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ABSTRACT

Currently many benchmarks have been proposed to evaluate the perception ability
of the Large Vision-Language Models (LVLMs). However, most benchmarks
conduct questions by selecting images from existing datasets, resulting in the
potential data leakage. Besides, these benchmarks merely focus on evaluating
LVLMs on the realistic style images and clean scenarios, leaving the multi-stylized
images and noisy scenarios unexplored. In response to these challenges, we
propose a dynamic and scalable benchmark named Dysca for evaluating LVLMs
by leveraging synthesis images. Specifically, we leverage Stable Diffusion and
design a rule-based method to dynamically generate novel images, questions and
the corresponding answers. We consider 51 kinds of image styles and evaluate the
perception capability in 20 subtasks. Moreover, we conduct evaluations under 4
scenarios (i.e., Clean, Corruption, Print Attacking and Adversarial Attacking) and
3 question types (i.e., Multi-choices, True-or-false and Free-form). Thanks to the
generative paradigm, Dysca serves as a scalable benchmark for easily adding new
subtasks and scenarios. A total of 24 advanced open-source LVLMs and 2 close-
source LVLMs are evaluated on Dysca, revealing the drawbacks of current LVLMs.
The benchmark is released in anonymous github page https://github.com/
Benchmark-Dysca/Dysca.

1 INTRODUCTION

Recent years have witnessed the great success of the Large Vision-Language Models (LVLMs) (Li
et al., 2023d; Zhu et al., 2023; Dai et al., 2023; Liu et al., 2023b; Li et al., 2023a; Chen et al.,
2023b; Zhang et al., 2023; Su et al., 2023; Gong et al., 2023; Sun et al., 2023b). These models
leverage the powerful Large Language Models (LLMs) (Chung et al., 2022; OpenAI, 2022; Touvron
et al., 2023; OpenAI, 2023; FastChat, 2023) as their brain and incorporate the state-of-the-art visual
encoders (Radford et al., 2021; Fang et al., 2023; Dosovitskiy et al., 2020) as their eyes. Thanks to
the alignment of visual feature with textual space and the development of visual instruction tuning
techniques (Liu et al., 2023b), LVLMs showcase the impressive capability in terms of visual scene
comprehension and multimodal instruction-following.

In order to comprehensively evaluate the capabilities of LVLMs, many benchmarks have been
purposed (Antol et al., 2015a; Singh et al., 2019; Xu et al., 2023; Shao et al., 2023; Li et al., 2023c;b;
Fu et al., 2023; Bai et al., 2023b; Yu et al., 2023; Yang et al., 2023b; Chen et al., 2024), where we
categorize the current benchmarks into three types (Fu et al., 2023). The first type is the classical
benchmarks, such as COCO Caption (Chen et al., 2015) and VQA (Antol et al., 2015a; Goyal et al.,
2017; Marino et al., 2019). Although these benchmarks provide high-quality evaluation data, they
also have notable limitations. On the one hand, they are inadequate for measuring the fine-grained
capabilities of current LVLMs, offering the limited insightful feedback for the future improvement.
On the other hand, since these classical benchmarks have been available as the open-source test
data for a long time, it is hard to prevent the data leakage problem. The second type of benchmarks
evaluate the LVLMs through a subjective manner (Yang et al., 2023b; Wu et al., 2023). Although
the benchmarks reveal the insightful drawbacks of current models, their data scale is limited (i.e.,
less than 200 annotations) and they require manual evaluation by experts. The third type is built
for objectively evaluating current LVLMs and the comparison between them are shown in Tab. 1.
They provide an objective and automatic evaluation manner, giving the fine-grained evaluation for
the LVLMs. However, these benchmarks conduct Vision-language QAs by selecting images from
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Q：What is the animal in 
the image?
(A) Turtle  (B) Tiger
(C) Cat (D) Mouse

… … …

Q：Is the object in the 
image a table ?
(A) True (B) False

Q：Is the object in the 
image a refrigerator ?
(A) True (B) False

Q：Please describe this 
image in terms of content, 
style and attribute details.

Attribute

Blue Color

White Color

Purple Color

5 years old

25 year old

Smiling

Shouting

…

a white color cat, 
hyperrealistic style, 

snow-covered ground

a purple color 
refrigerator, fairy tale 

style, Starry sky

pixel-art style face 
portrait of a male, 
smiling, on Mars

table

Figure 1: Overview of the automatic pipeline for generating Vision-language QAs, cleaning Vision-
language QAs and evaluating LVLMs. (a) We first constructs prompts in terms of content, style and
background, leveraging the Text-to-Image (T2I) diffusion model (e.g., SDXL (Podell et al., 2023)) to
synthesis images to be asked. Then based on the scenarios and the question type, we post-process the
synthesis images and generate the specific textual questions, respectively. (b) We further filter out
low quality Vision-language QAs by utilizing trained models to form the final Dysca. (c) Finally, we
evaluate LVLMs on our Dysca and feedback the fine-grained evaluation results.

existing dataset and annotate the textual questions. Although they claim that the questions are
re-annotated, the previous work (Chen et al., 2024) has demonstrated that these benchmarks have
Models unintentionally leaked into the training data of LLMs and LVLMs. Besides, most benchmarks
focus on evaluating LVLMs in the realistic images and clean scenarios, leaving the multi-stylized
images and noisy scenarios unexplored. While some works like MMCBench (Zhang et al., 2024b)
and Typographic Dataset (Cheng et al., 2024) have investigated the robustness of LVLMs with
corrupted and print-attacked images, respectively, they have not explored the effect of these noisy
images on various perceptual tasks.

In this paper, aiming to address these challenges above, we propose Dysca which is a dynamic
and scalable benchmark for evaluating the perception ability of LVLMs via various subtasks and
scenarios. Inspired by the prior evaluation works for LLMs (Liang et al., 2023), we investigate on
whether we could leverage the large-scale synthesized images for evaluating LVLMs. We display
the overview of our pipeline in Fig. 1. Specifically, we leverage Stable Diffusion and design a
rule-based method to dynamically generate novel images, questions and corresponding answers.
We decouple the prompt into 4 part, i.e., attribute, foreground, style and background, and design
pre-defined templates to dynamically generate prompts, as displayed in Fig. 3. Then we utilize the
state-of-the-art text-to-image diffusion models (e.g., SDXL (Podell et al., 2023)) to generate the
corresponding images. Since we already know the main information of the images through prompts,
we easily generate question-answer textual pairs by the rule-based method. After that, in order to
obtain the high quality Vision-language QAs, we employ CLIP (Radford et al., 2021) to perform data
cleaning on the generated Vision-language QA pairs. Dysca focuses on assessing the fine-grained
perception abilities, including recognizing human, animal, object, landmark, etc. Dysca evaluates
LVLMs with 20 perceptual subtasks, containing a total number of 51 different artistic styles.
Besides, to evaluate the robustness of the models across different scenarios and question types, we
construct 4 testing scenarios (clean, corruption, print attacking and adversarial attacking) and 3
question types (multi-choices, true-or-false and free-form questions).

Compared to previous works in Tab. 1, we provide an end-to-end process from image to Vision-QA
generation. The approach significantly reduces annotation costs compared to manually labeling
images (e.g., MME (Fu et al., 2023)) while achieving the correctness for evaluating LVLMs. It also
avoids the risk of hallucinate annotations that may occur when using ChatGPT for labeling based
on image prompts (e.g., JourneyDB (Sun et al., 2023a)). This novel pipeline enables us to create a
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Table 1: Comparisons between existing LVLM benchmarks. ’!–’ indicates that the benchmarks
include both newly collected images / annotations and images / annotations gathered from existing
datasets. ’*’ The scale of our released benchmark is 617K, however Dysca is able to generate
unlimited data to be tested.

Benchmark #Evaluation
Data Scale

#Perceptual
Tasks

Automatic
Annotation

Collecting from
Existing Datasets

Question
Type

Automatic
Evaluation

LLaVA-Bench 0.15K - ✗ !– Free-form ✓

MME 2.3K 10 ✗ !– True-or-false ✓

LVLM-eHub - 3 ✓ ✗ Free-form ✗

tiny-LVLM-eHub 2.1K 3 ✓ ✗ Free-form ✓

SEED-Bench 19K 8 !– ✗ Multi-choices ✓

MMBench 2.9K 12 ✗ !– Multi-choices ✓

TouchStone 0.9K 10 ✗ ✓ Free-form ✓

REFORM-EVAL 50K 7 ✓ ✗ Multi-choices ✓

MM-BigBench 30K 6 ✓ ✗ Multi-choices ✓

MM-VET 0.2K 4 !– !– Free-form ✓

MLLM-Bench 0.42K 7 ✗ !– Free-form ✓

SEED-Bench2 24K 10 !– ✗ Multi-choices ✓

BenchLMM 2.4K 15 ✗ ✗ Free-form ✓

JourneyDB 5.4K 2 ✓ ✓
Free-form

Multi-choices
✓

Dysca (Ours) 617K* 20 ✓ ✓

Free-form
Multi-choices
True-or-false

✓

benchmark that is easily scalable and adaptable for incorporating new subtasks and scenarios. In the
end, Dysca consists of 617K Vision-language QA pairs (×20 larger than MM-BigBench (Yang et al.,
2023a) and ×25 larger than Seed-Bench2 (Li et al., 2023b), with the most comprehensive evaluation
perspectives and scenarios.

In summary, our work makes the following key contributions:

• Dynamic and Scalable Benchmark: We propose Dysca, a benchmark that is able to
dynamically generate the test data that users need and is easily to scale up to to new subtasks
and scenarios.

• Multi-grained Perceptual Subtasks and Multi-scenarios: Dysca evaluates the 20 per-
ceptual subtasks performance of 26 mainstream LVLMs, including GPT-4o (Ope) and
Gemini-1.5-Pro (Team et al., 2024), under 4 image scenarios (i.e., clean, corruption, print
attacking and adversarial attacking) and 3 question types (i.e., multi-choices, true-or-false
and free-form questions).

• Analysis and Observations: We demonstrate for the first time that evaluating LVLMs
using large-scale synthetic data is valid. Experiments show the strong correlation coefficient
between our evaluation rankings and the rankings obtained from non-synthetic benchmarks.
The evaluation results also reveal the weakness of current LVLMs when facing different
question types, image styles and image scenarios.

2 RELATED WORKS

2.1 LARGE VISION-LANGUAGE MODELS

The landscape of Large Vision-Language Models (LVLMs) has been significantly shaped by the
pioneering success of Large Language Models (LLMs) such as GPTs (Radford et al., 2019; Brown
et al., 2020; Ouyang et al., 2022) and LLaMA (Touvron et al., 2023), catalyzing advancements in
multimodal content understanding and generation (Zhang et al., 2024a), including intricate tasks
like image-text comprehension. At the forefront of these developments, BLIP-2 (Li et al., 2023d)
introduces a lightweight Q-Former (Li et al., 2023d) that facilitates alignment between textual and
visual representations through a cross-attention mechanism (Li et al., 2023d). InstructBLIP (Dai
et al., 2023) takes a step further by incorporating textual instructions into the Q-Former, which
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significantly improves performance. LLAVA (Liu et al., 2023b) employs GPT-4 (OpenAI, 2023)
to transform data into multimodal instruction-following data and uses CLIP (Radford et al., 2021)
and LLAMA (Touvron et al., 2023) for fine-tuning instructions, achieving advanced performance.
LLAVA-1.5 (Liu et al., 2023a) extends this paradigm by integrating MLP projection and introducing
academic task-specific Vision-language QA data. Recently, models like Otter (Li et al., 2023a),
MiniGPT-4 (Zhu et al., 2023), Qwen-VL-Chat (Bai et al., 2023a) and XComposer-VL (Zhang et al.,
2023) further unleash the cross-modal understanding capabilities of LVLMs. Besides, many powerful
closed-source LVLMs, including Gemini-1.5-Pro (Team et al., 2024) and GPT-4o (Ope), have publicly
released their APIs, promoting the development of downstream applications.

2.2 BENCHMARKS FOR LVLMS

The great progress of LVLMs triggers the development of benchmarks for evaluating these models,
where we divide previous benchmarks into three categories. The first type is the classical benchmarks
which focuses on evaluating LVLMs abilities via image caption (Lin et al., 2014) and VQA (Antol
et al., 2015b;a). However, these benchmarks cannot provide the fine-grained feedback on how to
improve the models. Besides, since these benchmarks have been the public resources for a long time,
it is hardly to guarantee that the LVLMs have not use them for training. The second type subjectively
evaluates LVLMs by experts (Yang et al., 2023b; Wu et al., 2023). Although these benchmarks
reveal the insightful feedback of the LVLMs, their scale is limited (i.e., less than 200 annotations).
The subjective manner also makes the evaluation expensive and hardly to expand the scale of the
benchmarks.

The third type (Liu et al., 2023b; Fu et al., 2023; Xu et al., 2023; Shao et al., 2023; Li et al., 2023c;b;
Liu et al., 2023c; Bai et al., 2023b; Li et al., 2023f; Yang et al., 2023a; Yu et al., 2023; Ge et al., 2023;
Cai et al., 2023; Chen et al., 2024; Liu et al., 2024) focuses on evaluating LVLMs in an objective
and large-scaled manner, where we list the detailed information of them in the Tab. 1. Some of
them have been adopted by the community (Contributors, 2023) as the standard benchmarks for
evaluating LVLMs (OpenAI, 2022; Li et al., 2023a; Zhang et al., 2023), like MME (Fu et al., 2023)
and MMBench (Liu et al., 2023c). These benchmarks evaluate models through the objective answer
types and most of them leverage the automatic annotation and evaluation manner for revealing the
fine-grained drawbacks of current LVLMs. However, the previous benchmarks primarily concentrate
on evaluating LVLMs using realistic images and clean scenario, leaving multi-stylized images and
noisy scenarios unexplored. Moreover, many of them conduct QA by selecting images from publicly
available datasets (e.g., (Lin et al., 2014; Russakovsky et al., 2014)). While they state that the
questions have been re-annotated, they cannot guarantee that the LVLMs have not seen the image
during training stage. The previous work (Chen et al., 2024) has proved that these benchmarks have
unintentionally leaked into the training data of LLMs and LVLMs. One possible way to solve data
leakage is using novel but synthesis images, where JourneyDB (Sun et al., 2023a) is the first work
aiming to leverage synthesis images to evaluate current LVLMs. The prompts and the corresponding
images are downloaded from Midjourney (mid) and ChatGPT (OpenAI, 2022) is leveraged to label
the images. However, JourneyDB is a top-down framework where the number of images is fixed.
Besides, the ChatGPT labeling may cause hallucinate annotations, leading to the unreliable evaluation
results. Although 40 annotators have involved to clean the data, the data cleaning cost are expensive
and it limits the data scale. In contrast, our Dysca serves as the bottom-up framework, allowing for
dynamic and scalable generation for both images and evaluation questions. The rule-based question
generation method also makes the annotations more accuracy. Besides, Dysca contains 20 subtasks
which is more comprehensive than JourneyDB.

3 DYSCA

3.1 OVERVIEW OF OUR PIPELINE

The overview of our pipeline is shown in Fig. 1, containing data generation, data cleaning and
LVLMs evaluation. For the data generation, our Dysca benchmark consists of four dimensions,
i.e., (M,P, I,Q), where M means “Metadata”, P means “Prompt”, I means “Image” and Q means
“Question-answer pair”. We further decouple the metadata M into 4 parts, i.e., “style”, “attribute”,
“foreground” and “background”, and the combination of the four parts constitute the image prompts
P . Then, given the prompt P and the selected scenario, we leverage the Text-to-Image (T2I) diffusion
model (e.g., SDXL (Podell et al., 2023)) to synthesis image I and add the specific perturbation to
the image I . After that, since the prompt already includes the question angle and the corresponding
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Table 2: Key statistics of Dysca.

Statistic #Number

Total questions 617K
- Clean 156K (25.2%)
- Print attacking 149K (24.1%)
- Adversarial attacking 156K (25.2%)
- Corruption 156K (25.2%)

Question type
- Multi-choices 251K (40.6%)
- True-or-false 250K (40.5%)
- Free-form 116K (18.8%)

Image resolution 1024*1024

Unique number of images 289K
Unique number of questions 162K
Unique number of answers 31K

Average question length 37.8
Average answer length 2.7
Average choice number 3.0
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Figure 2: Overview of the dataset distribution of 20
perceptual tasks. The number in each subtask shows the
corresponding amount of their annotation.

answer, we construct a rule-based approach to generate the Q. Three types of questions are considered,
i.e., multi-choice, true-or-false and free-form. Multi-choice and true-or-false questions utilize a closed-
ended manner to assess LVLMs, while free-form questions employ an open-ended manner through
image captioning for evaluation. For the data cleaning, considering that the T2I diffusion model may
generate unsuccessful outcomes, we then use CLIP (Radford et al., 2021) and PP-OCRv3 (Li et al.,
2022) to automatically clean the whole dataset to obtain the final Dysca. Finally, we evaluate 14
open-sourced LVLMs and 2 closed-source LVLMs on our proposed Dysca.

3.2 PERCEPTUAL TASKS

Evaluation dimensions. Perception is one of the most fundamental capabilities of LVLMs and
previous works (Fu et al., 2023) have shown that the lack of perceptual ability may result in halluci-
nation (Li et al., 2023e). In order to comprehensively evaluate LVLMs’ perception capability, we
collect and organize existing sub-dimensions from current evaluation datasets, resulting in a total of
20 assessment dimensions where we show all the subtasks and the corresponding amount of their
annotation in the Fig. 2. We investigate on two types of perception dimensions, i.e., coarse-grained
and fine-grained perception. Coarse-grained perception involves recognizing the style, background
and color of images. Fine-grained perception involves recognizing the animal, object, plant, food,
age, gender, expression, race, celebrity, action, text, clothes, movie, anime, landmark, profession and
TV shows.

Data sources. For each perceptual subtask, we collect the textual data first to construct the metadata
M . For the TV shows, Anime and Movie, we select the titles from the rating list of IMDb1 based on
the number of user reviews. For the styles, we utilize the style lists collected from the community2 and
remove those which have strong reflect on the image content like “architectural style” and “Pokemon
style”. Note that the style list does not include the style prompt associated with a particular artist’s
name. Besides, for the remaining contents, we select them from the label of current dataset (e.g.,
ImageNet (Russakovsky et al., 2014)). All the selected textual data above constitute the metadata M .
We provide the detailed information of the metadata in the Appendix ??.

3.3 CONSTRUCTION OF QUESTIONS & ANSWERS

Recall that the data generation for Dysca benchmark consists of four dimensions, i.e., (M,P, I,Q),
denoting the metadata (M ), prompt (P ), image (I) and question-answer pairs (Q), respectively.
The relationships between these parts and the process of constructing Dysca are shown in Fig.
3. The metadata M is the core of the whole Dysca, containing all the information for generating
P , I and Q. The metadata M consists of foreground, attribute, background and style, and these
information guide the generation of the prompt (P ) through pre-designed templates. Then, we utilize
the T2I diffusion model to generate the corresponding image using the prompt P . For generating

1https://www.imdb.com/
2https://stable-diffusion-art.com/sdxl-styles/
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Table 3: Evaluation results on blind setting and 4 scenarios, where the darker colors represent higher
scores. The top 1 result on each scenario are bolded and the value in brackets is the relative values
with respect to the ones in the clean scenario. “PrintAtt” and “AdverAtt” means “Print Attacking”
and “Adversarial Attacking”, respectively. “*”: the model is under white-box setting.

ScenariosModel LLM Visual Encoder Blind Clean Corruption AdverAtt PrintAtt
MiniGPT-4 Vicuna-7B EVA-CLIP ViT-G 35.37 41.38 42.3 (+0.92) 34.42 (-6.96) 42.71 (+1.33)
MiniGPT-4 Vicuna-13B EVA-CLIP ViT-G 35.21 50.17 49.63 (-0.54) 31.77 (-18.40) 47.55 (-2.62)
MiniGPT-4 LLaMA2 EVA-CLIP ViT-G 34.77 56.61 55.7 (-0.91) 33.55 (-23.06) 49.78 (-6.83)
MiniGPT-2 LLaMA2 EVA-CLIP ViT-G 35.28 58.46 58.06 (-0.40) 56.62 (-1.84) 52.96 (-5.50)

BLIP2 Flan-T5-XL EVA-CLIP ViT-G 35.35 65.3 66.09 (+0.79) 32.55 (-32.75) 57.01 (-8.29)
BLIP2 OPT-3B EVA-CLIP ViT-G 34.99 39.54 40.29 (+0.75) 30.62 (-8.92) 37.26 (-2.28)
BLIP2 OPT-7B EVA-CLIP ViT-G 35.21 39.55 41.12 (+1.57) 31.76 (-7.79) 38.82 (-0.73)

InstructBLIP Vicuna-7B EVA-CLIP ViT-G 35.14 67.54 67.01 (-0.53) 34.42 (-33.12) 52.58 (-14.96)
InstructBLIP Vicuna-13B EVA-CLIP ViT-G 34.37 64.89 64.68 (-0.21) 31.77 (-33.12) 53.53 (-11.36)
InstructBLIP Flan-T5-XL EVA-CLIP ViT-G 34.51 66.54 67.58 (+1.04) 32.95 (-33.59)* 52.09 (-14.45)
InstructBLIP Flan-T5-XXL EVA-CLIP ViT-G 34.82 68.65 69.79 (+1.14) 32.95 (-35.70) 57.73 (-10.92)

LLava-1.5 Vicuna-7B CLIP ViT-L 34.63 51.27 51.7 (+0.43) 49.62 (-1.65) 47.27 (-4.00)
LLava-1.5 Vicuna-13B CLIP ViT-L 35.21 59.23 59.58 (+0.35) 56.87 (-2.36) 51.69 (-7.54)

Otter LLaMA-7B CLIP ViT-L 35.19 54.9 56.02 (+1.12) 51.42 (-3.48) 37.78 (-17.12)
Shikra LLaMA-7B CLIP ViT-L 34.96 62.24 63.06 (+0.82) 58.78 (-3.46) 49.56 (-12.68)

Xcomposer-VL InternLM-7B EVA-CLIP ViT-G 32.33 71.4 72.08 (+0.68) 30.28 (-41.12) 64.71 (-6.69)
Xcomposer2-VL InternLM2-7B CLIP ViT-L 32.76 79.13 78.64 (-0.49) 76.6 (-2.53) 66.34 (-12.79)
Qwen-VL-Chat Qwen-7B OpenClip ViT-bigG 33.06 62.18 61.05 (-1.13) 59.85 (-2.33) 51.94 (-10.24)

Emu2-Chat LLaMA-33B EVA2-CLIP-E 35.14 63.64 62.81 (-0.83) 61.9 (-1.74) 54.82 (-8.82)
GLM-4V GLM-4-9B-Chat EVA2-CLIP-E 35.08 82.09 81.95 (-0.14) 80.72 (-1.37) 52.09 (-30.00)

MiniCPM-V2.5 Llama3-Instruct 8B SigLIP SoViT-400m 34.99 78.75 77.41 (-1.34) 75.44 (-3.31) 60.77 (-17.98)
Yi-VL Yi-6B-Chat OpenClip ViT-H 35.01 75.71 74.94 (-0.77) 72.53 (-3.18) 64.97 (-10.74)

mPLUG-Owl-2 LLaMA-7B CLIP ViT-L 35.03 74.09 72.85 (-1.24) 69.76 (-4.33) 72.85 (-1.24)
Phi-3-Vision Phi-3 CLIP ViT-L 34.74 73.23 72.11 (-1.12) 69.66 (-3.57) 57.78 (-15.45)

GPT-4o / / 35.02 75.69 75.52 (-0.17) 73.47 (-2.22) 56.34 (-19.35)
Gemini-1.5-Pro / / 34.55 77.79 77.12 (-0.67) 75.89 (-1.90) 61.05 (-16.74)

the image with specific text on it for the OCR subtask, we leverage TextDiffusion2 (Chen et al.,
2023a), which is the state-of-the-art text rendering method. For the rest of images, we leverage Stable
Diffusion XL (Podell et al., 2023). Subsequently, based on the different question types we select, i.e.,
multi-choices, true-or-false and free-form, we generate the corresponding VQA pairs in Dysca.

Besides, in order to evaluate the model performance under various scenarios, we conduct experiments
on 4 scenarios, i.e., clean, corruption, print attacking and adversarial attacking. For the print attacking,
followed by (Cheng et al., 2024), we add the deceptive text on the image, where the text is a
wrong option. Besides, to comprehensively evaluate the performance of LVLMs under corruption
scenario, we add more typographic factors to original settings (i.e., different font orientations and
font positions). For the adversarial attacking, we leverage PGD (Madry et al., 2017) to generate the
adversarial image. We use InstructBLIP (Dai et al., 2023) as the proxy model and regard others as the
black box models. The reason why we choose InstructBLIP is that it has shown superior performance
in clean scenario. Besides, the black-box setting better reflects the robustness of the models when
they face the real-world adversarial attacks. For the corruption, we leverage the image corruption
methods collected from (Zhang et al., 2024b). We remove some hard corruptions as they significantly
impact the quality of the image, leading to human failure in judging the style and content of the
image. The detailed examples are shown in Appendix ??.

Data Clean. To ensure the quality of Dysca, four steps are adopt: 1) First, we manually remove
difficult-to-generate foregrounds and attributes, along with backgrounds and styles that could heavily
affect image content. We believe this process can serve as a coarse-grained method to eliminate
samples that are highly likely to be generated incorrectly. 2) Then, we leverage the off-the-shelf
models, i.e., PP-OCRv3 (Li et al., 2022) and CLIP-L-14 (Radford et al., 2021), to clean the data. PP-
OCRv3 (Li et al., 2022) is leveraged as the filter to exclude the failure image that TextDiffusion2 (Chen
et al., 2023a) generates the wrong text on the image. For the other images, we use CLIP-L-14 (Radford
et al., 2021) with a threshold of 0.75 to filter out the images with low text-image consistency. We
find that using 0.75 as the threshold achieves a good balance between image correctness and data
scale. 3) After that, We select the top six performing models and eliminate any question-answer pairs
where the models either answer incorrectly or indicate that the answer was not included among the
options. we observe that nearly 100% of the samples filtered out by these models are incorrect. 4)
Finally, we analyze the patterns in these incorrect samples, removing the associated vocabulary from
our metadata and discarding all related samples. By meticulously refining the metadata manually and
utilizing automated tools to assist in question filtering, Dysca ensures high-quality data synthesis.
In the end, we filter out nearly 40% of low quality samples. The final statistics of our released
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{ } iPhone photo, large depth of field, deep 
depth of field, highly detailed white color kettle on the lawn

Attribute Foreground Background

Prompt: "white color kettle, on the lawn, 

iPhone photo, large depth of field, deep 

depth of field, highly detailed"

M P

I

Q

Type: Multi-choice
Question: What is the object of the 
picture?
    A. bottle
    B. kettle
    C. surfboard
    D. dining table
Instruction: Please answer the question 
and provide the correct option letter, e.g., 
(A), (B), (C), (D), at the end. Do not 
contain the analysis progress. Your 
answer is: 
Answer GT: kettle

Type: True-or-false
Question: Is the color of the kettle in 
the picture yellow color ?
    A. True
    B. False
Instruction: Please answer the 
question and provide the correct option 
letter, e.g., (A), (B), (C), (D), at the 
end. Do not contain the analysis 
progress. Your answer is: 
Answer GT: False

Type: Free form
Question: Please describe the image. 
Instruction: You can describe it 
from these aspects: the subject of 
the image, its color, the background, 
the artistic style of the image.
Answer GT: white color kettle, on 
the lawn background, iphone 
photographic style

Questions of different subtask and types

Text-to-Image 
Diffusion Model

Pre-defined Templates 

Style

Figure 3: The process of generating the prompt (P), image (I) and question-answer pairs (Q) from the
metadata (M).

Dysca are shown in Tab. 2. Note that the OCR subtask does not involve print attacking scenario as
misidentifying adversarial text does not indicate poor OCR robustness of the LVLMs. Therefore,
there are 7K fewer questions in the print attacking scenario. Besides, for the free-form question type,
since it allows to assess the model’s perception abilities across multiple subtasks at the same time, we
reduce the number of free-form questions for achieving a balanced data distribution.

3.4 EVALUATION STRATEGY

Instruction Design. We design two types of instructions to improve the instruction-following result
of LVLMs. For the multi-choices and true-or-false questions, we design the questions followed by
the description “Please answer the question and provide the correct option letter, e.g., (A), (B), (C),
(D), at the end. Do not contain the analysis progress. Your answer is: ”. For the free-form questions,
recalling that the prompt P contains four part, i.e., the style, attribute, foreground and background, we
instruct the model to caption these four dimensions by “Please describe the image. You can describe
it from these aspects: {}”, where “{}” includes the specific template we design for each part. We
display the sample in the Fig. 3 and more examples can be found in the Appendix ??.

Evaluation Metric. For the multi-choices and true-or-false questions, we use accuracy as the
evaluation metric. We randomly shuffle the order of choices to prevent evaluation results from being
influenced by the model’s tendency towards specific choices (Zong et al., 2023). The random accuracy
of the two types are equal to 25% and 50%, respectively. We use regular expressions to extract the
model’s answer choices. For cases where the extraction is fail, we calculate the Levenshtein distance
between the answer string and the choice string, and select the option with the minimum distance as
the model’s answer. As our answers rarely exist in forms that can be represented in multiple ways
(e.g., “six” and “6” in reasoning or counting tasks), with selectively designed question prompt and the
answer pool, the answers of LVLMs can be effectively extracted. For the free-form questions, we test
the model’s image caption capability where the ground truth is the prompt of the image. Followed
by (Xu et al., 2023), we use SentenceTransformer (Thakur et al., 2021) to compute the text similarity
with prompt P and the caption output of the LVLMs. The final score of each question type is the
average score of subtasks.

4 RESULTS AND ANALYSIS

In this section, we report the evaluation results and make insightful analysis. A total of 26 LVLMs
are evaluated on Dysca benchmark, including BLIP2 (Li et al., 2023d), InstructBLIP (Dai et al.,
2023), LLavA (Liu et al., 2023a), MiniGPT-4 (Zhu et al., 2023), Otter (Li et al., 2023a), XComposer-
VL (Zhang et al., 2023), Qwen-VL-chat (Bai et al., 2023a), Shikra (Chen et al., 2023b), Emu2-
Chat (Sun et al., 2024), GLM-4V (GLM et al., 2024), MiniCPM-v2.5 (Yao et al., 2024), Yi-VL (AI
et al., 2024), mPLUG-Owl-2 (Ye et al., 2023), Phi-3-Vision (Abdin et al., 2024), GPT-4o (OpenAI,
2023), Gemini-1.5-pro (Team et al., 2024). Each model is evaluated with all the 20 perception
subtasks under 4 scenarios. The detailed rankings for each subtask can be found in the Appendix ??.
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Multi-Choice 
[Question] What is the animal in the image?

(A) salmon  (B) parrot
(C) crow  (D) sparrow

[Model Answer] The answer is D.
True-or-False 
[Question] Is there a sparrow in the picture?

(A) True  (B) False
[Model Answer] (B) False. [Model]  Xcomposer-VL

Multi-Choice 
[Question] Question] Who is the celebrity in the image?

(A) Charlize Theron (B) Cate Blanchett
(C) Jack Nicholson (D) Julia Roberts

[Model Answer] (D)
True-or-False 
[Question] Is the celebrity in the picture Cate Blanchett?

(A) False (B) True
[Model Answer] (B) [Model]  Blip2

[Question] Is the scene in the picture from the movie 
Raiders of the Lost Ark ?
(A) True (B) False

[Gemini-1.5] (A) True

[GLM4-V] A

[InstrucBLIP] (A)

[GPT-4o] A

  

 

  

 

[Gemini-1.5] (B) False 

[GLM4-V] A

[InstructBlip] (B)

[GPT-4o] A

[Question] Is there a crow in the picture?
(A) False (B) True

[Yi-VL] B

[GLM4-V] B

[Qwen-VL-Chat] (B) True

[GPT-4o] B

[Yi-VL] A

[GLM4-V] B

[Qwen-VL-Chat] (A) False

[GPT-4o] B

Rotating
45 degree

Adding
“False”

[Qwen-VL-Chat] B

[GLM4-V] A

[Gemini] (A) True \n

[GPT4-o] (A) True 

          
   

[Qwen-VL-Chat] B

[GLM4-V] B

[Gemini] (B)  \n

[GPT4-o] (B) Fals

[Question] Is the person in the picture playing the piano ?
(A) True (B) False

e

Figure 4: The failure cases for the noisy scenarios. From left to right are: corruption scenario,
adversarial attacking scenario, and print attacking scenario.

Multi-Choices 
[Question] What is the animal in the image?

(A) salmon  (B) parrot
(C) crow  (D) sparrow

[Model Answer] The answer is D.
True-or-False 
[Question] Is there a sparrow in the picture?

(A) True  (B) False
[Model Answer] (B) False. [Model]  Xcomposer-VL

Multi-Choices 
[Question] Question: Who is the celebrity in the image?

(A) Charlize Theron (B) Cate Blanchett
(C) Jack Nicholson (D) Julia Roberts

[Model Answer] (D)
True-or-False 
[Question] Is the celebrity in the picture Cate Blanchett?

(A) False (B) True
[Model Answer] (B) [Model]  Blip2

True-or-False 
[Question] Is the person in the picture practicing tai chi ?

(A) True  (B) False
[Model Answer] (B). Explanation: The picture is of a man 
practicing tai chi.

[Model]  Qwen-VL-Chat

Multi-Choice 
[Question] What is the person doing in the picture?

(A) driving a car (B) painting
(C) blowing bubbles (D) surfing on the sea

[Model Answer] (A) driving a car. The person in the picture 
is surfing on the sea. The image shows a person standing on 
a surfboard, riding a wave in the ocean.

[Model]  MiniGPT-4

Figure 5: Models exhibit different performance when facing the same image but different question
types.

4.1 MAIN RESULTS

Blind Setting. We first evaluate LVLMs when only textual questions are provided. As shown in the
“Blind” column of Tab. 3, all LVLMs yield consistent results on the Dysca and perform comparable
to random guessing. This outcome demonstrates that the generated paradigm employed by Dysca
effectively mitigates the potential impact of data leakage (Chen et al., 2024), thereby enhancing the
fairness of the evaluation results. Additional comparisons can be found in Appendix ??.

Clean Scenario. The evaluation results of various LVLMs in different perceptual subtasks under
clean scenarios are presented in the “clean” column of Tab. 3. We calculate the average score of 3
question types. As can be seen, GLM-4V (GLM et al., 2024) outperforms other LVLMs, achieving
top-1 performance. MiniCPM-v2.5 (Yao et al., 2024), Xcomposer2-VL (Dong et al., 2024) and
Gemini-1.5-pro (Team et al., 2024) also perform well. It is evident that for the latest large models,
their scores remain below 90. The results highlight that all existing LVLMs still struggle to provide
accurate responses to questions formulated by Dysca, being capable of uncovering drawbacks present
in existing LVLMs.

Noisy Scenarios The evaluation results of various LVLMs under noisy scenarios (i.e., corruption,
print attacking and adversarial attacking) are presented in last 3 columns in Tab. 3. The value in the
brackets shows the relative values with respect to the ones in the clean scenario. As can be seen,
GLM-4V (GLM et al., 2024) still takes a lead on corruption and adversarial attacking scenarios. For
the print attacking scenario, mPLUG-Owl-2 (Ye et al., 2023) performs the best. Here, we present a
failure case sample for each of the three different scenarios on Fig. 4.

4.2 ANALYSIS

4.2.1 KEY OBSERVATIONS

(1) For LVLMs, the capacity of the language model plays a crucial role. When using the same
visual encoder, models that adopt a language model with larger parameter sizes (e.g., Vicuna-13B
models generally outperform Vicuna-7B models by 8%) or models with a stronger but different
architecture (e.g., GLM-4V (GLM et al., 2024) with GLM-4-9B-Chat shows a 20% performance
increase compared to Emu2 (Sun et al., 2024) with LLaMA-33B) tend to achieve better overall
performance.

(2) Models exhibit performance inconsistency when dealing with multiple-choice and true-or-
false question types. We present two examples in Fig. 5. In the left example, the XComposer-
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VL (Zhang et al., 2023) recognizes the sparrow in the image under a multiple-choice setting but
fails to identify the sparrow in the same image under a true-or-false setting. This inconsistency
is also observed in other models, and we report detailed results in Appendix ??. We hypothesize
that the observed inconsistency may result from an imbalance in the training dataset, where certain
question types, such as multiple-choice or true-or-false questions, are more frequently represented.
This imbalance could lead the model to perform better on these overrepresented question types, while
struggling with others that are less common.

(3) The perceptual performance of individual models varies significantly across different sub-
tasks. For instance, Qwen-VL-Chat (Bai et al., 2023a) achieves 95.9% accuracy in the landmark
recognition task for multiple-choice questions (4.1% below the top score), but only 68.12% accuracy
in the TV show recognition task (28.94% below the top score). These results suggest that Qwen-VL-
Chat may require further fine-tuning in certain recognition tasks, especially in underperforming areas
such as TV show identification. Analyzing model performance across different subtasks can provide
insights for targeted improvements. Detailed results are provided in Appendix ??.

(4) Each model shows robustness in the corruption scenario, but experiences significant degra-
dation in both attack scenarios. In the image corruption scenario, all models demonstrate minimal
score variations (less than 1%), indicating consistent performance under non-targeted disruptions.
However, under print attacks, performance drops are notable. For example, two closed-source models
experience substantial declines: Gemini-1.5-pro (Team et al., 2024) drops by 21.5% (from 77.79 to
61.05), and GPT-4o (OpenAI, 2023) suffers a 25.8% decrease (from 75.69 to 56.10). Among the
advanced open-source models, GLM-4V’s (GLM et al., 2024) performance decreases sharply by
36.5% (from 82.09 to 52.09), and Phi-3-Vision (Abdin et al., 2024) records a 21.39% drop (from
73.23 to 57.78). Notably, mPLUG-Owl-2 (Ye et al., 2023) shows the highest robustness, with only a
1.7% reduction (from 74.09 to 72.84), while the XComposer-VL (Zhang et al., 2023; Dong et al.,
2024) series also exhibits strong resistance to print attacks. In the adversarial attack scenario, where
the attack algorithm directly targets the image encoder, LVLMs with shared encoder architecture (e.g.,
Blip2 (Li et al., 2023d), InstructBLIP (Dai et al., 2023), and XComposer-VL (Zhang et al., 2023), all
using EVA-CLIP (Fang et al., 2022) as their image encoder) suffer significant performance drops, with
some models even performing worse than random chance. For instance, XComposer-VL (Zhang et al.,
2023) experiences a 57.6% drop (from 71.40 to 30.28). Models with alternative image encoders also
experience degradation, ranging from 1% to 5%. The greater impact of adversarial noise compared to
corruption noise suggests that adversarial attacks exhibit a certain degree of transferability across
different model architectures, meaning that attack strategies effective on one model can potentially
compromise others. More detailed results are available in Appendix ??.

4.2.2 THE VALIDITY OF DYSCA

Table 4: The correlation results on three bench-
marks, where ρ ∈ [−1, 1] and τ ∈ [−1, 1].

Style Method MMBench OCRBench SeedBench-2

All ρ 0.70 0.90 0.46
τ 0.60 0.80 0.43

Realistic ρ 0.70 1.00 0.64
τ 0.60 1.00 0.62

In this section, we investigate on the evalu-
ation gap between Dysca and non-synthesis
benchmarks. We calculate the Spearman’s
rank correlation coefficient (Spearman, 1904)
ρ and the Kendall rank correlation coeffi-
cient (KENDALL, 1938) τ between the eval-
uation ranking of Dysca under clean scenario
with the non-synthesis benchmark’s evaluation
ranking, i.e., MMBench (Liu et al., 2023c), OCRBench (Liu et al., 2024) and SeedBench-2 (Li
et al., 2023b). Both coefficient generate a score in the range of [-1,1], where 1 represents a perfect
positive correlation, -1 represents a perfect negative correlation, and 0 represents no correlation.
These coefficients are typical tools for measuring the correlation between variables in statistics. When
the absolute value of either coefficient exceeds 0.6, it is considered to indicate a significant correlation
Akoglu (2018). Specifically, we intersect our Dysca with current benchmarks based on the perceptual
subtasks, evaluation models and evaluation question types. We then calculate the correlation of
model evaluation rankings within this intersection. The results are shown in the first row of Tab. 4.
For the MMbench (Liu et al., 2023c) and OCRBench (Liu et al., 2024), both metrics show the high
correlation, with ρ and τ higher than 0.6. However, the correlation for SeedBench-2 (Li et al., 2023b)
is not as strong. Considering that SeedBench-2 only contains realistic images, we conduct additional
experiments using the evaluation ranks on our realistic style images only. As shown in the second
row of Tab. 4, the correlation results of SeedBench-2 significantly improve (i.e., 0.46 vs. 0.64 for
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MiniGPT-4

LLava-1.5-7b

LLava-1.5-13b

XComposer-VL

Blip2

InstructBLIP

Otter

Qwen-VL-Chat

Shikra

Shikra-VQA

Figure 7: Illustration of each model’s performance across 51 image styles, where the darker colors
represent higher scores. The representative styles are colored with non-black font. Realistic styles are
shown in red font, unrealistic but common styles are displayed in yellow font, and unrealistic and
less common styles are represented in blue font.

ρ and 0.43 vs. 0.62 for τ ). The correlation with OCRBench also improves to 1, demonstrating the
validity of using synthetic datasets for evaluation LVLMs.

To further explore the the impact of image styles on evaluation results, we present the average scores
across all subtasks for each of the 51 styles in Fig. 7. We observe slight score differences across all
styles. In the case of realistic styles such as “iPhone photo”, all LVLMs perform better compared to
other image styles. The LVLMs also exhibit better performance on unrealistic but common styles
like “expressionist”. However, for unrealistic and less common styles such as “gothic”, all models
show relatively poor performance. The results reveal that the gap between Dysca and non-synthesis
benchmarks primarily stems from the more diverse range of image styles, making Dysca a more
comprehensive benchmark for assessing the perception ability compared to previous benchmarks.

Figure 6: The KMMD distance between
each benchmarks, with darker colors in-
dicating larger distances.

Besides, we calculate the data distribution distance be-
tween each benchmark to prove the low distance distribu-
tion between Dysca and non-synthesis benchmarks. We se-
lect CCBench (Liu et al., 2023c), COCO-Val, MMVet (Yu
et al., 2023), MMBench (Liu et al., 2023c), MME (Fu
et al., 2023), MMStar (Chen et al., 2024), OCRBench (Liu
et al., 2024) and ScienceQA (Lu et al., 2022). The reason
why we choose these benchmark is that they have been
widely used in evaluating LVLMs. We use Kernel Maxi-
mum Mean Discrepancy (KMMD) (Schölkopf et al., 2007)
to measure the distribution distance. Specifically, we ran-
domly sample 3,000 images from each benchmark (if the
scale of the benchmark less than 3000, we use all that data)
and utilize CLIP (Radford et al., 2021) to encode these
images. Then, we calculate the KMMD value using an
RBF kernel between each pair. The results are shown in
Fig. 6, with darker colors indicating larger distances. As
can be seen, the differences between Dysca and other real datasets are not significant. In fact, the
overall distribution distance is even smaller than other datasets compared with MME does. This
demonstrates that the distribution between our dataset and real datasets is minimal, indicating that the
evaluation results can effectively reflect the model’s performance in real-world scenarios.

5 CONCLUSION

In this paper, we purpose Dysca, a dynamic and scalable benchmark for evaluating perception
ability of Large Vision Language Models (LVLMs). Dysca consists of 617K Vision-language QA
pairs, covering 20 perceptual subtasks, 4 image scenarios and 3 question types. We conduct the
experiment on 24 advanced open-source LVLMs and 2 closed-source LVLMs, revealing the insightful
weakness of current LVLMs when facing different question types, image styles and image conditions.
Experiments demonstrate the validity on evaluating LVLMs by using synthesis images.
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