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ABSTRACT

What mechanisms causes GAN’s entanglement? Although developing disentan-
gled GAN has attracted sufficient attention, it is unclear how entanglement is
originated by GAN transformation. We in this research propose a difference-in-
difference (DID) counterfactual framework to design experiments for analyzing
the entanglement mechanism in on of the Progressive-growing GAN (PG-GAN).
Our experiment clarify the mechanisms how pixel normalization causes PG-GAN
entanglement during a input-unit-ablation transformation. We discover that pixel
normalization causes object entanglement by in-painting the area occupied by ab-
lated objects. We also discover the unit-object relation determines whether and
how pixel normalization causes objects entanglement. Our DID framework theo-
retically guarantees that the mechanisms that we discover is solid, explainable and
comprehensively.

1 INTRODUCTION

Understanding the entanglement stands on the stage center of the deep learning research because
entanglement is deeply rooted in the complex computational process of neural network models
(Karpathy et al., 2015} [Kulkarni et al., 2015 |Higgins et al., |2016)) while indicating non-predicable
biases. Therefore, developing an output-disentangle neural network model has attracted a significant
amount of attention from deep-learning society. However, the absence of analytical understanding
about the mechanism causing output entanglement prevents us from discussing whether and when a
neural network’s architecture can systematically avoid relative biases.

On the other hand, it is a challenge to examine the mechanism causing GAN (Goodfellow et al.,
2014} Radford et al., 2015; Zhang et al., 2019;|Chen et al.| 2016) entanglement. GAN’s deep neural
network structure obstructs the progress of theoretical analyses, while the experimental approach
proposed by the most recent studies (Zhou et al., 2018 |Selvaraju et al.,2017; Simonyan et al., [2013}
Olah et al.||2018;|Schwab & Karlen, 2019) is incapable of enlightening GAN’s inside structure. Cur-
rent experimental approaches in the literature are designed for generating counterfactual scenarios
(Imbens & Rubin, 2015} |Pearl, [2009) with and without the input changes (Bau et al., 2017} |Ben-
gio & Vincent, [2013). In contrast, understanding GAN’s internal mechanism causing entanglement
asks for an experimental design that can generate counterfactual scenarios with and without GAN’s
functioning. Thus, a new experimental design is necessary for studying the mechanism of GAN
entanglement.

We in this research develop a difference-in-difference (DID) (Ciani & Fisher, 2018} |Goodman-
Bacon, 2018; |Abadie, 2005; |Athey & Imbens| 2006) experiment to analyze the entanglement mech-
anism originated in the pixel-normalization operation of the Progressive-growing generative adver-
sarial network (PG-GAN) (Karras et al.l [2017). We select to research PG-GAN because of two
reasons. First, PG-GAN is an approach of generating a high-resolution figure including various ob-
jects that can entangle with each other. Second, the recent progress in literature has well prepared
for applying DID to study PG-GAN’s entanglement. (Besserve et al.| (2018a)) rigorously defined
the concept of operation-based object disentanglement in a figure generated by GAN. (Bau et al.
(2018)) has developed an approach to clarify the causal ties between input units and output objects.
Based on these two studies, we design a DID experiment to examine how pixel normalization causes
object entanglement during a unit-ablating transformation.
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Our results conclude that pixel normalization causes entanglement by in-painting the area belong-
ing to ablated objects. Once the in-painted objects are different from those surrounding the in-
painted area, an entanglement effect occurs. Entanglement caused by pixel normalization can be
further clustered according to the types of in-painted objects. If the in-painted objects are from
the same types as the ablated one, the entanglement effect deactivates the ablating transformation.
We refer to this type of entanglement as the “deactivating-ablation entanglement” or Type-1 entan-
glement. Otherwise, the entanglement effect causes unwanted objects’ appearance associated with
ablating, referred to as the “mis-ablation entanglement” or Type-2 entanglement by this research.
The difference-in-difference experiment also clarifies that the characteristics of unit-object causal
relation determine the types of in-painted objects.

We summarize our three contributions in this research:

e We explain the internal mechanism of how pixel normalization causes object entanglement
under ablating transformation. Because of our insights into the black-box of PG-GAN, we
also clarify the necessary conditions when objects are disentangled.

e We clarify the mechanism how unit-object causal relation determine whether and how dis-
entanglement occurs.

e We propose an experimental approach to analyze PG-GAN’s functioning mechanism based
on the DID counterfactual framework, which can be generalized for broader deep neural
network studies. Designing appropriate DID experiments to examine the functioning mech-
anism of neural network deserves further discussion.

Our understanding about entanglement provide a new perspective on entanglement research, which
can enable of a sequence further research. For instance, it is possible to design an ablation method
rather than modifying PG-GAN to avoid entanglement according to the understanding about how
pixel normalization causes entanglement over objects. The understanding the deactivating-ablation
entanglement also allows us to examine the robustness of objects in a figure once some input units
are unexpected losses.

2 PRELIMINARY: PG-GAN AND DISENTANGLEMENT
In this work, we are studying what the disentanglement prop-

erties are in the ablation transformation of PG-GAN (Karras
et al.| (2017)). PG-GAN is good at producing versatile objects Low resolution
with details while preserving the model efficiency. It adopts

a progressive layer-growing strategy for fine-grained details
and pixel normalization for training robustness.

Figure [2] shows the architecture of a layer in PG-GAN which
includes several different functions. Given a low-resolution
input from upstream layers, we do upsampling, convolu-
tions (Krizhevsky et al.| (2012))), and weighted residual con-
nection/He et al.|(2016). Finally, a pixel normalization |Kurach
et al. (2019) which is a type of avoids the competing gradient

magnitudes spiraling out of control is imposed on the output |
as l High resolution

toRGB(conv)
toRGB(conv)

pixel normalization |

a a a
_ 9.,q Pq P,q
bp,g = = (1

2 = )
Bpg  V(apg) \/ A M=17 \2 Figure 2: The architecture of a layer
w 2j=0 (Tpa)” + € in the PG-GAN.

where M is the number of channels, a, 4 and b, , are the
original and normalized feature vector at pixel (p,q) and
e =10"% And B,, = apq/v(ap) refers to normalizing
coefficients which implements the pixel normalization.

The progressive growing strategy gradually appends new layers to the network, organizing layers
into different granularity levels. Given a random input z and the PG-GAN generator G = h - f, we
have the generated image * = G(z) and u = f(z) is a set of units (i.e., channels in convolution
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operations) in a given middle layer which are closely related to classes of objects respectively. Liter-
ature shows that while units in the middle layers (layer4 to layer7 in PG-GAN) relate to object-level
concepts (e.g. chairs, painting), they in layers ahead relate to background concepts (e.g. ceiling,
sky) and in latter layers focus on abstract concepts (e.g. color, texture). In this work, to enable
detailed analysis over objects’ disentanglement properties, we constrain our training and following
experiments of PG-GAN on the LSUN (Yu et al.[(2015)) conference room dataset.

PG-GAN’s ability to yield various fine-grained objects is critical for analyzing disentanglement be-
tween different objects. In the literature, researchers conduct a wide range of experiments to primar-
ily show that PG-GAN exhibits both disentangled and entangled properties in different scenarios.
Especially in (Bau et al.| (2018))), the authors present a series of qualitative unit-level experiments
to show that in the unit-ablation transformation, while in some cases the PG-GAN shows disentan-
glement (such as ablating paintings on the wall), in other cases, entangled phenomena are observed,
mainly categorized into two types including unsuppressible and emerged objects after ablation. In
this work, we try to provide deeper thoughts about the disentanglement caused by function-level and
mutual relationships between objects and eventually explain the above unexpected entanglement.

3 PROBLEM DEFINITION

Intuitively, the disentanglement of deep models denotes the scenario that a transformation operating
on a local component does not disturb other components in the same figure. A rigorous definition of
transformation disentanglement is proposed by Besserve et al.|(2018a), which is presented as below:

Literature Definition (Counterfactual-based Disentanglement). Given a transformation T on the
data manifold, it is disentangled on a generative model G with respect to a subset £ of the generated
outcome, if there is a transformation T' acting on internal representation units such that for any
endogenous value u

' =T(G(u)) =G(T (u)), 2)
where T' only affects variables indexed by .

This definition points out that a transformation 7' is disentangled if and only if T”s effect corresponds
to an internal transformation 7”(w) which only causes changes on &, a specific outcome subset. In
this research, we specify 7" in the above definition as the unit-ablation transformation, which is
denoted by T,. Therefore, T,, denotes the transformation directly ablating objects, while T, is the
transformation ablating input units. We further define £ to the area of a specific object class £, on
the generated image. We also notice that T, is disentangled if and only if there is 7, disentangled.
Therefore, in the rest of the paper, we use “disentanglement” for short to represent the disentangled
property of the ablation transformation 7.

The above definition allows us to examine whether a type of objects are disentangled under the unit-
ablation transformation on PG-GAN generated figures. For example, given a GAN G, if the T, on
chair objects area &, is disentangled, we expect to find a internal transformation 7, acting on units
u leading to only and sufficient disappearance of chair objects in the generated image. Therefore,
we have the following definition of the disentanglement of a class of objectives.

Definition 1 (The Disentanglement of a Set of Objects). A class of objectives C is disentangled
under the ablation transformation T, if the unit-ablation transformation T, acting on u satisfies

x' = To(G(u)) = G(T;(w)), 3)
where T, only affects variables indexed by C.

The above definition also suggest that the disentanglement of an object is influenced by several
factors, among which the features of units w have the most direct and apparent effect because 7,
directly acts on u. To quantitatively identify units «’s impact on the appearance of a specific class of
objects, following (Bau et al.| (2018))) and (Holland, |1988)), we leverage a standard causal metric—
the average causal effect (ACE) to reflect a unit’s effect on disentanglement.

Definition 2 (Unit’s Effect on Disentanglement). For any possible z and x = G(z), the ACE of
unit set U € u on object class c is defined as

5U—>c = ]Ez [Sc(wz)] - Ez [Sc(wa)] (4)
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(a) ablate light units (b) ablate chair units (c) ablate painting units

Figure 3: (a) Disentangled case: ablating top-20 light-ACE units eliminates the light objects on ceil-
ing. (b) Deactivating-ablation entanglement: ablating chair-ACE units cannot eliminate the chairs.
(c) Mis-ablation entanglement/emerge case: ablating top-20 painting-ACE units leads to both elim-
ination of paintings on the wall and unexpected emergence of doors and windows

where €, = h(T,(uy)) = f(0,ug) is the image with U ablated at P and x; = f(k,ug) is the
image with U inserted at P.

Note that the dy—. is the expectation over all the possible z, which reflects the average effect of
units on the object class ¢ in any scenarios. In Figure 3] we exhibit the three types of disentangled
and entangled phenomena caused by ablating units U with top-d;_,.. The first sample shows a
fully disentangled behavior (as the paintings on the wall disappear), but the second and third exhibit
entangled phenomena. In the second one, although top-§ chair units are ablated, the chair objects
are not ablated in the outcome, with only sizes shrinking a little bit. In the third one, while paintings
are removed, new objects such as doors unexpectedly emerge.

Literature has suggested that in the internal components of neural networks may have roles in caus-

ing entanglement (Besserve et al.} [2018b} [Chen et al., 2018). In this work, we propose to study the

pixel normalization function’s effect on disentanglement 7, via experimental designs. We define it
as follows:

Definition 3 (Pixel Normalization’s Effect on Disentanglement). Given an input z, let v’ = T, (u)
denote ablated units, p(3,u) denote pixel normalization function’s effect, and 0(u) denote other
functions’ effect, there is

Y(8,u) = (B, u) +0(u) (5)

where Y refers to the functions and units’ joint effect on x. Consequently, the effect of pixel normal-
ization given the ablation transformation T, could be represented by

AYjg, where ' = ~(u') = y(T,(u)) = T;(v(w)) = T;(8) (6)

Since the pixel normalization acts on the units, ¢’s behavior is probably influenced by the aggregat-
ing properties of the input w and corresponding d,,—,.. More specifically,

Definition 4 (Distribution and Ranking (Informal)). With a set of object classes C and the set of
units u, we informally define:

1) distribution of 0,,—.: given an object class ¢ € C and for every unit u; € wu, the density distribu-
tion of du,—ec

2) ranking of 6,..: for every c € C, the ranking sequence of their ), 0y, ¢

4 METHOD: DIFFERENCE-IN-DIFFERENCE EXPERIMENT DESIGN

To bridge the pixel normalization to disentanglement, in SectionElwe propose to identify AYj3_, g
which represents pixel normalization’s universal effect, and then to explore how the properties of ©
will influence AYg_,5.’s form of expression. For the first problem, we introduce a counterfactual-
based Difference-in-Difference (DID) (Ciani & Fisher,[2018) experiment framework; for the second,
based on the different-in-different approach, we compare AYjs_, 3 under four scenarios with difter-
ent unit distributions and rankings.
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4.1 COUNTERFACTUAL DID EXPERIMENTS FOR IDENTIFYING FUNCTION’S EFFECT

We argue that the pixel normalization’s transformation 5 — /3’ has a significant impact on disen-
tanglement of the w — w’. The intuition is that, from Equation (I} we know that /3, , will increase
when there are units ablated (i.e. ag, ¢ = 0), leading to augmentations on un-ablated units. In previ-
ous study, researcher show the ob]ect level generation of PG-GAN is determined by the 4-layer to
13-layer in PG-GAN. Therefore, in order to investigate how the 5 — 3’ affects the transformation

u — u’, we propose to control the 3 in these 10 layers for constructing counterfactuals.

Naturally, we have a factual experiment Y (3, w) as shown in Equation [7} To show 3’s effect on the
transformation u — u’, we construct a counterfactual case where u — u’ and /3 remains controlled.
Technically speaking, this control is performed by enforcing normalizing coefficients [ in 4-layer to
13-layer to be the same as the original situation with w. For another factual experiment Y (8, u'), we
conduct the same control as enforcing coefficients to be the same to reveal 3’’s impact on u — u’.
As aresult, we construct two pairs of counterfactual experiments for difference in difference analysis
as follow:

Original case: Y(B,u) = ¢(8,u) +0(u) %)
Ablated u’ and 3: Y(B,u') = @(B,u') + 0(u)
Ablated v’ and 8': Y8 u')=pB u)+0(u)
w and ablated 5’ Y(B',u) = SO(/B ;u) + 0(u)
and therefore the real effect could be computed as:
AYgp = [Y(8 u') =Y (8, u)] = [Y(B,u') = Y(5,u)] (®)

= [p(B", ') — (B8, u)] = [p(B,u') — ¢(B,u)] + [0(u) — O(u)] + [0(u) — O(u')]
= [p(B,u) — (B, u)] = [p(8',u) — (8", u)]

which indicates the real effect of pixel normalization effect function ¢ imposed on the image. Noted
that this effect is also unbiased because the unrelated effect 6 has been offset in the difference.

4.2 SCENARIO-CONDITIONED EXPERIMENTS FOR UNIT DISTRIBUTION AND RANKING

Difference-in-Difference experiments enable us to systematically analyze pixel normalization’s ef-
fects on disentanglement of any given objects on given images. But we may still not explain the
unexpected evidences in Figure [3] that with the same application of pixel normalization, different
object classes, or the same object class in different scenarios show significant entangled properties.

Therefore, in this step of experiment, we design to compare the DID experiment results conditioned
on its distribution of §,,_,. and ranking of §,,_, .. More specifically, we categorized them into 2 x 2 =
4 types:

1. distribution of d,,_.: 1) units symmetrically locate in both high-ACE and low-ACE area,
2) units concentrate in high-ACE area.

2. ranking of §,_,.: 1) the top ranking object’s ACE overwhelms the second one, 2) the top
ranking object marginally surpasses the second one.

Although theoretically we have 4 scenarios, in fact we will show that given the symmetrical distri-
bution condition, the ranking of J,,—,. does not take effect, leaving only 3 meaningful cases.

5 RESULT

5.1 PIXEL NORMALIZATION’S EFFECT: ENTANGLE OBJECTS BY IN-PAINTING

Our experiments demonstrate a strong tie between pixel normalization and the entanglement in
the object ablation transformation 7). Supported by difference-in-difference counterfactual experi-
ments, we discover that the pixel normalization’s effect AYp_, g/, informally, is to in-paint objects to
ablated areas on the generated image caused by the internal ablation of corresponding units, which
consequently leads to entanglement in PG-GAN. In Figure 4, we present the mechanism of how
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Y(ﬂ’,y') Y(,B’,u)

Figure 4: The mechanism of how pixel normalization causes entanglement. The first row represents
the mechanism of how ablated figure is changed by adding the top 20 related units back when
pixel normalization coefficient is fixed to the after-ablation level. The second row represents the
mechanism of how original figure is changed by ablating the top 20 related units back when pixel
normalization coefficient is fixed to the before-ablation level. The right large figure represents the
effect of pixel normalization.

pixel normalization causes entanglement. Recall the difference-in-difference definition of pixel nor-
malization’s effect as:

AYjg = [YV(Bu) =Y (B w)] = [Y(B,u) = Y(B,u)] 9

of which the first term Y (5’,u') — Y (', u) describes the in-painting effect produced by 3’ (first
two columns of Row 1) and the second term Y (8,u) — Y (3, u) depicts an ablation effect (first
two columns of Row 2). As a consequence of their difference, the in-painted area will cover the
ablation area and presents a joint effect of in-painting. In order to well present the in-painting
effect and ablation effect, we present the two effects on a background figure B. The background
figure presents the areas that do not significantly change by both effects. The background figure is
presented on the third column of Figure 4.

In-painting effect under 5’ (after ablation) When (3’ is controlled, from Y (5’, u) to its counter-
factual Y(8’, u'), pixel normalization shows its in-painting functionality by inserting door objects
on the original wall and wall objects on where the paintings are.

Ablation effect under 5 (before ablation) When /3 is controlled, pixel normalization’s response
is to ablate the area of all objects related to the removed units. For example, in Figure 4’s lower
row where we ablated units mainly contribute to the paintings, from the original case Y (3, u) to the
counterfactual case Y (3, u’), the PG-GAN removes all paintings away together with surrounding
wall areas and turning them into a yellow background.

Joint DID effect of the pixel normalization Combining the above two effects of in-painting and
ablation, we present the final DID joint effect as in the rightmost subfigure in Figure 4, which
clearly illustrates that the pixel normalization in-paints not only walls at where the paintings are
ablated, unexpected door objects are also inserted to places where should have been wall. Without
the rigorous DID experimental design, one may only notice the effect from the original case Y (53, u)
to the natural ablation case Y (', u’), and thus ignore the complicated mechanisms behind the pixel
normalization.

5.2  WHAT TO IN-PAINT: UNIT DISTRIBUTION AND RANKING

In Section[5.1] we have answered the universal effect of pixel normalization, that to in-paint the area
affected by the ablation transformation. But what objects the pixel normalization will in-paint to the
area and how intensive this in-painting will remain unclear. We argue that the form of in-painting
the pixel normalization will present in an ablation transformation could be identified according to
the properties of units’ ACE §,,_,., namely the distribution and the ranking.
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First, the distribution of §,,_,. determines whether an object class could be ablated. In Figure 5, we
select three typical types of object classes, including chair, painting and light, to illustrate how the
ACE distribution directly determines an object’s ability to be disentangled. We ablate the units with
ACE ranking from top to down, and observe an apparent gap between chair (categorized as Type-1)
objects and painting & light (categorized as Type -2 disentangled). While the chairs’ area remains
stubborn with top-80 ACE units ablated, the painting and light objects take no more than 20 of the
top ACE units ablated to be eliminated.

This confusing phenomenon could be explained when we look into their distribution of ACE. We
observe that Type-1 classes distribution is flat, with high-ACE units explains for no more than 50%
of the total effect. Therefore, when we removing high-ACE units, the loss of their effects could be
compensated by those lower-ACE units with 8”’s augmentation. However, on the contrary, Type-2
and disentangled classes have a concentrated distribution where influential units dominantly locate
at the high-ACE part and thus make the most contributions to the object generation. To conclude,
with such flat distribution, Type-1 classes are not disentangled at all with the ablation transformation.

Second, given the Type-2 and disentangled object classes, ablation on corresponding units could
eliminate them. But for Type-2 classes, when we compare it with those disentangled ones, we
observe mis-ablation phenomena in which other unexpected objects would emerge. To explain this,
based on the concentrated unit distribution we consider the influence of the ranking of units as
shown in Figure[6] When we operate ablation on the red point and examine its unit ranking, before
ablation ACE for painting is the largest, but ACE for window, curtain and door are also quite large.
After ablation, the decrease of painting ACE and the increase of wall ACE make painting removed
and replaced with wall. Moreover, ACE for curtain, door and window become the largest and they
indeed appear in the area around the operation point, which successfully explains the mis-ablation.

For the disentangled classes, such as the lights we display in the summary plot Figure 1, they actually
share a similar ranking of units with those of Type-2. The only difference is that the second candidate
unit just behind the ablated one happens to be the original surrounding.

6 CONCLUSION

We in this research propose a difference-in-difference (DID) counterfactual framework to design
experiments for acquiring insights into the black box of PG-GAN transformation and analyzing
the entanglement mechanism in one of the Progressive-growing GAN (PG-GAN). Our experiment
clarifies the mechanism of how pixel normalization causes PG-GAN entanglement during an input-
unit-ablation transformation. We discover that pixel normalization causes object entanglement by
in-painting the area occupied by ablated objects. We also discover the unit-object relation determines
whether and how pixel normalization causes object entanglement. Our DID framework theoretically
guarantees that the mechanisms that we discover is solid, explainable, and comprehensive.
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