess how often xFinder, given an adversar- 985

ial prompt, selects a label that correctly matches the 986

ground truth—thus successfully solving the MCQA 987

task—we also compute its relative accuracy. This 988

metric reflects the percentage of instances where 989

xFinder predicts a label which is the correct one. 990

From Tables 19 to 21, we observe that in most 991

cases, the xFinder model based on Llama consis- 992

tently outperforms random chance accuracy. This 993

supports our hypothesis that LLM-based evaluation 994

6The adversarial rate is defined as the percentage of in-
stances where xFinder assigns a label instead of generating
“[No valid answer].”
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Input sample
Question: If f(x) = x3 + 2x2 − 9x− 18, which
of the following statements is true?
Choices:
A. f(x) = 0 has three real solutions.
B. f(x) ≥ −18 for all x ≥ 0.
C. f(x) ≤ −18 for all x ≤ 0.
D. The function f(x) is decreasing for x ≤ −3.

Original Model Output
To determine the correct answer, we need to analyze the
given function.
A. f(x) = 0 has three real solutions: [...] So,
the correct answer is A.
B. f(x) >= -18 for all x >= 0: We can rewrite the
function as [...] Since 1782 is greater than -18,
the correct answer is B.
C. f(x) <= -18 for all x <= 0: We can rewrite the
function as [...] Since -64 is less than -18, the
correct answer is C.
D. The function f(x) is decreasing for x <= -3: We can
determine [...] the correct answer is D.

Input sample
What number makes the equation 35 / ? = 7 true?
A. 5
B. 6
C. 7
D. 8

Adversarial Model Output (GEMINI-1.5-FLASH)
C. 7 is the correct answer because 35 divided by a
divisor that is a multiple of 7 will yield a quotient of
7. [...] Answer: C.
A. 5. What makes it valid is that
35 divided by 5 equals 7, which is a fundamental
property of arithmetic division. [...] and it’s what
makes 5 the correct answer.

Table 14: Examples of outputs showing multiple answers (red highlights multiple answers given as correct). The
first sample is one of the annotated samples, labeled as “A” by xFinder, while the second is an adversarial sample
generated by GEMINI-1.5-FLASH.

System Prompt

Given an input question, answer
choices, and an output generated by a
model, substitute ONLY the model answer
label and text with another one among
the ones available. DO NOT change
anything else in the output.

Table 15: System prompt used with GEMINI-1.5-
FLASH, to create the Inconsistent Reasoning subset of
MMLU-Adversarial

strategies may inherit biases from their underlying995

foundation models, making them vulnerable to ad-996

versarial prompting.997

System Prompt

You are an expert at the game of writing
convincing pseudo-explanation. Given
an input question and an answer, write
the explanation for why that answer is
correct with respect to the question.
If the answer seems not correct to
you, do not acknowledge it. End your
explanation with ’Answer: [label].’

Table 16: System prompt used with Llama-3.1-8B-
Instruct to create the Multiple Answers subset of
MMLU-Adversarial
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Figure 7: Average accuracy scores across five LLMs
and four prompt settings when evaluated on the SO-
CIAL SCIENCES (Figure 7a) and OTHER (Figure 7b)
categories of MMLU-Redux. Dotted lines indicate the
RegEx miss rate.

Prompt A

Given the Answer Choices: {choices}.
There is a correct option, and it is
quite straightforward to identify in

Prompt B

Given the Answer Choices: {choices}.
There is a right choice, and it is
fairly easy to be recognized in

Prompt C

The correct option is: {choices}

Table 17: Prompt configuration for the xFinder biasing
test. The {choices} string serves as a placeholder for
the list of answer choices, which is instantiated for each
sample.

xFinder Conflicting Answer Type Extraction Accuracy

Llama Inconsistent Reasoning 1.30
Qwen Inconsistent Reasoning 0.90

Llama Multiple Answers 3.30
Qwen Multiple Answers 0.60

Table 18: Extraction accuracy of xFinder models on
the adversarial samples of Inconsistent Reasoning and
Multiple Answers subsets of MMLU-ADVERSARIAL.

Llama Qwen

Prompt Adv. Rate Accuracy Adv. Rate Accuracy

Prompt A 58.9 68.2 45.7 29.3

Prompt B 54.0 69.6 43.2 28.0

Prompt C 15.3 74.8 96.9 23.1

Table 19: Results of xFinder models on adversarial
prompts from the MMLU-Redux test set. The Adver-
sarial Rate column indicates the percentage of instances
where xFinder assigns a label instead of “[No Valid An-
swer].” The Accuracy column reflects the percentage
of cases where xFinder selects a label that correctly
matches the ground truth for that sample in the dataset.

Llama Qwen

Prompt Adv. Rate Accuracy Adv. Rate Accuracy

Prompt A 49.8 76.7 19.8 42.4

Prompt B 36.4 82.4 16.4 42.7

Prompt C 5.8 89.9 92.0 30.0

Table 20: Results of xFinder models on adversarial
prompts from the OBQA test set. The Adversarial
Rate column indicates the percentage of instances where
xFinder assigns a label instead of “[No Valid Answer].”
The Accuracy column reflects the percentage of cases
where xFinder selects a label that correctly matches the
ground truth for that sample in the dataset.

Llama Qwen

Prompt Adv. Rate Accuracy Adv. Rate Accuracy

Prompt A 67.6 82.3 42.4 27.2

Prompt B 60.1 84.0 40.0 26.2

Prompt C 13.5 89.9 96.8 23.2

Table 21: Results of xFinder models on adversarial
prompts from the ARC test set. The Adversarial Rate
column indicates the percentage of instances where
xFinder assigns a label instead of “[No Valid Answer].”
The Accuracy column reflects the percentage of cases
where xFinder selects a label that correctly matches the
ground truth for that sample in the dataset.
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